
Chapter 6
Additive Results for the Drazin Inverse

The Drazin inverse, introduced in [1], named after Michael P. Drazin in 1958 in the
setting of an abstract ring, is a kind of generalized inverse of a matrix. Many inter-
esting spectral properties of the Drazin inverse make it as a concept that is extremely
useful in various considerations in topics such as Markov chains, multibody sys-
tem dynamics, singular difference and differential equations, differential-algebraic
equations and numerical analysis ([1–6]).

In this chapter we will focus our attention on the behavior of the Drazin inverse
of a sum of two Drazin invertible elements in the setting of matrices as well as in
Banach algebras, where we will also consider the concept of the generalized Drazin
inverse. In 1958, while considering the question of Drazin invertibility of a sum of
two Drazin invertible elements of a ring Drazin proved that

(A + E)D = AD + ED

provided that AE = E A = 0. After that this topic received considerable interest with
many authors working on this problem [4, 7–10], which in turn lead to a number
of different formulae for the Drazin inverse (A + E)D as a function of A, E, AD

and ED.

6.1 Additive Results for the Drazin Inverse

Although it was already even in 1958 that Drazin [1] pointed out that computing
the Drazin inverse of a sum of two elements in a ring was not likely to be easy, this
problem remains open to this day even for matrices. It is precisely this problemwhen
considered in rings of matrices that will be the subject of our interest in this section,
i.e., under various conditions we will compute (P + Q)D as a function of P , Q, PD

and QD. We will extend Drazin’s result in the sense that only one of the conditions
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160 6 Additive Results for the Drazin Inverse

PQ = 0 or PQ = QP is assumed. The results obtained will be then used to analyze
a special class of perturbations of the type A − X.

Throughout the section, we shall assume familiarity with the theory of Drazin
inverses (see [11]). Also, for A ∈ C

n×n , we denote ZA = I − AAD.
First, we will give a representation of (P + Q)D under the condition PQ = 0

which was considered in [10, Theorem 2.1]:

Theorem 6.1 Let P, Q ∈ C
n×n. If PQ = 0, then

(P + Q)D = (I − QQD)[I + QPD + · · · + Qk−1(PD)k−1]PD

+ QD[I + QDP + · · · + (QD)k−1Pk−1](I − PPD), (6.1)

and

(P + Q)(P + Q)D = (I − QQD)[I + QPD + · · · + Qk−1(PD)k−1]PPD

+ QQD[I + QDP + · · · + (QD)k−1Pk−1](I − PPD) + QQDPPD, (6.2)

where max{Ind(P), Ind(Q)} ≤ k ≤ Ind(P) + Ind(Q).

Proof Under the assumption PQ = 0, we have

PDQ = PQD = 0, ZPQ = Q and PZQ = P. (6.3)

Using Cline’s Formula [12], (AB)D = A[(BA)D]2B, we have

(P + Q)D =
(

[I, Q]
[
P
I

])D

= [I, Q]
([

P PQ
I Q

]D
)2 [

P
I

]
.

Now, by Theorem 1 of [4], we have that

[
P 0
I Q

]D

=
[
PD 0
R QD

]
,

for
R = −QDPD + ZQYk(P

D)k+1 + (QD)k+1Yk ZP

and
Yk = Qk−1 + Qk−2P + · · · + QPk−2 + Pk−1,

where max{Ind(P), Ind(Q)} ≤ k ≤ Ind(P) + Ind(Q).

Hence

(P + Q)D = [I, Q]
([

PD 0
R QD

])2 [
P
I

]
= PD + QRPPD + QQDRP + QD.
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Substituting R in the above equality, we get (6.1). It is straightforward to prove (6.2)
from (6.1) and (6.3). ��
Now we list some special cases of the previous result:

Corollary 6.1 Let P, Q ∈ C
n×n be such that PQ = 0 and let k be such that max{

Ind(P), Ind(Q)} ≤ k ≤ Ind(P) + Ind(Q).

(i) If Q is nilpotent, then (P + Q)D = PD + Q(PD)2 + · · · + Qk−1(PD)k .

(ii) If Q2 = 0, then (P + Q)D = PD + Q(PD)2.

(iii) If P is nilpotent, then (P + Q)D = QD + (QD)2P + · · · + (QD)k Pk−1.

(iv) If P2 = 0, then (P + Q)D = QD + (QD)2P.

(v) If P2 = P, then (P + Q)D = (I − QQD)(I + Q + · · · + Qk−1)P +
QD(I − P), and
(P + Q)D(I − P) = QD(I − P).

(vi) If Q2 = Q, then (P + Q)D = (I − Q)PD + Q(I + P + · · · + Pk−1)

(I − PPD), and
(I − Q)(P + Q)D = (I − Q)PD.

(vii) If P R = 0, then (P + Q)DR = (I − QQD)PDR + QDR = QDR.

Theorem 6.1may be used to obtain several additional perturbation results concerning
the matrix Γ = A − X. Needless to say these are rather special, since addition and
inversion rarely mix. First a useful result.

Lemma 6.1 Let A, F, X ∈ C
n×n. If AF = FA and FX = X, then

(AF − X)k X = (A − X)k X, f or all k ∈ N . (6.4)

Proof Since AF = FA and (I − F)X = 0, we have that

(I − F)(A − X)k X = 0. (6.5)

Now the assertion is proved by induction. The case k = 1 is trivial. Suppose (AF −
X)k X = (A − X)k X. Then by (6.5),

(AF − X)k+1X = (AF − X)(A − X)k X = AF(A − X)k X − X (A − X)k X

= A(A − X)k X − X (A − X)k X = (A − X)k+1X.�

Now we present a perturbation result.

Corollary 6.2 Let A, F, X ∈ C
n×n and let F be an idempotent matrix which

commutes with A. Let Γ = A − X and let max{Ind(A), Ind(X)} ≤ k ≤ Ind(A) +
Ind(X). If F X = X and R = Γ F = AF − XF, then
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(A − X)D = RD −
k−1∑
i=0

(RD)i+2X (I − F)Ai (I − AAD)

+ (I + RDX)(I − F)AD − (I − RRD)

k−2∑
i=0

(A − X)i X (I − F)(AD)i+2. (6.6)

Proof LetΓ = A − X = P + Q,where P = A(I − F) andQ = AF − FX.Since
F2 = F we have that (I − F)2 = I − F and (I − F)D = (I − F). Since

PQ = A(I − F)(AF − FX) = A(I − F)AF = A2[(I − F)F] = 0,

after applying Theorem 6.1 we get

(P + Q)D = (I − QQD)V + W (I − PPD) = T1 + T2,

whereV = [PD + Q(PD)2 + · · · + Qk−1(PD)k] andW = [QD + (QD)2P + · · · +
(QD)k Pk−1]. Put T1 = (I − QQD)V and T2 = W (I − PPD). So we see that we
need to compute QD and PD. The latter is easily found because A and F commute:

PD = [A(I − F)]D = (I − F)AD, PPD = (I − F)AAD.

On the other hand, in order to compute QD, we split Q further as

Q = R − S,

where R = (A − X)F = AF − FXF and S = FX (I − F). Since

SR = FX (I − F)(FA − FXF) = FX [(I − F)F](A − XF) = 0,

and S2 = FX [(I − F)F]X (I − F) = 0, by (iv) of Corollary 6.1 we get

QD = (−S + R)D = RD − (RD)2S, QQD = (R − S)[RD − (RD)2S].

Since SRD = SR = 0, it follows that QQD = RRD − RDS. Also, RDP = 0,
because

RP = (AF − FXF)A(I − F) = (A − FX)[F(I − F)]A = 0.

So QDP = −(RD)2SP = −(RD)2X P. Similarly, since SRD = 0, we get

(QD)2P = [RD − (RD)2S][−(RD)2X P] = −(RD)3X P.
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Repeating the process, we obtain

(QD)t+1Pt = −(RD)t+2X Pt , t = 1, 2, . . .

which when substituted yields the second term:

T2 = W (I − PPD) = [RD − (RD)2S − (RD)3X P − · · · − (RD)k+1X Pk−1](I − PPD)

= [RD − (RD)2X (I − F) − (RD)3X A(I − F) · · · − (RD)k+1X Ak−1(I − F)]
− [RD − (RD)2X (I − F) − (RD)3X A(I − F) · · · − (RD)k+1X Ak−1(I − F)](I − F)AAD

= RD −
k−1∑
i=0

(RD)i+2X (I − F)Ai (I − AAD).

Let us next examine the first term

T1 = (I − QQD)V = [I − (RRD − RDS)][PD + Q(PD)2 + · · · + Qk−1(PD)k].

We compute the powers Qi (PD)i+1 = (AF − X)i (I − F)(AD)i+1. For i = 1,
this becomes (AF − X)(I − F)(AD)2 = −X (I − F)(AD)2, while for higher pow-
ers of i we may use Lemma 6.1 to obtain

Qi (PD)i+1 = (AF − X)i−1(AF − X)(I − F)(AD)i+1

= −(AF − X)i−1X (I − F)(AD)i+1 = −(A − X)i−1X (I − F)(AD)i+1.

Now

S(A − X)i−1X = X (I − F)(A − X)(A − X)i−2X

= X A(I − F)(A − X)i−2X = · · · = X Ai−1(I − F)X = 0

for all i, and RD(I − F) = (RD)2R(I − F) = (RD)2(A − X)[F(I − F)] = 0, so

T1 = (I − RRD + RDS)(I − F)AD + (I − RRD + RDS)[Q(PD)2 + · · · + Qk−1(PD)k ]

= [I + RDX (I − F)](I − F)AD − (I − RRD)

k−1∑
i=1

(A − X)i−1X (I − F)(AD)i+1

= (I + RDX)(I − F)AD − (I − RRD)

k−2∑
i=0

(A − X)i X (I − F)(AD)i+2,

completing the proof. ��
Using the previous result we will analyze some special types of perturbations

of the matrix A − X. We shall thereby extend earlier work by several authors [13–
16] and partially solve a problem posed in 1975 by Campbell and Meyer [17], who
considered it difficult to establish norm estimates for the perturbation of the Drazin
inverse.
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In the following five special cases, we assume FX = X and R = AF − XF.

Case (1) XF = 0.
Clearly (RD)i = (AD)i F and S = X. Moreover (A − X)i F X = Ai X for i ≥ 0.

Thus (6.6) reduces to

(A − X)D = ADF −
k−1∑
i=0

(AD)i+2X Ai (I − AAD)

+ (I − F + ADX)AD −
k−2∑
i=0

Ai (I − AAD)X (AD)i+2. (6.7)

Case (1a) XF = 0 and F = AAD.

If we in addition assume that F = AAD, then X AD = 0 and (6.7) is reduced to

(A − X)D = AD −
k−1∑
i=0

(AD)i+2X Ai . (6.8)

Case (1b) XF = 0 and F = I − AAD.

In this case, ADX = 0 and (6.7) becomes

(A − X)D = AD −
k−2∑
i=0

Ai X (AD)i+2. (6.9)

Case (2) F = AAD.

Now AADX = X , R = A2AD(I − ADX AAD) and (6.6) simplifies to

(A − X)D = RD −
k−1∑
i=0

(RD)i+2X Ai (I − AAD). (6.10)

If we set U = I − ADX AAD and V = I − AADX AD, then U AD = ADV and R =
A2ADU = V A2AD. Now if we assume that U is invertible, then so will be V and
U−1AD = ADV−1. It is now easily verified that R# exists and

R# = U−1AD = ADV−1.

In fact RR# = A2ADUU−1AD = AAD = ADV−1V A2AD = R#R and R2R# =
RAAD = R and R#RR# = U−1ADAAD = U−1AD = R#. We then have two sub-
cases.

Case (2a) F = AAD, and U = I − ADX AAD is invertible.
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In this case, (6.10) is just

(A − X)D = R# −
k−1∑
i=0

(R#)i+2X Ai (I − AAD), (6.11)

where R = A2ADU, R# = U−1AD. In general, (R#)i �= U−i (AD)i .

Remark 6.1.1 The matrix U = I − ADX AAD is invertible if and only if I − ADX
is invertible. This result generalizes the main results from [13–16].

Case (2b) F = I − AAD.

We have ADX = ADF = 0, and (6.6) becomes

(A − X)D = RD + (I + RDX)AD − (I − RRD)

k−2∑
i=0

(A − X)i X (AD)i+2, (6.12)

where R = A(I − AAD) − (I − AAD)X (I − AAD).

Case (3) AADXF = XFAAD = XF, U = I − ADXF is invertible and (AF)#

exists.
Now R = AF − XF = AF − AADFXF= AF(I − ADXF)= AFU = V FA,

where V = I − XFAD. Furthermore ADFV = U ADF. We may now conclude that
U is invertible exactly when V is, in which case Y = U−1ADF = ADFV−1.

We then have RY = AFU (U−1ADF) = AADF = ADFV−1(V FA) = Y R.

Lastly,
Y 2R = U−1ADF(AADF) = U−1ADF = Y

and R2Y = RAADF = A2ADF − AADFXFAAD = A2ADF − XF.

If (AF)# exists then AF = AF(AF)#AF = AFF#ADAF = AFF#FAAD =
A2ADF , so R2Y = AF − XF = R, i.e., Y = R# and (6.6) becomes

(A − X)D = R# −
k−1∑
i=0

(R#)i+2X (I − AAD)Ai . (6.13)

Case (4) FX = XF = X.

In this case, (6.6) reduces to

(A − X)D = RD + (I − F)AD. (6.14)

If in addition to F = AAD, the matrix U = I − ADX is invertible, this reduces
further to [15]

(A − X)D = RD = U−1AD. (6.15)

Case (5) If X = A2AD then Γ is nilpotent and Γ D = 0.
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Although Theorem 6.1 solves our problem under the assumption that PQ = 0,
the condition can be relaxed and the result therefore generalized as follows: Since

([
P PQ
I Q

]D)k

=
([

P PQ
I Q

]k)D

=
[
P(P + Q)k−1 P(P + Q)k−1Q
(P + Q)k−1 (P + Q)k−1Q

]D
, for all k ∈ N,

we may extend the considerations above to the case when P(P + Q)k−1Q = 0.
In fact

(P + Q)D = [I, Q]
([

P PQ
I Q

]k
)D [

P PQ
I Q

]k−2 [
P
I

]
=

[I, Q]
[
P(P + Q)k−1 0
(P + Q)k−1 (P + Q)k−1Q

]D [
P(P + Q)k−3 P(P + Q)k−3Q
(P + Q)k−3 (P + Q)k−3Q

] [
P
I

]
.

This requires computation of [P(P + Q)k−1]D and [(P + Q)k−1Q]D, which may
actually be easier than that of (P + Q)D.

A second attempt to generalize Theorem 6.1 would be to assume only that P2Q =
0. Needless to say, this is the best attempted via the block form, which in turn should
give a suitable formula.

Now, we will investigate explicit representations for the Drazin inverse (A + E)D

in the casewhen AE = E A, whichwas considered in [18, Theorem2]. For A ∈ C
n×n

with Ind(A) = k and rank(Ak) = r , there exists an nonsingular matrix P ∈ C
n×n

such that

A = P

[
C 0
0 N

]
P−1, (6.16)

where C ∈ C
r×r is a nonsingular matrix, N is nilpotent of index k and Ind(N ) =

Ind(A) = k. In that case

AD = P

[
C−1 0
0 0

]
P−1, (6.17)

If P = I, then the block-diagonal matrices A and AD are written as A = C ⊕ N and
AD = C−1 ⊕ 0.

Now we state the following result which was obtained by Hartwig and Shoaf [19]
and Meyer and Rose [20], since it will be used in the theorem to follow.

Theorem 6.2 If M =
[
A C
0 B

]
, where A ∈ C

n×n and B ∈ C
m×m with Ind(A) = k

and Ind(B) = l, then MD =
[
AD X
0 BD

]
,
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where

X =
[
l−1∑
n=0

(AD)n+2CBn

]
(I − BBD) + (I − AAD)

[
k−1∑
n=0

AnC(BD)n+2

]
− ADCBD.

Theorem 6.3 If A, E ∈ C
n×n, AE = E A and Ind(A) = k, then

(A + E)D = (I + ADE)DAD + (I − AAD)

k−1∑
i=0

(ED)i+1(−A)i

= (I + ADE)DAD + (I − AAD)ED[I + A(I − AAD)ED]−1,

and
(A + E)D(A + E) = (I + ADE)DAD(A + E) + (I − AAD)EED.

Proof Let A ∈ C
n×n be given by (6.16). Without loss of generality, we assume that

P = I and A = C ⊕ N , whereC is invertible and N is nilpotent with Nk = 0. From
AE = E A, we have AkE = E Ak . Now E = E1 ⊕ E2, CE1 = E1C and NE2 =
E2N . Hence

(A + E)D = (C + E1)
D ⊕ (N + E2)

D.

Since C and I + C−1E1 commute, we get

(C + E1)
D ⊕ 0 = (I + C−1E1)

DC−1 ⊕ 0 = (I + ADE)DAD.

Notice that (I + T )−1 =
k−1∑
i=0

(−T )i if T k = 0. Applying Lemma 4 [19] we get (N +
E2)

D = ED
2 (I + ED

2 N )−1 and

0 ⊕ ED
2 (I + ED

2 N )−1 = 0 ⊕
k−1∑
i=0

(ED
2 )i+1(−N )i = (I − AAD)

k−1∑
i=0

(ED)i+1(−A)i

= (I + ADE)DAD + (I − AAD)ED[I + A(I − AAD)ED]−1.

Hence

(A + E)D = (I + ADE)DAD + (I − AAD)

k−1∑
i=0

(ED)i+1(−A)i

= (I + ADE)DAD + (I − AAD)ED[I + A(I − AAD)ED]−1,

and
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(A + E)D(A + E)

=
{
(I + ADE)DAD + (I − AAD)

k−1∑
i=0

(ED)i+1(−A)i
}
(A + E)

= (I + ADE)D(A + E)AD + (I − AAD)EDA
k−1∑
i=0

(ED)i (−A)i

+(I − AAD)EDE
k−1∑
i=0

(ED)i (−A)i

= (I + ADE)D(A + E)AD + (I − AAD)

(
−

k∑
i=1

(ED)i (−A)i
)

+(I − AAD)

(
EDE +

k−1∑
i=1

(ED)i (−A)i
)

= (I + ADE)D(A + E)AD + (I − AAD)EED. ��

From Theorem 6.3, we can see that the generalized Schur complement I + ADE
[21] plays an important role in the representation of the Drazin inverse (A + E)D.
In some special cases, it is possible to give an expression for (I + ADE)D.

Theorem 6.4 Let A, E ∈ C
n×n be such that AE = E A and let Ind(A) = k and

Ind(E) = l.
(1) If ADED = 0, then

(A + E)D = (I − AAD)

k−1∑
i=0

(ED)i+1(−A)i +
l−1∑
i=0

(−E)i (AD)i+1(I − EED).

(2) If ADE = 0, then (A + E)D = AD + (I − AAD)
k−1∑
i=0

(ED)i+1(−A)i .

(3) If Ind(A) = 1, then (A + E)D = (I + A#E)DA# + (I − AA#)ED.

Proof We use the notations from the proof of Theorem 6.3.
(1) If ADED = 0, then E1 is nilpotent with El

1 = 0. So we have

(I + ADE)DAD = (I + C−1E1)
−1C−1 ⊕ 0 =

l−1∑
i=0

(−E1)
i (C)−(i+1) ⊕ 0

=
l−1∑
i=0

(−E)i (AD)i+1(I − EED).

The result now follows from Theorem 6.3.
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(2)–(3) Note that if ADE = 0, then E1 = 0; if Ind(A) = 1, then N = 0. The
results follow directly from the proof of Theorem 6.3. ��

Let A, E ∈ C
n×n . If there exists a nonzero idempotent matrix P = P2 such that

AEP = E AP (or PAE = PE A), then A and E are partially commutative. For
A, E ∈ C

n×n , let Aπ = I − AAD and Ind(A) = k and suppose E2 = 0. In [22],
Castro-González proved that if Aπ E = E and AE Aπ = 0, then

(A + E)D = AD +
k∑

i=0

Ai E(AD)i+2 +
k−1∑
i=0

E Ai E(AD)i+3.

But no representations of (A + E)D assuming only partial commutativity are known.
Under the conditions Aπ E = E and AE Aπ = E AAπ ,we are able to give an expres-
sion for (A + E)D.

Theorem 6.5 Let A ∈ C
n×n with Ind(A) = k and E ∈ C

n×n be nilpotent of index l.
If E AD = 0 and Aπ AE = Aπ E A, then

(A + E)D = AD +
k+l−2∑
i=0

(AD)i+2ET (i),

where T (i) = (I − AAD)
i∑

j=0

( j
i

)
A j Ei− j .

Proof Similarly as in the proof of Theorem6.3, let A = C ⊕ N , whereC is invertible
and N is nilpotent with Nk = 0. It follows from E AD = 0 that E can be written as

E =
[
0 E1

0 E2

]
with El

2 = 0. Also by Aπ AE = Aπ E A, we get E2N = NE2. Thus

(N + E2)
i ⊕ 0 =

i∑
j=0

(
j

i

)
N j Ei− j

2 ⊕ 0 = (I − AAD)

⎛
⎝ i∑

j=0

(
j

i

)
A j Ei− j

⎞
⎠ = T (i).

We observe that N + E2 is nilpotent of index k + l − 1. From Theorem 6.2, we
further obtain

(A + E)D =
[
C E1

0 N + E2

]D

=
[
C−1 X
0 0

]
,

where

X =
k+l−2∑
i=0

C−(i+2)E1(N + E2)
i =

k+l−2∑
i=0

C−(i+2)E1

(
i∑

j=0

( j
i

)
N j Ei− j

2

)
. (6.18)
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Hence

AD +
k+l−2∑
i=0

(AD)i+2ET (i) =
⎡
⎣C−1

k+l−2∑
i=0

C−(i+2)E1

(
i∑

j=0

( j
i

)
N j Ei− j

2

)

0 0

⎤
⎦ = (A + E)D.

��
The following result generalizes Theorems 6.3 and 6.5 to the case of partial

commutativity.

Theorem 6.6 Let A, E ∈ C
n×n and Ind(A) = k. Also let Q ∈ C

n×n be an idempo-
tent matrix such that QA = AQ and EQ = 0. If (I − Q)AE = (I − Q)E A, then

(A + E)D = QAD + (I − Q)Ψ − QADEΨ + Q(I − AAD)

[
k−1∑
i=0

Ai EΨ i+2

]

+ Q

[
h−1∑
i=0

(AD)i+2E(A + E)i
]

(I − Q)[I − (A + E)Ψ ],
(6.19)

where Ψ = (I + ADE)DAD + (I − AAD)
k−1∑
i=0

(ED)i+1(−A)i and h = Ind

[(I − Q)(A + E)].
Proof Suppose that Q = Ir×r ⊕ 0(n−r)×(n−r), where r ≤ n. If QA = AQ, EQ =
0 and (I − Q)AE = (I − Q)E A, then A = A1 ⊕ A2 and E =

[
0 E1

0 E2

]
with

A2E2 = E2A2. Using Theorems 6.2 and 6.3, we have

(A + E)D =
⎡
⎣ AD

1 X

0 (I + AD
2 E2)

DAD
2 + (I − A2AD

2 )
k−1∑
i=0

(ED
2 )i+1(−A2)

i

⎤
⎦ ,

where

X =
[
h−1∑
i=0

(AD
1 )i+2E1(A2 + E2)

i

]
[I − (A2 + E2)(A2 + E2)

D]

+(I − A1A
D
1 )

[
k−1∑
i=0

Ai
1E1((A2 + E2)

D)i+2

]
− AD

1 E1(A2 + E2)
D,

and Ind(A2 + E2) = h.

If we write Ψ = (I + ADE)DAD + (I − AAD)
k−1∑
i=0

(ED)i+1(−A)i , then (I − Q)

Ψ = 0 ⊕ (A2 + E2)
D.We can simplify the expression for (A + E)D using the block

decomposition above. We deduce
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Σ1 = Q

[
h−1∑
i=0

(AD)i+2E(A + E)i

]
(I − Q)[I − (A + E)Ψ ]

=
⎡
⎣0

[
h−1∑
i=0

(AD
1 )i+2E1(A2 + E2)

i

]
[I − (A2 + E2)(A2 + E2)

D]
0 0

⎤
⎦ ,

Σ2 = QAπ

[
k−1∑
i=0

Ai EΨ i+2

]
=

⎡
⎣0 Aπ

1

[
k−1∑
i=0

Ai
1E1((A2 + E2)

D)i+2

]

0 0

⎤
⎦

and Σ3 = QADEΨ =
[
0 AD

1 E1(A2 + E2)
D

0 0

]
.

Thus
(A + E)D = QAD + (I − Q)Ψ + Σ1 + Σ2 − Σ3.

��
Now a few special cases follow immediately.

Corollary 6.3 Let A, E ∈ C
n×n with Ind(A) = k and Ind(E) = l.

(1) If E Aπ = 0 and (I − Aπ )AE = (I − Aπ )E A, then

(A + E)D = AADΨ + (I − AAD)

[
k−1∑
i=0

Ai EΨ i+2

]
,

where Ψ = (I + ADE)DAD + (I − AAD)
k−1∑
i=0

(ED)i+1(−A)i .

(2) If E is nilpotent, E Aπ = E and Aπ AE = Aπ E A, then

(A + E)D = AD +
k+l−2∑
i=0

(AD)i+2E(A + E)i .

Proof We adopt the notations from Theorem 6.6.
(1) Let Q = I − AAD in Theorem 6.6 and apply QAD = 0 to (6.19).
(2) Let Q = AAD in Theorem 6.6. Since E Aπ = E , we obtain E AD = E Aπ

AD = 0.Thus (ADE)2 = ADE ADE = 0 and (I + ADE)DAD = (I + ADE)−1AD =
AD. Note that E is nilpotent so that Ψ = AD. Hence

E(A + E)i (I − Q)[I − (A + E)Ψ ] = E(A + E)i Aπ = E(A + E)i , f or i ≥ 0.

The result follows directly from (6.19). ��
Let A be an n × n complex matrix and B = A + E be a perturbation of A. The

classical Bauer-Fike theorem on eigenvalue perturbation gives a bound on the dis-
tance between an eigenvalue μ of B and the closest eigenvalue λ of A, which is
required to be diagonalizable.
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Let A = XΣX−1 be an eigendecomposition, where Σ is a diagonal matrix, and
X is an eigenvector matrix. The Bauer-Fike theorem [23, Theorem IIIa] states that
for any eigenvalue μ of B, there exists an eigenvalue λ of A such that |μ − λ| ≤
κ(X)‖E‖, where κ(X) = ‖X‖ ‖X−1‖ is the condition number of X .

The relative perturbation version of the Bauer-Fike theorem [24, Corollary 2.2]
below requires, in addition, that A be invertible. That is, if A is diagonalizable and
invertible, then for any eigenvalueμ of B, there exists an eigenvalue λ of A such that

|μ − λ|
|λ| ≤ κ(X)‖A−1E‖. (6.20)

Without the assumption of diagonalizability and invertibility of A, we refine the
bound (6.20) under the condition that AE = E A.

Theorem 6.7 Let B = A + E ∈ C
n×n be such that A is not nilpotent and AE =

E A. For any eigenvalue μ of B, there exists a nonzero eigenvalue λ of A such that

|μ − λ|
|λ| ≤ ρ(ADE), (6.21)

where ρ(ADE) is the spectral radius of ADE.

Proof Assume that AE = E A and that A is not nilpotent. Then for any nonzero
eigenvalue λ of A, there exits a common eigenvector x [25, p.250] such that

Ax = λx, (A + E)x = μx .

Therefore

ADx = 1

λ
x, ADEx = AD(μx − Ax) = (μ − λ)ADx = μ − λ

λ
x,

whence |μ − λ|
|λ| ≤ ρ(ADE).

��
Recently, the perturbation of theDrazin inverse has been studied by several authors

([6, 9, 22, 26–33]). As one application of our results in Theorem 6.3, we can establish
upper bounds for the relative error ‖BD‖ and ‖BD − AD‖/‖AD‖ under the assump-
tion that AE = E A.

Theorem 6.8 If B = A + E ∈ C
n×n, AE = E A and max{‖ADE‖, ‖Aπ AED‖} <

1, then

‖BD‖ ≤ ‖AD‖
1 − ‖ADE‖ + ‖Aπ ED‖

1 − ‖Aπ AED‖
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and

‖BD − AD‖
‖AD‖ ≤ ‖ADE‖

1 − ‖ADE‖ + ‖A‖‖ED‖
1 − ‖Aπ AED‖ .

Proof Note that the assumption max{‖ADE‖, ‖Aπ AED‖} < 1 implies invertibility
of I + ADE and I + Aπ AED. It follows directly from Theorem 6.3 that

‖BD‖ ≤ ‖(I + ADE)−1AD‖ + ‖Aπ ED[I + Aπ AED]−1‖
≤ ‖AD‖

1 − ‖ADE‖ + ‖Aπ ED‖
1 − ‖Aπ AED‖ ,

and

‖BD − AD‖ ≤ ‖(I + ADE)−1AD − AD‖ + ‖Aπ ED[I + Aπ AED]−1‖
≤ ‖(I + ADE)−1ADE AD‖ + ‖Aπ‖‖ED‖

1 − ‖Aπ AED‖
≤ ‖ADE‖‖AD‖

1 − ‖ADE‖ + ‖AAD‖‖ED‖
1 − ‖Aπ AED‖

≤
( ‖ADE‖
1 − ‖ADE‖ + ‖A‖‖ED‖

1 − ‖Aπ AED‖
)

‖AD‖.

��
Remark 6.1.2 For any non-zero eigenvalue μ of the spectral set σ(A + E), we
can estimate its lower bound: let μ ∈ σ(A + E). We have 1/μ ∈ σ [(A + E)D] and
|1/μ| ≤ ρ[(A + E)D] ≤ ‖(A + E)D‖, i.e.,

|μ| ≥ 1/‖(A + E)D‖ ≥ 1/

[ ‖AD‖
1 − ‖ADE‖ + ‖Aπ ED‖

1 − ‖Aπ AED‖
]

.

Next we will apply Theorem 6.5 to obtain a perturbation bound in terms of AD

and El = Bl − Al for some positive integer l.

Theorem 6.9 Let B = A + E ∈ C
n×n with Ind(A) = k and Ind(B) = s. Denote

El = Bl − Al , where l = max{k, s}. Assume that the conditions in Theorem 6.5 hold.
Then ‖BD − AD‖

‖AD‖ ≤ ‖Bπ − Aπ‖ = ‖(AD)lEl‖. (6.22)

Proof Since l = max{k, s}, using the notations in the proof of Theorem 6.5, we have

El = Bl − Al =
⎡
⎣ 0

l−1∑
i=0

Cl−1−i E1

(
(N + E2)

i
)

0 0

⎤
⎦ =

⎡
⎣ 0

l−1∑
i=0

Cl−1−i E1

(
i∑

j=0

( j
i

)
N j Ei− j

2

)

0 0

⎤
⎦ .
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Then

AD + (AD)l+1El =
[
C−1 0
0 0

]
+

[
(C−1)l+1 0

0 0

]⎡
⎣ 0

l−1∑
i=0

Cl−1−i E1

(
i∑

j=0

( j
i

)
N j Ei− j

2

)

0 0

⎤
⎦

=
⎡
⎣C−1

l−1∑
i=0

(C−1)i+2E1

(
i∑

j=0

( j
i

)
N j Ei− j

2

)

0 0

⎤
⎦ = BD,

and

AAD + (AD)lEl =
[
I 0
0 0

]
+

[
(C−1)l 0

0 0

]⎡
⎣0

l−1∑
i=0

Cl−1−i E1

(
i∑

j=0

( j
i

)
N j Ei− j

2

)

0 0

⎤
⎦

=
⎡
⎣ I

l−1∑
i=0

(C−1)i+1E1

(
i∑

j=0

( j
i

)
N j Ei− j

2

)

0 0

⎤
⎦ = BBD.

We then have
‖BD − AD‖ = ‖(AD)l+1El‖ ≤ ‖AD‖‖(AD)lEl‖,

and
‖Bπ − Aπ‖ = ‖BBD − AAD‖ = ‖(AD)lEl‖.

The proof is complete. ��
Generalizations of the results of this section to linear operators on Banach spaces

can be found in [9, 34–36] while their generalizations to Banach algebra elements
can be found in [37] and some will also be given in the next section where the
generalized Drazin inverse will be considered.

6.2 Additive Results for the Generalized Drazin Inverse
in Banach Algebra

LetA be a complex Banach algebra with the unit 1. ByA −1,A nil,A qnil we denote
the sets of all invertible, nilpotent and quasi-nilpotent elements in A , respectively.
Let us recall that the Drazin inverse of a ∈ A [1] is the (unique) element x ∈ A
(denoted by aD) which satisfies

xax = x, ax = xa, ak+1x = ak, (6.23)
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for some nonnegative integer k. The least such k is the index of a, denoted by ind(a).
When ind(a) = 1 then the Drazin inverse aD is called the group inverse and it is
denoted by a#. The conditions (6.23) are equivalent to

xax = x, ax = xa, a − a2x ∈ A nil. (6.24)

The concept of the generalized Drazin inverse in a Banach algebra was introduced
by Koliha [38]. The condition a − a2x ∈ A nil was replaced by a − a2x ∈ A qnil.
Hence, the generalized Drazin inverse of a is the (unique) element x ∈ A (written
ad) which satisfies

xax = x, ax = xa, a − a2x ∈ A qnil. (6.25)

We mention that an alternative definition of the generalized Drazin inverse in a ring
is also given in [39–41]. These two concepts of the generalized Drazin inverse are
equivalent in the case when the ring is actually a complex Banach algebra with a unit.
It is well known that ad is unique whenever it exists [38]. The setA d consists of all
a ∈ A such that ad exists. For many interesting properties of the Drazin inverse see
[1, 38, 42].

This section is a continuation of the previous one with the difference that here we
investigate additive properties of the generalized Drazin inverse in a Banach algebra
and find explicit expressions for the generalized Drazin inverse of the sum a + b
under various conditions.

Hartwig et al. [10] for matrices and Djordjević and Wei [9] for operators used the
condition AB = 0 to derive a formula for (A + B)d. After that Castro and Koliha
[43] relaxed this hypothesis by assuming the following complimentary condition
symmetric in a, b ∈ A d,

aπb = b, abπ = a, bπabaπ = 0 (6.26)

thus generalizing the results from [9]. It is easy to see that ab = 0 implies (6.26), but
the converse is not true (see [43, Example 3.1]).

In the first part of the section we will find some new conditions, which are not
equivalent with the conditions from [43], allowing for the generalized Drazin inverse
of a + b to be expressed in terms of a, ad, b, bd. It is interesting to note that in some
cases the same expression for (a + b)d are obtained as in [43]. In the rest of the
section we will generalize some recent results from [43].

Let a ∈ A and let p ∈ A be an idempotent (p = p2). Then we can write

a = pap + pa(1 − p) + (1 − p)ap + (1 − p)a(1 − p)

and use the notations

a11 = pap, a12 = pa(1 − p), a21 = (1 − p)ap, a22 = (1 − p)a(1 − p).
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Every idempotent p ∈ A induces a representation of an arbitrary element a ∈ A
given by the following matrix

a =
[

pap pa(1 − p)
(1 − p)ap (1 − p)a(1 − p)

]
p

=
[
a11 a12
a21 a22

]
p

. (6.27)

Let aπ be the spectral idempotent of a corresponding to {0}. It is well known that
a ∈ A d can be represented in the matrix form:

a =
[
a11 0
0 a22

]
p

,

relative to p = aad = 1 − aπ , where a11 is invertible in the algebra pA p and a22 is
quasi-nilpotent in the algebra (1 − p)A (1 − p). Then the generalizedDrazin inverse
is given by

ad =
[
a−1
11 0
0 0

]
p

.

The following result is proved in [4, 20] for matrices, extended in [44] for a
bounded linear operator and in [43] for arbitrary elements in a Banach algebra.

Theorem 6.10 Let x, y ∈ A and

x =
[
a c
0 b

]
p

, y =
[
b 0
c a

]
(1−p)

relative to the idempotent p ∈ A .

(1) If a ∈ (pA p)d and b ∈ ((1 − p)A (1 − p))d, then x and y areDrazin invertible
and

xd =
[
ad u
0 bd

]
p

, yd =
[
bd 0
u ad

]
(1−p)

(6.28)

where u =
∞∑
n=0

(ad)n+2cbnbπ +
∞∑
n=0

aπanc(bd)n+2 − adcbd.

(2) If x ∈ A d and a ∈ (pA p)d, then b ∈ ((1 − p)A (1 − p))d and xd, yd are given
by (6.28).

We will need the following auxiliary result.

Lemma 6.2 Let a, b ∈ A qnil. If ab = ba or ab = 0, then a + b ∈ A qnil.
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Proof If ab = ba, we have that

ρ(a + b) ≤ ρ(a) + ρ(b),

which gives a + b ∈ A qnil. The case when ab = 0 follows from the equation

(λ − a)(λ − b) = λ(λ − (a + b))

�

In view of the previous lemma, the first approach to the problem addressed in this
section was to replace the condition ab = 0 used in [9, 10] by ab = ba. As expected,
this alone was not enough to derive a formula for (a + b)d. We will thus impose the
following three conditions on a, b ∈ A d:

a = abπ , bπbaπ = bπb, bπaπba = bπaπab. (6.29)

Instead of the condition ab = ba we are thus assuming the weaker condition
bπaπba = bπaπab. Notice that

a = abπ ⇔ abd = 0 ⇔ A a ⊆ A bπ , (6.30)

bπbaπ = bπb ⇔ bπbad = 0 ⇔ A bπb ⊆ A aπ , (6.31)

bπaπba = bπaπab ⇔ (ba − ab)A ⊆ (bπaπ )◦, (6.32)

where for u ∈ A , u◦ = {x ∈ A : ux = 0}.
For matrices and bounded linear operators on a Banach space the conditions

(6.30)–(6.32) are equivalent to

N (bπ ) ⊆ N (a), N (aπ ) ⊆ N (bπb), R(ba − ab) ⊆ N (bπaπ ).

Remark that, unlike the conditions (3.1) from [43], the conditions (6.29) are not
symmetric in a, b so our expression for (a + b)d will not be symmetric in a, b.

In the next theorem, under the assumption that (6.29) holds, we can give an
expression for (a + b)d as follows.
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Theorem 6.11 Let a, b ∈ A d be such that (6.29) is satisfied. Then a + b ∈ A d and

(a + b)d = (bd +
∞∑
n=0

(bd)n+2a(a + b)n)aπ (6.33)

−
∞∑
n=0

∞∑
k=0

(bd)n+2a(a + b)n(ad)k+2b(a + b)k+1

+
∞∑
n=0

(bd)n+2a(a + b)nadb −
∞∑
n=0

bda(ad)n+2b(a + b)n

Before proving Theorem 6.11, we first have to prove the special case of it given
below.

Theorem 6.12 Let a ∈ A qnil, b ∈ A d satisfy bπab = bπba and a = abπ . Then
(6.29) is satisfied, a + b ∈ A d and

(a + b)d = bd +
∞∑
n=0

(bd)n+2a(a + b)n. (6.34)

Proof First, suppose that b ∈ A qnil. Then bπ = 1 and from bπab = bπba we obtain
ab = ba. Using Lemma 6.2, a + b ∈ A qnil and (6.28) holds. Now, we assume that
b is not quasi-nilpotent and consider the matrix representations of a and b relative
to p = 1 − bπ . We have

b =
[
b1 0
0 b2

]
p

, a =
[
a11 a12
a21 a22

]
p

,

where b1 ∈ (pA p)−1 and b2 ∈ ((1 − p)A (1 − p))qnil ⊂ A qnil. From a = abπ , it
follows that a11 = 0 and a21 = 0. We denote a1 = a12 and a2 = a22. Hence

a + b =
[
b1 a1
0 a2 + b2

]
p

.

The condition bπab = bπba implies that a2b2 = b2a2. Hence, using Lemma 6.2,
we get a2 + b2 ∈ ((1 − p)A (1 − p))qnil. Now, by Theorem 6.10, we obtain a + b ∈
A d and

(a + b)d =
⎡
⎣b−1

1

∞∑
n=0

b−(n+2)
1 a1(a2 + b2)n

0 0

⎤
⎦

p

= bd +
∞∑
n=0

(bd)n+2a(a + b)n.

�
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Let us observe that the expression for (a + b)d in (6.28) and that in (3.6) of
Theorem 3.3 in [43] are exactly the same. If we assume that ab = ba instead of
bπab = bπba, we get a much simpler expression for (a + b)d.

Corollary 6.4 Suppose a ∈ A qnil, b ∈ A d satisfy ab = ba and a = abπ . Then a +
b ∈ A d and

(a + b)d = bd.

Proof From a = abπ , as we mentioned before, it follows that abd = 0. Because the
Drazin inverse bd is a double commutant of a, we have

(bd)n+2a(a + b)n = a(bd)n+2(a + b)n = 0.

�

Proof of Theorem 6.11: If b is quasi-nilpotent we can apply Theorem 6.12.
Hence, we assume that b is neither invertible nor quasi-nilpotent and consider the
matrix representations of a and b relative to p = 1 − bπ :

b =
[
b1 0
0 b2

]
p

, a =
[
a11 a12
a21 a22

]
p

,

where b1 ∈ (pA p)−1 and b2 ∈ ((1 − p)A (1 − p))qnil. As in the proof of Theorem
6.12, from a = abπ it follows that

a =
[
0 a1
0 a2

]
p

, a + b =
[
b1 a1
0 a2 + b2

]
p

.

From the conditions bπaπba = bπaπab and bπbaπ = bπb, we obtain aπ
2 b2a2 =

aπ
2 a2b2 and b2 = b2aπ

2 . Now, from Theorem 6.12 it follows that (a2 + b2) ∈ ((1 −
p)A (1 − p))d and

(a2 + b2)
d = ad2 +

∞∑
n=0

(ad2 )
n+2b2(a2 + b2)

n. (6.35)

By Theorem 6.10, we get

(a + b)d =
[
b−1
1 u
0 (a2 + b2)d

]
p

,

where u =
∞∑
n=0

b−(n+2)
1 a1(a2 + b2)n(a2 + b2)π − b−1

1 a1(a2 + b2)d and b−1
1 is the

inverse of b1 in the algebra pA p. Using (6.35), we have
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u =
∞∑
n=0

b−(n+2)
1 a1(a2 + b2)

n = aπ
2 −

∞∑
n=0

b−(n+2)
1 a1(a2 + b2)

nad2b2

∞∑
n=0

∞∑
k=0

(b1)
−(n+2)a1(a2 + b2)

n(ad2 )
k+2b2(a2 + b2)

k+1 − b−1
1 a1a

d
2

−
∞∑
n=0

b−1
1 a1(a

d
2 )

n+2b2(a2 + b2)
n.

By a straightforward manipulation, (6.33) follows. �

Corollary 6.5 Suppose a, b ∈ A d are such that ab = ba, a = abπ and bπ =
baπ = bπb. Then a + b ∈ A d and

(a + b)d = bd.

If a is invertible and b is group invertible, then conditions (6.31) and (6.32) are
satisfied, so we only have to assume a = abπ . In the remaining case when b is
invertible we get a = 0.

It is interesting to remark that conditions (6.26) and (6.29) are independent, i.e.,
neither of them implies the other, but in some cases the same expressions for (a + b)d

are obtained.
If we consider the algebraA of all complex 3 × 3 matrices and a, b ∈ A which

are given in the Example 3.1 [43], we can see that condition (6.26) is satisfied,
whereas condition (6.29) fails. In the following example we have the opposite case.
We construct a, b in the algebraA of all complex 3 × 3 matrices such that (6.29) is
satisfied but (6.26) is not. If we assume that ab = ba in Theorem 6.11 the expression
for (a + b)d will be exactly the same as that in [43, Theorem 3.5] (which is Corollary
6.7 there).

Example 6.1 Let

a =
⎛
⎝ 1 0 0
0 0 0
0 0 0

⎞
⎠ , b =

⎛
⎝0 1 0
0 0 0
0 0 0

⎞
⎠ .

Then

aπ =
⎛
⎝0 0 0
0 1 0
0 0 1

⎞
⎠

and bπ = 1. We can see that a = abπ , aπab = aπ = ba and baπ = b, i.e., (6.29)
holds. Also, aπb = 0 �= b, so (6.26) is not satisfied.

In the rest of the section, we present a generalization of the results from [43].
We use some weaker conditions than those in [43]. For example in the next the-
orem, which generalizes [43, Theorem 3.3], we assume that e = (1 − bπ )(a +
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b)(1 − bπ ) ∈ A d instead of abπ = a. If abπ = a, then e = (1 − bπ )b =
[
b1 0
0 0

]
p

for p = 1 − bπ and ed = bd.

Theorem 6.13 Let b ∈ A d, a ∈ A qnil be such that

e = (1 − bπ )(a + b)(1 − bπ ) ∈ A d, bπab = 0.

Then a + b ∈ A d and

(a + b)d = ed +
∞∑
n=0

(ed)n+2abπ (a + b)n .

Proof The case when b ∈ A qnil follows from Lemma 6.2. Hence, we assume that b
is not quasi-nilpotent. Then

b =
[
b1 0
0 b2

]
p

, a =
[
a11 a12
a21 a22

]
p

,

where p = 1 − bπ . From bπab = 0 we have bπa(1 − bπ ) = 0, i.e., a21 = 0. Put
a1 = a11, a22 = a2 and a12 = a3. Then,

a + b =
[
a1 + b1 a3

0 a2 + b2

]
p

.

Also, bπab = 0 implies that a2b2 = 0, so a2 + b2 ∈ ((1 − p)A (1 − p))qnil, accord-
ing to Lemma 6.2. Applying Theorem 6.10, we obtain

(a + b)d =
[

(a1 + b1)d u
0 0

]
p

,

where u =
∞∑
n=0

((a1 + b1)d)n+2a3(a2 + b2)n .

By direct computation, we verify that

(a + b)d = ed +
∞∑
n=0

(ed)n+2abπ (a + b)n .

�

Now, as a corollary we obtain Theorem 3.3 from [43].

Corollary 6.6 Let b ∈ A d, a ∈ A qnil and abπ = a, bπab = 0. Then a + b ∈ A d

and
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(a + b)d = bd +
∞∑
n=0

(bd)n+2a(a + b)n.

The next result is a generalization of [43, Theorem 3.5]. For simplicity, we use
the following notation:

e = (1 − bπ )(a + b)(1 − bπ ) ∈ A d,

f = (1 − aπ )(a + b)(1 − aπ ),

A1 = (1 − aπ )A (1 − aπ ),

A2 = (1 − bπ )A (1 − bπ ),

for given a, b ∈ Ad.

Theorem 6.14 Let a, b ∈ A d be such that (1 − aπ )b(1 − aπ ) ∈ A d, f ∈ A −1
1 and

e ∈ A d
2 . If

(1 − aπ )baπ = 0, bπabaπ = 0, aπ = a(1 − bπ )aπ = 0,

then a + b ∈ A d and

(a + b)d = (bd +
∞∑
n=0

(bd)n+2a(a + b)n)aπ +
∞∑
n=0

bπ (a + b)naπb( f )−(n+2)
A1

−
∞∑
n=0

∞∑
k=0

(bd)k+1a(a + b)n+kaπb( f )−(n+2)
A1

− bdaπb( f )−1
A1

−
∞∑
n=0

(bd)n+2a(a + b)naπb( f )−1
A1

+ ( f )−1
A1

,

where by ( f )−1
A1

we denote the inverse of f in A1.

Proof Obviously, if a is invertible, then the statement of the theorem holds. If a is
quasi-nilpotent, then the result follows from Theorem 6.13. Hence, we assume that
a is neither invertible nor quasi-nilpotent. As in the proof of Theorem 6.11, we have

a =
[
a1 0
0 a2

]
p

, b =
[
b11 b12
b21 b22

]
p

,

where p = 1 − aπ , a1 ∈ (pA p)−1 and a2 ∈ ((1 − p)A (1 − p))qnil. From (1 −
aπ )baπ = 0, we have that b12 = 0. Let b1 = b11, b22 = b2 and b21 = b3. Then,

a + b =
[
a1 + b1 0

b3 a2 + b2

]
p

.
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The condition aπbπabaπ = 0 expressed in the matrix form yields

aπbπabaπ =
[
0 0
0 bπ

2

] [
a1 0
0 a2

] [
0 0
0 b2

]

=
[
0 0
0 bπ

2 a2b2

]
=

[
0 0
0 0

]
.

Similarly, aπa(1 − bπ ) = 0 implies that a2bπ
2 = a2. From Corollary 6.6, we get

a2 + b2 ∈ A d and

(a2 + b2)
d = bd2 +

∞∑
n=0

(bd2)
n+2a2(a2 + b2)

n.

Using Theorem 6.10, we obtain a + b ∈ A d and

(a + b)d =
[

(a1 + b1)d 0
u (a2 + b2)d

]
p

,

where

u =
∞∑
n=0

bπ
2 (a2 + b2)

nb3( f )
−(n+2)
A1

−
∞∑
n=0

∞∑
k=0

(bd2)
k+1a2(a2 + b2)

n+kb3( f )
−(n+2)
A1

− bd2b3( f )
−1
A1

−
∞∑
n=0

(bd2)
n+2a2(a2 + b2)

nb3( f )
−1
A1

.

By straightforward computation, the desired result follows. �
Corollary 6.7 Suppose a, b ∈ A d satisfy condition (6.26). Then a + b ∈ A d and

(a + b)d = (bd +
∞∑
n=0

(bd)n+2a(a + b)n)aπ +
∞∑
n=0

bπ (a + b)nb(ad)(n+2)

−
∞∑
n=0

∞∑
k=0

(bd)k+1a(a + b)n+kb(ad)(n+2) + bπad

−
∞∑
n=0

(bd)n+2a(a + b)nbad

Proof We have that f = (1 − aπ )a, so ( f )−1
A1

= ad. ��
Next we generalize the results from [45] to the Banach algebra case.
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Theorem 6.15 Let a, b ∈ A d and ab = ba. Then a + b ∈ A d if and only if 1 +
adb ∈ A d. In this case, we have

(a + b)d = ad(1 + adb)dbbd + (1 − bbd)

[ ∞∑
n=0

(−b)n(ad)n
]
ad

+bd
[ ∞∑
n=0

(bd)n(−a)n

]
(1 − aad),

and

(a + b)(a + b)d = (aad + bad)(1 + adb)dbbd + (1 − bbd)aad

+bbd(1 − aad).

Moreover, if ‖b‖‖ad‖ < 1 and ‖a‖‖bd‖ < 1, then we have

‖(a + b)d − ad‖ ≤ ‖bbd‖‖ad‖ [‖(1 + adb)d‖ + 1
]

+‖1 − bbd‖
[ ∞∑
n=1

‖(−b)n(ad)n‖
]

‖ad‖

+‖bd‖
[ ∞∑
n=0

‖(bd)n(−a)n‖
]

‖1 − aad‖,

and

‖(a + b)(a + b)d − aad‖ ≤ [‖aad + bad‖‖(1 + adb)d‖ + ‖1 − 2aad‖] ‖bbd‖.

Proof Since a is generalized Drazin invertible, and

a =
[
a11 0
0 a22

]
p

,

relative to p = 1 − aπ , where a11 is invertible in the algebra pA p and a22 is a

quasi-nilpotent element of the algebra (1 − p)A (1 − p). Let b =
[
b11 b12
b21 b22

]
p

.

Fromab = ba,wehaveb12 = (a11)
−1
pA pb12a22 which implies thatb12 = (a11)

−n
pA p

b12an22, for arbitrary n ∈ N. Since a22 is a quasi-nilpotent, we obtain b12 = 0.
Similarly, from ab = ba it follows that b21 = a22b21(a11)

−1
pA p, i.e., b21 = 0. Also,

a11b11 = b11a11 and a22b22 = b22a22.
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Since, b ∈ A d and σ(b) = σ(b1)pA p ∪ σ(b2)(1−p)A (1−p), using Theorem 4.2
from [38], we deduce b1 ∈ pA p and b2 ∈ (1 − p)A (1 − p), so b11, b22 ∈ A d and
we can represent b11 and b22 as

b11 =
[
b′
11 0
0 b′

22

]
p1

, b22 =
[
b′′
11 0
0 b′′

22

]
p2

,

where p1 = 1 − bπ
11 and p2 = 1 − bπ

22, b
′
11, b

′′
11 are invertible in the algebras p1A p1

and p2A p2 respectively, and b′
22, b

′′
22 are quasi-nilpotent. Since b11 commutes with

an invertible a11 and b22 with a quasi-nilpotent a22, we prove as before that

a11 =
[
a′
11 0
0 a′

22

]
p1

, a22 =
[
a′′
11 0
0 a′′

22

]
p2

.

Since p1 p = pp1 = p1, from the fact that a11 is invertible in the sub-algebra pA p,
we prove that a′

11 and a
′
22 are invertible in the algebras p1A p1 and (p − p1)A (p −

p1), respectively. Also, a′′
11 and a′′

22 are quasi-nilpotent, thus a
′
i i commutes with b′

i i
and a′′

i i with b
′′
i i , for i = 1, 2.

Since a′
22 is invertible and b′

22 is quasi-nilpotent and they commute, we have
that (a′

22)
−1
(1−p1)A (1−p1)

b′
22 is quasi-nilpotent, so (1 − p1) + (a′

22)
−1
(1−p1)A (1−p1)

b′
22 is

invertible in (1 − p1)A (1 − p1) and a′
22 + b′

22 ∈ A d.
Similarly,we conclude that a′′

11 + b′′
11 ∈ A d. Also, a′′

22 + b′′
22 is generalizedDrazin

invertible.
Now, we obtain

a + b = a′
11 + b′

11 + a′
22 + b′

22 + a′′
11 + b′′

11 + a′′
22 + b′′

22.

Since, a′
11 + b′

11 ∈ p1A p1 and b′
22 + a′′

11 + b′′
11 + a′′

22 + b′′
22 ∈ (1 − p1)A (1 − p1)

we have

a + b ∈ A d ⇔
(
a′
11 + b′

11 ∈ A d, a′
22 + b′

22 + a′′
11 + b′′

11 + a′′
22 + b′′

22 ∈ A d
)
.

Next, we inspect generalized Drazin invertibility of y = a′
22 + b′

22 + a′′
11 + b′′

11 +
a′′
22 + b′′

22. From p2yp2 = a′′
11 + b′′

11 and (1 − p2)y(1 − p2)y = a′
22 + b′

22 + a′′
22 +

b′′
22, we conclude

y ∈ A d ⇔
(
a′′
11 + b′′

11 ∈ A d and a′
22 + b′

22 + a′′
22 + b′′

22 ∈ A d
)
.

Previously, we showed that a′′
11 + b′′

11 ∈ A d, so y ∈ A d if and only if z = a′
22 +

b′
22 + a′′

22 + b′′
22 ∈ A d.Notice that z = pzp + (1 − p)z(1 − p),where pzp = a′

22 +
b′
22 ∈ A d and (1 − p)z(1 − p) = a′′

22 + b′′
22 ∈ A d, so z ∈ A d. Hence, y ∈ A d and

we obtain a + b ∈ A d if and only if a′
11 + b′

11 ∈ A d.
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Now,

(a′
11 + b′

11)
d = a′

11(p1 + (a′
11)

−1
p1A p1

b′
11)

d = p1 pa
d(1 + adb)dbbd pp1.

From the first equation, we obtain

(a + b)d − ad = ad(1 + adb)dbbd + (1 − bbd)

[ ∞∑
n=0

(−b)n(ad)n
]
ad

+bd
[ ∞∑
n=0

(bd)n(−a)n

]
(1 − aad) − ad

= ad(1 + adb)dbbd − bbdad + (1 − bbd)

[ ∞∑
n=1

(−b)n(ad)n
]
ad

+bd
[ ∞∑
n=0

(bd)n(−a)n

]
(1 − aad).

Consequently, we have the estimates

‖(a + b)d − ad‖ ≤ ‖bbd‖‖ad‖ [‖(1 + adb)d‖ + 1
]

+‖(1 − bbd)‖
[ ∞∑
n=1

‖(−b)n(ad)n‖
]

‖ad‖

+‖bd‖
[ ∞∑
n=0

‖(bd)n(−a)n‖
]

‖(1 − aad)‖,

and

‖(a + b)(a + b)d − aad‖ = ‖(aad + bad)(1 + adb)dbbd − bbdaad + bbd(1 − aad)‖
≤

[
‖aad + bad‖‖(1 + adb)d‖ + ‖1 − 2aad‖

]
‖bbd‖.

�

Corollary 6.8 Let a, b ∈ A d be such that ab = ba and 1 + adb ∈ A d.

(1) If b is quasi-nilpotent, then

(a + b)d =
∞∑
n=0

(ad)n+1(−b)n = (1 + adb)−1ad.

(2) If bk = 0, then (a + b)d =
k−1∑
n=0

(ad)n+1(−b)n = (1 + adb)−1ad.
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(3) If bk = b (k ≥ 3), then bd = bk−2 and

(a + b)d = ad(1 + adb)dbk−1 + (1 − bk−1)ad + bk−2
[ ∞∑
n=0

(bd)n(−a)n
]

(1 − aad)

= ad(1 + adb)dbk−1 + (1 − bk−1)ad + bk−2(1 + abk−2)d(1 − aad).

(4) If b2 = b, then bd = b and

(a + b)d = ad(1 + adb)db + (1 − b)ad + b

[ ∞∑
n=0

(−a)n
]

(1 − aad)

= ad(1 + adb)db + (1 − b)ad + b(1 + a)d(1 − aad).

(5) If a2 = a and b2 = b, then 1 + ab is invertible and a(1 + ab)−1b = 1
2ab. 1n

this case,
(a + b)d = a(1 + ab)−1b + b(1 − a) + (1 − b)a

= a + b − 3
2ab.

Theorem 6.16 Let a, b ∈ A d be such that ‖adb‖ < 1, aπbaπ = aπb and aπab =
aπba. If aπb ∈ A d, then a + b ∈ A d. In this case,

(a + b)d = (1 + adb)−1ad + (1 + adb)−1(1 − aad)
∞∑
n=0

(bd)n+1(−a)n

+
[ ∞∑
n=0

(
(1 + adb)−1ad

)n+2

b(1 − aad)(a + b)n
]

(1 − aad)

×
[
1 − (a + b)(1 − aad)

∞∑
n=0

(bd)n+1(−a)n

]
.

Moreover, if ‖a‖‖bd‖ < 1, ‖b‖‖ad‖ < 1 and ‖ad‖‖adb‖
1−‖adb‖ ‖a + b‖ < 1, then

‖(a + b)d − ad‖ ≤ ‖ad‖‖adb‖
1 − ‖adb‖ + ‖1 − aad‖

1 − ‖adb‖
∞∑
n=0

‖bd‖n+1‖a‖n

+
[ ∞∑
n=0

(‖ad‖‖adb‖
1 − ‖adb‖

)n+2

‖b‖‖a + b‖n
]

‖1 − aad‖2

+‖1 − aad‖3
[ ∞∑
n=0

(‖ad‖‖adb‖
1 − ‖adb‖

)n+2

‖b‖‖a + b‖n+1

]

×
[ ∞∑
n=0

‖bd‖n+1‖a‖n
]

.
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Proof Since a ∈ A d and aπb(I − aπ ) = 0, we have that for p = 1 − aπ

a =
(
a1 0
0 a2

)
p

, b =
(
b1 b3
0 b2

)
p

(6.36)

where a1 is invertible in the algebra pA p and a2 is a quasi-nilpotent element of the
algebra (1 − p)A (1 − p). Also from aπab = aπba and the fact that aπb ∈ A d, we
conclude that a2b2 = b2a2 and b2 ∈ A d. It follows from ‖adb‖ < 1 that 1 + adb is
invertible. Now, from Theorem 6.15, we have

(a2 + b2)
d =

∞∑
n=0

(bd2)
n+1(−a2)

n.

Using Theorem 6.10, we get

(a + b)d =
⎛
⎝ (a1 + b1)−1 S

0
∞∑
n=0

(bd2)
n+1(−a2)n

⎞
⎠

p

,

where

S =
[ ∞∑
n=0

(a1 + b1)
−n−2b3(a2 + b2)

n

] [
1 − p − (a2 + b2)

∞∑
n=0

(bd2)
n+1(−a2)

n

]

−(a1 + b1)
−1b3

∞∑
n=0

(bd2)
n+1(−a2)

n.

We know that [
(a1 + b1)−1 0

0 0

]
p

= (1 + adb)−1ad

and ⎡
⎣0 0

0
∞∑
n=0

(bd2)
n+1(−a2)n

⎤
⎦

p

= aπ

∞∑
n=0

(bd)n+1(−a)n.

By computation we obtain
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(
0 S
0 0

)
p

=
[ ∞∑
n=0

(
(1 + adb)−1ad

)n+2
baπ (a + b)n

]
aπ

×
[
1 − (a + b)aπ

∞∑
n=0

(bd)n+1(−a)n

]

−(1 + adb)−1adbaπ

∞∑
n=0

(bd)n+1(−a)n .

Hence, we have

(a + b)d = (1 + adb)−1ad + (1 + adb)−1aπ

∞∑
n=0

(bd)n+1(−a)n

+
[ ∞∑
n=0

(
(1 + adb)−1ad

)n+2
baπ (a + b)n

]
aπ

×
[
1 − (a + b)aπ

∞∑
n=0

(bd)n+1(−a)n

]
.

If ‖a‖‖bd‖ < 1, ‖b‖‖ad‖ < 1 and ‖ad‖‖adb‖
1−‖adb‖ ‖a + b‖ < 1, we obtain

‖(a + b)d − ad‖ =
∥∥∥

∞∑
n=1

(adb)nad +
∞∑
n=0

(adb)n(1 − aad)
∞∑
n=0

(bd)n+1(−a)n

+
[ ∞∑
n=0

( ∞∑
n=0

(adb)nad
)n+2

b(1 − aad)(a + b)n
]

(1 − aad)

×
[
1 − (a + b)(1 − aad)

∞∑
n=0

(bd)n+1(−a)n

] ∥∥∥

≤ ‖ad‖‖adb‖
1 − ‖adb‖ + ‖1 − aad‖

1 − ‖adb‖
∞∑
n=0

‖(bd)‖n+1‖(−a)‖n

+
[ ∞∑
n=0

(‖ad‖‖adb‖
1 − ‖adb‖

)n+2

‖b‖‖a + b‖n
]

‖(1 − aad)‖2

+‖(1 − aad)‖3
[ ∞∑
n=0

(‖ad‖‖adb‖
1 − ‖adb‖

)n+2

‖b‖‖a + b‖n+1

]

×
[ ∞∑
n=0

‖(bd)‖n+1‖a‖n
]

.

�
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Corollary 6.9 Let a ∈ A d and b ∈ A be such that ‖bad‖ < 1, aπb(1 − aπ ) = 0
and aπab = aπba,

(1) If baad = 0 and b is quasi-nilpotent, then a + b ∈ A d and

(a + b)d =
∞∑
n=0

(ad)n+2b(a + b)n + ad.

(2) If aπb = baπ , σ(aπb) = 0, then a + b ∈ A d and

(a + b)d = (1 + adb)−1ad = ad(1 + bad)−1.

The following theorem is a generalization of Theorem 6.16 and Theorem 6
from [45].

Theorem 6.17 Let a, b ∈ A d and q be an idempotent such that aq = qa, (1 −
q)bq = 0, (ab − ba)q = 0 and (1 − q)(ab − ba) = 0. If (a + b)q and (1 − q)(a +
b) are generalized Drazin invertible, then a + b ∈ A d and

(a + b)d =
∞∑
n=0

Sn+2qb(1 − q)(a + b)n(1 − q)

[
1 − (a + b)S

]

+
[
1 − (a + b)S

]
q

∞∑
n=0

(a + b)nqb(1 − q)Sn+2

+ (1 − Sqb) (1 − q)S + Sq,

where

S = ad(1 + adb)dbbd + (1 − bbd)

[ ∞∑
n=0

(−b)n(ad)n+1

]

+
[ ∞∑
n=0

(bd)n+1(−a)n
]

(1 − aad).
(6.37)

Proof The proof is a similar to that of Theorem 6.16. �
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