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Abstract. A computational fluid dynamics (CFD) model based on realistic
voxelized representation of human brain tumor vasculature is presented. The
model utilizes dynamic contrast enhanced magnetic resonance imaging
(DCE-MRI) data to account for heterogeneous porosity and permeability of
contrast agent inside the tumor. Patient specific arterial input function (AIF) is
employed in this study. Owing to higher accuracy of Leaky Tracer Kinetic
Model (LTKM) in shorter duration human imaging data, the model is employed
to determine perfusion parameters and compared with General Tracer Kinetic
Model (GTKM). The developed CFD model is used to simulate and predict
transport, distribution and retention of contrast agent in different parts of human
tissue at different times. In future, a patient specific model can be developed to
forecast the deposition of drugs and nanoparticles and tune the parameters for
thermal ablation of tumors.

Keywords: Voxelized model � Human brain tumor � AIF � LTKM � GTKM �
DCE-MRI � CFD

1 Introduction

Cancer, a deadly disease occurs as a consequence of abnormal cell growth. It is the
leading cause of human’s death in developed as well as developing countries [1]. Most
of the human cancers are solid tumors (approximately 85%) [2]. These tumors depend
on other normal tissues for their nutritional material and thus grow in size. Che-
motherapy and hyperthermia are widely used for cancer treatment. However, physic-
ochemical properties of drug and biological properties of tumors put many limitations
in all treatment strategies. Limited penetration of drug to tumor cells and difficulty in
targeting sufficient amount of heat only to tumor tissue are the primary reasons of
failure of chemotherapy and hyperthermic treatment respectively. On the other hand,
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biological properties of tumors such as irregular vasculature, impaired lymphatic
system and hypoxic conditions also lead to failure of these treatments [3]. Therefore,
there is an urgent need to have proper knowledge of transport barriers that the drug or a
drug carrying nanoparticle encounters when administered systematically inside a
human’s body. To this end, mathematical models are an excellent tool in investigating
these transport barriers.

In order to study the transport barriers, Baxter and Jain developed a theoretical
model to analyze a uniform as well as non-uniform perfused tumor. They demonstrated
the effect of interstitial fluid pressure (IFP) and necrotic core on drug delivery [4, 5].
Soltani and Chen developed a homogenous tumor model and concluded that IFP
becomes less than the effective pressure below the critical tumor radius, which makes
the chemotherapeutic drug transport to tumor site easier [6]. Wang et al. used two
different drug delivery modes to simulate the delivery of carmustine to brain tumors
and concluded that polymeric drug delivery is better [7]. Pishko et al. modelled the
drug delivery through the tumor tissue by using magnetic resonance imaging
(MRI) technique and demonstrated the effects of heterogeneous vasculature and
porosity [8]. Later, Magdoom et al. came out with a voxelized approach to model the
drug delivery process that helped in reducing the computational time and increased
accuracy [9]. Zhan et al. modeled the delivery of thermo-sensitive liposomes to solid
tumors and concluded that thermo-sensitive liposome delivery leads to higher intra-
cellular concentration of drug, enhancing the therapeutic effect of the drug [10].

All the above mentioned models have unfolded new insights in understanding the
transport process that can be extended to study the transport of nanoparticles for
thermal ablation of tumors. However, the assumption of spherical shape and homo-
geneous vasculature are far from reality. Studies incorporating heterogeneous vascu-
lature of tumors too had mostly focused on animal models with Simple Tofts Model
and global arterial input function (AIF), which is time dependent concentration of
tracer in blood plasma.

The main objective of the present study is to model the interstitial fluid flow
parameters (pressure and velocity) and tracer transport in realistic human brain tumors
with help of DCE-MRI data. Heterogeneous vasculature of tumor and spatially varying
permeability and porosity have been taken into account. In addition, local or patient
specific AIF has been measured and used for accurate determination of the perfusion
parameters. General Tracer Kinetic Model (GTKM) [11] also called Extended Tofts
Model has been employed for calculation of permeability and porosity maps. This
model has been used because blood volume fraction in case of human tumors is quite
large and this is taken care of by including intravascular term in this model [12]. In
addition to the GTKM model, Leaky Tracer Kinetic Model (LTKM) [13] has also been
used for generating perfusion parameters. CFD results (IFP, Interstitial fluid velocity
(IFV) and tracer concentration) have been obtained by using perfusion parameters from
both the models and are compared with experimental DCE-MR results. To the best of
authors’ knowledge, this is the first study related to CFD analysis of realistic human
brain tumors based on DCE-MRI data and LTKM.
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2 Data and Methodology

To obtain the permeability and porosity maps of tumor, a compartment model is fitted
to the DCE-MRI data. The GTKM model assumes that tissue is divided into two
compartments: plasma space and extravascular extracellular space (EES), also called
interstitial space. It assumes bidirectional exchange of contrast agent from plasma space
to EES. Contrast agent from plasma compartment permeates into EES. This model
basically calculates the three important perfusion parameters namely rate transfer
constant from plasma space to EES (Ktrans), fractional plasma volume (vp) and frac-
tional EES volume or porosity (ve). On the other hand, LTKM is a three compartment
model in which three compartments are plasma, permeable and leakage compartments.
This model basically assumes that EES is composed of two compartments permeable
space and leakage space. In permeable space bidirectional exchange of contrast agent
takes place where as in leakage space only unidirectional exchange of contrast agent
occurs i.e. contrast does not flow back to vasculature. Figure 1 gives a clear picture of
these two models depicting only bidirectional exchange in GTKM and unidirectional as
well as bidirectional exchange in LTKM.

2.1 MR Imaging and 3D Porous Media Computational Model

DCE-MR imaging was performed on a 3.0T Ingenia MRI scanner (Philips Healthcare,
The Netherlands). Written consent from each patient was obtained before MRI study.
Imaging was performed using a fast field echo (T1-FFE) sequence (TR/TE =
4.38 ms/2.3 ms, flip angle = 10°, field of view (FOV) = 240 � 240 mm2, slice
thickness = 6 mm, matrix size = 256 � 256). A dose of 0.1 mmol/kg body weight of
Gd-BOPTA (Gadobenate Dimeglumine) (Multihance, Bracco, Italy) was administered
intravenously with the help of a power injector. A total of 384 images at 32 time points

Fig. 1. Schematic of both models (a) GTKM (b) LTKM
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for 12 slices were acquired with a temporal resolution approximately of 4 s for each
time point. From DCE-MRI images, contrast concentration on each voxel was calcu-
lated from signal intensity with the help of SPGR/FFE signal equation. Pre contrast T1
(T10) was estimated using 3 fast spin echo (FSE) image (T1 - weighted, T2 - weighted,
and proton density - weighted) [14]. The longitudinal and transverse relaxivity
R1and R2ð Þ of contrast agent in body were taken as 6.3 mmol�1s�1L and 17.5
mmol�1s�1L respectively [15]. Local AIF was estimated using a method described by
Singh et al. [16]. These concentration values obtained from Eq. (1) are used to fit
Eqs. (2) and (3) i.e. two compartment model and three compartment model respec-
tively. Equations (1, 2 and 3) are listed in Table 1. The second and third equations
listed in Table 1 are fitted to get perfusion parameter maps (Ktrans; ve; vp) by GTKM
and (Ktrans; ve; vp; k

tr) by LTKM at each voxel respectively. The perfusion parameter
maps got from both the models were imported in 3D porous media model made in
OpenFOAM. Porous media model used in this study consists of fluid flow and tracer
transport equations and has been described in our previous study [17].

Where, S (0) is the signal intensity when no contrast agent is given, S (t) is the
signal intensity at a particular time point, TE is the echo time (msec), TR is the
repetition time (msec), h is the flip angle, Ct is the total tissue contrast agent con-
centration (mmol/Lt), Cp tð Þ is the time dependent concentration of contrast agent in
blood plasma (mmol/Lt) and ktr is the rate transfer constant between plasma and
leakage compartment.

For reduction in the computational time, only the tumor part and the surrounding
brain normal tissue were modelled. A rectangular volume of size 40 � 36 � 72 mm3

enclosing the tumor and the normal tissue was created and meshed using the Open-
FOAM software. The mesh element size in the rectangular volume was same as that of
voxel size in MRI slice (0.9375 � 0.9375 � 6 mm3). The values of tracer kinetic
parameters obtained from both the models were entered at each voxel inside the
OpenFOAM CFD model. The SIMPLE (semi implicit method for pressure linked
equations) algorithm [18] was used and standard interpolation schemes used by
OpenFOAM were used to discretize the equations. Zero fluid pressure boundary
conditions were applied at all the boundaries. Zero gradient boundary conditions were
applied for interstitial fluid velocity and concentration of contrast agent. Initial

Table 1. Equations used for analysis of MR images

Name of Equation Equation

1. SPGR/FFE Signal Equation S tð Þ
S 0ð Þ ¼ k0exp �TER2C tð Þð Þ 1�exp �TRðT�1

10 þR1C tð ÞÞ
� �

1�cos hð Þexp �TRðT�1
10 þR1C tð ÞÞ

� �

Where k0 ¼ 1�cos hð Þexp �TRT�1
10

� �

1�exp �TRT�1
10

� �

2. General tracer kinetic model Ct ¼ vpCp tð ÞþKtrans Rt

0
Cp sð ÞeK

trans
ve

s�tð Þds

3. Leaky tracer kinetic model Ct ¼ vpCp tð ÞþKtrans Rt

0
Cp sð ÞeK

trans
ve

s�tð Þdsþ ktr Rt

0
Cp sð Þds
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condition for contrast agent transport was set to zero (Ct ¼ 0). Grid independence test
was done to see the effect of change in mesh size on the simulated tracer concentration.
Increasing the number of mesh elements to four times the original value resulted in less
than 3% change in tracer concentration.

3 Results and Discussion

Pre-contrast and post-contrast images of brain of one slice are shown in Fig. 2(a),
(b) respectively. Local or patient specific AIF used in this study is shown in (Fig. 2(c)).

Permeability and porosity maps of a particular slice (slice 10) obtained by fitting
DCE-MRI data to both the models (GTKM and LTKM) are shown in Fig. 3. As can be
observed, perfusion parameters obtained from both the models have significant dif-
ference. Ktrans and porosity maps derived from LTKM were found to be more
heterogeneous as compared to those got from GTKM. Figure 4 shows the contour plots
of IFP and IFV, showing no significant difference in the values obtained from both the
models. Figure 4(a) shows higher IFP inside the tumor with value equal to 1530 Pa,
which rapidly decreased at the tumor boundary. IFV contour plot (Fig. 4(b)) was
completely reverse of IFP with higher values of 0.04 µm/s at the tumor periphery.
Simulated values of IFP and IFV were validated with the experimental values previ-
ously measured in the literature for human brain tumors [19, 20]. The higher and
uniform value of IFP within the tumor is responsible for negligible convective transport
of tracer within the tumor interstitium. Transport of tracer within tumor interstitium
takes place mainly by diffusion. Convective transport of tracer is only significant at the
periphery of tumor. This is due to the reason of steep pressure gradient and higher IFV
at the tumor periphery, which helps in outward convection of tracer from the tumor.

Next, the interstitial tracer concentration was simulated using perfusion parameters
of both the models. The tracer concentration simulation was carried out for two minutes
since experimental data was available only for two minutes.

The comparison with experimental data was done at 14th time point (56 s) and 28th

time point (112 s). Figure 5 shows contour plots of the tracer concentration simulated
by using perfusion parameters of both the models (GTKM and LTKM) and

Fig. 2. MR images of brain (a) Pre contrast (b) Post contrast (c) AIF of the patient
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experimental data at both the time points. As seen from contour plots tracer concen-
tration obtained from LTKM perfusion parameters was more heterogeneous and more
close to experimental results qualitatively. To make quantitative comparison, line plots
were plotted along the horizontal and vertical bisector of the slice for both time points.
Line plots of tracer concentration give an accurate picture of how closely the simulated
results overlap with experimental ones. Figure 6 shows line plots of tracer concen-
tration (both experimental and simulated) at horizontal and vertical bisector for 14th and
28th time points.

It is clear from line plots that simulated tracer concentration from LTKM obtained
perfusion parameters was much close and correlates well with experimental concen-
tration as compared to GTKM obtained perfusion parameters. Similar analysis was
done on three more tumor data sets. Similar results were obtained, with simulated
concentration from LTKM obtained perfusion parameters being more close to exper-
iments. Tracer concentration peaks at tumor site in approximately 90–100 s after the
administration intravenously, and then contrast begins to wash out from tumor site.

(a) (c)

(b) (d)

Fig. 3. Contour plots of perfusion parameters by GTKM (a) Permeability (Ktrans ðsec�1)) maps
(b) Porosity (ve) maps and LTKM (c) Permeability (Ktrans ðsec�1)) maps (d) Porosity (ve) maps.

(a) (b)

U

Fig. 4. Contour plots of (a) Interstitial fluid pressure (IFP) and (b) Interstitial fluid velocity
(IFV).
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However, the wash out rate found in this tumor can’t be extrapolated to other
tumors as it highly depends on the type and characteristics such as size, grade and
volume of tumors. It can be concluded that the developed computational model
accurately captures the tracer concentration in tissues qualitatively as well as quanti-
tatively. Further, the LTKM model gives more accurate perfusion parameters for short
duration MRI data, as used in this study, which further help in predicting more accurate
tracer concentration by CFD. For short duration MRI data, the GTKM model does not
give correct estimation of volume fraction of extravascular extracellular space (EES) or
porosity [13]. For correct estimation of porosity, data acquisition is suggested to be
long enough for concentration of contrast agent to become stabilized (approximately
15–20 min) [21]. This is not always possible in case of clinical data due to many issues
such as long scan time and blurring of image caused due to motion of patient over long
time leading to inaccurate analysis. Also porosity and Ktrans values in the GTKM model
keep on varying with time for contrast enhancing tissues, which is not the case with
LTKM. By changing temporal resolution of DCE-MR scans GTKM gives varying
estimates of perfusion parameters whereas with LTKM, the perfusion parameters
remain constant [13]. Thus, for shorter duration of MRI data, LTKM is preferable and
provides better estimate of perfusion parameters. To further confirm the accuracy of
results, a statistical analysis was performed. Root mean square (RMS) error and
Pearson product moment correlation coefficient (PPMCC) were calculated along the
values at horizontal and vertical bisector for both the time points as shown in Table 2.

(c) (d)

(a) (b)

(e) (f)

Fig. 5. Contour plots of tracer concentration at 14th time point (56 s) (a) Experimental
(c) Simulated with GTKM perfusion parameters (e) Simulated with LTKM perfusion parameters
and at 28th time point (112 s) (b) Experimental (d) Simulated with GTKM perfusion parameters
(f) Simulated with LTKM perfusion parameters. Units of concentration are mmol/Lt.
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Fig. 6. Line plots of tracer concentration at 14th time point (56 s) (a) Horizontal Bisector
(b) Vertical Bisector and at 28th time point (112 s) (c) Horizontal Bisector (d) Vertical Bisector

Table 2. Statistical analysis comparing Experimental and Simulated results

Variable Model Quantity RMS error PPMCC

Ct Tracer concentration simulated
with GTKM perfusion
parameters

t = 14th

time point
Horizontal
Bisector

0.0079 mmol/Lt 0.91055

Vertical
Bisector

0.0155 mmol/Lt 0.74357

t = 28th

time point
Horizontal
Bisector

0.0071 mmol/Lt 0.91944

Vertical
Bisector

0.0143 mmol/Lt 0.70202

(continued)
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RMS error decreased by 44% and 76% at 14th time point and by 38% and 58% at
28th time point along horizontal and vertical bisector respectively when tracer con-
centration was simulated using LTKM parameters. Tracer concentration simulated with
help of LTKM parameters always show a good correlation (>0.9) at both time points
and for both bisectors as compared to those simulated with GTKM parameters.

4 Conclusions

A computational model based on DCE-MRI data was developed to study transport of
contrast agent in realistic heterogeneous human brain tumor. Two different models
(GTKM and LTKM) were used to obtain perfusion parameters. Simulated contrast
agent concentration obtained by LTKM perfusion parameters showed better agreement
with the experimental MRI data as compared to those obtained by GTKM perfusion
parameters. Also, simulated IFP and IFV values correlated well with experimentally
measured human brain tumor values reported in literature. The developed model is
patient specific and can be used to select the most suitable chemotherapeutic drug for a
specific patient before starting the treatment. Moreover, the developed CFD model in
future can be used to predict the deposition of nano-particle encapsulated drugs. Once
the deposition of nano particles in tumor area is known the porous media transport
model used in this study can be coupled with heat transfer equations to study the effect
of hyperthermic treatment in tumor microenvironment [22].
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Table 2. (continued)

Variable Model Quantity RMS error PPMCC

Tracer concentration simulated
with LTKM perfusion
parameters

t = 14th

time point

Horizontal
Bisector

0.0044 mmol/Lt 0.97273

Vertical
Bisector

0.0036 mmol/Lt 0.97731

t = 28th

time point
Horizontal
Bisector

0.0041 mmol/Lt 0.98563

Vertical
Bisector

0.0060 mmol/Lt 0.95278
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