
Chapter 3
Completions of Operator Matrices
and Generalized Inverses

In this section we will discuss various problems of completions of operator matrices
and present an application of such results to some problems concerning generalized
inverses and to that of invertibility of linear combinations of operators. It is worth
mentioning that this very intensively studied topic of Operator theory finds large
application in the theory of generalized inverses.

Although the reverse order law for {1}-generalized inverses of matrices was com-
pletely resolved already by 1998, the corresponding problem for the operators on
separable Hilbert spaces was only solved in 2015. Namely, the reverse order law
for {1}-generalized inverses for the operators on separable Hilbert spaces was com-
pletely solved in the paper of Pavlović et al. [1]. One of the objective of this chapter
is to present the approach taken in resolving the reverse order law for {1}-generalized
inverses for the operators on separable Hilbert spaces which involves some of the
previous research on completions of operator matrices to left and right invertibility.

We will first go over some characteristic results on the problem of completions of
operator matrices, with a special emphasis on some instructive examples, and then
demonstrate usability of results of that type by showing how they can be applied to
one of the topics in generalized inverses of operators that has seen a great interest
over the years. Also, we will consider the existence of Drazin invertible completions
of an upper triangular operator matrix and applications of results on completions of
operator matrices to the problem of invertibility of a linear combination of operators
with the special emphasis on the set of projectors and orthogonal projectors.
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52 3 Completions of Operator Matrices and Generalized Inverses

3.1 Some Specific Problems of Completions of Operator
Matrices

Various aspects of operator matrices and their properties have long motivated
researchers in operator theory. Completion of partially given operator matrices to
operators of fixed prescribed type is an extensively studied area of operator theory,
which is a topic of many various currently undergoing investigations. In this section
we will consider only some specific problems from that field which will be usefull
later in finding necessary and sufficient conditions for the reverse order law for {1}-
generalized inverses for the operators on separable Hilbert spaces to hold. When we
talk about completion problems we usually consider the following three types of
operator matrices

MC =
[
A C
0 B

]
:
[
H
K

]
→

[
H
K

]
,

MX =
[
A C
X B

]
:
[
H
K

]
→

[
H
K

]

and

M(X Y ) =
[
A B
X Y

]
:
[
H
K

]
→

[
H
K

]

and for which the following three questions frequently arise:
Question 1: Is there an operator C ∈ B(Y ,X ) (resp. X and X,Y ) such that

MC (resp. MX and M(X Y )) is invertible (right invertible, left invertible, regular...) ?
Question 2:

⋂
C∈B(Y ,X ) σ∗(MC) =? where σ∗ is any type of spectrum such as

the point, continuous, residual, defect, left, right, essential, Weyl spectrum etc.
Question 3: For given operators A ∈ B(X ) and B ∈ B(Y ), is there an operator

C ′ ∈ B(Y ,X ) such that

σ∗(MC ′) =
⋂

C∈B(Y ,X )

σ∗(MC),

where again σ∗ is any type of spectrum?
In the case of the operator matrix MC it is clear that σ(MC) ⊆ σ(A) ∪ σ(B). In

the following two examples we will show that this inclusion is sometimes actually
an equality, but that also it can be a proper one:

Example 3.1 If {gi }∞i=1 is an orthonormal basis ofK , define an operator B0 by{
B0g1 = 0,
B0gi = gi−1, i = 2, 3, . . .
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If { fi }∞i=1 is an orthonormal basis ofH , define an operator A0 by A0 fi = fi+1, i =
1, 2, . . . , and an operator C0 by C0 = (·, g1) f1 from K into H . Then it is easy to
see that σ(A0) = σ(B0) = {λ : |λ| ≤ 1}. But, in this case, MC0 is a unitary operator,
σ(MC0) ⊆ {λ : |λ| = 1}, so we have the inclusion σ(MC0) ⊂ σ(A) ∪ σ(B).

Example 3.2 If A ∈ B(H ) and B ∈ B(K ) are normal operators, then for any
C ∈ B(K ,H ), σ(MC) = σ(A) ∪ σ(B) (see Theorem 5 from [2]).

Also, the following example shows that the inclusion σgD(MC) ⊆ σgD(A) ∪
σgD(B) may be strict in the case of the generalized Drazin spectrum:

Example 3.3 Define operators A, B1,C1 ∈ B(l2) by

A(x1, x2, x3, . . . ) = (0, x1, x2, x3, . . . ),

B1(x1, x2, x3, . . . ) = (x2, x3, x4, . . . ),

C1(x1, x2, x3, . . . ) = (x1, 0, 0, . . . ).

Consider the operator

MC =
(
A C
0 B

)
: l2 ⊕ (l2 ⊕ l2) → l2 ⊕ (l2 ⊕ l2)

=
⎛
⎝ A C1 0

0 B1 0
0 0 0

⎞
⎠ : l2 ⊕ l2 ⊕ l2 → l2 ⊕ l2 ⊕ l2,

where B =
(
B1 0
0 0

)
: l2 ⊕ l2 → l2 ⊕ l2, C = (C1, 0) : l2 ⊕ l2 → l2.

A direct calculation shows that

(i) σ(MC) = {λ ∈ C : |λ| = 1} ∪ {0}, σ (A) = σ(B) = {λ ∈ C : |λ| ≤ 1};
(ii) σgD(MC) = {λ ∈ C : |λ| = 1}∪{0}, σgD(A) = σgD(B) = {λ ∈ C : |λ| ≤ 1}.
On the other hand the inclusion σc(MC) ⊆ σc(A) ∪ σc(B) is not true in general, in
the case of the continuous spectrum which will be shown in the next example:

Example 3.4 Let H = K = l2. Define the operators A, B, C by

A(x1, x2, x3, x4, . . . ) = (0, 0, x1, x2, x3, x4, . . . )

B(x1, x2, x3, x4, . . . ) = (x3,
x4√
4
,
x5√
5
,
x6√
6
, . . . )

C(x1, x2, x3, x4, . . . ) = (x1, x2, 0, 0, . . . ),

for any x = (xn)∞n=1 ∈ l2. Consider MC =
(
A C
0 B

)
: l2 ⊕ l2 → l2 ⊕ l2. A

direct calculation shows that 0 ∈ σc(Mc), but 0 /∈ σC(A) ∪ σC(B) which implies
σC(MC) � σC(A) ∪ σC(B).



54 3 Completions of Operator Matrices and Generalized Inverses

Given operators A ∈ B(X ) and B ∈ B(Y ), the question of existence of an
operator C ∈ B(K ,H ) such that the operator matrix MC is invertible was con-
sidered for the first time in [2] in the case when X and Y are separable Hilbert
spaces. The results from [2] are generalized in [3] in the case of Banach spaces. In
[4], the same problem is considered in the case of Banach spaces and the set of all
C ∈ B(Y ,X ) for which MC is invertible is completely described and additionally
the set of all C ∈ B(Y ,X ) such that MC is invertible, denoted by S(A, B), is
completely described (in the case when X and Y are Banach spaces).

Theorem 3.1 ([4]) Let A ∈ B(X ) and B ∈ B(Y ) be given operators. The oper-
ator matrix MC is invertible for some C ∈ B(Y ,X ) if and only if

(i) A is left invertible,
(ii) B is right invertible,
(iii) N (B) ∼= X /R(A).

If conditions (i)−(i i i) are satisfied, the set of all C ∈ B(Y ,X ) such that MC is
invertible is given by

S(A, B) ={C ∈ B(Y ,X ) : C =
[
C1 0
0 C4

]
:
[

P
N (B)

]
→

[
R(A)

S

]
,

C4 is invertible,X = R(A) ⊕ S and Y = P ⊕ N (B)}. (3.1)

In Remark2.5 in [4], it is proved that if we take arbitrary but fixed decompositions
of X and Y ,X = R(A) ⊕ S and Y = P ⊕ N (B), then

S(A, B) ={C ∈ B(Y ,X ) : C =
[
C1 C2

C3 C4

]
:
[

P
N (B)

]
→

[
R(A)

S

]
,

C4 is invertible}. (3.2)

Based on the above results and using the fact that the invertibility of C4 ∈
B(N (B),S ) simplymeans that PS ,R(A)C |N (B) is an injective operatorwith range
S , in the case of separable Hilbert spaces we have the following characterization of
invertibility of an upper triangular operator matrix:

Theorem 3.2 Let H and K be separable Hilbert spaces and let A ∈ B(H ),

B ∈ B(K ) and C ∈ B(K ,H ) be given operators. The operator matrix

[
A C
0 B

]

is invertible if and only if A is left invertible, B is right invertible and PS ,R(A)C |N (B)

is an injective operator with (closed) range S , where H = R(A) ⊕ S .

Aside from the existence of invertible completions of the aforementioned operator
matrix, the problems of existence of completions of the operator matrix MC that are
Fredholm, semi-Fredholm, Kato, Browder etc. have subsequently been studied in
literature. In Sect. 3.4, we will consider such problem in the case of Drazin invertible
completions.
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Moving on, in [5] the problem is considered of completing an operator matrix

M(X,Y ) =
[
A C
X Y

]
:
[
H1

H2

]
→

[
H1

H2

]
(3.3)

to left (right) invertibility in the case when A ∈ B(H1) and C ∈ B(H2,H1) are
given and H1,H2 are separable Hilbert spaces.

Theorem 3.3 ([5]) Let M(X,Y ) be given by (3.3).
(i) If dimH2 = ∞, then there exist X ∈ B(H1,H2) and Y ∈ B(H2) such that

M(X,Y ) is left invertible.
(ii) If dimH2 < ∞, then M(X,Y ) is left invertible for some operators X ∈

B(H1,H2) and Y ∈ B(H2) if and only if dimN
([

A C
]) ≤ dimH2 and R(A)

is closed.

Here, we will present a result of this type in the case when

M(X,Y ) =
[
A C
X Y

]
:
[
H1

H2

]
→

[
H3

H4

]
(3.4)

and Hi , i = 1, 4 are separable Hilbert spaces. So, we will give a modification of
Theorem 3.3 for the operator matrix M(X,Y ) given by (3.4).

Theorem 3.4 Let M(X,Y ) be given by (3.4).
(i) If dimH4 = ∞, then there exist X ∈ B(H1,H4) and Y ∈ B(H2,H4) such

that M(X,Y ) is left invertible.
(ii) If dimH4 < ∞, then M(X,Y ) is left invertible for some operators X ∈

B(H1,H4) and Y ∈ B(H2,H4) if and only if dimN
([

A C
]) ≤ dimH4 and

R(A) + R(C) is closed.

Proof (i) If dimH4 = ∞, then there exists a closed infinite dimensional subspace
of H4, M such that dimM⊥ = dimH1. Now, there exist left invertible operators
J1 : H1 → M⊥ and J2 : H2 → M . Let

X =
[
0
J1

]
: H1 →

[
M
M⊥

]
, Y =

[
J2
0

]
: H2 →

[
M
M⊥

]
.

Let

X− = [
0 (J1)

−1
l

] :
[
M
M⊥

]
→ H1,Y

− = [
(J2)

−1
l 0

] :
[
M
M⊥

]
→ H2.

Now, [
0 X−
0 Y−

] [
A C
X Y

]
=

[
I 0
0 I

]
,

i.e., M(X,Y ) is left-invertible.
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(ii) Suppose that dimH4 < ∞. If there exist regular X ∈ B(H1,H4) and
Y ∈ B(H2,H4) such that M(X,Y ) is left invertible, from the fact that R(M(X,Y )) is
closed we get that

R

([
A∗ X∗
C∗ Y ∗

])
= R

([
A∗ 0
C∗ 0

])
+ R

([
0 X∗
0 Y ∗

])

is closed. It follows thatR

([
A C
0 0

])
is closed, i.e.,R(A) + R(C) is closed since

R

([
0 X∗
0 Y ∗

])
is a finite dimensional subspace. From the injectivity of M(X,Y ), it

follows that N
([

A C
]) ∩ N

([
X Y

]) = {0} which implies that

dimN
([

A C
]) ≤ dimN

([
X Y

])⊥ ≤ dimH4.

For the converse, suppose that dimN
([

A C
]) ≤ dimH4 andR(A) + R(C) is

closed. Since N
([

A C
]) = K1 ⊕ K2 ⊕ K3, where K1 =

{[
x
0

]
: x ∈ N (A)

}
,

K2 =
{[

0
y

]
: y ∈ N (C)

}
and K3 =

{[
x
y

]
: x ∈ N (A)⊥, y ∈ N (C)⊥, Ax + Cy = 0

}
,

there exists a subspace M of H4 such that dimM = dimK1. Then dimM⊥ ≥
dimK2 + dimK3. Now, there exist left invertible operators J1 : N (A) → M and
J2 : PH2N

( [
A C

] ) → M⊥. Let

X =
[
J1 0
0 0

]
:
[
N (A)

N (A)⊥

]
→

[
M
M⊥

]

and

Y =
[
0 0
0 J2

]
:
[ (

PH2N
( [

A C
] ))⊥

PH2N
( [

A C
] )

]
→

[
M
M⊥

]
.

Now, as in Theorem 2.1 [5], we can check that M(X,Y ) is left-invertible, i.e.,
we will prove that R(M(X,Y )) is closed and M(X,Y ) is injective. From the fact that
dimH4 < ∞ and Kato’s lemma we have that R(M(X,Y )) is closed. On the other
hand, let [

A C
X Y

] [
x
y

]
=

[
0
0

]
,

which is equivalent to

Ax + Cy = 0, Xx + Y y = 0.
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Then it follows that y ∈ PH2N
( [

A C
] )
. Also, we have that Xx = Y y = 0 which

implies that y = 0. Thus, Ax = 0 which by definition of X implies that x = 0. This
proves that M(X,Y ) is injective. �

As for completions of an operator matrix

MX =
[
A C
X B

]
:
[
H1

H2

]
→

[
H1

H2

]
, (3.5)

where A ∈ B(H1), B ∈ B(H2) and C ∈ B(H2,H1) are given, the first to ever
address any kind of questions (for separable Hilbert spaces not necessarily of finite
dimension) related to it was Takahashi. More specifically, in his paper [6] he gave
necessary and sufficient conditions for the existence of X ∈ B(H1) such that MX

is invertible.
Although Takahashi’s paper was published in 1995, there have only been several

papers since, namely [7, 9–14], which deal with various completions of the operator
matrix of the form MX . Actually in [13] exactly the same problem was considered
as in [6] but using methods of geometrical structure of operators and in it some
necessary and sufficient conditions were given different than those from [6]. In [9]
the authors considered the problem of completions of MX given by (3.5) to right
(left) invertibility in the case when A ∈ B(H1), B ∈ B(H2) and C ∈ B(H2,H1)

are given.

Theorem 3.5 ([9]) Let A ∈ B(H1), B ∈ B(H2) and C ∈ B(H2,H1) be given.
Then MX is right invertible for some X ∈ B(H1,H2) if and only ifR(A)+R(C) =
H1 and one of the following conditions holds:

(1) N (A | C; H2) contains a non-compact operator,

(2) M0 =
[
A C
0 B

]
is a right semi-Fredholm operator and

d(M0) ≤ n(A) + dim
(
R(A) ∩ R

(
C |N (B)

))
,

where N (A | C; H2) = {G ∈ B(H2,H1) : R(AG) ⊆ R(C)}.
Here we will present a result of this type in the case when

MX =
[
A C
X B

]
:
[
H1

H2

]
→

[
H3

H4

]
(3.6)

and give a modification of Theorem 3.5 which shortens significantly one implication
of the original one. Since for the proof we need some auxiliary results, we begin by
stating these.

Lemma 3.1 ([15]) IfH is an infinite dimensional Hilbert space, then T ∈ B(H )

is compact if and only ifR(T ) contains no closed infinite dimensional subspaces.
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Lemma 3.2 LetH1 andH2 be separable Hilbert spaces. If U ⊆ H1 and V ⊆ H2

are closed subspaces with dimU = dim V , then there exists T ∈ B(H1,H2) such
that N (T ) = U⊥, R(T ) = V and T |U : U → V is unitary. In particular, if
U = H1, then T is left invertible; if V = H2, then T is right invertible.

Lemma 3.3 ([9]) Let S ∈ B(H1,H2), and let T be a closed linear operator from
H2 intoH3. IfR(S) ⊆ D(T ), then T S ∈ B(H1,H3).

For Hilbert spaces Hi , i = 1, 4 and operators A ∈ B(H1,H3) and C ∈
B(H2,H3), let

N (A | C; H4) = {G ∈ B(H4,H1) : R(AG) ⊆ R(C)}.

It is well known that G ∈ B(H4,H1) belongs to N (A | C; H4) if and only if
there exists H ∈ B(H4,H2) such that AG = CH .

Lemma 3.4 ([9]) Let A ∈ B(H1,H3), B ∈ B(H2,H4) and C ∈ B(H2,H3) be
given operators. Assume that

M0 = M(A, B,C; 0) =
[
A C
0 B

]

is a right Fredholm operator on H1 ⊕ H2. Then B is a right Fredholm operator,
R(A) + R(C |N (B)) is a closed subspace, and

d(M0) = dim(R(A) + R(C |N (B)))
⊥ + d(B),

n(M0) = n(A) + n(C |N (B)) + dim(R(A) ∩ R(C |N (B))).

Finally, we will give a a modification of Theorem 3.5:

Theorem 3.6 Let A ∈ B(H1,H3), B ∈ B(H2,H4) and C ∈ B(H2,H3) be
given. Then MX is right invertible for some X ∈ B(H1,H4) if and only ifR(A) +
R(C) = H3 and one of the following conditions holds:

(1) N (A | C; H4) contains a non-compact operator,

(2) M0 =
[
A C
0 B

]
is a right semi-Fredholm operator and

d(M0) ≤ n(A) + dim
(
R(A) ∩ R

(
C |N (B)

))
.

Proof Suppose MX given by (3.6) is right invertible for some X ∈ B(H1,H4).
This implies that

[
A C

]
is right invertible and soR(A) + R(C) = H3. LetH ′

2 =
(N (C) ∩ N (B))⊥. Then

MX =
[
A 0 C ′
X 0 B ′

]
:
⎡
⎣ H1

(H ′
2 )⊥

H ′
2

⎤
⎦ →

[
H3

H4

]
,
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where N (C ′) ∩ N (B ′) = {0}. Clearly

M ′
X =

[
A C ′
X B ′

]
:
[
H1

H ′
2

]
→

[
H3

H4

]

is right invertible. Thus there is a bounded linear operator

[
E G
F H

]
:
[
H3

H4

]
→

[
H1

H ′
2

]

such that [
A C ′
X B ′

] [
E G
F H

]
=

[
IH3 0
0 IH4

]
.

From AG + C ′H = 0 it follows that R(AG) ⊆ R(C ′) = R(C) so, if G is a
non-compact operator then (1) holds. If on the other hand G is compact, then from
XG + B ′H = I , we see that B ′H is a Fredholm operator and d(B ′H) = n(B ′H).
Since

[
I 0

−B ′F I

] [
A C ′
0 B ′

] [
E G
F H

]
=

[
IH3 0
0 B ′H

]

and B ′H is a Fredholm operator, it follows that M ′
0 =

[
A C ′
0 B ′

]
is a right Fredholm

operator. AsR(M0) = R(M ′
0) the operator M0 is right Fredholm. Also

d(M0) = d(M ′
0) ≤ d

([
IH3 0
0 B ′H

])
= d(B ′H) = n(B ′H)

≤ n(M ′
0) = n(A) + n

(
C ′ |N (B ′)

) + dim
(
R

(
C ′ |N (B ′)

) ∩ R(A)
)

= n(A) + dim
(
R(A) ∩ R

(
C |N (B)

))
.

For the converse implication: If N (A | C;H4) contains a non-compact operator,
then H1 and H4 are infinite dimensional. By Lemma 3.1, there exists a closed
subspace M ⊆ H1 with dimM = dimH4 = ∞ such that R(A|M ) ⊆ R(C),
and hence R(APM ) = R(A|M ) ⊆ R(C) ⊆, where C+ : R(C) ⊕ R(C)⊥ →
H2 is defined to be 0 on R(C)⊥ and (C |N (C)⊥)−1 on R(C). This, together with
APM ∈ B(H1,H3) and Lemma 3.3, shows that C+APM ∈ B(H2,H3). On the
other hand, it follows from Lemma 3.2 that there exists a right invertible operator
T ∈ B(H1,H4) such that N (T ) = M⊥. Define an operator X ∈ B(H1,H4) by

X = T + BC+APM .

Then MX is a right invertible operator. To prove that let u ∈ H3 and v ∈ H4 be
arbitrary. Since R(A) + R(C) = H3 and R(A|M ) ⊆ R(C), there exist x1 ∈ M⊥
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and y1 ∈ H2 such that Ax1 +Cy1 = u. Also, by right invertibility of T , there exists
x2 ∈ M such that T x2 = v − By1. Let x0 = x1 + x2 and y0 = y1 − C+Ax2. Then

[
A C
X B

] [
x0
y0

]
=

[
u
v

]
.

This establishes right invertibility of MX .
If (2) holds, put E = R(A) + R(C |N (B)). From Lemma 3.4 and the right

Fredholmness of M0 we can infer that B is a right Fredholm operator, E is closed
and dim E⊥ = d(M0) − d(B) < ∞. From R(A) + R(C) = H3 it follows that
R(PE⊥C) = E⊥. Let G = (PE⊥C)+E⊥ and S = BG ⊕ R(B)⊥. Then clearly
G ⊆ N (B)⊥ and so dim E⊥ = dimG = dim BG. Therefore dim S = d(M0).
On the other hand, since d(M0) ≤ n(A) + dim(R(A) ∩ R(C |N (B))), there exists
a subspace M ⊆ H1 with dimM = d(M0) such that R(A|M ) ⊆ R(C |N (B)).
From dimM = dim S = d(M0) < ∞ and Lemma 3.2, there exists an operator
J : H1 → S such that N (J ) = M⊥ and J |M : M → S is unitary. Define
X ∈ B(H1,H2) by

X =
[
J
0

]
: H1 → S ⊕ S⊥.

ThenMX as an operator fromH1⊕N (B)⊕G⊕(N (B)⊥�G) into E⊕E⊥⊕S⊕S⊥
has the following operator matrix:

MX =

⎡
⎢⎢⎣
A1 C1 C2 C3

0 0 C4 0
J 0 B1 B3

0 0 0 B2

⎤
⎥⎥⎦ ,

where N (B)⊥ � G = {y ∈ N (B)⊥ : y ∈ G⊥}. Obviously, C4 is invertible. From
the right Fredholmness of B we can infer that B2 is invertible. Thus there is an
invertible operator U ∈ B(H1,H2) such that

UMX = U

⎡
⎢⎢⎣
A1 C1 C2 C3

0 0 C4 0
J 0 B1 B3

0 0 0 B2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
A1 C1 0 0
0 0 C4 0
J 0 0 0
0 0 0 B2

⎤
⎥⎥⎦ .

It follows that MX is a right invertible operator if and only if

[
A1 C1

J 0

]
: H1 ⊕ N (B) → E ⊕ S,

is a right invertible operator.
For any u ∈ E and v ∈ S, it follows from E = R(A) +R(C |N (B)),R(A|M ) ⊆

R(C |N (B)) and the definition of J that there exist x1 ∈ M , x2 ∈ M⊥ and y1 ∈
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N (B) such that
J x1 = v, Ax2 + Cy1 = u.

Since R(A|M ) ⊆ R(C |N (B)), there exists y2 ∈ N (B) with

Ax1 + Cy2 = 0.

Note that A1 = A : H1 → E , C1 = C |N (B) : N (B) → E and N (J ) = M⊥,
and hence [

A1 C1

J 0

] [
x1 + x2
y1 + y2

]
=

[
u
v

]
.

From the argument above we get that MX is a right invertible operator. �

Remark 3.1 The condition (1) from the previous theorem is equivalent to the exis-
tence of a closed infinite dimensional subspace M of H1 such that R (A |M ) ⊆
R(C).

As a corollary of Theorem 3.6 we have the following result concerning completions
to left invertibility, that parallels Theorem 2.7 [9].

Corollary 3.1 Let A ∈ B(H1,H3), B ∈ B(H2,H4) and C ∈ B(H2,H3) be
given. Then MX is left invertible for some X ∈ B(H1,H4) if and only if R(B∗) +
R(C∗) = H2 and one of the following conditions holds:

(1) N (B∗ | C∗; H1) contains a non-compact operator,

(2) M0 =
[
A C
0 B

]
is a left semi-Fredholm operator and

n(M0) ≤ d(B) + dim
(
R(B∗) ∩ R

(
C∗|N (A∗)

))
.

3.2 Applications of Completions of Operator Matrices
to Reverse Order Law for {1}-Inverses of Operators
on Hilbert Spaces

The reverse order law problem for {1}-inverses for operators acting on separable
Hilbert spaces was completely resolved in the paper [1] and this was done using a
radically new approach than in the recent papers on this subject, one that involves
some of the previous research on completions of operator matrices to left and right
invertibility. More exactly, the solution of this problem relies heavily on the results
on completions of operator matrices presented in Sect. 3.1, so that the results of the
present section can in a way be regarded as an interesting application of the research
related to the topic of completions of operator matrices.

First, we will need the following observations.
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Let A ∈ B(H ,K ) and B ∈ B(L ,H ) be arbitrary regular operators. Using the
following decompositions of the spaces H ,K and L ,

L = R(B∗) ⊕ N (B), H = R(B) ⊕ N (B∗), K = R(A) ⊕ N (A∗),

we have that the corresponding representations of operators A and B are given by

A =
[
A1 A2

0 0

]
:

[
R(B)

N (B∗)

]
→

[
R(A)

N (A∗)

]
,

B =
[

B1 0
0 0

]
:

[
R(B∗)
N (B)

]
→

[
R(B)

N (B∗)

]
,

(3.7)

where B1 is invertible and
[
A1 A2

] :
[
R(B∗)
N (B)

]
→ R(A) is right invertible. In that

case the operator AB is given by

AB =
[
A1B1 0
0 0

]
:
[
R(B∗)
N (B)

]
→

[
R(A)

N (A∗)

]
. (3.8)

The following lemma gives a description of all the {1}-inverses of A, B and AB
in terms of their representations corresponding to appropriate decompositions of
spaces.

Lemma 3.5 Let A ∈ B(H ,K ) and B ∈ B(L ,H ) be regular operators given
by (3.7). Then

(i) an arbitrary {1}-inverse of A is given by:

A(1) =
[
X1 X2

X3 X4

]
:
[

R(A)

N (A∗)

]
→

[
R(B)

N (B∗)

]
, (3.9)

where X1 and X3 satisfy the following equality

A1X1 + A2X3 = IR(A), (3.10)

and X2, X4 are arbitrary operators from appropriate spaces.
(ii) an arbitrary {1}-inverse of B is given by:

B(1) =
[
B−1
1 Y2
Y3 Y4

]
:
[

R(B)

N (B∗)

]
→

[
R(B∗)
N (B)

]
, (3.11)

where Y2,Y3 and Y4 are arbitrary operators from appropriate spaces.
(iii) if AB is regular, then so is A1B1 and an arbitrary {1}-inverse of AB is given

by:
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(AB)(1) =
[

(A1B1)
(1) Z2

Z3 Z4

]
:
[

R(A)

N (A∗)

]
→

[
R(B∗)
N (B)

]
, (3.12)

where (A1B1)
(1) ∈ (A1B1){1} and Zi , i = 2, 4 are arbitrary operators from

appropriate spaces.

Proof (i) Suppose a {1}-inverse of A is given by:

A(1) =
[
X1 X2

X3 X4

]
:
[

R(A)

N (A∗)

]
→

[
R(B)

N (B∗)

]
.

From AX A = A we get that X ∈ A{1} if and only if X1 and X3 satisfy the following
equations

(A1X1 + A2X3)A1 = A1,

(A1X1 + A2X3)A2 = A2. (3.13)

Since S = [
A1 A2

] :
[
R(B∗)
N (B)

]
→ R(A) is a right invertible operator, there exists

S−1
r : R(A) →

[
R(B∗)
N (B)

]
such that

[
A1 A2

]
S−1
r = IR(A). Notice that (3.13) is

equivalent to [
A1 A2

] [
X1

X3

] [
A1 A2

] = [
A1 A2

]
. (3.14)

Multiplying (3.14) by S−1
r from the right, we get that (3.14) is equivalent with[

A1 A2
] [

X1

X3

]
= IR(A), i.e.,

A1X1 + A2X3 = IR(A). (3.15)

Note, that for X1 and X3 which satisfy (3.15), (3.13) also holds.
(ii) Suppose that a {1}-inverse of B is given by:

B(1) =
[
Y1 Y2
Y3 Y4

]
:
[

R(B)

N (B∗)

]
→

[
R(B∗)
N (B)

]
.

From BB(1)B = B it follows that B1Y1B1 = B1 and since B1 is invertible,Y1 = B−1
1 .

(iii) Suppose that a {1}-inverse of AB is given by:

(AB)(1) =
[
Z1 Z2

Z3 Z4

]
:
[

R(A)

N (A∗)

]
→

[
R(B∗)
N (B)

]
.

From AB(AB)(1)AB = AB, we get
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A1B1Z1A1B1 = A1B1, (3.16)

and we also see that the operators Z2, Z3 and Z4 can be arbitrary. Now, from (3.16)
we see that Z1 ∈ (A1B1){1}. �

Lemma 3.6 Let K1 ∈ B(H1,H3) be left invertible and K2 ∈ B(H2,H3) be
arbitrary. If (I −K1K

(1)
1 )K2 is left invertible for some inner inverse K

(1)
1 of K1, then[

K1 K2
] :

[
H1

H2

]
→ H3 is left invertible.

Proof By our assumptions there are X ∈ B(H3,H1), an inner inverse K (1)
1 of K1

and Y0 ∈ B(H3,H2) such that XK1 = I and Y0(I − K1K
(1)
1 )K2 = I . It is easily

verified that D
[
K1 K2

] = I , where

D =
[
X − XK2Y

Y

]
: H3 →

[
H1

H2

]

for Y = Y0(I − K1K
(1)
1 ). �

To enhance readability of the proof of our main result, we will first prove it under the
assumption that dimN (A∗) ≤ dimN (B), then directly derive from that the version
in the remaining case dimN (B) ≤ dimN (A∗), and finally simply combine the two
results in Theorem 3.10 in which no assumptions are made.

The following auxiliary theorem will play a key role in the proof of our main
result.

Theorem 3.7 Let regular operators A ∈ B(H ,K ) and B ∈ B(L ,H ) be given
by (3.7). If dimN (A∗) ≤ dimN (B) and AB is regular, then the following condi-
tions are equivalent:

(i) (AB){1} ⊆ B{1}A{1},

(ii) For any (A1B1)
(1) ∈ (A1B1){1} and Z2 ∈ B(N (A∗),R(B∗)), there exist

operators W3 ∈ B(R(A),N (B∗)) with R(I − A2W3) ⊆ R(A1) and W4 ∈
B(N (A∗), N (B∗)) such that

X ′ =
[
B1(A1B1)

(1) B1Z2

W3 W4

]
:
[

R(A)

N (A∗)

]
→

[
R(B)

N (B∗)

]
(3.17)

is left invertible,
(iii) For any (A1B1)

(1) ∈ (A1B1){1} and Z2 ∈ B(N (A∗),R(B∗)), there exists
W3 ∈ B(R(A),N (B∗)) withR(I − A2W3) ⊆ R(A1) such that at least one
of the following two conditions is satisfied

(1) N (W ∗
3 | (B1(A1B1)

(1))∗; N (A∗)) contains a non-compact operator
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(2) X0 =
[
B1(A1B1)

(1) B1Z2

W3 0

]
is a left-Fredholm operator and

n(X0) ≤ d(W3) + dim
(
R(W ∗

3 ) ∩ R
(
((B1(A1B1)

(1))∗|N ((B1Z2)∗)
))

.

Proof Condition (i) states that for any (AB)(1) ∈ (AB){1} there exist A(1) ∈ A{1}
and B(1) ∈ B{1} such that

(AB)(1) = B(1)A(1)

which is using Lemma 3.5, equivalent with the fact that for any (A1B1)
(1) ∈

(A1B1){1}, Z2 ∈ B(N (A∗),R(B∗)), Z3 ∈ B(R(A),N (B)) and Z4 ∈ B(N
(A∗), N (B)), there exist Y2 ∈ B(N (B∗),R(B∗)), Y3 ∈ B(R(B),N (B)), Y4 ∈
B(N (B∗), N (B)) and X =

[
X1 X2

X3 X4

]
:

[
R(A)

N (A∗)

]
→

[
R(B)

N (B∗)

]
satisfying

(3.10) such that

[
(A1B1)

(1) Z2

Z3 Z4

]
=

[
B−1
1 Y2
Y3 Y4

] [
X1 X2

X3 X4

]
,

i.e.,

[
(A1B1)

(1) Z2
] = [

B−1
1 Y2

]
X (3.18)[

Z3 Z4
] = [

Y3 Y4
]
X. (3.19)

In general for arbitrary but fixed Y2 the Eq. (3.18) is solvable for X and the set of the
solutions is given by

S =
{[

B1

0

] [
(A1B1)

(1) Z2
] +

(
I −

[
B1

0

] [
B−1
1 Y2

])
W :

W ∈ B(K ,H )}
=

{[
B1(A1B1)

(1) − B1Y2W3 B1Z2 − B1Y2W4

W3 W4

]
: (3.20)

[
W1 W2

W3 W4

]
:
[

R(A)

N (A∗)

]
→

[
R(B)

N (B∗)

]}
.

Thus (i) is equivalent with the existence of at least one X ∈ S ∩ A{1} for
which the Eq. (3.19) is solvable for

[
Y3 Y4

]
. That is (i) holds if and only if for

any (A1B1)
(1) ∈ (A1B1){1}, Z2 ∈ B(N (A∗),R(B∗)), Z3 ∈ B(R(A),N (B))

and Z4 ∈ B(N (A∗), N (B)) there exist operators W3 ∈ B(R(A),N (B∗)),
W4 ∈ B(N (A∗),N (B∗)) and Y2 ∈ B(N (B∗),R(B∗)) such that

K1 =
[
B1(A1B1)

(1) − B1Y2W3

W3

]
is a right inverse of

[
A1 A2

]
and the following

system

http://dx.doi.org/10.1007/978-981-10-6349-7_3
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Z3 = [
Y3 Y4

]
K1 (3.21)

Z4 = [
Y3 Y4

]
K2, (3.22)

is solvable for
[
Y3 Y4

]
, where K2 =

[
B1Z2 − B1Y2W4

W4

]
.

This is the reformulation of the condition (i) that we will use in proving the
implication (i) ⇒ (ii).

(i) ⇒ (ii): Let (A1B1)
(1) ∈ (A1B1){1} and Z2 ∈ B(N (A∗),R(B∗)). Tak-

ing Z3 = 0 and a left invertible Z4 ∈ B(N (A∗),N (B)) (such Z4 exists
since dimN (A∗) ≤ dimN (B)), the condition (i) yields an operator

[
K1 K2

]
as

described above. Since the Eqs. (3.21) and (3.22) have a common solution and K1 is
regular, we get that

Z4 = W (I − K1K
(1)
1 )K2,

for some W ∈ B(H ,N (B)) and some (any) K (1)
1 . Left invertibility of Z4 implies

left invertibility of T = (I − K1K
(1)
1 )K2 which, given that K1 is left invertible,

implies that X = [
K1 K2

]
is a left invertible operator by Lemma 3.6. It can easily

be checked that X is left invertible if and only if

X ′ =
[
B1(A1B1)

(1) B1Z2

W3 W4

]

is left invertible.
Finally,

[
A1 A2

]
K1 = I means just that

A1B1Y2W3 = A2W3 − (
I − (A1B1)(A1B1)

(1)
)

which upon multiplication from the left by I − (A1B1)(A1B1)
(1) gives

(
I − (A1B1)(A1B1)

(1)
)
A2W3 = I − (A1B1)(A1B1)

(1),

i.e.,R(I − A2W3) ⊆ R(A1B1) = R(A1).
(ii) ⇒ (i): Let (A1B1)

(1) ∈ (A1B1){1}, Z2 ∈ B(N (A∗),R(B∗)), Z3 ∈
B(R(A),N (B)) and Z4 ∈ B(N (A∗), N (B)) be arbitrary. By our assumption,
there are operatorsW3 andW4 acting between appropriate spaces such that X ′ given
by (3.17) is left invertible and R(I − A2W3) ⊆ R(A1B1). The latter condition
implies that for Y2 = (A1B1)

(1)A2 the operator

X =
[
B1(A1B1)

(1) − B1Y2W3 B1Z2 − B1Y2W4

W3 W4

]
, (3.23)
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is an inner inverse of A. Also X ∈ S so (3.18) is satisfied. As before, left invertibility
of X ′ implies left invertibility of X , so the Eq. (3.19) is solvable for

[
Y3 Y4

]
. Thus[

(A1B1)
(1) Z2

L3 Z4

]
∈ B{1}A{1}.

(ii) ⇔ (iii): This follows from Corollary 3.1. �
The following lemma of technical character will be needed later.

Lemma 3.7 Let

D = [
A1 A2

] :
[
H1

H2

]
→ H3

be a right invertible operator such that A1 has closed range. Suppose H2 = M ⊕
N (A2) and H3 = R(A1) ⊕ N , withM and N closed, and let

A2 =
[
A

′
2 0

A
′′
2 0

]
:
[

M
N (A2)

]
→

[
R(A1)

N

]

(i) An operator W : H3 → H2 satisfies R(I − A2W ) ⊆ R(A1) if and only if it
has a representation

W =
[
W1 W2

W3 W4

]
:
[
R(A1)

N

]
→

[
M

N (A2)

]
(3.24)

where A
′′
2W1 = 0 and A

′′
2W2 = I . There is at least one such operator.

(ii) dimN ≤ dimM .

Proof (i) Suppose W is given by (3.24). From

I − A2W =
[
I − A

′
2W1 −A

′
2W2

−A
′′
2W1 I − A

′′
2W2

]
:
[
R(A1)

N

]
→

[
R(A1)

N

]

we see that R(I − A2W ) ⊆ R(A1) holds if and only if A
′′
2W1 = 0 and A

′′
2W2 = I .

One such operator is obtained by taking W = X2 where

[
X1

H2

]
: H3 →

[
H1

H2

]

is any right inverse of D.
(ii) The inequality follows from the fact that the existence of an operator W as in

(i) implies that A
′′
2 : M → N is right invertible. It can also be trivially seen to hold

true directly, without any recourse to (i). �
The following theorem gives necessary and sufficient conditions for the inclusion

(AB){1} ⊆ B{1}A{1} to hold under the additional assumption that dimN (A∗) ≤
dimN (B). As we will explain later, the main result is practically a direct conse-
quence of it.
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Theorem 3.8 Let regular operators A ∈ B(H ,K ) and B ∈ B(L ,H ) be given
by (3.7). IfdimN (A∗) ≤ dimN (B)and AB is regular, then the following conditions
are equivalent:
(i) (AB){1} ⊆ B{1}A{1},
(ii) One of the following conditions is satisfied:

(a) dimN (B∗) < ∞ and dimN (A∗
1) + dimN (A∗) ≤ dimN (B∗)

(b) dimN (B∗) = ∞ and dimN (A∗) ≤ dimN (A
′′
2) + dimN (A2),

where A
′′
2 = PN (A∗

1)
A2|R(A∗

2).

Proof (i) ⇒ (ii): We distinguish two cases:
Case 1. dimN (B∗) < ∞. Using Theorems 3.7 and 3.4 we see that

dimN
( [

B1(A1B1)
† B1Z2

] )
≤ dimN (B∗),

for any operator Z2 which belongs to B(N (A∗),R(B∗)), since by our
assumption there always are W3 ∈ B(R(A),N (B∗)) and W4 ∈ B(N (A∗),
N (B∗)) such that X ′ is left invertible. In particular, for Z2 = 0 we have that

N
( [

B1(A1B1)
(1) B1Z2

] )
= N (A∗

1) ⊕ N (A∗), hence dimN (A∗
1) + dim

N (A∗) ≤ dimN (B∗). Thus (a) holds.
Case 2. dimN (B∗) = ∞. Taking Z2 = 0 and (A1B1)

(1) = (A1B1)
† we obtain

an operator W3 such that R(I − A2W3) ⊆ R(A1) for which one of the conditions
(1) and (2) from (iii) of Theorem 3.7 is satisfied. From Lemma 3.7, we know that

W3 =
[
L J
K T

]
:
[
R(A1)

N (A∗
1)

]
→

[
R(A∗

2)

N (A2)

]
, (3.25)

where A
′′
2L = 0, A

′′
2 J = I and

A2 =
[
A

′
2 0

A
′′
2 0

]
:
[
R(A∗

2)

N (A2)

]
→

[
R(A1)

N (A∗
1)

]
.

IfN (W ∗
3 | (B1(A1B1)

†)∗) contains a non-compact operator, then there is a (closed)
infinite dimensional subspace M ofN (B∗) such that

R
(
W ∗

3 |M
) ⊆ R

(
(B1(A1B1)

†)∗
) = R(A1). (3.26)

From (3.26) it follows that M ⊆ N
([

J ∗ T ∗ ])
. Now

dimN
([

J ∗ T ∗ ]) ≤ dimN (J ∗) + dimN (A2) = dimN (A
′′
2) + dimN (A2),

sincedimN (J ∗) = dimN (A
′′
2), given that J is a right inverse of A

′′
2, so dimN (A

′′
2)+

dimN (A2) = ∞. Thus (b) holds.
Suppose the condition (2) from (iii) of Theorem 3.7 holds. We have
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R
(
((B1(A1B1)

†)∗|N ((B1Z2)∗)
) = R(A1)

and also

d(W3) = n

([
L∗ K ∗ ] |

N
([
J ∗ T ∗ ])

)

and

R(W ∗
3 ) ∩ R

(
((B1(A1B1)

†)∗|N ((B1Z2)∗)
) = R

([
L∗ K ∗ ] |

N
([
J ∗ T ∗ ])

)
.

The inclusion R(I − A2W3) ⊆ R(A1) implies that for Y2 = (A1B1)
(1)A2 the first

column of the operator X given by (3.23) is left invertible. Thus the first column
of the operator X0 is also left invertible so N (X0) = N (A∗). Hence n(A∗) ≤
n

([
J ∗ T ∗ ])

. Now using A
′′
2 J = I we get

n
([

J ∗ T ∗ ]) = n(J ∗) + n(T ∗) + dim(R(J ∗) ∩ R(T ∗))

= dimN (A
′′
2) + dimN (A2).

Again, (b) holds.
We now turn to establishing the implication (ii) ⇒ (i).
(a) ⇒ (i): We will show that condition (ii) from Theorem 3.7 is satisfied. Let

(A1B1)
(1) ∈ (A1B1){1} and Z2 ∈ B(N (A∗),R(B∗)) be given.

By Lemma 3.7, we can fix a right inverse J : N (A∗
1) → R(A∗

2) of A
′′
2 =

PN (A∗
1)
A2|R(A∗

2). Consider

W3 =
[
J 0
0 0

]
:
[
N (A∗

1)

R(A1)

]
→

[
R(A∗

2)

N (A2)

]
.

UsingLemma3.7,we have thatR(I−A2W3) ⊆ R(A1). PutM = R(W3) = R(J ).
Since J is left invertible, dimM = dimN (A∗

1). Since dimN (A∗
1)+dimN (A∗) ≤

dimN (B∗) < ∞ it follows that dimN (A∗) ≤ dimM⊥, where M⊥ is the
orthogonal complement of M in N (B∗). Hence there is a left invertible W4 ∈
B(N (A∗),N (B∗)) such that R(W4) ⊆ M⊥. We will show that X ′ given by
(3.17) is left invertible.

To see that X ′ has closed range suppose xn ∈ R(A) and yn ∈ N (A∗) for n ∈ N

are such that

B1(A1B1)
(1)xn + B1Z2yn → u, W3xn + W4yn → v.
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Since R(W4) ⊆ R(W3)
⊥ and W4 is left invertible, it follows that yn → y for some

y ∈ N (A∗). Using left invertibility of
[
B1(A1B1)

(1)

W3

]
, we get that xn → x for some

x ∈ R(A). Hence

[
u
v

]
∈ R(X ′).

We now show that X ′ is injective. If
[
x
y

]
∈ N (X ′), then

B1(A1B1)
(1)x + B1Z2y = 0

W3x + W4y = 0.

Since M = R(W3) and R(W4) ⊆ M⊥ it follows that W3x = W4y = 0. The
injectivity of W4 now gives y = 0 and so B1(A1B1)

(1)x = 0. The inclusion R(I −
A2W3) ⊆ R(A1) = R(A1B1) implies

A1B1(A1B1)
(1)(I − A2W3) = I − A2W3

yielding x = 0.
(b) ⇒ (i): Let (A1B1)

(1) ∈ (A1B1){1} and Z2 ∈ B(N (A∗),R(B∗)) be given.
By Lemma 3.7 we have R(I − A2W3) ⊆ R(A1) for the operator W3 defined by
(3.25) where L = 0, K = 0 and T = 0 and J : N (A∗

1) → R(A∗
2) is any right

inverse of A
′′
2 = PN (A∗

1)
A2|R(A∗

2) (Lemma 3.7 guaranties that there is one).

Since J is a right inverse of A
′′
2 we have that R(J ) ⊕ N

(
A

′′
2

) = R
(
A∗
2

)
, so

dimR(J )⊥ = dimN (A
′′
2) + dimN (A2), where R(J )⊥ is the orthogonal comple-

ment of R(J ) in N (B∗). Hence there is a left invertible W4 : N (A∗) → N (B∗)
such that R(W4) ⊆ R(J )⊥. That the operator X ′ given by (3.17) is left invertible
can now be proved exactly as in (a) ⇒ (i).

We have thus shown that (ii) of Theorem 3.7 holds. �

Astandard argument allows us to easily turn the previous theorem into one dealing
with the remaining case dimN (B) ≤ dimN (A∗).

Theorem 3.9 Let regular operators A ∈ B(H ,K ) and B ∈ B(L ,H ) be given
by (3.7). IfdimN (B) ≤ dimN (A∗)and AB is regular, then the following conditions
are equivalent:
(i) (AB){1} ⊆ B{1}A{1},
(ii) One of the following conditions is satisfied:

(a) dimN (A) < ∞ and dimN (B∗
1 ) + dimN (B) ≤ dimN (A)

(b) dimN (A) = ∞ and dimN (B) ≤ dimN (B
′′
2) + dimN (B2),

where B1 = PR(B∗)B∗|R(A∗), B2 = PR(B∗)B∗|N (A) and B
′′
2 = PN (B∗

1 )B2|R(B∗
2 ).

Proof Since (i) is equivalent with

(B∗A∗){1} ⊆ A∗{1}B∗{1}, (3.27)
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we can apply Theorem 3.8 to the operators B∗ and A∗ instead of A and B,
respectively. �

Combining Theorems 3.8 and 3.9 we are finally in the position to state the main
result of this section.

Theorem 3.10 Let regular operators A ∈ B(H ,K ) and B ∈ B(L ,H ) be
given by (3.7) and let AB be regular. Then the following conditions are equivalent:
(i) (AB){1} ⊆ B{1}A{1},
(ii) One of the following conditions is satisfied:

(a) dimN (A∗) ≤ dimN (B), dimN (A∗
1) + dimN (A∗) ≤ dimN (B∗) and

dimN (B∗) < ∞,
(b) dimN (A∗) ≤ dimN (B), dimN (A∗) ≤ dimN (A

′′
2) + dimN (A2) and

dimN (B∗) = ∞,
(c) dimN (B) ≤ dimN (A∗), dimN (B∗

1 ) + dimN (B) ≤ dimN (A) and
dimN (A) < ∞,
(d) dimN (B) ≤ dimN (A∗), dimN (B) ≤ dimN (B

′′
2) + dimN (B2) and

dimN (A) = ∞,

where A
′′
2 = PN (A∗

1)
A2|R(A∗

2), B1 = PR(B∗)B∗|R(A∗), B2 = PR(B∗)B∗|N (A) and

B
′′
2 = PN (B∗

1 )B2|R(B∗
2 ).

As a corollary of the previous theorem, in the case of matrices we have the
following already known result:

Corollary 3.2 Let A ∈ C
m×n and B ∈ C

n×p. The following conditions are equiva-
lent:
(i) (AB){1} ⊆ B{1}A{1},
(ii) r(A) + r(B) − n ≤ r(AB) − min{m − r(A), p − r(B)}.

3.3 Applications of Completions of Operator Matrices
to Invertibility of Linear Combination of Operators

In this section for given operators A, B ∈ B(H ), we consider the problem of
invertibility of the linear combination αA + βB, α, β ∈ C \ {0} using the results
concerning the invertibility of an upper triangular operator matrix of the form MC .
The motivation behind this section was the paper of G. Hai et al. [8] where the
invertibility of the linear combination αA + βB, was considered in the case when
A, B ∈ B(H ) are regular operators and α, β ∈ C \ {0} but also some recently
published papers (see [16–20])which considered the independence of the invertibility
of the linear combination αA+βB in the cases, when A, B ∈ B(H ) are projectors
or orthogonal projectors.

Here, we will consider the general case, without the assumptions that A, B ∈
B(H ) are closed range operators or that they belong to any particular classes of
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operators. As corollaries of our main result, we obtain results for certain special
classes of operators. Hence, we completely solve the problem of invertibility of the
linear combination αA + βB in each of the following cases:

• if A, B ∈ B(H ) are regular operators,
• if A, B ∈ B(H ) are projectors or orthogonal projectors,
• ifR(A) ∩ R(B) = {0}.
• ifR

(
APN (B)

) = R(A)

• if either one of A, B ∈ B(H ) is injective.

The following well-known lemma will be used throughout this section.

Lemma 3.8 Let M and N be subspaces of a Hilbert space H . Then

(M + N )⊥ = M⊥ ∩ N ⊥.

In the following theorem we will reduce the problem of invertibility of the linear
combination αA + βB to an equivalent one which concerns the invertibility of a
certain upper triangular operator matrix. Of course, instead of the linear combination
one could have simply considered the sum A + B throughout the sequel.

Theorem 3.11 Let A, B ∈ B(H ) be given operators and α, β ∈ C \ {0}. Then
αA + βB is invertible if and only if the following conditions hold:

(i) N (A) ∩ N (B) = {0},R(A) + R(B) = H ,
(ii) A|N (B) has a closed range,
(iii) PS ,R(A|N (B)) (αA + βB) |T is an injective operator with range S ,

whereR(A) = R(A|N (B))⊕S ,T = B−1
(
R(A)

)
∩P andH = N (B)⊕P .

Proof Let H = N (B) ⊕ P = R(A) ⊕ Q be decompositions of the space H .
With respect to these decompositions the given operators A, B ∈ B(H ) have the
following representations:

A =
[
A1 A2

0 0

]
:
[
N (B)

P

]
→

[
R(A)

Q

]
, (3.28)

B =
[
0 B1

0 B2

]
:
[
N (B)

P

]
→

[
R(A)

Q

]
. (3.29)

Take arbitrary α, β ∈ C \ {0}. Using the above decompositions of A, B ∈ B(H ), it
follows that the linear combination αA+ βB is invertible if and only if the operator
matrix [

αA1 αA2 + βB1

0 βB2

]
:
[
N (B)

P

]
→

[
R(A)

Q

]
(3.30)
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is invertible. Using Theorem 3.2 we have that this holds if and only if the following
three conditions are satisfied:

(i) αA1 is left invertible
(ii) βB2 is right invertible
(iii) PS ,R(A1) (αA2 + βB1) |N (B2) is an injective operator with range S , where

R(A) = R(A1) ⊕ S .

Evidently, (i) holds if and only if N (A) ∩ N (B) = {0} and R(A|N (B)) is closed.
Also, (ii) is satisfied if and only if R(PQ,R(A)B) = Q. Since

R(PQ,R(A)B) = Q ⇔ Q ⊆ R(A) + R(B) ⇔ R(A) + R(B) = H

we have that (ii) is equivalent withR(A) + R(B) = H .
To discuss the third condition notice that

N (B2) = N
(
PQ,R(A)B

) ∩ P = B−1
(
R(A)

)
∩ P

and let T = B−1
(
R(A)

)
∩ P . Evidently,

N
(
PS ,R(A1) (αA2 + βB1) |T

) = N
(
PS ,R(A1) (αA + βB) |T

)

and
R

(
PS ,R(A1) (αA2 + βB1) |T

) = R
(
PS ,R(A1) (αA + βB) |T

)
.

Hence, we can conclude that αA + βB is invertible if and only if the following
conditions hold:

(i) N (A) ∩ N (B) = {0},R(A) + R(B) = H ,
(ii) APN (B) has closed range,
(iii) PS ,R(A1) (αA + βB) |T is an injective operator with range S .

Notice that the second condition in (i), R(A) + R(B) = H , can be replaced by
R(A) + R(B) = H : Suppose that (i) − (iii) are satisfied. Since

S = R(PS ,R(A1) (αA + βB) |T ),

we have that

S ⊆ R ((αA + βB) |T ) + R(A1) ⊆ R(A) + R(B).

Now, R(A) = R(A1) ⊕ S implies that R(A) ⊆ R(A) + R(B). Hence, R(A) +
R(B) = H . (Also, directly from the invertibility of αA + βB, we can conclude
that R(A) + R(B) = H ). �
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In the special case, when S is the orthogonal complement of R(A|N (B)) =
R(APN (B)) in R(A) and P = N (B)⊥, applying Theorem 3.11 we get the fol-
lowing result:

Theorem 3.12 Let A, B ∈ B(H ) be given operators and α, β ∈ C \ {0}. Then
αA + βB is invertible if and only if the following conditions hold:

(i) N (A) ∩ N (B) = {0},R(A) + R(B) = H ,
(ii) A|N (B) has a closed range,
(iii) PS (αA + βB) |T is an injective operator with range S ,

where S = R
(
APN (B)

)⊥ ∩ R(A) and T = N
(
PR(A)⊥ B

) ∩ N (B)⊥.

Evidently from the theorem given above, we can conclude that the invertibility of
the linear combination αA + βB is possible for some constants α, β ∈ C \ {0} only
if

dimN
(
PR(A)⊥ B

) ∩ N (B)⊥ = dimR
(
APN (B)

)⊥ ∩ R(A),

so we get the following result:

Corollary 3.3 Let A, B ∈ B(H ) be given operators. If

dimN
(
PR(A)⊥ B

) ∩ N (B)⊥ �= dimR
(
APN (B)

)⊥ ∩ R(A),

then the linear combination αA + βB is not invertible for any α, β ∈ C \ {0}.
Now we will reconsider the condition (iii) from Theorem 3.12, which says that
R (PS (αA + βB) |T ) = S and N (PS (αA + βB) |T ) = {0}. Suppose that
A, B ∈ B(H ) are given by (3.28) and (3.29), respectively, whereS is the orthog-
onal complement of R(A|N (B)) = R(APN (B)) in R(A), T = N

(
PR(A)⊥ B

) ∩
N (B)⊥ and P = N (B)⊥. The first condition is equivalent with

R(A) = R(APN (B)) + R(A) ∩ R
(
(αA + βB) PN (B)⊥

)
, (3.31)

sinceR ((αA + βB) |T ) = R(A)∩R
(
(αA + βB) PN (B)⊥

)
. The second condition

from (iii),N (PS (αA + βB) |T ) = {0} is equivalent with

N (αA2 + βB1) ∩ N (B2) = {0},
R ((αA2 + βB1) |T ) ∩ R(APN (B)) = {0}. (3.32)

Evidently the first condition from (3.32) is equivalent with

N (αA + βB) ∩ N (B)⊥ = {0}

while the second one is equivalent with

R
(
(αA + βB) PN (B)⊥

) ∩ R(APN (B)) = {0}.
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Now, in view of the previous two conditions and (3.31), we can conclude that the
condition (iii) from Theorem 3.12 is equivalent with

R(A) = R(APN (B)) ⊕ R(A) ∩ R
(
(αA + βB) PN (B)⊥

)

and
N (αA + βB) ∩ N (B)⊥ = {0}

and we can formulate the following result:

Theorem 3.13 Let A, B ∈ B(H ) be given operators and α, β ∈ C \ {0}. Then the
operator αA + βB is invertible if and only if the following conditions hold:

(i) N (A) ∩ N (B) = {0},R(A) + R(B) = H ,
(ii) APN (B) has closed range,
(iii) R(A) = R(APN (B)) ⊕ R(A) ∩ R

(
(αA + βB) PN (B)⊥

)
, N (αA + βB) ∩

N (B)⊥ = {0}.
In Theorems 3.11 and 3.12, the problem of invertibility of a linear combination of
two given operators is reduced to one in which yet another linear combination is
required to be injective and to have a prescribed range, which at first glance might
not strike the reader as much of an achievement. However, the conditions we have
obtained (those given in Theorems 3.11 and 3.12) lend themselves for applications
in further analysis of the initial problem for many special classes of operators where
they will lead to its complete solution.

Since the condition that αA + βB be nonsingular is symmetrical in A and B, we
can obtain new variants of the necessary and sufficient conditions in Theorems 3.11,
3.12 and 3.13 by interchanging the operators A and B in them.

Now, will be the focus of our attention on invertibility of linear combinations for
some special classes of operators using the above mentioned results:
(1) The problem of invertibility of αA + βB, in the case when A, B ∈ B(H ) are
regular operators and α, β ∈ C \ {0} was considered in [9].

Theorem 3.14 ([9]) Let A, B ∈ B(H ) be given operators with closed ranges and
α, β ∈ C \ {0}. The operator αA + βB is invertible if and only if the following
conditions hold:

(i′) N (A) ∩ N (B) = {0},R(A)⊥ ∩ R(B)⊥ = {0},
(ii′) Both A†A(I − B†B) and (I − AA†)BB† are closed range operators,
(iii′) P ′

L

(
αAB†B + βAA†B

) |M is an invertible,

where L = (A∗)† (R(A∗) ∩ R(B∗)), M = B† (R(A) ∩ R(B)) and P ′
L ∈

B(H ,L ) is defined by P ′
L x = PL x, x ∈ H .

As a corollary of Theorem 3.12 we get some different conditions for the invert-
ibility of αA + βB than the ones given in [9]. First give the following lemma.
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Lemma 3.9 Let A, B ∈ B(H ) be given operators. If A and B have closed ranges
then

(i) N
(
PR(A)⊥ B

) ∩ N (B)⊥ = B−1 (R(A)) ∩ N (B)⊥ = B† (R(A) ∩ R(B))

(ii) R(A) ∩ R
(
APN (B)

)⊥ = (A∗)† (R(A∗) ∩ R(B∗))

Proof (i) The first equality is evident. Let x ∈ B−1 (R(A)) ∩ N (B)⊥. Then
Bx ∈ R(A) and x = B†Bx . So, x ∈ B† (R(A) ∩ R(B)). Now, suppose that
x ∈ B† (R(A) ∩ R(B)). Then for some s, t ∈ H we have that x = B†Bt = B†As
and Bt = As. Evidently, x ∈ R(B∗) = N (B)⊥ and Bx = Bt = As ∈ R(A).
(ii) Let y ∈ R(A) ∩ R

(
APN (B)

)⊥
. Then y = AA†y and A∗y = B†BA∗y. Hence,

A∗y = B†BA∗y ∈ R(A∗) ∩ R(B∗). Now

y = (A†)∗A∗y = (A†)∗B†BA∗y.

Now, suppose that x ∈ (A∗)† (R(A∗) ∩ R(B∗)). Then for some s, t ∈ H we have
that y = (A†)∗A∗t = (A†)∗B∗s and A∗t = B∗s. Evidently, y ∈ R(A) which
implies y = AA†y. Now, we will prove that y ∈ R

(
APN (B)

)⊥ = N (PN (B)A∗):

B†BA∗y = B†BA∗(A†)∗B∗s = B†BA†AB∗s

= B†BA†AA∗t = B†BB∗s = B∗s
= A∗t = A∗y.

�

Now, in the case when A, B ∈ B(H ) are closed range operators, from Theorem
3.12 we get the following:

Theorem 3.15 Let A, B ∈ B(H ) be given closed range operators and α, β ∈
C \ {0}. Then αA + βB is invertible if and only if the following conditions hold:

(i) N (A) ∩ N (B) = {0},R(A) + R(B) = H ,
(ii) A|N (B) has a closed range,
(iii) PS ,R(A|N (B)) (αA + βB) |T is an injective operator with range S ,

where S = (A∗)† (R(A∗) ∩ R(B∗)) and T = B† (R(A) ∩ R(B)).

(2) The problem of invertibility of projections (idempotents) has been considered in
several papers. Coming from that line of research we can single out the result that the
invertibility of any linear combination αP + βQ, where α, β ∈ C \ {0}, α + β �= 0,
is in fact equivalent to the invertibility of P + Q which means that it is independent
of the choice of the scalars α and β. For the first time, this was realized by J.K.
Baksalary et al. [16] for the finite-dimesional case who proved that

αP + βQ is nonsing. ⇔ R(P(I − Q)) ∩R(Q(I − P)) = N (P) ∩N (Q) = {0}
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and later generalized byDu et al. [21] to the case of idempotent operators on aHilbert
space and finally by Koliha et al. [19] to the Banach algebra case, without giving any
necessary and sufficient conditions for the invertibility of αP + βQ. The necessary
and sufficient conditions for the invertibility of a linear combination of projections
P and Q on a Hilbert space are given later in another paper by Koliha et al. [17] (as
well as for the elements of a unital ring):

Theorem 3.16 ([17]) Let P, Q ∈ B(H ) be projections on a Hilbert space H .
Then the following conditions are equivalent:

(i) P + Q is invertible.
(ii) The range of P + Q is closed and

R(P) ∩ R(Q(I − P)) = N (P) ∩ N (Q) = {0},

R(P∗) ∩ R(Q∗(I − P∗)) = N (P∗) ∩ N (Q∗) = {0}.

In the case when P, Q ∈ B(H ) are projections, applying Theorem 3.11 to the
decompositions H = N (Q) ⊕ R(Q) = R(P) ⊕ N (P) we get the main result
from [21], which says that the invertibility of the linear combination αP + βQ is
independent of the choice of the scalars α, β ∈ C, but additionally we also obtain
necessary and sufficient conditions for the invertibility of the linear combination
αP + βQ which are different from those given in Theorem 3.16.

Theorem 3.17 Let P, Q ∈ B(H ) be given projections and α, β ∈ C\{0}, α+β �=
0. Then αP + βQ is an invertible operator if and only if the following conditions
hold:

(i) N (P) ∩ N (Q) = {0},R(P) + R(Q) = H ,
(ii) R(P) = R(P) ∩ R(Q) ⊕ R(P|N (Q)).

Proof Indeed, in this case the subspace T defined in Theorem 3.11 by T =
Q−1 (R(P)) ∩ R(Q) is equal to T = R(P) ∩ R(Q). Hence, for any x ∈ T ,
we have that (αP +βQ)x = (α +β)x which implies that the injectivity of operator
PS ,R(P|N (Q)) (αP + βQ) |T is equivalent withR(P|N (Q)) ∩ T = {0}. i.e.,

R(P|N (Q)) ∩ R(Q) = {0}. (3.33)

Also, operator PS ,R(P|N (Q)) (αP + βQ) |T has range S if and only if S ⊆ T +
R(P|N (Q)), which is equivalent withR(P) = R(P)∩R(Q)+R(P|N (Q)). Now,
by (3.33), we have that

R(P) = R(P) ∩ R(Q) ⊕ R(P|N (Q)). (3.34)

Using (3.34), the fact that the intersection of two operator ranges is an operator
range and Theorem 2.3 [22], we conclude thatR(P|N (Q)) is closed. Now, the proof
follows by Theorem 3.11. �

http://dx.doi.org/10.1007/978-981-10-6349-7_2
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Obviously, from Theorem 3.17 we get the following corollary:

Corollary 3.4 Let P, Q ∈ B(H ) be given projections and α, β ∈ C\{0}, α+β �=
0. Then the invertibility of the linear combination αP + βQ is independent of the
choice of the scalars α, β ∈ C \ {0}, α + β �= 0.

(3) The problem of invertibility of the linear combination αP + βQ when P and
Q are orthogonal projections has also received a lot of attention. In [20] Buckholtz
considers the special case when α + β = 1 and gives conditions under which the
difference of projections on aHilbert space is invertible, aswell as an explicit formula
for its inverse. In the paper of Koliha et al. [17], the invertibility of the sum of two
orthogonal projections was considered which is, as we already know, equivalent with
the invertibility of the linear combination αP + βQ:

Theorem 3.18 ([17]) Let P, Q ∈ B(H ) be orthogonal projections on a Hilbert
space H . Then the following conditions are equivalent:

(i) P + Q is invertible,
(ii) The range of P + Q is closed and

R(P) ∩ R(Q(I − P)) = N (P) ∩ N (Q) = {0}

Here, using Theorem 3.11 we obtain the following result:

Theorem 3.19 Let P, Q ∈ B(H ) be given orthogonal projections and α, β ∈
C \ {0}, α + β �= 0. Then αP + βQ is an invertible operator if and only ifR(P) +
R(Q) = H .

Proof Notice that in the case when P, Q ∈ B(H ) are orthogonal projections, the
subspacesS and T defined in Theorem 3.12 byS = R

(
PPN (Q)

)⊥ ∩R(P) and
T = N

(
PR(P)⊥ Q

) ∩N (Q)⊥ coincide andS = T = R(P) ∩R(Q). Indeed, if
P, Q ∈ B(H ) are orthogonal projections, then

S = R
(
PPN (Q)

)⊥ ∩ R(P) = R(P(I − Q))⊥ ∩ R(P)

= N ((I − Q)P) ∩ R(P) = R(P) ∩ R(Q)

and

T = N
(
PR(P)⊥ Q

) ∩ N (Q)⊥ = N ((I − P)Q) ∩ R(Q)

= R(P) ∩ R(Q).

Hence, for any x ∈ T , we have that (αP+βQ)x = (α+β)x and PS (αP+βQ)x =
(α + β)x . So, the operator PS (αP + βQ) |T from item (iii) of Theorem 3.12 is
an injective operator with range S if and only if α + β �= 0. Also, the condition
R(P) + R(Q) = H implies N (P) ∩ N (Q) = {0}. Now, from Theorem 3.12
we can conclude that in the case when P, Q ∈ B(H ) are orthogonal projections,
αP + βQ is an invertible operator if and only if the following conditions hold:
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(i) R(P) + R(Q) = H ,
(ii) P|N (Q) has closed range.

Notice that the condition (ii) that P|N (Q) has closed range can be replaced by
the condition that R(P(I − Q)) is closed. By Proposition 2.4 [23], we have that
R(P(I − Q)) is closed if and only ifR(P + Q) is closed, which is by Corollary 3
[22] equivalent with the fact that R(P) + R(Q) is closed. Since the condition (i)
guarantees closedness ofR(P)+R(Q), we conclude that condition (i) is necessary
and sufficient for the invertibility of αP + βQ. �.

If we compare Theorem 3.18 from [17] and our Theorem 3.19, it is evident that the
condition R(P) ∩ R(Q(I − P)) = {0} is superfluous. In the following lemma we
will give an explanation for that:

Lemma 3.10 Let P, Q ∈ B(H ) be orthogonal projections on a Hilbert spaceH .
Then

R(P) ∩ R(Q(I − P)) = {0}.

Proof First, let us observe that

R(P) ∩ R(Q(I − P)) = R(P) ∩ R(Q(I − P)) ∩ R(Q).

So, it is sufficient to prove thatR(P)∩R(Q(I − P))∩R(Q) = {0}. It can be easy
checked that

R(Q(I − P))⊥ ∩ R(Q) = N ((I − P)Q) ∩ R(Q) = R(P) ∩ R(Q),

implying thatR(P)∩R(Q) ⊆ R(Q(I−P))⊥, i.e.,R(P)∩R(Q)∩R(Q(I−P)) =
{0}. �

(4) Now we will consider the invertibility of the linear combination αA + βB for
given operators A, B ∈ B(H ) in two special cases: whenR(A)∩R(B) = {0} and
when R

(
APN (B)

) = R(A). In both of these two cases, beside giving necessary
and sufficient conditions for the the invertibility of αA + βB, we will conclude that
the invertibility of the linear combination αA + βB is independent of the choice of
the scalars α, β ∈ C \ {0}.

In the special case when A, B ∈ B(H ) are such thatR(A)∩R(B) = {0} using
Theorem 3.12 we get the following:

Theorem 3.20 Let A, B ∈ B(H ) be given operators and α, β ∈ C\{0}. IfR(A)∩
R(B) = {0}, then the operator αA + βB is invertible if and only if

R(A) ⊕ R(B) = H , N (A) ⊕ N (B) = H . (3.35)

Proof Suppose that αA+ βB is invertible. By Theorem 3.12, we have thatR(A) ⊕
R(B) = H which by Theorem 2.3 [22] gives that R(A) and R(B) are closed.
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Now R(A) ∩ R(B) = {0} together with the fact that R(A) is closed implies that
T = N

(
PR(A)⊥ B

) ∩ N (B)⊥ = {0} which by the condition (iii) from Theorem

3.12 gives that S = R
(
APN (B)

)⊥ ∩ R(A) = {0}. Hence, R(A) = R(APN (B))

which implies that N (A)⊥ ⊆ N (B) + N (A). So, H = N (B) + N (A). By
the condition (i) of Theorem 3.12, we have that N (A) ∩ N (B) = {0}, so H =
N (B) ⊕ N (A). On the other hand suppose that (3.35) holds. Evidently, R(A)

and R(B) are closed and the first condition from Theorem 3.12 is satisfied. Also,
R(A) = A(H ) = A(N (A) ⊕ N (B)) = A(N (B)) = R(APN (B)), so (ii) of
Theorem 3.12 is satisfied. To conclude that (iii) of Theorem 3.12 is true, simply
notice that T = S = {0}. �

Similarly, we get the following:

Theorem 3.21 Let A, B ∈ B(H ) be given operators and α, β ∈ C \ {0}. If
R

(
APN (B)

) = R(A), then the operator αA + βB is invertible if and only if the
following conditions hold:

(i) N (A) ∩ N (B) = {0},R(A) ⊕ R(B) = H ,
(ii) APN (B) has closed range.

Proof If R
(
APN (B)

) = R(A), then for S defined in Theorem 3.11 we have that
S = {0}. So the condition (iii) fromTheorem3.11 is satisfied if and only ifT = {0},
i.e.,R(A) ∩ R(B) = {0}. Now, the proof follows directly from Theorem 3.11. �

Corollary 3.5 Let A, B ∈ B(H ) be given operators. If one of the conditions

R(A) ∩ R(B) = {0} and R
(
APN (B)

) = R(A) holds, then the invertibility of the
linear combinationαA+βB is independent of the choice of the scalarsα, β ∈ C\{0}.
(5) Now we will consider the case when either one of the operators A, B ∈ B(H )

is injective.
Since the condition αA + βB is nonsingular is symmetrical in A and B, let us

suppose that B ∈ B(H ) is injective:

Theorem 3.22 Let A, B ∈ B(H ) be given operators such that B is injective and
α, β ∈ C \ {0}. Then αA + βB is invertible if and only if the following conditions
hold:

(i) R(A) + R(B) = H ,
(ii) (αA + βB) |B−1(R(A)) is an injective operator with range R(A).

Considering some special classes of operators we have seen that the invertibility
of the linear combination αA + βB is independent of the choice of the scalars
α, β ∈ C \ {0}. Another instance of this phenomenon is provided by the following
result.

Theorem 3.23 Let A, B ∈ B(H ) be given operators and α, β ∈ C \ {0}. If there
exists a closed subspaceP such thatH = N (B)⊕P and A|P = 0 or PR(A)B =
0, then the invertibility of the linear combination αA + βB is independent of the
choice of the scalars.
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Proof Using the representations (3.28) and (3.29) of the operators A and B, and
the representation (3.30) of αA + βB, from Theorem 3.11 the desired conclusion is
immediately reached. �

3.4 Drazin Invertible Completion of an Upper Triangular
Operator Matrix

In this section we will consider the existence of a Drazin invertible completion of an
upper triangular operator matrix of the form

[
A ?
0 B

]
:
[
H
K

]
→

[
H
K

]
,

where A ∈ B(H ) and B ∈ B(K ) are given operators.
Throughout the sectionH ,K are infinite dimensional separable complexHilbert

spaces. For a given operator A ∈ B(H ,K ), we set n(A) = dimN (A) and
d(A) = dimR(A)⊥.

Let us recall that for A ∈ B(H ), the smallest nonnegative integer k such that
N (Ak+1) = N (Ak) (resp. R(Ak+1) = R(Ak)), if one exists, is called the ascent
(resp. descent) of the operator A and is denoted by asc(A) (resp. dsc(A)); if there is
no such integer k, the operator A is said to be of infinite ascent (resp. infinite descent),
which is abbreviated by asc(A) = ∞ (resp. dsc(A) = ∞). Also K (0, δ) = {λ ∈ C :
|λ| < δ} stands for the open disc with center 0 and radius δ.

An operator A ∈ B(H ) is left Drazin invertible if asc(A) < ∞ andR(Aasc(A)+1)

is closed while A ∈ B(H ) is right Drazin invertible if dsc(A) < ∞ andR(Adsc(A))

is closed.
The question of existence of Drazin invertible completions of the upper-triangular

operator matrix

MC =
[
A C
0 B

]
:
[
H
K

]
→

[
H
K

]
,

was addressed in [24] where some sufficient conditions were given but the proof of
the result presented there is not correct as it is explained in [25].

Theorem 3.24 ([23]) LetH andK be separable Hilbert spaces and A ∈ B(H )

and B ∈ B(K ) be given operators such that

(i) A is left Drazin invertible,
(ii) B is right Drazin invertible,
(iii) There exists a constant δ > 0 such that d(A − λ) = n(B − λ), for every

λ ∈ K (0, δ) \ {0}.
Then there exists an operator C ∈ B(K ,H ) such that MC is Drazin invertible.
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In order to give a correct proof of Theorem 3.24, we will first list some auxiliaries
results:

Two completely different proofs of the following lemma that will be extensively
used throughout the paper can be found in [26, 27]:

Lemma 3.11 For a Banach space X , a given nonnegative integer m and A ∈
B(X ), the following conditions are equivalent:

(i) dsc(A) ≤ m < ∞,
(ii) N (Am) + R(An) = X , for every n ∈ N,
(iii) N (Am) + R(An) = X , for some n ∈ N.

We will also need the following result which is proved in [27, 28].

Lemma 3.12 Let A ∈ B(X ). We have the following

(1) If dsc(A) = m < ∞, then there exists a constant δ > 0 such that for every
λ ∈ K (0, δ) \ {0}:

(i) dsc(A − λ) = d(A − λ) = 0,
(ii) n(A − λ) = dimN (A) ∩ R(Am).

(2) If asc(A) = m < ∞ and R(Am+k) is closed for some k ≥ 1, then there exists
a constant δ > 0 such that for every λ ∈ K (0, δ) \ {0}:

(i) asc(A − λ) = n(A − λ) = 0,
(ii) d(A − λ) = dim

(
R(Am)/R(Am+1)

) = dim (X /(R(A) + N (Am))).

The following technical lemmawill be usedmultiple times throughout this section.

Lemma 3.13 Suppose B ∈ B(K ) and p is a positive integer such that R(Bp) is
closed. If B is represented by

B =
[
0 B1

0 B2

]
:
[

N (B) ∩ R(Bp)

(N (B) ∩ R(Bp))⊥

]
→

[
N (B) ∩ R(Bp)

(N (B) ∩ R(Bp))⊥

]
, (3.36)

then B1 and B2 must satisfy the following two conditions:

(i) The restriction of B1B
p−1
2 on N (Bp

2 ) is onto (equivalently: the restriction of
B1 to the subspace R(Bp−1

2 ) ∩ N (B2) is onto)
(ii) R(Bp

2 ) ⊆ R(Bp),
(iii) R(Bp

2 ) ∩ N (B1) ∩ N (B2) = {0} (equivalently: the restriction of B1 to the
subspace R(Bp

2 ) ∩ N (B2) is injective).

Proof Put S := N (B) ∩ R(Bp). To see that (i) is true, notice that if y ∈ S

then

[
y
0

]
=

[
B1B

p−1
2 x

B p
2 x

]
for some x ∈ S ⊥. To see that (ii) is true, notice that

for any x ∈ S⊥ we have

[
0

Bp
2 x

]
=

[
B1B

p−1
2 x

B p
2 x

]
−

[
B1B

p−1
2 x
0

]
, and that by

(i) we know that

[
B1B

p−1
2 x
0

]
∈ R(Bp). Finally to show (iii), notice that if y ∈

R(Bp
2 ) ∩ N (B1) ∩ N (B2) then y ∈ S by (ii), and also y ∈ S ⊥, so y = 0. �
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The following is a key lemma in the proof of our Theorem 3.24. Suppose that
A ∈ B(H ) is a left Drazin invertible operator, B ∈ B(K ) is an operator with
finite descent and suppose in addition that there exists a constant δ > 0 such that
d(A − λ) = n(B − λ), for every λ ∈ K (0, δ) \ {0}. Note that if p is any integer
with p ≥ max{asc(A), dsc(B)}, then R(A) + N (Ap) = A−asc(A)[R(Aasc(A)+1)]
is a closed subspace of codimension equal to the dimension of the subspace
N (B) ∩ R(Bp), by Lemma 3.12. Thus we can fix an invertible operator J ∈
B(N (B) ∩ R(Bp), (R(A)+N (Ap))⊥). Indeed, ifN (B)∩R(Bp) is closed then
this is clear. If it is not, then it must be infinite dimensional and so must be the closed
subspace (R(A) +N (Ap))⊥. But thenN (B) ∩ R(Bp) and (R(A) +N (Ap))⊥)

are both infinite dimensional separable Hilbert spaces and as such are isomorphic to
one another.

Lemma 3.14 Let A ∈ B(H ), B ∈ B(K ) be given operators such that

(i) A is left Drazin invertible,
(ii) dsc(B) < ∞,
(iii) There exists a constant δ > 0 such that d(A − λ) = n(B − λ), for every

λ ∈ K (0, δ) \ {0}.
Let C ∈ B(K ,H ) be given by

C =
[
J 0
0 0

]
:
[

N (B) ∩ R(Bp)

(N (B) ∩ R(Bp))⊥

]
→

[
(R(A) + N (Ap))⊥
R(A) + N (Ap)

]
, (3.37)

where p ∈ N is such that p ≥ max{asc(A), dsc(B)} and J ∈ B(N (B) ∩ R(Bp),

(R(A) + N (Ap))⊥) is any invertible operator. The following are equivalent:

(i) dsc(MC) ≤ p,
(ii) for any x ∈ H and y ∈ K , there exist x ′ ∈ H and y′ ∈ K such that

Apx = Ap+1x ′ + ApCy′, (3.38)

and

y − By′ ∈ N (C) ∩ N (CB) ∩ ... ∩ N (CBp−1) ∩ N (Bp). (3.39)

(iii) K = R(B) +N (C) ∩N (CB) ∩N (CB2) ∩ · · · ∩N (CBp−1) ∩N (Bp).

Proof (i) ⇔ (ii) Since for any k ∈ N

Mk
C =

[
Ak Ak−1C + Ak−2CB + ... + ACBk−2 + CBk−1

0 Bk

]
:
[
H
K

]
→

[
H
K

]
,

it follows that dsc(MC) ≤ p if and only if for any x ∈ H and y ∈ K , there exist
x ′ ∈ H and y′ ∈ K such that
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Apx + Ap−1Cy + Ap−2CBy + ... + ACBp−2y + CBp−1y =
Ap+1x ′ + ApCy′ + Ap−1CBy′ + ... + ACBp−1y′ + CBpy′ (3.40)

and Bpy = Bp+1y′.

The case p = 1 is evident, so suppose that p > 1. Ifwe suppose that dsc(MC) ≤ p, by
the second equality in (3.32) we get that y− By′ ∈ N (Bp). SinceR(C) ⊆ R(A)⊥,
by the first equality in (3.32) we get that y − By′ ∈ N (CBp−1) and

Apx + Ap−1Cy + Ap−2CBy + ... + ACBp−2y =
Ap+1x ′ + ApCy′ + Ap−1CBy′ + ... + ACBp−1y′.

(3.41)

By (3.41), we have that

Ap−1x+Ap−2Cy+...+CB p−2y−(Apx ′+Ap−1Cy′+...+CB p−1y′) ∈ N (A) ⊆ N (Ap)

which implies that CBp−2y − CBp−1y′ ∈ N (Ap) + R(A), i.e., y − By′ ∈
N (CBp−2). Continuing in the same manner, we get that (3.39) holds. Now, by
(3.32) it follows that (3.31) is also satisfied.
If (ii) holds, then evidently (3.32) is satisfied, i.e., dsc(MC) ≤ p.
(ii) ⇒ (iii) Evidently (3.39) implies (iii).
(iii) ⇒ (ii) Let x ∈ H and y ∈ K be arbitrary. Then there exists y0 ∈ K such that

y − By0 ∈ N (C) ∩ N (CB) ∩ ... ∩ N (CBp−1) ∩ N (Bp).

Let S = R(A) + N (Ap). By the definition of the operator C , for given x there
exists y00 ∈ N (B) ∩ R(Bp) such that (I − PS )x = J y00 = Cy00. Since N (B)

is closed we have By00 = 0. Define y′ = PN (B)⊥ y0 + y00. Then By′ = By0 and
Cy′ = Cy00 which implies that

y − By′ ∈ N (C) ∩ N (CB) ∩ ... ∩ N (CBp−1) ∩ N (Bp)

and that

(I − PS )x = Cy′. (3.42)

Now, Apx = ApCy′ + ApPS x . Since PS x ∈ R(A) + N (Ap) it follows that
ApPS x ∈ R(Ap+1) so there exists x ′ ∈ H such that ApPS x = Ap+1x ′. Now,

Apx = Ap+1x ′ + ApCy′.

�
Now, we are ready to make clear which conditions on the operators A and B are

necessary for the existence of some C ∈ B(K ,H ) such that the operator MC is
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Drazin invertible. Combining Lemma 2.6 from [29], Lemma 3.12 and Theorem 3.24,
we obtain the following result:

Theorem 3.25 Let A ∈ B(H ) and B ∈ B(K ) be given operators. If there exists
an operator C ∈ B(K ,H ) such that MC is Drazin invertible, then the following
hold:

(i) asc(A) < ∞,
(ii) dsc(B) < ∞,
(iii) There exists a constant δ > 0 such that A − λ is left invertible, B − λ is right

invertible and

d(A − λ) = n(B − λ) = dimN (B) ∩ R(Bdsc(B)),

for every λ ∈ K (0, δ) \ {0}.
We will show that the three conditions above together with the assumption that

both subspaces R(Aasc(A)+1) and R(Bdsc(B)) are closed (thus meaning that A is
left Drazin invertible and B is right Drazin invertible) are actually sufficient for the
existence of a Drazin completion of the operator matrix in question.

In [16], the authors correctly showed that asc(MC) < ∞, for C ∈ B(K ,H )

given by the following:

C =
[
J 0
0 0

]
:
[

N (B) ∩ R(Bp)

(N (B) ∩ R(Bp))⊥

]
→

[
(R(A) + N (Ap))⊥
R(A) + N (Ap)

]
, (3.43)

where p ≥ max{asc(A), dsc(B)} and J is an invertible operator. However we will
show that the operator C as defined in (3.37) by the authors indeed does the trick.
To properly show that, we first give an equivalent description of when exactly the
operator MC is Drazin invertible for this particular choice of C .

Theorem 3.26 Let A ∈ B(H ), B ∈ B(K ) be given operators such that

(i) A is left Drazin invertible,
(ii) dsc(B) < ∞,
(iii) There exists a constant δ > 0 such that d(A − λ) = n(B − λ), for every

λ ∈ K (0, δ) \ {0}.
Then MC is Drazin invertible for C ∈ B(K ,H ) given by (3.37) if and only if

K = R(B) + N (C) ∩ N (CB) ∩ N (CB2) ∩ · · · ∩ N (CBp−1) ∩ N (Bp).

Proof In [23] it is proved that asc(MC) ≤ p. Thus we can conclude that MC is
Drazin invertible if and only if dsc(MC) ≤ p. Now the assertion follows by Lemma
3.14. �

Remark If B ∈ B(K ) is right Drazin invertible and is given by (3.36), where
p = dsc(B), and if C ∈ B(K ,H ) is given by (3.37), then
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N (C) ∩ N (CB) ∩ N (CB2) ∩ · · · ∩ N (CBp−1) ∩ N (Bp) =
N (B1) ∩ N (B1B2) ∩ · · · ∩ N (B1B

p−1
2 ) ∩ N (Bp

2 ) .
(3.44)

Indeed, this is a consequence of the following equalities:

N (C) = [N (B) ∩ R(Bp)]⊥, N (CBk) = [N (B) ∩ R(Bp)] ⊕ N (B1B
k−1
2 ) ,

the latter of which follows from the representation

CBk =
[
0 J B1B

k−1
2

0 0

]
:
[

N (B) ∩ R(Bp)

(N (B) ∩ R(Bp))⊥

]
→

[
(R(A) + N (Ap))⊥
R(A) + N (Ap)

]
.

Since we make use of Lemma 3.13 in the following theorem, in contrast to the
previous auxiliary results here we must assume that B is right Drazin invertible.

Theorem 3.27 Let A ∈ B(H ), B ∈ B(K ) be given operators such that

(i) A is left Drazin invertible,
(ii) B is right Drazin invertible,
(iii) There exists a constant δ > 0 such that d(A − λ) = n(B − λ), for every

λ ∈ K (0, δ) \ {0}.
Then MC is Drazin invertible for C ∈ B(K ,H ) given by (3.37).

Proof Let B be given by (3.36). Suppose first that p = 1. By Theorem 3.26, to prove
that MC is Drazin invertible for C ∈ B(K ,H ) given by (3.37) it is sufficient to
prove that K = R(B) + N (C) ∩ N (B). Since dsc(B) = 1, by Lemma 3.11 it
follows that K = R(B) + N (B). Put S = N (B) ∩ R(B). As N (B) = S ⊕
N (B1)∩N (B2), andS ⊆ R(B), it follows thatK = R(B)+N (B1)∩N (B2).
SinceN (C)∩N (B) = N (B1)∩N (B2), we haveK = R(B)+N (C)∩N (B).

Now, consider the case when p > 1. By Theorem 3.26, we have to prove that

K = R(B) + N (C) ∩ N (CB) ∩ N (CB2) ∩ · · · ∩ N (CBp−1) ∩ N (Bp)

which is by (3.44) from the preceding remark equivalent with

K = R(B) + N (B1) ∩ N (B1B2) ∩ · · · ∩ N (B1B
p−1
2 ) ∩ N (Bp

2 ) .

Since K = R(B) + N (Bp), which is equivalent with

K = R(B) + N (B1B
p−1
2 ) ∩ N (Bp

2 ),

it is sufficient to prove that

N (B1B
p−1
2 ) ∩ N (Bp

2 ) ⊆
R(B) + N (B1) ∩ N (B1B2) ∩ · · · ∩ N (B1B

p−1
2 ) ∩ N (Bp

2 ).
(3.45)



3.4 Drazin Invertible Completion of an Upper Triangular Operator Matrix 87

Take arbitrary x ∈ N (B1B
p−1
2 )∩N (Bp

2 ). Now B1B
p−2
2 ∈ B((N (B)∩R(Bp))⊥,

N (B)∩R(Bp)) so B1B
p−2
2 x ∈ N (B)∩R(Bp). Lemma 6.13 says that the operator

B1B
p−1
2 ∈ B((N (B)∩R(Bp))⊥,N (B)∩R(Bp))maps the subspaceN (Bp

2 )onto
N (B) ∩ R(Bp). Hence there exists y ∈ N (Bp

2 ) such that B1B
p−2
2 x = B1B

p−1
2 y.

Now, x − B2y ∈ N (B1B
p−2
2 )∩N (B1B

p−1
2 )∩N (Bp

2 ) which together with (ii) of
Lemma 6.13 gives that x ∈ R(B)+N (B1B

p−2
2 )∩N (B1B

p−1
2 )∩N (Bp

2 ).We have
thus shown thatN (B1B

p−1
2 ) ∩N (Bp

2 ) ⊆ R(B) +N (B1B
p−2
2 ) ∩N (B1B

p−1
2 ) ∩

N (Bp
2 ).

Continuing in the same manner we further obtain consecutively

N (B1B
p−2
2 ) ∩ N (B1B

p−1
2 ) ∩ N (Bp

2 ) ⊆
R(B) + N (B1B

p−3
2 ) ∩ N (B1B

p−2
2 ) ∩ N (B1B

p−1
2 ) ∩ N (Bp

2 ),

..., and finally

N (B1B2) ∩ · · · ∩ N (B1B
p−1
2 ) ∩ N (Bp

2 ) ⊆
R(B) + N (B1) ∩ N (B1B2) ∩ · · · ∩ N (B1B

p−1
2 ) ∩ N (Bp

2 ).

Taking into account all these inclusions, we immediately get (3.45). �

Open question: We wonder if at least one of the conditions (if not both) (i) and
(ii) in Theorem 3.27 could be relaxed to the requirement that simply asc(A) < ∞
and dsc(B) < ∞, respectively?
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