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Abstract. Single trial electroencephalogram classification is indispensable in
online brain–computer interfaces (BCIs) A classification method called adaptive
Kernel Fisher Support Vector Machine (KF-SVM) is designed and applied to
single trial EEG classification in BCIs. The adaptive KF-SVM algorithm
combines adaptive idea, SVM and within-class scatter inspired from kernel
fisher. Firstly, the within-class scatter matrix of a feature vector is calculated.
And to construct a new kernel, this scatter is incorporated into the kernel
function of SVM. Ultimately, the recognition result is calculated by the SVM
whose kernel has been changed. The proposed algorithm simultaneously max-
imizes the discrimination between classes and also considers the within-class
dissimilarities, which avoids some disadvantages of traditional SVM. In addi-
tion, the within-class scatter matrix of adaptive KF-SVM is updated trial by trail,
which enhances the online adaptation of BCIs. Based on the EEG data recorded
from seven subjects, the new approach achieved higher classification accuracies
than the standard SVM, KF-SVM and adaptive linear classifier. The proposed
scheme achieves the average performance improvement of 5.8%,5.2% and 3.7%
respectively compared to other three schemes.

Keywords: Brain computer interface (BCI) � Support vector machine (SVM) �
Adaptive classification � Kernel fisher � Within-class scatter

1 Introduction

Brain–computer interfaces (BCIs) is a direct communication pathway between brain
and external device which is independent from muscle pathway [1]. The inherent
nonstationarities existed in the sampled EEG data makes a principal problem in elec-
troencephalogram based brain computer interfaces [2]. These nonstationarities are
caused by many factors such as variations of the concentration and excitation level,
fluctuations in the involved subjects’ mental task, the impedance variations or positions
movement of the electrodes, affection of feedback, fatigue, and swallowing and
blinking artifacts [3–6]. In addition, the characteristics of EEG signals may vary
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significantly from person to person [7]. In order to track non-stationary EEG, reduce
the subject training, some adaptive algorithms are investigated extensively, from its
feature extraction to its classification [8–12]. This present work mainly emphasizes on
the analysis of motor imagery electroencephalogram signal in BCI for the ideal of
adaptive classification. As a kind of spontaneous EEG signal, Motor imagery signal is
commonly used in BCIs because of the reason that it is much more natural compared
with evoked EEG signal for example as P300 and VEP (Visual Evoked Potential).

Some typical classification methods include adaptive linear discriminant analysis
(LDA), adaptive support vector machine (SVM) The adaptive linear discriminant
analysis is investigated for left and right hand motor imagery classification. By using
Kalman filter, the adaptive LDA parameters are constantly updated trial by trial, which
get better results than the non-adaptive LDA classification. It is a simple and efficient
method, but it cannot avoid shortcomings of linear classifiers. An adaptive SVM
classification for BCIs is proposed in [10], which attains much higher classification
accuracy than the non-adaptive SVM. However, the classification performance of
standard SVMs is restricted by many factors such as data noise, unbalanced data points,
complexity of data points and so on. When the classification examples are difficult data
classification for standard SVMs, it is impossible to obtain optimal classification results
[11]. To classify imagery EEG data in BCIs, this article describes a novel and adaptive
method called adaptive kernel fisher SVM (KF-SVM), which combines adaptive idea,
SVM, kernel fisher inspiring within-class scatter.

Due to the powerful classification ability, the SVM has become a major method to
make electroencephalogram(EEG) based BCI classification, thus to overwhelm other
classifiers in many other applications [13, 14]. Nevertheless, the SVM algorithm only
considers the discrimination between classes, but neglects within-class scatters infor-
mation. As an algorithm improvement, the proposed algorithm not only maximizes the
discrimination between classes but also considers the within-class dissimilarities
inspired from kernel fisher simultaneously. Firstly, the within-class scatter matrix of a
feature vector is calculated. And after that this scatter is incorporated into the kernel
function of SVM to reconstruct a new kernel. Finally, the recognition result is calcu-
lated by SVM whose kernel has been changed. At the same time, the adaptability of the
proposed algorithm is improved by updating the within-class scatter simultaneously
and continuously. The proposed method was tested on dataset collected from seven
subjects. Its performance is compared to other classification algorithms including SVM,
KF-SVM and adaptive LDA. The highlighted point in this paper is the employment of
common spatial patterns (CSP) method for feature extraction of the three classifiers.

2 Methods

2.1 Dataset

Dataset was experimented from laboratory. A 16-channel electrode cap is used for EEG
signal recording. The authors didn’t use too many channels considering that fewer
channels were more practical for online application of BCIs. The EEG biological
amplifier was developed by Tsinghua University research group with its high quality of
precision. The EEG signals were transformed by a 24-bit A/D converter and collected
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with the sampling frequency of 100 Hz through acquisition software. In the process of
the experiment, each of seven subjects was asked to complete one session containing
60 trials. For each trial, a 4 s left or right hand motor imagination task is included. For
each subject, the total accepted sessions are eight and corresponding eight datasets for
each subject were acquired. These subjects had no experience of the BCI experiment.
The aim of selecting them was to check if the proposed algorithm had better gener-
alization capability for naïve BCI users. The datasets were filtered between 8 Hz and
30 Hz by band-pass filter (the usual range for motor imagery EEG data).

2.2 Research Scheme

A flowchart of the adaptive KF-SVM is illustrated in Fig. 1. In part 1, the trials from
session 1 are extracted features by the CSP. For motor imagery features recognition, the
PP-SVM via adding within-class scatter is used firstly and it takes five-fold cross
validation secondly, so for the testing data, the average recognition accuracies are
calculated across these five folds. In part 2, the parameters of adaptive KF-SVM via
adding within-class scatter are initialized by the training data of all the trials in session
1. After completing initialization, the obtained trials from session 2 to session 8 are
used to evaluate the performance of the classifier. At the simultaneous time, within
class scatter of the proposed adaptive algorithm is updated trial by trial continuously.

2.3 SVM Introduction

The purpose of SVM algorithm is to search the optimal hyperplane to separate the two
classes of samples [11, 12]. The SVM has good generalization ability and its opti-
mization problem is defined as:

minð1=2ÞwTIwþ cð1=2Þ
Xnþm

i¼1

e2i ð1Þ
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Fig. 1. Flowchart of adaptive KF-SVM.
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where the parameter I represent the identity matrix, the regularisation term c remains
positive, n + m reflects the training samples number, feignþm

i¼1 represents the error
vector, yi 2 f�1; 1g represents the label for sampling, /ðxÞ is a mapping function, the
vector W is weighting vector and scalar b 2 R is bias vector. According to formula (1),
the Lagrange multipliers are used to solve the optimisation problem:

0 �YT

Y zzT þ c�1I

� �
b

a

" #
¼ 0

I

" #
ð2Þ

where ðzzTÞij ¼ yiyjkðxi; xjÞ, a reflects the dual variable vector, and this function
kðxi; xjÞ ¼ /ðxiÞ � /ðxjÞ is called a kernel function.

From formula (2), the non-zero parameter a and parameter b can be obtained. So the
decision function could be shown as the following equations:

f ðxÞ ¼
Xnþm

i¼1

aiyikðxi; xÞþ b ð3Þ

According to formula (3), the classification surface of SVM depends on two
classes’ boundary samples and misclassified samples. In other words, the SVM
depends on samples that makes a non-zero and ignores samples within the boundaries.
This may cause deviation when facing strong noise interference or an uneven data
distribution. The output modality of the SVM classifier is expressed as the following
equation:

zðxÞ ¼ 1 f ðxÞ[ 0
�1 f ðxÞ\0

�
ð4Þ

2.4 KF-SVM

Inspiring from Kernel fisher, the SVM could make an integration with within-class
scatter.. Fisher discriminant analysis can make input data relationship conversion from
non-linear into linear form. Fisher’s linear discriminant is found by maximising
J(w) equation:

JðwÞ ¼ wTMw=wTNw; N ¼
X
j¼1;2

kjðI � 1ljÞkTj ; kj ¼ kðxnþm; x
jÞ ð5Þ

Where the parameter N represent the within-class scatter, kj represents not only the
matrix of (n + m)*n or (n + m)*m but also the kernel function matrix of class j,
m represents the first class’s sample number, n is the second class’s sample number, the
parameter I represents the unit matrix, 1lj represents the matrix with all the inner
elements are n-1 or m-1, w represents the transform vector, and M denotes the distance
between classes.
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On practical data, the Kernel fisher has got excellent results. Its classification error
rate could be as low as or even lower compared with the SVM. Considering that SVM
algorithm ignores within-class scatter and meanwhile to improve the adaption of a
classifier, so the current work proposes adaptive KF-SVM classification method
through the way to add within-class scatter inspired from kernel fisher. Combing with
the kernel fisher, the SVM can be optimized which could be described as the following
formula

minð1=2ÞwTðkNþ IÞwþ cð1=2Þ
Xnþm

i¼1

e2i

s:t: yi½ðw � /ðxÞÞþ b� ¼ 1� ei ei � 0; i ¼ 1; 2; 3. . .; nþm

ð6Þ

In a method similar to the SVM, according upper Eq. (6), the optimization matter
could be resolved by implementing Eq. (7), with ðzzTÞij ¼ yiyjk�ðxi; xjÞ. The kernel
function has been changed after incorporating within-class scatter to the kernel func-
tion. Now, k�ðxi; xjÞ ¼ uðxiÞ � R�1 � uðxjÞT , where R ¼ kN þ I. To obtain k�ðxi; xjÞ,
on the basis of the Mercer condition, the afterwards deduction could be achieved:
suppose input space x ¼ x1; x2; . . .; xn and k(x, y) is a symmetric function, for all the
involved samples, the matrix can be given by: k ¼ ðkðxi; xjÞÞði; j ¼ 0; 1; . . .; nÞ, which
is apparently a symmetric matrix. Definitely, there exists an orthogonal matrix to form
PTkP ¼ K, where K represents a diagonal matrix which consists of eigenvalue ki, then
the eigenvector of ki is vt ¼ ðvt1; vt2; . . .; vtnÞT , where n represents the size of the
sample. The input space could be mapped as the following equation:

/ : xi ! ð
ffiffiffiffiffiffiffiffiffiffi
k1v1i

p
;
ffiffiffiffiffiffiffiffiffiffi
k2v2i

p
; . . .:;

ffiffiffiffiffiffiffiffiffiffi
knvni

p
Þ 2 Rnði ¼ 1; 2; . . .; nÞ

Where /iðxjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
kivij

p
. Then:

/ðxiÞ ¼ ð/1ðxiÞ;/2ðxiÞ; . . .:;/nðxiÞÞ

\/ðxiÞ;/ðxjÞ[ ¼
Xn
t¼1

ktvtivtj ¼ kðxi; xjÞ

So k�ðxi; xjÞ ¼ uðxiÞ � R�1 � uðxjÞT is obtained and new a and b values are
acquired from formula (7). On the basis of this new function with its new a and b
values, f(x)function can be expressed as the following equation:

f ðxÞ ¼
Xnþm

i¼1

aiyik
�ðxi; xÞþ b ð7Þ

The decision function f(x) in Eq. (7) varies the traditional SVM algorithm in for-
mula (3). The final class label is determined by whiten the spatial coefficient matrix
S and transformation matrix P jointly. So the KF-SVM is formed.
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2.5 Comparison Between SVM and KF-SVM

To further explain the difference between SVM and KF-SVM, optimization objective,
constraint function and formula are given in Table 1.

2.6 Adaptive KF-SVM

A whole scheme is described in section “research scheme” and we have known that the
scheme is divided into two parts including part 1 and part 2. Detailed flow of adaptive
KF-SVM to part 1 and part 2 is shown in Fig. 2.

Table 1. Comparison between SVM and KF-SVM

SVM KF-SVM

Optimization
objective,
Constraint
Function

min ð1=2ÞwTIwþ cð1=2Þ
Xnþm

i¼1

e2i

s:t: yi½ðw � /ðxÞÞþ b� ¼ 1� ei
ei � 0; i ¼ 1; 2; . . .nþm

min ð1=2ÞwTðkN þ IÞwþ cð1=2Þ
Xnþm

i¼1

e2i

s:t: yi½ðw � /ðxÞÞþ b� ¼ 1� ei
ei � 0; i ¼ 1; 2; . . .; nþm

Formula
and
steps

Step1:
kðxi; xjÞ ¼ /ðxiÞ � /ðxjÞ

Step1: k�ðxi; xjÞ ¼ /ðxiÞ � R�1 � /ðxjÞT

Step2:

f ðxÞ ¼ Pnþm

i¼1
aiyikðxi; xÞþ b

Step2: f ðxÞ ¼ Pnþm

i¼1
aiyik � ðxi; xÞþ b

Step3:

zðxÞ ¼ 1 f ðxÞ[ 0
�1 f ðxÞ\0

� Step3:

zðxÞ ¼ 1 f ðxÞ[ 0
�1 f ðxÞ\0

�

Start

Training 
set

Feature extraction 
by CSP

Calculate the 
within-class scatter

Construct new 
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Construct the model 
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Fig. 2. Detailed flow of adaptive KF-SVMP
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The realization steps involved in proposed adaptive algorithm are given below:
Initialization Process (part 1)

Step 1: The feature vector of training data are extracted by the CSP.
Step 2: The within-class scatter N of feature vectors are calculated by formula (5).
Step 3: The new kernel function is constructed by k�ðxi; xjÞ ¼ /ðxiÞ � R�1 � /ðxjÞT .
Step 4: The decision function f(x) and final classification result are obtained

according formula (2) and CSP whiten transformation matrix and CSP
spatial coefficient matrix respectively. An initial model is formed.

Step 5: The established initial model is used to classify testing data.
Step 6: The five-fold cross validation is implemented according above steps and

afterwards the average recognition rate for the testing data is calculated
across these five folds.

Step 7: The adaptive KF-SVM is initialized by implementing the session 1 trials as
training data.

Validation Process (part 2)

Step 1: The feature vector of a new single trial i from next sessions is extracted by
CSP.

Step 2: The initialized model obtained in training process is used to classify the
feature vector and the corresponding values of the decision function f(x(i))
and class label can be obtained.

Step 3: The new trial is added into training dataset and at the same time the oldest
trial is deleted from the training dataset in order to keep training number
constant.

Step 4: The within-class scatter is updated by using new training dataset. New
training dataset are trained by the KF-SVM to get a new model, which will
replace the old model.

Step 5: When next trial comes, the above four steps are repeated again until all data
from session 2 to session 8 are finished. The classification results of all data
from these seven sessions are implemented to estimate the performance of
the algorithm.

3 Discussions and Results

3.1 Classifier

For the purpose to check the performance of the upper proposed algorithm, the four
bellowing classification methods were used in the experiments.

1. SVM: as described above, it uses the following RBF kernel function:

Kðx; yÞ ¼ exp � jjx� yjj2
r2

 !
ð8Þ
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2. KF-SVM: the within-class scatter based on kernel fisher is added into the SVM, so
the optimization object, kernel function and decision function of SVM are changed.
The model of KF-SVM is established based on these changed parameters. The
detailed process can be seen in above Section.

3. Adaptive LDA: the LDA is used as a classifier. The classification result from latest
trial will serve as the label of the trial. Meanwhile, the latest trial is added into
training set and the oldest trial in the training set will be deleted. By this manner, the
classification model is trained and updated trial by trial.

4. Adaptive KF-SVM: the adaptive idea is added into the KF-SVM and the classifi-
cation model is continuously updated trial by trial.

3.2 Parameters Selection in Proposed Algorithm

In the analysis of the proposed algorithm, two indispensable parameters are required to
make optimal selection, that is to say, the parameter of kernel function r and the
parameter of within-class scatter k. Here, the best r and k are selected from the sets
r 2 f1; 2; 3; . . .; 20g and k 2 f0; 1; 2; 3. . .. . .; 100g respectively. Five-fold
cross-validation was performed using multigroup values of r and k on the training
data and those resulting in the minimum error are chosen.

3.3 Experiment Results

For each trial, the 2.1 s to 3.1 s time duration is selected as the signal processing period
from the total 4 s for each imagination based trial. So every trial’s time length was 1 s.
A 4-dimensional feature vector F = {f1, f2, f3, f4,} is calculated to every trial. Finally, a
60 � 4 (60 trials, four dimension of every trial) feature vector from session 1 is used
for the initialization of classification model. After initialization, the trials from session 2
to session 8 are classified to make estimation of the different classifiers’ performances.
Table 2 lists accuracies for seven subjects (Sub1–Sub7) with different classifiers.

3.4 Discussions

The row in blue shade in Table 2 shows that the average classification accuracy of the
adaptive KF-SVM is 5.8%, 5.2% and 3.7 higher than those obtained with other three
methods (SVM, KF-SVM, Adaptive LDA) in part 2. Meanwhile, the row in grey shade
indicates that the adaptive KF-SVM has a slight higher classification accuracy over
SVM and adaptive LDA during session 1. It should be noted that the adaptive
KF-SVM has the same classification accuracy and model with the KF-SVM because
they have the same initialization procedure during session 1. The main difference
between adaptive KF-SVM and KF-SVM lies in part 2 (from session 2 to session 8). In
order to more clearly describe differences among these three classification methods, all
classification results are plotted in Fig. 3. From this figure, we can see that classifi-
cation accuracies varied significantly from person to person, in which subject Sub7
obtains the best performance with proposed method over other subjects. Classification
performance of SVM and KF-SVM classifiers declines during part 2 in relation to part
1, implying that the nonstationarity of EEG affects the classification performance.
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However, adaptive KF-SVM and LDA presents minimal reduction or even some
increase, which implies that adaptive idea is helpful to analyze varied EEG. Mean-
while, adaptive KF-SVM achieves the best performance and has better adaptation over
other three algorithms.

Table 2. Classification accuracies with different classifiers

Subject Classification accuracy (%)
SVM KF-SVM

(k = 21,
r = 5)

Adaptive
LDA

Adaptive
KF-SVM (k = 21,
r = 5)

Part 1 (Session 1,
Initialization)

Sub1 75 77 74.3 77
Sub2 71 63.33 65.6 63.33
Sub3 87.5 89.5 85.1 89.5
Sub4 78.5 86.25 80.8 86.25
Sub5 75 75 73.2 75
Sub6 77.5 79 73.8 79
Sub7 87.5 85 78.5 85
Mean 78.9 79.3 75.9 79.3

Part 2 (From
Session 2 to
Session 8)

Sub1 75 75 76.9 85
Sub2 70 62.5 69.1 72.5
Sub3 87.5 87.5 86.1 87.5
Sub4 77.5 80 83.1 85
Sub5 72.5 75 76.2 77.5
Sub6 70 75 73.9 77.5
Sub7 81.5 83 83.5 89.5
Mean 76.3 76.9 78.4 82.1

Fig. 3. Comparison of classification results among different subjects and methods
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4 Conclusion

This paper presents a new adaptive KF-SVM classification method combining the
kernel fisher, adaptive idea, and the SVM. It takes advantage of the properties of the
kernel fisher and overcomes some defects inherent to the SVM. Meanwhile, the
within-class scatter in the adaptive KF-SVM is continuously updated trial by trial,
which could improve adaptation of the new classifier. The upper proposed method is
verified by comparing it with other three algorithms. The results show that the upper
proposed method could obtain satisfying recognition accuracy. It may be practical for
online application in BCIs. The next-step research should take aim at the verification of
the algorithm on bigger data.
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