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Preface

This book gives a presentation of some current topics in theory of generalized
inverses. As this theory has long been a subject of study of various authors, many
of the problems and questions have been resolved. However, some have only been
either partially solved or remain still open to this day. It was our goal to use this
book to give a review of these efforts as well as to offer the reader possible
directions for further study in this area of mathematics as well as hints at possible
applications in different types of problems.

This book starts with definitions of various types of generalized inverses and
listing the many sorts of applications of them to different branches of both math-
ematics, but also to some other scientific disciplines, which is aimed at providing
motivation behind the study of this topic in general.

Chapter 2 gives an exposition of the so-called reverse order law problem, which is
originally posed by Greville as early as in 1960, who first considered it in the case of the
Moore–Penrose inverse of two matrices. This was followed by further research on this
subject branching in several directions: products with more than two matrices were
considered; different classes of generalized inverses were studied; different settings were
considered (operator algebras, C�-algebras, rings, etc.). We discuss the reverse order
law for K-inverses, when K 2 ff1g; f1; 2g; f1; 3g; f1; 2; 3g; f1; 3; 4gg in different
settings and present all recently published results on this subject as well as some
examples and open problems.

In the next chapter, we first consider problems on completions of operator
matrices and then proceed to present a particular approach to solving the problem
on the reverse order law for f1g-generalized inverses of operators acting on sep-
arable Hilbert spaces which involves some of the previous research on completions
of operator matrices to left and right invertibility. Although the reverse order law
problem for f1g-generalized inverses of matrices was completely resolved by 1998,
the corresponding problem for the operators on separable Hilbert spaces was only
solved in 2015. So, we thus demonstrate usability of results on completions of
operator matrices by showing how they can be applied to one of the topics in
generalized inverses of operators that has seen a great interest over the years. Also,
in Chap. 3, we consider the problem of existence of Drazin invertible completions
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of an upper triangular operator matrix and that of the invertibility of a linear
combination of operators on Hilbert spaces.

In Chap. 4, we shift our attention from the problem of invertibility a linear
combination of operators to that of some different types of generalized invertibility.
Special emphasis is put on Drazin and generalized Drazin invertibility of linear
combinations of idempotents, commutators, and anticommutators in Banach alge-
bras. Also, some related results are presented on the Moore–Penrose inverse of a
linear combination of commuting generalized and hypergeneralized projectors for
which certain formulae are considered.

The problem of finding representations of the Drazin inverse of a 2 � 2 block
matrix is of great significance primarily due to its applications in solving systems of
linear differential equations, linear difference equations, and perturbation theory
of the Drazin inverse. It was posed by S. Campbell in 1983, and it is still unsolved.
In Chap. 5, we present all the partial results on this subject that have been obtained
so far as well as the different methods and approaches used in obtaining them.

In the last chapter, we present some additive results for the Drazin inverse. Although
it was already even in 1958 that Drazin pointed out that computing the Drazin inverse
of a sum of two elements in a ring was not likely to be easy, this problem remains open
to this day even for matrices. It is precisely on this problem when considered in rings of
matrices and Banach algebras that we shall focus our attention here; i.e., under various
conditions, we will compute ðPþQÞD as a function of P, Q, PD, and QD.

This book thus, as readers will surely see for themselves, only tackles some
of the current problems of the theory of generalized inverses, but the topics that
have been selected have also been thoroughly covered and a systematic presentation
given of relevant results obtained so far as well as of possible directions in further
research. We should mention that this book has come out as a result of a long and
successful collaboration between the authors. Also we were inspired by the work of
many colleagues as well as coauthors, some of the joint results with which appear in
this book, to whom we are thankful for the experience of working with. Finally, we
would like to thank professors Eric King-wah Chu from Monash University and
Vladimir Pavlović from the Faculty of Science and Mathematics, University of Niš,
who read this book carefully and provided feedback during the writing process.

This work was supported by the National Natural Science Foundation of China
under grant 11771099 and International Cooperation Project of Shanghai Municipal
Science and Technology Commission under grant 16510711200, School of
Mathematical Sciences and Key Laboratory of Mathematics for Nonlinear Sciences,
Fudan University, and by the bilateral project between China and Serbia,
“Generalized inverses and its applications” no. 2–15.

Nis, Serbia Dragana S. Cvetković Ilić
Shanghai, China Yimin Wei
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Chapter 1
Definitions and Motivations

1.1 Generalized Inverses: Definitions and Applications

The concept of generalized inverses seems to have been first mentioned in print in
1903 by Fredholm [1] who formulated a pseudoinverse for a linear integral operator
which is not invertible in the ordinary sense. One year later, in 1904 Hilbert [2] dis-
cussed generalized inverses of differential operators. The class of all pseudoinverses
was characterized in 1912 by Hurwitz [3] who used the finite dimensionality of the
null-space of Fredholmoperators to give a simple algebraic construction.Generalized
inverses of differential and integral operators thus antedated the generalized inverses
of matrices whose existence was first noted by Moore [4, 5], who defined a unique
inverse, called by him the general reciprocal, for every finite matrix. Little notice was
taken of Moore’s discovery for 30 years after its first publication, during which time
generalized inverses were defined for matrices by Siegel [6, 7] and for operators by
Tseng [8–10], Murray and von Neumann [11], Atkinson [12, 13] and others. Revival
of interest in the subject in the 1950s centered around the least squares properties
of certain generalized inverses which were recognized by Bjerhammar [14, 15]. He
rediscovered Moore’s inverse and also observed the connection between generalized
inverses and solving linear systems. In 1955 Penrose [16] extended Bjerhammar’s
results and showed that the Moore’s inverse for a given matrix A is the unique matrix
X satisfying the four equations:

(1) AX A = A (2) X AX = X (3) (AX)∗ = AX (4) (X A)∗ = X A.

In honour of Moore and Penrose this unique inverse is now commonly called
the Moore-Penrose inverse. Evidently, the Moore-Penrose inverse of a nonsingular
matrix coincides with its ordinary inverse. Throughout the years the Moore-Penrose
inverse was intensively studied, one of the primary reasons for that being its useful-
ness in applications to dealing with diverse problems such as, for example, that of
solving systems of linear equations, which constitutes one of the basic but at the same
time most important applications of this type of generalized inverse. Over the years,

© Springer Nature Singapore Pte Ltd. 2017
D. Cvetković Ilić and Y. Wei, Algebraic Properties of Generalized Inverses,
Developments in Mathematics 52, DOI 10.1007/978-981-10-6349-7_1
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2 1 Definitions and Motivations

right alongside this one, considerable attention in research was given to generalized
inverses that satisfy only some, but not all, of the four Penrose equations.

As we will be working with a number of different subsets of the above mentioned
set of four equations, we need some convenient notation for the generalized inverses
satisfying those certain specified equations: for any A, let A{i, j, ..., k} denote the
set of all matrices X which satisfy the equations (i), ( j), ..., (k) from among the
equations (1)–(4). In this case X ∈ A{i, j, ..., k} is a {i, j, ..., k}-inverse of A and is
denoted by A(i, j,...,k). With this convention one obviously has A{1, 2, 3, 4} = {A†}.

It is interesting to mention that about at the same time as Penrose, Rao [17], gave
a method of computing what is called the pseudoinverse of a singular matrix, and
applied it to solve normal equations with a singular matrix in the least squares theory
and to express the variances of estimators. The pseudoinverse defined by Rao did not
satisfy all the restrictions imposed by Moore and Penrose. It was therefore different
from the Moore-Penrose inverse, but was useful in providing a general theory of
least squares estimation without any restrictions on the rank of the observational
equations.

For various historical references in literature concerning the generalized Green’s
function and Green’s matrix for ordinary differential systems, in which the number
of independent boundary conditions is equal to the order of the system, the reader is
referred to paper of Rao [17], which was written before the author was aware of the
E. H. Moore’s general reciprocal. The construction of a generalized Green’s matrix
is considerably simplified with the use of the E. H. Moore’s general reciprocal in
designating the solution of certain algebraic equations expressing the boundary con-
ditions, and this procedure was employed by Bradley on a class of quasi-differential
equations [19], and on general compatible differential systems involving two-point
boundary conditions [20].

Since 1955 a great number of papers on various aspects of generalized inverses
and their applications have appeared. Generalized inverses pervade a wide range of
mathematical areas: matrix theory, operator theory, differential equations, numeri-
cal analysis, Markov chains, C∗-algebras or rings. Numerous applications include
areas such as: statistics, cryptography, control theory, coding theory, incomplete data
recovery and robotics.

It is interesting to note that the applications that generalized inverses do have in
many areas of mathematics and otherwise seem to have extensively been pointed
out only in papers published in the 70s and 80s of the last century. Attesting to that
are the proceedings of an Advanced Seminar on Generalized Inverses and Applica-
tions held at the University of Wisconsin-Madison on October 8–10, 1973, where
we can find many applications of generalized inverses to analysis and operator equa-
tions, Numerical analysis and approximation methods, along with applications to
statistics and econometrics, optimization, system theory, and operations research. In
contemporary mathematics the theory of generalized inverses has been established
as a well known and generally accepted tool of wide applicability, a fact that is
no more anywhere explicitly being mentioned. The present text, which generally
speaking is mostly of theoretical character, will try to put a strong emphasis on those
problems that can in way or another extend the range of applications of generalized
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inverses. Such possibility of wide applications of this theory surely serving as a good
motivation for the reader, we will now list some of them together with appropriate
references.

As already mentioned, among some of the first applications of generalized
inverses, that at the same time actually motivated their introduction, were those was
related to problems concerning the Green’s function and Green’s matrix for ordinary
differential systems, integro-differential equations and boundary problems, iterative
methods for best approximate solutions of linear integral equations of Fredholm and
Volterra [21, 22]. Also they were used in theoretical treatment of linear differential-
algebraic equationswith inconsistent initial conditions, inconsistent inhomogeneities
and undetermined solution components and applied to iterated functions [23]. Further
applications can be found as follows: in the constructions of algorithms for reproduc-
ing objects from their x-rays (see [24]), for the process of reconstruction of pictures
and objects from their projections (see [25–28]); in computerized tamography [29];
in sampling theory, a theory being a topicwith applications in several other fields such
as signal and image processing, communication engineering, and information theory,
among others. Generalized inverses are one of the basic tools in the quasi-consistent
reconstructions, which are an extension of the consistent reconstructions (see [30]).
Then there are applications in public key cryptography (see [31]); in statistics (see
[32–36]); in electrical engineering [37, 38]; in control theory, specially in optimal
control of linear discrete systems, in optimal control of autonomous linear processes
with singular matrices in the quadratic cost functional, in control problem structure
and the numerical solution of linear singular systems, in control in biological sys-
tems, in controllability of linear dynamical systems, [39–55]; in robotics [56–62]; in
kinematic synthesis [63, 64]. The references we have listed are but a small portion of
the literature pertaining to various applications of generalized inverses, but we hope
that they will be sufficient to motivate the reader to further pursue the topics we have
presented and perhaps also some related to them.

1.2 Drazin Inverse and Generalized Drazin Inverse:
Definitions and Applications

In 1958,Drazin [65] introduced a different kind of a generalized inverse in associative
rings and semigroups that does not have the reflexivity property but commutes with
the element.

Definition 1.1 Let a, b be elements of a semigroup. An element b is a Drazin inverse
of a, written b = aD, if

bab = b, ab = ba, ak+1b = ak, (1.1)



4 1 Definitions and Motivations

for some nonnegative integer k. The least nonnegative integer k for which these
equations hold is the Drazin index ind(a) of a. When ind(a) = 1, then the Drazin
inverse aD is called the group inverse and is denoted by ag or a#.

The Drazin inverse is one the most important concepts in ring theory (see [66]),
in particular in matrix theory and various of its applications [37, 67–70]. One of
the reason for this are its very nice spectral properties. For example, the nonzero
eigenvalues of the Drazin inverse are the reciprocals of the nonzero eigenvalues
of the given matrix, and the corresponding generalized eigenvectors have the same
grade [67].

Caradus [71], King [72] and Lay [73] investigated the Drazin inverse in the setting
of bounded linear operators on complex Banach spaces. It was proved by Caradus
[71] that a bounded linear operator A on a complexBanach space has aDrazin inverse
if and only if 0 is a pole of the resolvent (λI − A)−1 of A; the order of the pole is
equal to the Drazin index of A. Marek and Žitny [74] gave a detailed treatment of
the Drazin inverse for operators as well as for elements of a Banach algebra. The
Drazin inverse of closed linear operators was investigated by Nashed and Zhao [69]
who then applied their results to singular evolution equations and partial differential
operators. Drazin [75] studied some extremal definitions of generalized inverses that
are more general than the original Drazin inverse.

The index of a matrix A, namely the least nonnegative integer k for which the
nullspaces of Ak and Ak+1 coincide, which is one of the key concepts in the theory
of Drazin inverses of matrices [37, 67], turns out to coincide with its Drazin index.

In operator theory, the notion corresponding to the index of a finite matrix is that
of the ascent (and descent) of a chain-finite bounded linear operator A (see [76, 77]).
An operator A is chain-finite with the ascent (=descent) k if and only if 0 is a pole
of the resolvent (λI − A)−1 of order k. If we want to translate results involving the
index or the chain-finiteness condition to a Banach algebra A with the unit 1 we
must interpret the index of a ∈ A to be 0 if a is invertible, and k if 0 is a pole of
(λ − a)−1 of order k. The set A D consists of all a ∈ A such that aD exists.

The theory of Drazin inverses has seen a substantial growth over the past few
decades. It is a subject which is of great theoretical interest and finds applications in
a great many of various areas, including Statistics, Numerical analysis, Differential
equations, Population models, Cryptography, and Control theory, in solving singu-
lar, singularly perturbed differential equations and differential-algebriac equations,
asymptotic convergence of operator semigroups, multibody system dynamics, etc.

There is a huge applicability of the Drazin inverse to a wide variety of problems
in applied probability where a Markov chain is present either directly or indirectly
through some form of embedding. Markov chains are discrete stochastic processes
in which the probability of transition from one state to another is determined only
by the current state. They are characterized by their transition matrix P , where Pi j
represents the probability of transition from the state i to the state j . By characterizing
the Drazin inverse of I − P , where P is the transition matrix of a finite irreducible
discrete time Markov chain, we can obtain general procedures for finding stationary
distributions, moments of the first passage time distributions, and asymptotic forms
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for the moments of the occupation-time random variables. It can be shown that
all known explicit methods for examining these problems can be expressed in this
generalized inverse framework. More generally, in the context of a Markov renewal
process setting, the aforementioned problems are also examined using generalized
inverses of I − P , where P is the transition matrix of the discrete time jumpMarkov
chain (for more information see [78–80]. In [37] we can find many applications of
the Drazin inverse involving Markov chains.

More generally, the group inverse has found applications involving expressions
for differentiation of eigenvectors and eigenvalues [81–85] as well as in the study of
M-matrices, graph theory, and general nonnegative matrices [38, 65, 86–95] and in
the analysis of Google’s PageRank system [96, 97]. Also, there has been a wealth of
new results concerning the use of the group inverse to characterize the sensitivity of
the stationary probabilities to perturbations in the underlying transition probabilities
(see [88, 96, 98–106]). Many applications of the group inverse in the theory of
Markov chains, Perron eigenvalue analysis and spectral graph theory can be found
in [107]. This motivates our study in Chaps. 5 and 6.

For applications of the Drazin inverse in applied probability problems and in
statistics see [78, 79, 108, 109].

The concept of the generalized Drazin inverse in a Banach algebra was introduced
by Koliha [110]. The condition a − a2x ∈ A nil from the definition of the Drazin
inverse, was replaced by a − a2x ∈ A qnil. Hence, the generalized Drazin inverse of
a is the (unique) element x ∈ A (written ad) which satisfies

xax = x, ax = xa, a − a2x ∈ A qnil. (1.2)

It is interesting to mention that Harte also gave an alternative definition of a gener-
alized Drazin inverse in a ring [111–113]. These two concepts are equivalent in the
case when the ring is actually a Banach algebra. It is well known that ad is unique
whenever it exists [110]. For many basic properties of the generalized Drazin inverse
see [110, 112–114].

The generalized Drazin and the Drazin inverse are used in solving equations with
constant coefficients to give an explicit representation of the set of solutions, and also
in solving singular systems of differential equations, singular, singularly perturbed
differential equations and differential-algebriac equations [18, 68, 69, 90, 115–121].
Some applications can also be found to various control problems.

References

1. Fredholm, I.: Sur une classe d’equations fonctionnelles. Acta. Math. 27, 365–390 (1903)
2. Hilbert, D.: Grundzüuge einer algemeinen Theorie der linearen Integralgleichungen, B. G.

Teubner, Leipzig and Berlin, 1912, (Reprint of six articles which appeared originally in the
Götingen Nachrichten (1904), 49–51; (1904), 213–259; (1905), 307–338; (1906), 157–227;
(1906), 439–480; (1910), 355–417)

http://dx.doi.org/10.1007/978-981-10-6349-7_5
http://dx.doi.org/10.1007/978-981-10-6349-7_6


6 1 Definitions and Motivations

3. Hurwitz, W.A.: On the pseudo-resolvent to the kernel of an integral equation. Trans. Am.
Math. Soc. 13, 405–418 (1912)

4. Moore, E.H.: General Analysis. American Philosophical Society, Philadelphia (1935)
5. Moore, E.H.: On the reciprocal of the general algebraic matrix (abstract). Bull. Am. Math.

Soc. 26, 394–395 (1920)
6. Siegel, C.L.: Uber die analytische Theorie der quadratischen Formen III. Ann. Math. 38,

212–291 (1937)
7. Siegel, C.L.: Equivalence of quadratic forms. Am. J. Math. 63, 658–680 (1941)
8. Tseng, Y.Y.: Generalized inverses of unbounded operators between two unitary spaces. Dokl.

Akad. Nauk. SSSR. 67, 431–434 (1949)
9. Tseng, Y.Y.: Properties and classifications of generalized inverses of closed operators. Dokl.

Akad. Nauk. SSSR 67, 607–610 (1949)
10. Tseng, Y.Y.: Virtual solutions and general inversions. Uspehi. Mat. Nauk. 11, 213–215 (1956)
11. Murray, F.J., von Neumann, J.: On rings of operators. Ann. Math. 37, 116–229 (1936)
12. Atkinson, F.V.: The normal solvability of linear equations in normed spaces (russian), Mat.

Sbornik N.S. 28(70), 3–14 (1951)
13. Atkinson, F.V.: On relatively regular operators. Acta Sci. Math. Szeged 15, 38–56 (1953)
14. Bjerhammer, A.: Application of the calculus of matrices to the method of least squares with

special reference to geodetic calculations, Kungl. Tekn. H11gsk. Hand. Stockholm. 49, 1–86
(1951)

15. Bjerhammer, A.: Rectangular reciprocal matrices with special reference to geodetic calcula-
tions. Bull. Geodesique 52, 188–220 (1951)

16. Penrose, R.: A generalized inverse for matrices. Proc. Cambridge Philos. Soc. 51, 466–413
(1955)

17. Rao, C.R.: Analysis of dispersion for multiply classified data with unequal numbers in cells.
Sankhyd. 15, 253–280 (1955)

18. Reid, W.T.: Generalized Green’s matrices for compatible systems of differential equations.
Am. J. Math. 53, 443–459 (1931)

19. Bradley, J.S.: Adjoint quasi-differential operators of Euler type. Pacific J. Math. 16, 213–237
(1966)

20. Bradley, J.S.: Generalized Green’s matrices for compatible differential systems. Michigan
Math. J. 13, 97–108 (1966)

21. Kammerer, W.J., Nashed, M.Z.: Iterative methods for best approximate solutions of linear
integral equations of the first and second kinds. J. Math. Anal. Appl. 40, 547–573 (1972)

22. Nashed, M.Z.: On moment-discretization and least-squares solutions of linear integral equa-
tions of the first kind. J. Math. Anal. Appl. 53, 359–366 (1976)

23. Kunkel, P., Mehrmann, V.: Generalized inverses of differential-algebraic operators. SIAM J.
Matrix Anal. Appl. 17, 426–442 (1996)

24. Gaarder, N.T., Herman, G.T.: Algorithms for reproducing objects from their x-rays. Comput.
Graphics Image Process. 1, 97–106 (1972)

25. Gordon R., Herman G.T.: Reconstruction of pictures from their projections. Commun. ACM.
14, 759–768 (1971)

26. Herman, G.T.: Two direct methods for reconstructing pictures from their projections. Comput.
Graphics Image Process. 1, 123–143 (1972)

27. Krishan, S., Prabhu, S.S., Krishnamurthy, E.V.: Probabilistie reinforcement algorithms lot
reconsh-uction of pictures from their projections. Int. J. Syst. Sci. 4, 661–670 (1973)

28. Krishnamurthy, E.V.: Mahadeva, R.T., Subramanian, K., Prabhu, S.S.: Reconstruction of
objects from their projections using generalized inverses. Comput. Graphics Image Process.
3, 336–345 (1974)

29. Rieder,A., Schuster, T.: The approximate inverse in actionwith an application to computerized
tomography SIAM. J. Numer. Anal. 37(6), 1909–1929 (2000)

30. Laura, A.M., Conde, C.: Generalized inverses and sampling problems. J. Math. Anal. Appl.
398(2), 744–751 (2013)



References 7

31. Li, G., Guo, D.: One-way property proof in public key cryptography based on OHNN. Proc.
Eng. 15, 1812–1816 (2011)

32. Radhakrishin, C.R.: A note on a generalized inverse of a matrix with applications to problems
in mathematical statistics. J. R. Stat. Soc. Ser. B. 24, 152–158 (1962)

33. Radhakrishin, C.R.: Generalized inverse for matrices and its applications in mathematical
statistics. Research papers in Statistics. Festschrift for J. Neyman. Wiley, New York (1966)

34. Radhakrishin, C.R.: Least squares theory using an estimated dispersionmatrix and its applica-
tion tomeasurement of signals. In: Proceedings of the Fifth Berkeley Symposium on Statistics
and Probability, Berkeley and LosAngeles, University of California Press, vol. 1, pp. 355–372
(1967)

35. Chipman, J.S.: Specification problems in regression analysis, Theory and Application of
Generalized Inverses and Matrices, Symposium Proceedings. Texas Technological College.
Mathematics Series 4, 114–176 (1968)

36. Bose, R. C.: Analysis of Variance, unpublished lecture notes, University of North Carolina
(1959)

37. Campbell, S.L.,Meyer, C.D.: Generalized Inverse of Linear Transformations, Pitman, London
(1979). Dover, New York (1991)

38. Anderson Jr., W.N., Duffin, R.J., Trapp, G.E.: Matrix operations induced by network connec-
tions. SIAM J. Control 13, 446–461 (1975)

39. Akatsuka, Y., Matsuo, T.: Optimal control of linear discrete systems using the generalized
inverse of a matrix, Techn Rept., vol. 13. Institute of Automatic Control, Nagoya Univ.,
Nagoya, Japan (1965)

40. Albert, A., Sittler, R.W.: A method for computing least squares estimators that keep up with
the data. SIAM J. Control 3, 384–417 (1965)

41. Balakrishnan, A.V.: An operator theoretic formulation of a class of control problems and a
steepest descent method of solution. J. Soc. Ind. Appl. Math. Ser. A. Control 1, 109–127
(1963)

42. Barnett, S.: Matrices in Control Theory. Van Nostrand Reinhold, London (1971)
43. Beutler, F.J., Root, W.L.: The operator pseudoinverse in control and systems identification.

In: Nashed, M.Z. (ed.) Generalized Inverses and Applications. Academic Press, New York
(1976)

44. Campbell, S.L.: Optimal control of autonomous linear processes with singular matrices in the
quadratic cost functional. SIAM J. Control Optim. 14(6), 1092–1106 (1976)

45. Campbell, S.L: Optimal control of discrete linear processes with quadratic cost. Int. J. Syst.
Sci. 9(8), 841–847 (1978)

46. Campbell, S.L.: Control problem structure and the numerical solution of linear singular sys-
tems. Math. Control Signals Syst. 1(1), 73–87 (1988)

47. Dean, P., Porrill, J.: Pseudo-in J. Math. Anal. Appl.verse control in biological systems: a
learning mechanism for fixation stability. Neural Netw. 11, 1205–1218 (1998)

48. Kalman, R.E.: Contributions to the theory of optimal control. Bol. Soc. Mat. Mexicana 5(2),
102–119 (1960)

49. Kalman, R.E., Ho, Y.C., Narendra, K.S.: Controllability of linear dynamical systems. Contri-
butions to Differential Equations, vol. I, pp. 189–213. Interscience, New York (1963)

50. Doh-Hyun, K., Jun-Ho, O.: TheMoore-Penrose inverse for the classificatory models. Control
Eng. Pract. 7(3), 369–373 (1999)

51. Liu, X., Liu, D.: Recursive computation of generalized inverses with application to optimal
state estimation. Control Theory Adv. Tech. 10, 1485–1497 (1995)

52. Lovass-Nagy, V., Powers, D.L.: Matrix generalized inverses in the handling of control prob-
lems containing input derivatives. Int. J. Syst. Sci. 6, 693–696 (1975)

53. Minamide, N., Nakamura, K.: Minimum error control problem in banach space, Research
Report of Automatic Control Lab 16. Nagoya University, Nagoya, Japan (1969)

54. Wahba,G.,Nashed,M.Z.:The approximate solutionof a class of constrained control problems.
In: Proceedings of the Sixth Hawaii International Conference on Systems Sciences, Hawaii
(1973)



8 1 Definitions and Motivations

55. Wang, Y.W., Wang, R.J.: Pseudoinverse and two-objective optimal control in Banach spaces.
Funct. Approx. Comment. Math. 21, 149–160 (1992)

56. Doty, K.L., Melchiorri, C., Bonivento, C.: A Theory of Generalized Inverses Applied to
Robotics. Int. J. Robotics Res. 12(1), 1–19 (1993)

57. Schwartz, E.M., Doty, K.L.: Application of the Weighted Generalized-Inverse in Control
Optimization and Robotics. Florida Atlantic University, Boca Raton FL (June, Fifth Conf. on
Recent Advances in Robotics (1992)

58. Schwartz, E.M., Doty, K.L.: The Weighted Generalized-Inverse Applied to Mechanism Con-
trollability. University of Florida, Gainesville, FL (April, Sixth Conf. On Recent Advances
in Robotics (1993)

59. Liu, W., Xu, Y., Yao, J., Zhao, Y., Zhao, B.Y., Liu, W.: The weighted Moore-Penrose gen-
eralized inverse and the force analysis of overconstrained parallel mechanisms, Multibody
System Dynamics, 39, 363–383 (2017)

60. Lasky, T.A., Ravani, B.: Sensor-based path planning and motion control for a robotic system
for roadway crack sealing. IEEE Trans. Control Syst. Technol. 8, 609–622 (2000)

61. Tucker, M., Perreira, N.D.: Generalized inverses for robotics manipulators. Mech. Mach.
Theory 22(6), 507–514 (1987)
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Chapter 2
Reverse Order Law

The problem of finding the generalized inverse of a product of matrices led to the
investigation of the so-called “reverse order law”. The reverse order law for many
types of generalized inverses has been the subject of intensive research over the years.
In the 1960s, Greville was the first to study it by considering the reverse order law
for the Moore-Penrose inverse and gave a necessary and sufficient condition for the
reverse order law

(AB)† = B†A†, (2.1)

to hold for matrices A and B. This was followed by further research on this subject
branching in several directions:

• Products with more than two matrices were considered;
• Different classes of generalized inverses were studied;
• Different settings were considered (operator algebras, C∗-algebras, rings etc.)

Over the years this topic has been the subject of interest in various investiga-
tions. In this chapter we will set as our primary goal a chronological and systematic
presentation, thus taking into account both the time of publication and the level of
generalization, of all the published results covering this topic and to point to some
problems that are still open and the difficulties that one is faced with when attempt-
ing to solve them. Such an approach is intended to give the reader a clear picture of
the current status of the research concerning this topic and also some guidelines for
future research that they might be interested in doing.

We will discuss the reverse order laws for K-inverses when K ∈ {{1}, {1, 2},
{1, 3}, {1, 2, 3}, {1, 3, 4}} and present all recently published results on this subject as
well as some simple examples and open problems.

When we are talking about the reverse order law for the K -inverse, where K ⊆
{1, 2, 3, 4}, we are actually considering the following inclusions:

© Springer Nature Singapore Pte Ltd. 2017
D. Cvetković Ilić and Y. Wei, Algebraic Properties of Generalized Inverses,
Developments in Mathematics 52, DOI 10.1007/978-981-10-6349-7_2
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BK · AK ⊆ (AB)K ,

(AB)K ⊆ BK · AK ,

(AB)K = BK · AK .

The reverse order law problem for each of the above mentioned types of gen-
eralized inverses will receive special attention, and we will describe necessary and
sufficient conditions in various settings such as that of matrices, algebras of bounded
linear operators,C∗-algebras and, when possible, in general rings. Beside presenting
to the reader some results that have large application, primarily in solving different
types of matrix and operator equations, they will have the opportunity to familiarize
themselves with the techniques that are used to generalize results obtained in the
case of matrices to more general settings such as those of algebras of bounded linear
operators, C∗-algebras or rings.

2.1 Reverse Order Laws for {1}-Inverses

In this section,we address the question ofwhen the reverse order laws for {1}-inverses
is valid. It is interesting that although the reverse order law has been considered for
many types of generalized inverses and from various aspects too, there are only a
few papers which are concerned with this problem for the {1}-inverse.

In his article, Rao [1] proves that if A and B are complex matrices such that AB
is defined, and if either A is of full column rank or B is of full row rank, then

B{1}A{1} ⊆ (AB){1}. (2.2)

After this, Pringle and Rayner [2], state incorrectly that any of the two conditions
from the Rao’s result (i.e., if A is of full column rank or B is of full row rank) imply
that

(AB){1} = B{1}A{1} (2.3)

which is noted in 1994 by Werner [3], who gives a simple counterexample to this
assertion and proves that for given matrices A and B of appropriate sizes, (2.2) holds
if and only if

N (A) ⊆ R(B) or R(B) ⊆ N (A),

where N (A) and R(B) are the null space of A and the range of B, respectively.
It can easily be seen that Werner’s proof, when suitably modified, carries over to
operators on Hilbert spaces.

Theorem 2.1 Let A ∈ B(H ,K ) and B ∈ B(L ,H ) be regular operators such
that the product AB is also regular. Then B{1}A{1} ⊆ (AB){1} if and only if
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N (A) ⊆ R(B) or AB = 0. (2.4)

Also he proves that (2.3) holds in particular in each of the following cases:

(i) A and B are both of full column rank
(ii) A and B are both of full row rank
(iii) A is nonsingular and/or B is nonsingular

but in general, the more difficult problem of finding equivalent descriptions of the
condition (2.3) still remains open. The next paper on this topic was by M. Wei [4]
where, using P-SVD of matrices A and B, some equivalents of (2.2) are derived
and compared with the conditions given by Werner and finally certain necessary and
sufficient conditions for (2.3) to hold are given.

Theorem 2.2 ([4]) Let A ∈ C
m×n and B ∈ C

n×p. The following conditions are
equivalent:

(i) (AB){1} = B{1}A{1}
(ii) One of the following conditions hold:

(a) r(AB) = 0, n ≥ min{m + r(B), p + r(A)},
(b) r(A) + r(B) − r(AB) = n and (r(A) = m or r(B) = p)

(iii) One of the following conditions hold:

(a) R(B) ⊆ N (A), n ≥ min{m + r(B), p + r(A)},
(b) N (A) ⊆ R(B) and (r(A) = m or r(B) = p).

Let us now take a look at the following few examples.

Example 2.1 Ifm = n and A = I , then for any B ∈ C
n×p we have (AB){1} = B{1}

and A{1} = {I }, so (AB){1} = B{1}A{1}, which can also be concluded from
Theorem 2.2,(iii)b.

Example 2.2 Let A =
[
0 1
0 1

]
and B =

[
1 0
0 0

]
. Then evidently AB = 0 and from

Theorem 2.1 (or using the fact that (AB){1} = C
2×2) we have that B{1}A{1} ⊆

(AB){1}. On the other hand, since

A{1} =
{[

a1 a2
a3 1 − a3

]
: a1, a2, a3 ∈ C

}

and

B{1} =
{[

1 b1
b2 b3

]
: b1, b2, b3 ∈ C

}
,

we can check that

[
0 0
1 −1

]
∈ (AB){1} can not be written as a product B(1)A(1) for

some A(1) ∈ A{1} and B(1) ∈ B{1}. This means that (AB){1} �= B{1}A{1} which
can be checked also using Theorem 2.2.
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Also, the inclusion (2.2) in the case of the product of more than two matrices was
considered by M. Wei [4] by applying the multiple product singular value decompo-
sition.

Theorem 2.3 ([5]) Let Ai ∈ C
mi×mi+1 , i = 1, n, n ≥ 3. The following conditions

are equivalent:

(i) An{1} · An−1{1} · · · A1{1} ⊆ (A1A2 · · · An){1}
(ii) One of the following conditions hold:

(a) r(A1 · · · An) = 0
(b) r(A1 · · · Ai ) + r(Ai+1) − r(A1 · · · Ai+1) = mi+1, i = 1, n − 1

(iii) One of the following conditions hold:

(a) R(Ai+1 · · · An) ⊆ N (A1 · · · Ai ), for some i ∈ {1, . . . , n − 1}
(b) N (A1 · · · Ai ) ⊆ R(Ai+1), i = 1, n − 1.

Recently, the previous resultwas generalizedbyNikolov-Radenković [6] for bounded
linear operators on Hilbert spaces. We will give a proof of this result.

Theorem 2.4 ([6]) Let Ai ∈ B(Hi+1,Hi ), i = 1, n, be such that Ai , i = 1, n
and A1A2 · · · A j , j = 2, n, are regular operators. The following conditions are
equivalent:

(i) An{1} · An−1{1} · · · A1{1} ⊆ (A1A2 · · · An){1}
(ii) A1A2 · · · An = 0 or N (A1 · · · A j−1) ⊆ R(A j ), for j = 2, n
(iii) A1A2 · · · An = 0 or Ak{1} · Ak−1{1} · · · A1{1} ⊆ (A1A2 · · · Ak){1}, for k =

2, n.

Proof (ii) ⇒ (iii) : If A1A2 · · · An = 0, it is evident that (iii) holds. Suppose that
A1A2 · · · An �= 0 and

N (A1 · · · A j−1) ⊆ R(A j ), for j = 2, n. (2.5)

We will prove by induction on k that

Ak{1} · Ak−1{1} · · · A1{1} ⊆ (A1A2 · · · Ak){1} (2.6)

holds for k = 2, n. From (2.5) it follows that N (A1) ⊆ R(A2) which by (2.4)
implies that (2.6) holds for k = 2. Suppose that (2.6) holds for k = l − 1, where
l ∈ {2, 3, . . . , n}, i.e.,

Al−1{1} · Al−2{1} · · · A1{1} ⊆ (A1A2 · · · Al−1){1}. (2.7)

We prove that it must also hold for k = l. Since (2.5) holds for j = l, by (2.4) we
have

Al{1} · (A1A2 · · · Al−1){1} ⊆ (A1A2 · · · Al−1Al){1}, (2.8)
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which by (2.7) implies that (2.6) holds for k = l. Hence, by induction it follows that
(2.6) holds for k = 2, n.
(iii) ⇒ (i) : This is evident.
(i) ⇒ (ii) : Suppose that A1A2 · · · An �= 0 and that n > 2 since the assertion in the
case n = 2 follows by Theorem 2.1. Let j ∈ {3, 4, . . . , n} and i ∈ {1, 2, . . . , j − 2}
be arbitrary. Then for arbitrary A(1)

i ∈ Ai {1} and A(1)
j ∈ A j {1}, we have that

A1A2 · · · An A
(1)
n · · · A(1)

j+1 · (A(1)
j + Y (IH j − A j A

(1)
j ))A(1)

j−1 · · · A(1)
i+1

(A(1)
i + (IHi+1 − A(1)

i Ai )X) · A(1)
i−1 · · · A(1)

1 A1 · · · An = A1 · · · An

(2.9)

holds for every X ∈ B(Hi ,Hi+1) and every Y ∈ B(H j+1,H j ). Substituting
X = 0 in (2.9), we get

A1A2 · · · An A
(1)
n · · · A(1)

j+1 · (A(1)
j + Y (IH j − A j A

(1)
j ))A(1)

j−1 · · · A(1)
i+1A

(1)
i ·

A(1)
i−1 · · · A(1)

1 A1 · · · An = A1 · · · An.
(2.10)

Subtracting (2.10) from (2.9), we get that

A1A2 · · · An A
(1)
n · · · A(1)

j+1 · (A(1)
j + Y (IH j − A j A

(1)
j ))A(1)

j−1·
· · · A(1)

i+1(IHi+1 − A(1)
i Ai )X A(1)

i−1 · · · A(1)
1 A1 · · · An = 0.

(2.11)

Substituting Y = 0 in (2.11), we get

A1A2 · · · An A
(1)
n · · · A(1)

j+1A
(1)
j A(1)

j−1 · · · A(1)
i+1(IHi+1 − A(1)

i Ai )X ·
A(1)
i−1 · · · A(1)

1 A1 · · · An = 0.
(2.12)

Finally, from (2.12) and (2.11), we get that

A1A2 · · · An A
(1)
n · · · A(1)

j+1 · Y (IH j − A j A
(1)
j )A(1)

j−1 · · · A(1)
i+1·

(IHi+1 − A(1)
i Ai )X A(1)

i−1 · · · A(1)
1 A1 · · · An = 0

(2.13)

holds for arbitrary X ∈ B(Hi ,Hi+1) and Y ∈ B(H j+1,H j ).
Now, it follows that either

A1A2 · · · An A
(1)
n · · · A(1)

j+1 = 0 (2.14)

or
(IH j − A j A

(1)
j )A(1)

j−1 · · · A(1)
i+1(IHi+1 − A(1)

i Ai ) = 0 (2.15)

or
A(1)
i−1 · · · A(1)

1 A1 · · · An = 0. (2.16)
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It is easy to see that (2.14) and (2.16) imply A1A2 · · · An = 0 which is not the case,
so (2.15) must hold. Hence, for arbitrary j ∈ {3, 4, . . . , n} and i ∈ {1, 2, . . . , j −2},
we have that

(IH j − A j A
(1)
j )A(1)

j−1 · · · A(1)
i+1A

(1)
i Ai = (IH j − A j A

(1)
j )A(1)

j−1 · · · A(1)
i+1. (2.17)

Let j ∈ {2, 3, . . . , n}, be arbitrary. Then by (i) it follows that

A1A2 · · · An A
(1)
n · · · A(1)

j+1·
(A(1)

j + Y (IH j − A j A
(1)
j ))(A(1)

j−1 + (IH j − A(1)
j−1A j−1)X)·

A(1)
j−2 · · · A(1)

1 A1 · · · An = A1 · · · An

(2.18)

holds for arbitrary X ∈ B(H j−1,H j ) and Y ∈ B(H j ,H j+1). Analogously to the
previous part of the proof, we get that for arbitrary j ∈ {2, 3, . . . , n}

(IH j − A j A
(1)
j )(IH j − A(1)

j−1A j−1) = 0. (2.19)

Taking j = 2 in (2.19), we conclude that

N (A1) ⊆ R(A2). (2.20)

Now, choose arbitrary j ∈ {3, 4, . . . , n}. Using (2.17) and (2.19), we have

A j A
(1)
j (I − A(1)

j−1 · · · A(1)
2 A(1)

1 A1A2A3 · · · A j−1)

= I − A(1)
j−1 · · · A(1)

2 A(1)
1 A1A2A3 · · · A j−1,

(2.21)

which implies that N (A1A2 · · · A j−1) ⊆ R(A j ). �

In [7] some necessary and sufficient conditions are given under which, in the matrix
case, for some (AB)(1) ∈ (AB){1} satisfying some special conditions there exist
A(1) ∈ A{1} and B(1) ∈ B{1} such that (AB)(1) = B(1)A(1):

Theorem 2.5 ([7]) Let A ∈ C
m×n and B ∈ C

n×p and let (AB)(1) ∈ (AB){1} be
arbitrarily given, and let

t ((AB)(1)) = dim (R((AB)(1)) ∩ N (B)) and

v((AB)(1)) = dim (R([(AB)(1)]∗) ∩ N (A∗)).

Then (AB)(1) ∈ B{1}A{1} if and only if:

r((AB)(1)) − t ((AB)(1)) − v((AB)(1)) ≥ r(A) + r(B) − n.
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The reverse order law
(AB){1} ⊆ B{1}A{1} (2.22)

in the setting of matrices was completely solved in 1998 in [8], where using P-SVD
of matrices A and B it was proved that (2.22) holds if and only if

dimN (A) − dim (N (A) ∩ R(B)) ≥ min
{
dimN (A∗), dimN (B)

}
.

In [9], some other necessary and sufficient conditions for (2.22) to hold were pre-
sented without using SVD or P-SVD of matrices A and B, potentially allowing for
our purely algebraic proof to be generalized to more general settings:

Theorem 2.6 Let A ∈ C
m×n and B ∈ C

n×p. The following conditions are equiva-
lent:

(i) (AB){1} ⊆ B{1}A{1},
(ii) r(A) + r(B) − n ≤ r(AB) − min{m − r(A), p − r(B)}.
Proof Since (i) is equivalent with

(B∗A∗){1} ⊆ A∗{1}B∗{1}, (2.23)

without loss of generality we can suppose throughout the proof that

min{m − r(A), p − r(B)} = m − r(A). (2.24)

Indeed, if this is not the case we can have (2.24) by simply replacing A with B∗ and
B with A∗, given that m − r(A) = dimN (A∗) and p − r(B) = dimN (B). Now,
assuming (2.24), we need to prove that (i) is equivalent withm− r(AB) ≤ n− r(B).

Evidently, (i) is equivalent with the fact that for any (AB)(1) ∈ (AB){1} there
exist A(1) ∈ A{1} and B(1) ∈ B{1} such that

(AB)(1) = B(1)A(1).

Using Lemma 1.1 from [9] (or the more general version of it—Lemma 3.5) as
well as appropriate notations used therein, (i) is equivalent with the fact that for
any (A1B1)

(1) ∈ (A1B1){1}, Z2 ∈ B(N (A∗),R(B∗)), Z3 ∈ B(R(A),N (B))
and Z4 ∈ B(N (A∗), N (B)) there exist matrices Y2 ∈ B(N (B∗),R(B∗)),

Y3 ∈ B(R(B),N (B)) and Y4 ∈ B(N (B∗),N (B)) and X =
[
X1 X2

X3 X4

]
:[

R(A)
N (A∗)

]
→

[
R(B)
N (B∗)

]
satisfying

A1X1 + A2X3 = IR(A), (2.25)

such that

http://dx.doi.org/10.1007/978-981-10-6349-7_3
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[
(A1B1)

(1) Z2
] = [

B−1
1 Y2

]
X (2.26)[

Z3 Z4
] = [

Y3 Y4
]
X. (2.27)

In general for fixed Y2 the Eq. (2.26) is solvable for X and we have that the set of
solutions is given by

S =
{[

B1

0

] [
(A1B1)

(1) Z2
] +

(
I −

[
B1

0

] [
B−1
1 Y2

])
W :

W ∈ C
n×m

}

=
{[

B1(A1B1)
(1) − B1Y2W3 B1Z2 − B1Y2W4

W3 W4

]
:

[
W1 W2

W3 W4

]
:
[

R(A)
N (A∗)

]
→

[
R(B)
N (B∗)

] }
,

(2.28)

given that obviously

[
B1

0

]
∈ [

B−1
1 Y2

] {
1
}
.

Thus (i) is equivalent with the existence of at least one X ∈ S ∩ A{1} for which the
Eq. (2.27) is solvable for

[
Y3 Y4

]
. The solvability of Eq. (2.27) is equivalent with

[
Z3 Z4

]
(I − X (1)X) = 0, (2.29)

for some (any) X (1) ∈ X{1}.
Hence (i) is equivalent with the existence of X ∈ S ∩ A{1} for which (2.29) holds.
Write X = [

K1 K2
]
, where

K1 =
[
B1(A1B1)

(1) − B1Y2W3

W3

]
and K2 =

[
B1Z2 − B1Y2W4

W4

]
.

Using Lemma 2.3 [10], we have that one inner inverse of X is given by X (1) =[
K (1)

1 − K (1)
1 K2T (1)RK1

T (1)RK1

]
, where T = RK1K2 and RK1 = I − K1K

(1)
1 . Thus (2.29)

is equivalent with

(Z4 − Z3K
(1)
1 K2)(I − T (1)T ) = 0, Z3(I − K (1)

1 K1) = 0, (2.30)

for some T (1) ∈ T {1}.
(i) ⇒ (ii): Taking (A1B1)

(1) = (A1B1)
†, Z2 = 0, Z3 = 0 and a left invertible Z4

(such Z4 exists since dimN (A∗) ≤ dimN (B)), by (2.30) we get that T must be
left invertible. Since T = PN (K1K

(1)
1 ),R(K1)

K2, we get that N (T ) = {0} if and only
if N (K2) = {0} and R(K1) ∩ R(K2) = {0}. The first condition, N (K2) = {0}
is satisfied if and only if N (W4) = {0}, which is possible only if dimN (A∗) ≤
dimN (B∗). The second condition R(K1) ∩ R(K2) = {0} (in the case when K1
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and K2 are left invertible) is equivalent withN (X) = {0}, i.e.,

N
( [

B1(A1B1)
† 0

] ) ∩ N
( [

W3 W4
] ) = {0}. (2.31)

Thus N ((A1B1)
†) ∩ N (W3) = {0}, so the condition (2.31) is equivalent with

R(W3 |N ((A1B1)†))∩R(W4) = {0}, which is possible onlywhen dimN ((A1B1)
†)+

dimN (A∗) ≤ dimN (B∗). Since dimN ((A1B1)
†) = r(A) − r(AB), we get that

m − r(AB) ≤ n − r(B).
(ii) ⇒ (i): Suppose (A1B1)

(1) ∈ (A1B1){1}, Z2 ∈ B(N (A∗),R(B∗)), Z3 ∈
B(R(A),N (B)) and Z4 ∈ B(N (A∗),N (B)) are given. We will show that there
exists a left-invertible matrix X ∈ S ∩ A{1}. Let Y2 = (A1B1)

(1)A2 and W3 = X ′
3,

where

[
X ′
1

X ′
3

]
: R(A) →

[
R(B∗)
N (B)

]
is an arbitrary right inverse of

[
A1 A2

]
. Using

Theorem 2.7 from [11], we will show that there is some W4 such that

X ′ =
[
B1(A1B1)

(1) B1Z2

W3 W4

]
(2.32)

is left invertible. It is easy to check that the first column of X ′ is left-invertible. Thus
it remains to check the inequality

n(X0) ≤ d(W3) + dim (R(W ∗
3 ) ∩ R((B1(A1B1)

(1))∗ |N ((B1Z2)∗)) (2.33)

where X0 =
[
B1Z2 B1(A1B1)

(1)

0 W3

]
.

Note that

n(X∗
0) = n(W ∗

3 ) + n((B1(A1B1)
(1))∗ |N ((B1Z2)∗))

+ dim (R(W ∗
3 ) ∩ R((B1(A1B1)

(1))∗ |N ((B1Z2)∗)))

and since n(X0) = m − n + n(X∗
0), that (2.33) is equivalent with

m − n + n((B1(A1B1)
(1))∗ |N ((B1Z2)∗)) ≤ 0. (2.34)

As n((B1(A1B1)
(1))∗) ≤ r(B)− r(AB) and r(B)− r(AB)− n +m ≤ 0, we get that

(2.34) holds for any (A1B1)
(1) ∈ (A1B1){1} and any Z2 ∈ B(N (A∗),R(B∗)).

Now by Theorem 2.7 from [11] there is some W4 such that X ′ given by (2.32) is left
invertible. It is easy to see that

X =
[
B1(A1B1)

(1) − B1Y2W3 B1Z2 − B1Y2W4

W3 W4

]

is left invertible as well. �
Let us take a look at the following examples.
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Example 2.3 Wewill show that in the case when (ii) of Theorem 2.6 is not satisfied,
which means that (AB){1} � B{1}A{1}, we can find a general form of the inner
inverses of AB, (AB)(1) for which there does not exist A(1) and B(1) such that

(AB)(1) = B(1)A(1). Let A =
[
1 0
0 0

]
and B =

[
0 0
1 0

]
. Then evidently AB = 0 and

consequently (AB){1} = C
2×2. Since

A{1} =
{[

1 a1
a2 a3

]
: a1, a2, a3 ∈ C

}

and

B{1} =
{[

b1 1
b2 b3

]
: b1, b2, b3 ∈ C

}

we can check that none of the matrices of the form

[
0 0
0 w

]
, where w �= 0, can be

written as a product B(1)A(1) for some A(1) ∈ A{1} and B(1) ∈ B{1}.
Example 2.4 If A ∈ C

m×n is left invertible and B ∈ C
n×p, then by Theorem 2.1 we

have that B{1}A{1} ⊆ (AB){1}. In this case (AB){1} = B{1}A{1} if and only if

r(B) ≤ r(AB) − min{m − n, p − r(B)}.

The last inequality is satisfied if and only if m ≤ n or r(B) = p. Since A ∈ C
m×n

is left invertible, we have n ≤ m, so we can conclude that (AB){1} = B{1}A{1} if
and only if A is invertible (m = n) or B is left invertible.

In spite of the many results obtained by various authors the problem of settling the
reverse order law (2.22) for operators acting on separable Hilbert spaces remained
open until 2015. This was finally completely resolved by Pavlović et al. [12] and this
was using some radically new approaches involving some of the previous research
on completions of operator matrices. These results will be presented in the Chap. 3.

2.2 Reverse Order Laws for {1, 2}-Inverses

In this section, we address all the known results so far results on the the reverse
order laws for {1, 2}- generalized inverses. Shinozaki and Sibuya [7] proved that for
matrices A, B such that the product AB is defined

(AB){1, 2} ⊆ B{1, 2}A{1, 2} (2.35)

always hold. To verify Shinozaki and Sibuya’s result in the case of regular bounded
linear operators on Hilbert spaces we will consider suitable representations of given
regular operators A ∈ B(H ,K ) and B ∈ B(L ,H ) to first prove the lemma

http://dx.doi.org/10.1007/978-981-10-6349-7_3
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given below. More precisely if A ∈ B(H ,K ) and B ∈ B(L ,H ) are arbitrary
regular operators, then using the following decompositions of the Hilbert spacesL ,
H and K ,

L = R(B∗) ⊕ N (B), H = R(B) ⊕ N (B∗), K = R(A) ⊕ N (A∗),

we have that the corresponding decompositions of A and B are given by

A =
[
A1 A2

0 0

]
:
[

R(B)
N (B∗)

]
→

[
R(A)
N (A∗)

]
,

B =
[
B1 0
0 0

]
:
[
R(B∗)
N (B)

]
→

[
R(B)
N (B∗)

]
,

(2.36)

where B1 is an invertible operator and
[
A1 A2

] :
[
R(B∗)
N (B)

]
→ R(A) is a right

invertible operator. In that case AB is given by

AB =
[
A1B1 0
0 0

]
:
[
R(B∗)
N (B)

]
→

[
R(A)
N (A∗)

]
.

Now, using decompositions given above, we have the following result.

Lemma 2.1 Let A ∈ B(H ,K ) and B ∈ B(L ,H ) be regular operators given
by (2.36). Then

(i) an arbitrary {1, 2}-inverse of A is given by:

A(1,2) =
[
X1 X2

X3 X4

]
:
[

R(A)
N (A∗)

]
→

[
R(B)
N (B∗)

]
,

where X1 and X3 satisfy

A1X1 + A2X3 = IR(A),

and X2 and X4 are of the form

X2 = X1A1Z1 + X1A2Z2,

X4 = X3A1Z1 + X3A2Z2,

for some operators Z1 ∈ B(N (A∗),R(B)) and Z2 ∈ B(N (A∗),N (B∗)).
(ii) an arbitrary {1, 2}-inverse of B is given by:

B(1,2) =
[
B−1
1 U
V V B1U

]
:
[

R(B)
N (B∗)

]
→

[
R(B∗)
N (B)

]
,

where U ∈ B(N (B∗),R(B∗)) and V ∈ B(R(B),N (B)).
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(iii) if AB is regular, then an arbitrary {1, 2}-inverse of AB is given by:

(AB)(1,2) =
[
(A1B1)

(1,2) Y2
Y3 Y4

]
:
[

R(A)
N (A∗)

]
→

[
R(B∗)
N (B)

]
,

where (A1B1)
(1,2) ∈ (A1B1){1, 2} and Yi , i = 2, 4 satisfy the following system

of the equations:

Y2 = (A1B1)
(1,2)A1B1Y2,

Y3 = Y3A1B1(A1B1)
(1,2),

Y4 = Y3A1B1Y2.

(2.37)

Proof (i)Without loss of generality, we can suppose that an arbitrary {1, 2}-inverse
of A is given by:

A(1,2) =
[
X1 X2

X3 X4

]
:
[

R(A)
N (A∗)

]
→

[
R(B)
N (B∗)

]
.

From AX A = A and X AX = X , we get that X ∈ A{1, 2} if and only if for Xi ,
i = 1, 4 the following equations

(A1X1 + A2X3)Ai = Ai , i = 1, 2 (2.38)

X j (A1X1 + A2X3) = X j , j = 1, 3 (2.39)

X1(A1X2 + A2X4) = X2, X3(A1X2 + A2X4) = X4, (2.40)

are satisfied. Since S = [
A1 A2

] :
[
R(B∗)
N (B)

]
→ R(A) is a right invertible operator,

there exists S−1
r : R(A) →

[
R(B∗)
N (B)

]
such that

[
A1 A2

]
S−1
r = IR(A). Notice that

(2.38) is equivalent to

[
A1 A2

] [
X1

X3

] [
A1 A2

] = [
A1 A2

]
. (2.41)

Multiplying (2.41) by S−1
r from the right, we get that (2.41) is equivalent with[

A1 A2
] [

X1

X3

]
= IR(A), i.e.,

A1X1 + A2X3 = IR(A). (2.42)

Note, that for X1 and X3 which satisfy (2.42), (2.39) also holds. Condition (2.40) is
equivalent to [

X1

X3

] [
A1 A2

] [
X2

X4

]
=

[
X2

X4

]
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i.e.,

(I − P)

[
X2

X4

]
= 0,

where P =
[
X1

X3

] [
A1 A2

]
. Since P is a projection,

[
X2

X4

]
= P

[
Z1

Z2

]
,

i.e., [
X2

X4

]
=

[
X1A1Z1 + X1A2Z2

X3A1Z1 + X3A2Z2

]
,

where Z1 and Z2 are operators from appropriate spaces.
(ii) Suppose that an arbitrary {1, 2}-inverse of B is given by:

B(1,2) =
[
S U
V W

]
:
[

R(B)
N (B∗)

]
→

[
R(B∗)
N (B)

]
.

From BB(1,2)B = B it follows that B1SB1 = B1 and since B1 is invertible, S = B−1
1 .

From B(1,2)BB(1,2) = B(1,2) we easily getW = V B1U , whereU and V are operators
from appropriate spaces.

(iii) Let an arbitrary {1, 2}-inverse of AB be given by:

(AB)(1,2) =
[
Y1 Y2
Y3 Y4

]
:
[

R(A)
N (A∗)

]
→

[
R(B∗)
N (B)

]
.

From AB(AB)(1,2)AB = AB, we get

A1B1Y1A1B1 = A1B1, (2.43)

and from (AB)(1,2)AB(AB)(1,2) = (AB)(1,2), we get

Y1A1B1Y1 = Y1, (2.44)

Y1A1B1Y2 = Y2, (2.45)

Y3A1B1Y1 = Y3, (2.46)

Y3A1B1Y2 = Y4. (2.47)

Now, by (2.43) and (2.44), we get that Y1 ∈ (A1B1){1, 2}. Substituting Y1 =
(A1B1)

(1,2) in (2.45), (2.46) and (2.47), we get (2.37). �



24 2 Reverse Order Law

Finally, we will give the proof of the result of Shinozaki and Sibuya in the case
of regular bounded linear operators on Hilbert spaces the product of which is also
regular.

Theorem 2.7 Let A ∈ B(H ,K ) and B ∈ B(L ,H ) be regular operators such
that AB is regular. Then

(AB){1, 2} ⊆ B{1, 2} · A{1, 2}.

Proof Take an arbitrary (AB)(1,2) ∈ (AB){1, 2}. We will show that there exist
A(1,2) ∈ A{1, 2} and B(1,2) ∈ B{1, 2} such that (AB)(1,2) = B(1,2)A(1,2). With-
out loss of generality, we can suppose that A and B are given by (2.36). By Lemma
2.1, we have that

(AB)(1,2) =
[
(A1B1)

(1,2) Y2
Y3 Y4

]
:
[

R(A)
N (A∗)

]
→

[
R(B∗)
N (B)

]
,

for (A1B1)
(1,2) ∈ (A1B1){1, 2} and some Yi , i = 2, 4 which satisfy system (2.37).

Since
[
A1 A2

] :
[
R(B∗)
N (B)

]
→ R(A) is a right invertible operator, there exists (not

unique in general)

[
X ′
1

X ′
3

]
: R(A) →

[
R(B∗)
N (B)

]
such that A1X ′

1 + A2X ′
3 = IR(A).

Since B1 is invertible, we have that (A1B1)(A1B1)
(1,2)A1X ′

1 = A1X ′
1. Let X3 = X ′

3
and X1 = B1(A1B1)

(1,2)A1X ′
1. Obviously, A1X1 + A2X3 = IR(A). Now, let

C =
[
X1 X1A1B1Y2
X3 X3A1B1Y2

]
:
[

R(A)
N (A∗)

]
→

[
R(B)
N (B∗)

]
,

D =
[
B−1
1 U

Y3A1 Y3A1B1U

]
:
[

R(B)
N (B∗)

]
→

[
R(B∗)
N (B)

]
,

where U = (A1B1)
(1,2)A2. We will show that C ∈ A{1, 2}, D ∈ B{1, 2} and that

(AB)(1,2) = DC .UsingLemma2.1,we can check thatC ∈ A{1, 2} and D ∈ B{1, 2}.
To prove that (AB)(1,2) = DC , it suffices to show that the following system of the
equations is satisfied:

(A1B1)
(1,2) = B−1

1 X1 +UX3,

Y2 = B−1
1 X1A1B1Y2 +UX3A1B1Y2,

Y3 = Y3A1X1 + Y3A1B1UX3,

Y4 = Y3A1X1A1B1Y2 + Y3A1B1UX3A1B1Y2.

The first equation is satisfied, since X1 = B1(A1B1)
(1,2)(I − A2X3), while the other

three equations are satisfied by virtue of (2.37). �
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The reverse inclusion of (2.35) was considered by De Pierro and M. Wei [8].
Using the product singular value decomposition of matrices they investigated when

B{1, 2}A{1, 2} ⊆ (AB){1, 2} (2.48)

is satisfied and proved the following:

Theorem 2.8 ([8]) Let A ∈ C
m×n and B ∈ C

n×p. The following conditions are
equivalent:

(i) B{1, 2}A{1, 2} ⊆ (AB){1, 2};
(ii) A = 0 or B = 0 or r(B) = n or r(A) = n.

The following two examples are in order.

Example 2.5 In the case when (ii) of Theorem 2.8 is not satisfied, which means
that B{1, 2}A{1, 2} � (AB){1, 2}, we can find particular reflexive inverses of A

and B, A(1,2) and B(1,2) such that B(1,2)A(1,2) ∈ (AB){1, 2}. Let A =
[−1 1

−1 1

]
and

B =
[
1 1
1 1

]
. Then evidently AB = 0 and consequently (AB){1, 2} = {0}. But for

A(1,2) =
[
0 0
1 0

]
and B(1,2) =

[
1 0
0 0

]
, we have that B(1,2)A(1,2) = 0 ∈ (AB){1, 2}.

Example 2.6 If A ∈ C
m×n and B ∈ C

n×p, then B{1, 2} · A{1, 2} ⊆ (AB){1, 2}
implies B{1} · A{1} ⊆ (AB){1} (see Theorems.2.1 and 2.8).

Using a completely different approaches, Cvetković-Ilić and Nikolov [13]
improved the results from [8] and verified Shinozaki and Sibuya’s results in the
case of regular bounded linear operators on Hilbert spaces the product of which is
also regular. Notice that all the results stated in the sequel can be generalized to the
C∗-algebra case.

Theorem 2.9 ([13]) Let A ∈ B(H ,K ) and B ∈ B(L ,H ) be such that A, B
and AB are regular operators. The following conditions are equivalent:

(i) B{1, 2} · A{1, 2} ⊆ (AB){1, 2},
(ii) A = 0 or B = 0 or A ∈ B−1

l (H ,K ) or B ∈ B−1
r (H ,K ).

Proof (i) ⇒ (ii) : If (i) holds, then evidently B†A† ∈ (AB){1, 2}, so

ABB†A†AB = AB (2.49)

and
B†A†ABB†A† = B†A†. (2.50)

Since, for any X ∈ B(K ,H ), A† + (I − A†A)X AA† ∈ A{1, 2}, we get
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ABB†(A† + (I − A†A)X AA†)AB = AB,

which using (2.49) further implies that

ABB†(I − A†A)X AB = 0, (2.51)

for any X ∈ B(K ,H ).
Similarly, for any Y ∈ B(H ,L ), B† + B†BY (I − BB†) ∈ B{1, 2}, so

AB(B† + B†BY (I − BB†))A†AB = AB,

which using (2.49) implies that

ABY (I − BB†)A†AB = 0, (2.52)

for any Y ∈ B(H ,L ).
Since, for any X ∈ B(K ,H ) and Y ∈ B(H ,L ), we have that

AB(B† + B†BY (I − BB†))(A† + (I − A†A)X AA†)AB = AB, (2.53)

using (2.49), (2.51) and (2.52), we get that

ABY (I − BB†)(I − A†A)X AB = 0,

for any X ∈ B(K ,H ) and Y ∈ B(H ,L ). Now,

AB = 0 or (I − BB†)(I − A†A) = 0. (2.54)

Since, for any X ∈ B(K ,H ),

B†(A† + (I − A†A)X AA†)ABB†(A† + (I − A†A)X AA†)

= B†(A† + (I − A†A)X AA†)

using (2.50) we get that

B†A†ABB†(I − A†A)X AA† + B†(I − A†A)X ABB†A†

+ B†(I − A†A)X ABB†(I − A†A)X AA† = B†(I − A†A)X AA†.
(2.55)

Now by (2.54), we get that the first and the third term on the left-hand side of (2.55)
are zero, so

B†(I − A†A)X (ABB†A† − AA†) = 0,

for any X ∈ B(K ,H ). Hence,
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B† = B†A†A or ABB†A† = AA†.

Now, following (2.54) we have two cases:
Case 1. If AB = 0, then if B† = B†A†A it follows that B = 0. If ABB†A† = AA†,
we easily get that A = 0.
Case 2. If (I − BB†)(I − A†A) = 0, then if B† = B†A†A, it follows that A†A = I ,
i.e., A is left invertible. If ABB†A† = AA†, thenmultiplying (I−BB†)(I−A†A) =
0, by A from the left, we get

A = ABB†.

Now, given that A†A and BB† commute, we have that BB† = I , i.e., B is right
invertible.

(ii) ⇒ (i) : If A or B is zero, it is evident that (i) holds. Now, suppose that B
is right invertible and let B(1,2) ∈ B{1, 2} be arbitrary. Evidently, B(1,2) is a right
inverse of B, i.e., BB(1,2) = I . Then, for arbitrary A(1,2) ∈ A{1, 2},

ABB(1,2)A(1,2)AB = AA(1,2)AB = AB

and
B(1,2)A(1,2)ABB(1,2)A(1,2) = B(1,2)A(1,2)AA(1,2) = B(1,2)A(1,2).

If A is a left invertible operator, for any A(1,2) ∈ A{1, 2} we have that A(1,2)A = I .
Then, for arbitrary A(1,2) ∈ A{1, 2} and B(1,2) ∈ B{1, 2},

ABB(1,2)A(1,2)AB = ABB(1,2)B = AB

and
B(1,2)A(1,2)ABB(1,2)A(1,2) = B(1,2)BB(1,2)A(1,2) = B(1,2)A(1,2).

�
It is interesting to note that by the first part of the proof of Theorem2.9, we can
conclude that

B{1, 2} · A{1, 2} ⊆ (AB){1}

if and only if
AB = 0 or (I − BB†)(I − A†A) = 0

i.e.
AB = 0 or N (A) ⊆ R(B),

which is equivalent with B{1} · A{1} ⊆ (AB){1} (see [3, 14]).
The proof that (2.48) is always satisfied in the case of a multiple product of regular
operators is very similar to the one given in [5] (see [Theorem 4.1, [5]]) for the matrix
case. We give it here for completeness’ sake.
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Theorem 2.10 Let Ai ∈ B(Hi+1,Hi ), be such that Ai , i = 1, n and A1A2 · · · A j ,
j = 2, n, are regular operators. Then

(A1A2 · · · An){1, 2} ⊆ An{1, 2} · An−1{1, 2} · · · A1{1, 2}. (2.56)

Proof Suppose that Ai ∈ B(Hi+1,Hi ), i = 1, n and A1A2 · · · A j , j = 2, n, are
regular operators. We will prove that (2.56) holds by induction on n. For n = 2,
the assertion holds by virtue of Theorem 2.7. Now suppose this is true for 2 ≤
k ≤ n. For k = n + 1, let A1A2 · · · Ak = B. Using again Theorem 2.7, we obtain
(BAn+1){1, 2} ⊆ An+1{1, 2}B{1, 2}. From the induction hypothesis,

(A1 · · · An){1, 2} ⊆ An{1, 2} · · · A1{1, 2},

so we get

(A1 · · · An An+1){1, 2} ⊆ An+1{1, 2}(A1 · · · An){1, 2}
⊆ An+1{1, 2}An{1, 2} · · · A1{1, 2}.

�

The reverse inclusion of (2.56) in the case of matrices was considered by M. Wei
[4] who, applying the multiple product singular value decomposition (P-SVD), gave
necessary and sufficient conditions for

An{1, 2} · An−1{1, 2} · · · A1{1, 2} ⊆ (A1A2 · · · An){1, 2}.

Theorem 2.11 ([4]) Suppose that Ai ∈ C
si×si+1 , i = 1, 2, . . . n. Then the following

conditions are equivalent:

(i) An{1, 2} · An−1{1, 2} · · · A1{1, 2} ⊆ (A1A2 · · · An){1, 2};
(ii) One of the following conditions is satisfied:

(a) r(A1 · · ·An) > 0 and for each j ∈ {1, . . . , n − 1}, A j is of full column rank
(b) r(A1 · · ·An) > 0 and for each j ∈ {2, . . . , n}, A j is of full row rank
(c) r(A1 · · ·An) > 0 and there exists an integer q ∈ {2, ..., n − 1} such that

for each j ∈ {1, . . . , q − 1}, A j is of full column rank and for each j ∈
{q, . . . , n}, A j is of full row rank

(d) There exists an integer q ∈ {1, . . . , n}, such that r(Aq) = 0.

The generalization of the previous result for the case of bounded regular operators
on Hilbert spaces is given in [6] as follows:

Theorem 2.12 ([6]) Let Ai ∈ B(Hi+1,Hi ), be such that Ai , i = 1, n and
A1A2 · · · A j , j = 2, n are regular operators. The following conditions are equiva-
lent:

(i) An{1, 2} · An−1{1, 2} · · · A1{1, 2} = (A1A2 · · · An){1, 2},
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(ii) An{1, 2} · An−1{1, 2} · · · A1{1, 2} ⊆ (A1A2 · · · An){1, 2},
(iii) There exists an integer i , 1 ≤ i ≤ n, such that Ai = 0,

or
A1A2 · · · An �= 0 and Ai ∈ B−1

r (Hi+1,Hi ), for i = 2, n,
or
A1A2 · · · An �= 0 and Ai ∈ B−1

l (Hi+1,Hi ), for i = 1, n − 1,
or
A1A2 · · · An �= 0 and there exists an integer k, 2 ≤ k ≤ n − 1, such that Ai ∈
B−1

l (Hi+1,Hi ), for i = 1, k − 1, and Ai ∈ B−1
r (Hi+1,Hi ), for i = k + 1, n.

Proof (i) ⇔ (ii) : Follows from Theorem 2.10.
(ii) ⇒ (iii) : We prove this by induction on n. For n = 2, this follows from

Theorem 2.9. Assume that (ii) ⇒ (iii) holds for n = k − 1; we will prove that the
implication still holds for n = k. Suppose that

Ak{1, 2} · Ak−1{1, 2} · · · A1{1, 2} ⊆ (A1A2 · · · Ak){1, 2}. (2.57)

By virtue of Theorem 2.10, we have

Ak{1, 2} · (A1A2 · · · Ak−1){1, 2} ⊆ (A1A2 · · · Ak){1, 2}. (2.58)

which by Theorem 2.9 implies that at least one of the following cases must hold true:

A1A2 · · · Ak−1 = 0 or Ak = 0 or A1A2 · · · Ak−1 ∈ B−1
l (Hk,H1)

or Ak ∈ B−1
r (Hk+1,Hk).

Now, we will consider all these cases:
Case 1. A1A2 · · · Ak−1 = 0. Then A1A2 · · · Ak−1Ak = 0 which by (ii) implies

Ak{1, 2} · Ak−1{1, 2} · · · A1{1, 2} = {0}. (2.59)

Let A(1,2)
i ∈ Ai {1, 2}, i = 1, k − 1 be arbitrary. Then from (2.59) we have

A†
k A

(1,2)
k−1 · · · A(1,2)

1 = 0. (2.60)

Since for any Z ∈ B(Hk,Hk+1), A
†
k + A†

k Ak Z(IHk − Ak A
†
k) ∈ Ak{1, 2}, we get

(A†
k + A†

k Ak Z(IHk − Ak A
†
k))A

(1,2)
k−1 A

(1,2)
k−2 · · · A(1,2)

1 = 0,

which by (2.60) gives that A†
k Ak Z A(1,2)

k−1 A
(1,2)
k−2 · · · A(1,2)

1 = 0. Now,

Ak = 0 or A(1,2)
k−1 · · · A(1,2)

1 = 0. (2.61)
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If Ak = 0, then (iii) holds. Suppose that Ak �= 0. Then A(1,2)
k−1 A

(1,2)
k−2 · · · A(1,2)

1 = 0 for

arbitrary A(1,2)
i ∈ Ai {1, 2}, i = 1, k − 1, implying

Ak−1{1, 2}Ak−2{1, 2} · · · A1{1, 2} = {0} ⊆ (A1A2 · · · Ak−2Ak−1){1, 2}. (2.62)

By the induction hypothesis, from (2.62) it follows that at least one of the following
conditions is satisfied:

(1) There exists i ∈ {1, 2, . . . , k − 1} such that Ai = 0,
(2) Ai ∈ B−1

l (Hi+1,Hi ), i = 1, k − 2,
(3) Ai ∈ B−1

r (Hi+1,Hi ), i = 2, k − 1,
(4) There exists i ∈ {1, 2, . . . , k − 1} such that A j ∈ B−1

l (H j+1,H j ) for j =
1, i − 1 and A j ∈ B−1

r (H j+1,H j ), j = i + 1, k − 1.

If (1) holds, then (iii) is satisfied. Suppose that (2) is true. Since A1A2 · · · Ak−1 = 0
we get that Ak−1 = 0 so (iii) holds. If (3) holds, then from A1A2 · · · Ak−1 = 0
we get that A1 = 0. Suppose that (4) holds. Multiplying A1A2 · · · Ak−1 = 0 by
A†
i−1A

†
i−2 · · · A†

1 from the left, we get

Ai Ai+1 · · · Ak−1 = 0. (2.63)

Multiplying (2.63) by A†
k−1A

†
k−2 · · · A†

i+1 from the right we get Ai = 0. Hence, (iii)
is satisfied.
Case 2. If Ak = 0, then (iii) obviously holds.
Case 3. Suppose that A1A2 · · · Ak−1 ∈ B−1

l (Hk,H1). Then Ak−1 ∈ B−1
l (Hk,

Hk−1). From Theorem 2.9, we have

(Ak−1Ak){1, 2} ⊆ Ak{1, 2}Ak−1{1, 2},

so it follows that

(Ak−1Ak){1, 2} · Ak−2{1, 2} · · · A1{1, 2}
⊆ Ak{1, 2} · Ak−1{1, 2} · · · A1{1, 2} ⊆ (A1A2 · · · Ak){1, 2}. (2.64)

By the induction hypothesis, from (2.64) it follows that at least one of the following
conditions is true:

(1′) There exists i ∈ {1, 2, . . . , k − 2} such that Ai = 0 or Ak−1Ak = 0,
(2′) Ai ∈ B−1

l (Hi+1,Hi ), i = 1, k − 2,
(3′) Ai ∈ B−1

r (Hi+1,Hi ), i = 2, k − 2, and Ak−1Ak ∈ B−1
r (Hk+1,Hk−1),

(4′) There exists i ∈ {1, 2, . . . , k − 1} such that A j ∈ B−1
l (H j+1,H j ) for

j = 1, i − 1 and A j ∈ B−1
r (H j+1,H j ), j = i + 1, k − 2 and Ak−1Ak ∈

B−1
r (Hk+1,Hk−1).
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As before, we can check that in all these cases, (iii) is satisfied.
Case 4. Suppose that Ak ∈ B−1

r (Hk+1,Hk). Then Ak A
(1,2)
k = IHk for arbitrary

A(1,2)
k ∈ Ak{1, 2}. Let A(1,2)

i ∈ Ai {1, 2}, i = 1, k be arbitrary. Then

A1A2 · · · Ak A
(1,2)
k A(1,2)

k−1 · · · A(1,2)
1 A1A2 · · · Ak = A1A2 · · · Ak (2.65)

and

A(1,2)
k A(1,2)

k−1 · · · A(1,2)
1 A1A2 · · · Ak A

(1,2)
k A(1,2)

k−1 · · · A(1,2)
1

= A(1,2)
k A(1,2)

k−1 · · · A(1,2)
1 . (2.66)

Multiplying (2.65) by A(1,2)
k from the right and (2.66) by Ak from the left, we get

A1A2 · · · Ak−1A
(1,2)
k−1 A

(1,2)
k−2 · · · A(1,2)

1 A1A2 · · · Ak−1 = A1A2 · · · Ak−1 (2.67)

and

A(1,2)
k−1 A

(1,2)
k−2 · · · A(1,2)

1 A1A2 · · · Ak−1A
(1,2)
k−1 A

(1,2)
k−2 · · · A(1,2)

1

= A(1,2)
k−1 A

(1,2)
k−2 · · · A(1,2)

1 . (2.68)

Evidently,

Ak−1{1, 2} · Ak−2{1, 2} · · · A1{1, 2} ⊆ (A1A2 · · · Ak−1){1, 2}. (2.69)

By the induction hypothesis, from (2.69) it follows that at least one of the following
conditions is true:

(1′′) There exists i ∈ {1, 2, . . . , k − 1} such that Ai = 0,
(2′′) Ai ∈ B−1

l (Hi+1,Hi ), i = 1, k − 2,
(3′′) Ai ∈ B−1

r (Hi+1,Hi ), i = 2, k − 1,
(4′′) There exists i ∈ {1, 2, . . . , k − 1} such that A j ∈ B−1

l (H j+1,H j ) for j =
1, i − 1 and A j ∈ B−1

r (H j+1,H j ), j = i + 1, k − 1.

It is easy to check that in all these four cases (iii) is satisfied.
(iii) ⇒ (ii) : If A1A2 · · · An = 0, then it is evident that (ii) holds. Suppose that
A1A2 · · · An �= 0 and let A(1,2)

i ∈ Ai {1, 2}, i = 1, n be arbitrary.
If Ai ∈ B−1

r (Hi+1,Hi ) for i = 2, n, then Ai A
(1,2)
i = IHi for i = 2, n. Now,
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A1A2 · · · An−1An A
(1,2)
n A(1,2)

n−1 · · · A(1,2)
1

= A1A2 · · · An−2An−1A
(1,2)
n−1 A

(1,2)
n−2 · · · A(1,2)

1

... (2.70)

= A1A2A
(1,2)
2 A(1,2)

1 = A1A
(1,2)
1 .

From (2.70), it follows

A1A2 · · · An A
(1,2)
n A(1,2)

n−1 · · · A(1,2)
1 A1A2 · · · An = A1A2 · · · An

and

A(1,2)
n A(1,2)

n−1 · · · A(1,2)
1 A1A2 · · · An A

(1,2)
n A(1,2)

n−1 = A(1,2)
n A(1,2)

n−1 · · · A(1,2)
1 ,

so A(1,2)
n A(1,2)

n−1 · · · A(1,2)
1 ∈ (A1A2 · · · An){1, 2}. Hence (ii) holds.

Analogously, if Ai ∈ B−1
l (Hi+1,Hi ) for i = 1, n − 1 or if there exists k ∈

{2, ..., n − 1} such that Ai ∈ B−1
l (Hi+1,Hi ) for i = 1, k − 1, and Ai ∈

B−1
r (Hi+1,Hi ) for i = k + 1, n, we can prove that A(1,2)

n A(1,2)
n−1 · · · A(1,2)

1 ∈
(A1A2 · · · An){1, 2}. Thus (ii) holds. �

Since the proof of the previous result is algebraic, it can easily be generalized to C∗-
algebras and rings. It is thus safe to say that the reverse order law for {1, 2}-inverses
has been completely solved.

2.3 Reverse Order Laws for {1, 3} and {1, 4}-Inverses

The reverse order laws for {1, 3} and {1, 4}-inverses were for the first time consid-
ered by M. Wei and Guo [15] in the matrix case. They presented some equivalent
conditions for

B{1, 3}A{1, 3} ⊆ (AB){1, 3} (2.71)

and

(AB){1, 3} ⊆ B{1, 3}A{1, 3} (2.72)

obtained by applying the product singular value decomposition (P-SVD) of matrices.
Namely, in [15] they proved that for A ∈ C

m×n and B ∈ C
n×p one has B{1, 3} ·

A{1, 3} ⊆ (AB){1, 3} if and only if

Z12 = 0 and Z14 = 0

and that that (AB){1, 3} ⊆ B{1, 3} · A{1, 3} holds if and only if
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dim(R(Z14) = dim(R(Z12, Z14)), and

0 ≤ min {p − r2,m − r1} ≤ n − r1 − r22 − r(Z14),

where the submatrices Z12, Z14 and the constants r1, r2, r22 are described in the P-SVD
of matrices A and B given in Theorem 1.1 and Corollary 1.1 of [15].

Evidently a disadvantage of the results presented in [15] lies in the fact that the
necessary and sufficient conditions for (2.71) and (2.72) to be satisfied contain infor-
mation about the subblocks produced by P-SVD. In other words, they are dependent
on P-SVD. In order to overcome this shortcoming, two methods are employed. One
of the methods use certain operator matrix representations (see [16]) and the other
one is based on some maximal and minimal ranks of matrix expressions (see [17]).
Using these two different methods, in both of the papers [16, 17] it is proved that

B{1, 3}A{1, 3} ⊆ (AB){1, 3} ⇔ R(A∗AB) ⊆ R(B)

but in the first one in the case of regular operators and in the second one in the setting
of matrices. These results are more elegant because they require no information
on the P-SVD. Note that in the matrix case R(A∗AB) ⊆ R(B) is equivalent to
r(B, A∗AB) = r(B).

All these results were generalized in the paper of Cvetković-Ilić and Harte [18]
where purely algebraic necessary and sufficient conditions for (2.71) in C∗-algebras
are offered, extending rank conditions for matrices and range conditions for Hilbert
space operators. To present the result form [18] and its proof, first we will introduce
some notations and give some preliminaries.

LetA be a complex unital C*-algebra. Then we have the following characteriza-
tion of a{1, 3}, where a ∈ A is regular:

Lemma 2.2 Let a ∈ A be regular and b ∈ A . Then b ∈ a{1, 3} if and only if
a†ab = a†.

Lemma 2.2 can be expressed by saying

a{1, 3} = {a† + (1 − a†a)y : y ∈ A }. (2.73)

Theorem 2.13 ([18]) If a, b ∈ A are such that a, b, ab and a(1−bb†) are regular,
then the following conditions are equivalent:

(1′) bb†a∗ab = a∗ab,
(2′) b{1, 3} · a{1, 3} ⊆ (ab){1, 3},
(3′) b†a† ∈ (ab){1, 3},
(4′) b†a† ∈ (ab){1, 2, 3}.

Proof With p = bb†, q = b†b and r = aa†, we have that b =
[
b 0
0 0

]
p,q

and a =
[
a1 a2
0 0

]
r,p

. Using Lemma 2.2 and (2.73), we see that arbitrary b(1,3) ∈ b{1, 3} can be

http://dx.doi.org/10.1007/978-981-10-6349-7_1
http://dx.doi.org/10.1007/978-981-10-6349-7_1
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represented asb(1,3) =
[
b† 0
u v

]
q,p

, for someu ∈ (1−q)A p and v ∈ (1−q)A (1−p),

as well as that a† = a∗(aa∗)† =
[
a∗
1d

† 0
a∗
2d

† 0

]
p,r

, where d = a1a∗
1 + a2a∗

2 . Remark

that d ∈ rA r is invertible in that subalgebra, (d)−1
rA r = d† and dd† = d†d = r .

Also, again by (2.73), any a(1,3) has the form a(1,3) = a† + (1 − a†a)x , for some

x =
[
x1 x2
x3 x4

]
p,r

i.e., a(1,3) =
[
z1 z2
z3 z4

]
p,r

, where

z1 = a∗
1d

† + (1 − a∗
1d

†a1)x1 − a∗
1d

†a2x3,

z2 = (1 − a∗
1d

†a1)x2 − a∗
1d

†a2x4,

z3 = a∗
2d

† − a∗
2d

†a1x1 + (1 − a∗
2d

†a2)x3,

z4 = −a∗
2d

†a1x2 + (1 − a∗
2d

†a2)x4.

With these preliminaries, we turn to the four conditions of the statement; we will
show (1′) ⇒ (2′) ⇒ (3′) ⇒ (1′) and then (1′) ⇒ (4′) ⇒ (3′).

(1′) ⇒ (2′): Suppose that bb†a∗ab = a∗ab which is equivalent to a∗
2a1 = 0, i.e.,

a∗
1a2 = 0. For arbitrary a(1,3) and b(1,3) we have that

abb(1,3)a(1,3)ab =
[
a1z1a1b 0

0 0

]
r,q

.

Let s = a1a
†
1 . Since d ∈ sA s + (1 − s)A (1 − s), we have that d† ∈ sA s + (1 −

s)A (1 − s). Now, a∗
1d

†a2 ∈ A s · (sA s + (1 − s)A (1 − s)) · (1 − s)A = {0}.
Hence, a∗

1d
†a2 = 0, i.e., a∗

2d
†a1 = 0.

Since,

a1z1a1 = a1a
∗
1d

†a1 + a1(1 − a∗
1d

†a1)x1a1

= (d − a2a
∗
2)d

†a1 + (a1 − (d − a2a
∗
2)d

†a1)x1a1
= a1,

it follows that abb(1,3)a(1,3)ab = ab. To prove that abb(1,3)a(1,3) is Hermitian it is
sufficient to prove that a1z1 is Hermitian and a1z2 = 0. By computation, we get that
a1z1 = a1a∗

1d
† = a1a∗

1(a1a
∗
1)

† which is Hermitian. Also,

a1z2 = (a1 − a1a
∗
1d

†a1)x2 − a1a
∗
1d

†a2x4

= (a1 − (d − a2a
∗
2)d

†a1)x2

= a2a
∗
2d

†a1x2
= 0.
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(2′) ⇒ (3′): This is evident.
(3′) ⇒ (1′): Fromabb†a†ab = ab it follows thata1a∗

1d
†a1 = a1, i.e.,a2a∗

2d
†a1 =

0. Similarly, from (abb†a†)∗ = abb†a†, we get that a1a∗
1d

† is Hermitian. Now,
d†a1a∗

1a1 = a1, i.e., a2a∗
2a1 = 0. Multiplying the last equality by a†2 from the left

side, we get a∗
2a1 = 0 which is equivalent to the statement (1′).

(4′) ⇒ (3′): This is obvious.
(1′) ⇒ (4′): We need to prove that b†a†abb†a† = b†a† which is equivalent to

b†a∗
1d

†a1a∗
1d

† = b†a∗
1d

†. The last equality follows from the fact that d†a1a∗
1 = s. �

Example 2.7 Let b ∈ A be right invertible. Then for any a ∈ A such that a, ab are
regular, we have b{1, 3} · a{1, 3} ⊆ (ab){1, 3}.
Example 2.8 Let p, q ∈ A be orthogonal projections. Then q{1, 3} · p{1, 3} ⊆
(pq){1, 3} if and only if qpq = pq, which is equivalent with the fact that p and q
commute, which is in turn equivalent with the fact that pg is an orthogonal projection.

A similar result in the case K = {1, 4} follows from Theorem 2.13 by reversal of
products:

Theorem 2.14 If a, b ∈ A are such that a, b, ba and (1 − a†a)b are regular, then
the following conditions are equivalent:

(1′′) abb∗a†a = abb∗,
(2′′) b{1, 4} · a{1, 4} ⊆ (ab){1, 4},
(3′′) b†a† ∈ (ab){1, 4},
(4′′) b†a† ∈ (ab){1, 2, 4}.
Example 2.9 Let a ∈ A be left invertible. Then for any b ∈ A such that b and ba
are regular, we have b{1, 4} · a{1, 4} ⊆ (ab){1, 4}.
Example 2.10 Let p, q ∈ A be orthogonal projections such that pq, (1 − p)q and
p(1 − q) are regular. Then q{1, 3} · p{1, 3} ⊆ (pq){1, 3} if and only if q{1, 4} ·
p{1, 4} ⊆ (pq){1, 4} if and only if pq is an orthogonal projection.

The inclusion (AB){1, 3} ⊆ B{1, 3}A{1, 3} was considered by Liu and Yang [19]
in the matrix case.

Theorem 2.15 ([19])Let A ∈ C
m×n, B ∈ C

n×k . Then (AB){1, 3} ⊆ B{1, 3}A{1, 3}
if and only if

r(A∗AB B)+ r(A) = r(AB)+min{r(A∗ B),max{n + r(A)−m, n + r(B)− k}}.

For (2.72), some equivalent conditions with the one given in [15, 19] can be found
in [20]:

Theorem 2.16 ([20]) Let A ∈ C
n×m and B ∈ C

m×k . Then the following conditions
are equivalent:
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(i) (AB){1, 3} ⊆ B{1, 3} · A{1, 3},
(ii) (I − SS†)((AB)† − B†A†) = 0 and r(C) ≥ min{n − r(A), k − r(B)},
where S = B†(I − A†A) and C = I − A†A − S†S.

Notice that C = PN (A)∩N (B∗), so r(C) = dim(N (A) ∩ N (B∗)).

Example 2.11 Let A ∈ C
n×m be left invertible and B ∈ C

m×k . Then (AB){1, 3} ⊆
B{1, 3} · A{1, 3} if and only if (AB)† = B†A† and either A is invertible or B is
left-invertible.

Corollary 2.1 Let A ∈ C
n×m and B ∈ C

m×k . Then the following conditions are
equivalent:

(i∗) (AB){1, 3} ⊆ B{1, 3} · A{1, 3},
(ii∗) (I − SS†)((AB)† − B†A†) = 0, and at least one of the two conditions below
holds:

(a) r(C) ≥ k − r(B), k − r(B) < n − r(A),
(b) r(C) ≥ n − r(A), k − r(B) ≥ n − r(A),

where S = B†(I − A†A) and C = I − A†A − S†S.

Example 2.12 Let A ∈ C
n×m and B ∈ C

m×k . If m < n and m < k then

(AB){1, 3} � B{1, 3} · A{1, 3}.

Open question: As we can see, in contrast to the case of inclusion (2.71) of which
Theorem 2.13 provides a purely algebraic characterization, none of the results we
have presented do so for the inclusion (2.72). To our knowledge no such results can
be found in literature so far, which leaves the formulated problem still unsolved.

The reverse order law problem for {1, 3} and {1, 4}-inverses, in the matrix setting,
was considered by M. Wei [4]. He obtained necessary and sufficient conditions for
the following inclusions to hold:

An{1, 3} · An−1{1, 3} · · · A1{1, 3} ⊆ (A1A2 · · · An){1, 3}

and
An{1, 4} · An−1{1, 4} · · · A1{1, 4} ⊆ (A1A2 · · · An){1, 4}

by applying the multiple product singular value decomposition (P-SVD).
Using the next lemma, his results were generalized in [21] in the case of regular
bounded linear operators on Hilbert spaces and new simple conditions which involve
only ranges of operators were presented.

Lemma 2.3 Let A ∈ B(H ,K ) be regular. Then

X ∈ A{1, 3} ⇔ A∗AX = A∗.
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Theorem 2.17 Let Ai ∈ B(Hi+1,Hi ) be regular operators such that A1A2 · · · An

is regular. The following are equivalent:

(i) An{1, 3} · An−1{1, 3} · · · A1{1, 3} ⊆ (A1A2 · · · An){1, 3},
(ii) R(A∗

k A
∗
k−1 · · · A∗

1A1A2 · · · An) ⊆ R(Ak+1), for k = 1, n − 1.

Proof (i) ⇒ (ii) : If A1A2 · · · An = 0, then

R(A∗
k A

∗
k−1 · · · A∗

1A1A2 · · · An) = {0} ⊆ R(Ak+1),

for k = 1, n − 1, so (ii) holds.
Assume now that A1A2 · · · An �= 0. Let A(1,3)

i ∈ Ai {1, 3}, i = 1, n be arbitrary. By
Lemma 2.3 it follows that

(A1A2 · · · An)
∗A1A2 · · · An A

(1,3)
n A(1,3)

n−1 · · · A(1,3)
1 = (A1A2 · · · An)

∗. (2.74)

Let i ∈ {1, 2, . . . , n − 1} be arbitrary. Since, for arbitrary X ∈ B(Hi ,Hi+1), we
have that A(1,3)

i + (IHi+1 − A(1,3)
i Ai )X ∈ Ai {1, 3}, by Lemma 2.3 we have

(A1A2 · · · An)
∗A1A2 · · · An ·

A(1,3)
n · · · A(1,3)

i+1 (A
(1,3)
i + (IHi+1 − A(1,3)

i Ai )X)A
(1,3)
i−1 · · · A(1,3)

1 (2.75)

= (A1A2 · · · An)
∗.

Substracting (2.74) from (2.75), we get that

(A1A2 · · · An)
∗A1A2 · · · An ·

A(1,3)
n · · · A(1,3)

i+1 (IHi+1 − A(1,3)
i Ai )X A(1,3)

i−1 · · · A(1,3)
1 = 0. (2.76)

From (2.76) it follows that
A(1,3)
i−1 · · · A(1,3)

1 = 0 (2.77)

or

(A1A2 · · · An)
∗A1A2 · · · An A

(1,3)
n · · · A(1,3)

i+1 (IHi+1 − A(1,3)
i Ai ) = 0. (2.78)

If (2.77) holds, then from (2.74) it follows that A1A2 · · · An = 0, which is a contra-
diction, so (2.78) must hold for arbitrary i ∈ {1, 2, . . . , n − 1}.

Condition (ii) is equivalent to

(A1A2 · · · An)
∗A1A2 · · · An−k An−k+1A

(1,3)
n−k+1

= (A1A2 · · · An)
∗A1A2 · · · An−k, k = 1, n − 1.

(2.79)

Now, we will prove (2.79) by induction on k.
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From (2.78) and (2.74) it follows that

(A1A2 · · · An)
∗A1A2 · · · An−1An A

(1,3)
n

= (A1A2 · · · An)
∗A1A2 · · · · · · An A

(1,3)
n A(1,3)

n−1 An−1

= (A1A2 · · · An)
∗A1A2 · · · · · · An A

(1,3)
n A(1,3)

n−1 A
(1,3)
n−2 An−2An−1

...

= (A1A2 · · · An)
∗A1A2 · · · · · · An A

(1,3)
n A(1,3)

n−1 · · · A(1,3)
1 A1A2 · · · An−2An−1

= (A1A2 · · · An)
∗A1A2 · · · An−2An−1,

so (2.79) holds for k = 1.
Assume now that (2.79) holds for k < l ≤ n, i.e.,

(A1A2 · · · An)
∗A1A2 · · · An−k An−k+1A

(1,3)
n−k+1

= (A1A2 · · · An)
∗A1A2 · · · An−k, k = 1, 2, . . . , l − 1

(2.80)

and prove that (2.79) is true for k = l. Using (2.80), we have

(A1A2 · · · An)
∗A1A2 · · · An−l An−l+1A

(1,3)
n−l+1

= (A1A2 · · · An)
∗A1A2 · · · · · · An A

(1,3)
n A(1,3)

n−1 · · · A(1,3)
n−l+1.

(2.81)

Now, using (2.81) and (2.74), we get

(A1A2 · · · An)
∗A1A2 · · · An−l An−l+1A

(1,3)
n−l+1

= (A1A2 · · · An)
∗A1A2 · · · An−l ,

so (2.79) holds for k = l.
(ii) ⇒ (i) : Let A(1,3)

i ∈ Ai {1, 3}, i = 1, n be arbitrary. Condition (ii) is equivalent
to

(A1A2 · · · An)
∗A1A2 · · · An−k An−k+1A

(1,3)
n−k+1

= (A1A2 · · · An)
∗A1A2 · · · An−k, k = 1, 2, . . . , n − 1.

(2.82)

Now, from (2.82) it follows
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(A1A2 · · · An)
∗A1A2 · · · An−1An A

(1,3)
n A(1,3)

n−1 · · · A(1,3)
1

= (A1A2 · · · An)
∗A1A2 · · · An−2An−1A

(1,3)
n−1 A

(1,3)
n−2 · · · A(1,3)

1

= (A1A2 · · · An)
∗A1A2 · · · An−2A

(1,3)
n−2 · · · A(1,3)

1

...

= (A1A2 · · · An)
∗A1A

(1,3)
1

= (A1A2 · · · An)
∗.

Hence by Lemma 2.3 it follows that

A(1,3)
n A(1,3)

n−1 · · · A(1,3)
1 ∈ (A1A2 · · · An){1, 3}.

�
The next result follows from Theorem 2.17 by taking adjoints:

Theorem 2.18 Let Ai ∈ B(Hi+1,Hi ) be regular operators such that A1A2 · · · An

is regular. The following are equivalent:

(i) An{1, 4} · An−1{1, 4} · · · A1{1, 4} ⊆ (A1A2 · · · An){1, 4},
(ii) R(Ak+1Ak+2 · · · An A∗

n A
∗
n−1 · · · A∗

1) ⊆ R(A∗
k) for k = 1, n − 1.

2.4 Reverse Order Laws for {1, 2, 3} and {1, 2, 4}-Inverses

The reverse order law for {1, 2, 3}-inverses for the matrix case was considered by
Xiong and Zheng [22]. They presented necessary and sufficient conditions under
which

B{1, 2, 3}A{1, 2, 3} ⊆ (AB){1, 2, 3} (2.83)

is satisfied. The method of the proof of their result, which will be stated below,
involved expressions for maximal and minimal ranks of the generalized Schur com-
plement.

Theorem 2.19 ([22]) Let A ∈ C
m×n and B ∈ C

n×k . Then the following statements
are equivalent:

(i) B{1, 2, 3}A{1, 2, 3} ⊆ (AB){1, 2, 3};
(ii) r(B, A∗AB) = r(B) and r(AB) = min {r(A), r(B)} = r(A)+ r(B)− r

(
A
B∗

)
.

This result was generalized to the C∗-algebra case by Cvetković-Ilić and Harte [18]
using the following characterization of the set a{1, 2, 3}:
Lemma 2.4 Let a ∈ A be regular and b ∈ A . Then b ∈ a{1, 2, 3} if and only if
a∗ab = a∗ and baa† = b.
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Theorem 2.20 ([18] If a, b ∈ A are such that a, b, ab and a − abb† are regular,
then the following conditions are equivalent:

(i) b{1, 2, 3}a{1, 2, 3} ⊆ (ab){1, 2, 3},
(ii) bb†a∗ab = a∗ab and (bb† − (abb†)†abb†)A (aa† − (ab)(ab)†) = {0}.

Proof Let p = bb†, q = b†b and r = aa†. Then b =
[
b 0
0 0

]
p,q

and a =
[
a1 a2
0 0

]
r,p

.

We have that b{1, 2, 3} =
{[

b† 0
u 0

]
q,p

: u ∈ (1 − q)A p

}
and a† = a∗(aa∗)† =

[
a∗
1d

† 0
a∗
2d

† 0

]
p,r

, where d = a1a∗
1 +a2a∗

2 . Using Lemma 2.4, a{1, 2, 3} =
{[

z1 0
z3 0

]
p,r

:
a∗
1a1z1 + a∗

1a2z3 = a∗
1 , a

∗
2a1z1 + a∗

2a2z3 = a∗
2 , z1 ∈ pA r, z3 ∈ (1 − p)A r}.

Hence x ∈ b{1, 2, 3} · a{1, 2, 3} if and only if x =
[
b†z1 0
uz1 0

]
q,r

for some u ∈
(1 − q)A p and some z1 ∈ pA r such that for some z3 ∈ (1 − p)A r the following
hold:

a∗
1a1z1 + a∗

1a2z3 = a∗
1 , a∗

2a1z1 + a∗
2a2z3 = a∗

2 . (2.84)

By Lemma 2.4, b{1, 2, 3}a{1, 2, 3} ⊆ (ab){1, 2, 3} if and only if

(ab)∗(ab)b(1,2,3) · a(1,2,3) = (ab)∗,
b(1,2,3) · a(1,2,3)(ab)(ab)† = b(1,2,3) · a(1,2,3) (2.85)

hold for any a(1,2,3) and b(1,2,3).
Now, using the matrix forms introduced above, we find that (2.85) is equivalent to
the following equalities:

(ab)∗(ab)b†z1 = (ab)∗,

z1(ab)(ab)
† = z1,

(2.86)

for any z1 ∈ pA r which satisfies (2.84).
(ii) ⇒ (i) : Suppose that (ii) holds. Since bb†a∗ab = a∗ab, is equivalent to

a∗
2a1 = 0, i.e., a∗

1a2 = 0, we have that (2.84) is equivalent to

a∗
1a1z1 = a∗

1 , a∗
2a2z3 = a∗

2 .

Now, to prove that b{1, 2, 3}a{1, 2, 3} ⊆ (ab){1, 2, 3} it is sufficient to prove that
(2.86) holds for every z1 ∈ pA r which satisfies the equationa1z1 = a1a

†
1 .Denote the

set of all such z1 by Z . Note that z1 = bb†zaa† for some z ∈ A which is a solution
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of the equation abb†zaa† = abb†(abb†)†. So, Z = {(abb†)†aa† + bb†yaa† −
(abb†)†abb†yaa† : y ∈ A }.
The first equality from (2.86) is satisfied because for every z1 ∈ Z :

(ab)∗(ab)b†z1 = (a1b)
∗a1bb†z1 = b∗a∗

1a1z1 = b∗a∗
1 = (a1b)

∗ = (ab)∗.

Now, the second equality from (2.86) is equivalent to

(abb†)†aa† + bb†yaa† − (abb†)†abb†yaa† = (abb†)†(ab)(ab)†

+ bb†y(ab)(ab)† − (abb†)†abb†y(ab)(ab)†.
(2.87)

Since, (ab)(ab)† = abb†(abb†)†, we get that (abb†)†(ab)(ab)† = (abb†)† =
(abb†)†aa†, so (2.87) is equivalent to

(
bb† − (abb†)†(abb†)

)
y
(
aa† − (ab)(ab)†

)
= 0

which holds since (bb† − (abb†)†abb†)A (aa† − (ab)(ab)†) = {0}.
(i) ⇒ (ii) : If (i) holds, then b†a† ∈ (ab){1, 2, 3}. Now, from abb†a†ab = ab,

it follows that a1a∗
1d

†a1 = a1, i.e., a2a∗
2d

†a1 = 0. Similarly, from (abb†a†)∗ =
abb†a†, we get that a1a∗

1d
† is Hermitian. Now, d†a1a∗

1a1 = a1, i.e., a2a∗
2a1 = 0.

Multiplying the last equality by a†2 from the left side, we get a∗
2a1 = 0 which is

equivalent tobb†a∗ab = a∗ab. Now, (2.86) holds for every z1 ∈ pA r which satisfies

the equation a1z1 = a1a
†
1 . Hence,

(
bb† − (abb†)†(abb†)

)
y
(
aa† − (ab)(ab)†

)
= 0,

for every y ∈ A , i.e., (bb† − (abb†)†abb†)A (aa† − (ab)(ab)†) = {0}. �

Note that if the algebra A is prime, in the sense that

aA b = {0} =⇒ 0 ∈ {a, b} ,

then the second half of condition (ii) of Theorem 2.20 is equivalent to

bb† − (abb†)†abb† = 0 or aa† − (ab)(ab)† = 0.

The C*-algebra A = B(H ) of operators on Hilbert space is prime, in particular
(Lemma 3 [23]) the matrix algebra. We thus have the following results.

Corollary 2.2 Let A ∈ C
m×n and B ∈ C

n×k . Then the following statements are
equivalent:

(i) B{1, 2, 3}A{1, 2, 3} ⊆ (AB){1, 2, 3},
(ii) BB†A∗AB = A∗AB and

(
(ABB†)†ABB† = BB† or (AB)(AB)† = AA†

)
.

Example 2.13 We will show that in the case when B{1, 2, 3}A{1, 2, 3} �

(AB){1, 2, 3} we can find particular A(1,2,3) and B(1,2,3) such that B(1,2,3)A(1,2,3) ∈
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(AB){1, 2, 3}: Let A =
[
1 0
0 0

]
and B =

[
0 0
1 0

]
. Then evidently AB = 0, which

implies (AB){1, 2, 3} = {0} and by Corollary 2.2 that B{1, 2, 3}A{1, 2, 3} �

(AB){1, 2, 3}. But for A(1,2,3) =
[
1 0
0 0

]
and B(1,2,3) =

[
0 1
0 d

]
, where d is any

complex number, we have that B(1,2,3) A(1,2,3) = 0 ∈ (AB){1, 2, 3}.
Example 2.14 Let b ∈ A be right invertible and a ∈ A be regular such that ab
is regular. Then b{1, 2, 3} · a{1, 2, 3} ⊆ (ab){1, 2, 3} if and only if either a is left
invertible or aa† = (ab)(ab)†.

Also, in [24] using some block-operator matrix techniques, the authors presented
some different conditions than the one presented in Corollary 2.2 for (2.83) to hold
in the case of linear bounded operators on Hilbert spaces:

Theorem 2.21 ([24]) Let A ∈ B(H ,K ) and B ∈ B(L ,H ) be such that A, B,
AB are regular operators and AB �= 0. The following conditions are equivalent:

(i) B{1, 2, 3}A{1, 2, 3} ⊆ (AB){1, 2, 3};
(ii) R(B) = R(A∗AB) ⊕⊥ [R(B) ∩ N (A)],R(AB) = R(A).

In the matrix case, in [25], it is shown that B{1, 2, 3} · A{1, 2, 3} ⊆ (AB){1, 2, 3}
implies B{1, 2, 3} · A{1, 2, 3} = (AB){1, 2, 3}. Here we will present a completely
different proof which can easily be adapted to more general cases.

Theorem 2.22 Let A ∈ C
n×m and B ∈ C

m×k . The following conditions are equiv-
alent:

(i) B{1, 2, 3} · A{1, 2, 3} ⊆ (AB){1, 2, 3},
(ii) BB†A∗AB = A∗AB and

(
(ABB†)†ABB† = BB† or (AB)(AB)† = AA†

)
,

(iii) B{1, 2, 3} · A{1, 2, 3} = (AB){1, 2, 3}.
Proof (i) ⇔ (ii): Follows from Corollary 2.2.

(i) ⇒ (iii): Let P = BB†, Q = B†B and R = AA†. We have that A =
A1 + A2, where A1 = AP and A2 = A(I − P). To prove (iii), take arbitrary
X ∈ (AB){1, 2, 3}. We will show that there exist Y ∈ B{1, 2, 3} and Z ∈ A{1, 2, 3}
such that X = Y Z . Since X ∈ (AB){1, 2, 3}, it is of the form X = QX1R + (I −
Q)X3R, for some X1 ∈ C

k×n and X3 ∈ C
k×n such that QX1R ∈ (A1B){1, 2, 3} and

(I − Q)X3A1BX1R = (I − Q)X3R.
Let Z = BX1R + A†

2 and Y = B† + (I − Q)X3A1. We have B{1, 2, 3} = {
B† +

(I − Q)U P : U ∈ C
k×m

}
, so Y ∈ B{1, 2, 3}. To prove that Z ∈ A{1, 2, 3}, we

can check that the first three Penrose equations are satisfied using that A∗
2A1 = 0,

which follows from the condition BB†A∗AB = A∗AB. Since X = Y Z , it follows
that B{1, 2, 3} · A{1, 2, 3} = (AB){1, 2, 3}.

(iii) ⇒ (i): This is evident. �
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The opposite reverse order law

(AB){1, 2, 3} ⊆ B{1, 2, 3} · A{1, 2, 3} (2.88)

on the set of matrices is considered in [25] where purely algebraic necessary and
sufficient conditions for (2.88) to hold are offered.

Theorem 2.23 ([25]) Let A ∈ C
n×m and B ∈ C

m×k . The following conditions are
equivalent:

(i) (AB){1, 2, 3} ⊆ B{1, 2, 3} · A{1, 2, 3},
(ii) (I − B†(B†(I − A†A))†)((AB)† − B†A†) = 0

It is very important to remark that the results from Theorems 2.23 and 2.22 can
be generalized to the setting of bounded linear operators on Hilbert spaces and to
the C∗-algebra setting by imposing the additional condition of regularity of suitable
elements.

Example 2.15 We will show that (AB){1, 2, 3} ⊆ B{1, 2, 3}A{1, 2, 3} doesn’t
imply that B{1, 2, 3}A{1, 2, 3} ⊆ (AB){1, 2, 3}, although the reverse implication

is always true. Let A =
[
1 0
0 0

]
and B =

[
0 0
1 0

]
. Then evidently A† =

[
1 0
0 0

]
and

B† =
[
0 1
0 0

]
. So, we can check that (AB)† = B†A†, which implies by Theorem

2.23 that (AB){1, 2, 3} ⊆ B{1, 2, 3} · A{1, 2, 3}. On the other hand, neither of the
conditions (ABB†)†ABB† = BB† and (AB)(AB)† = AA† is satisfied, so from
Theorem 2.22 it follows that B{1, 2, 3}A{1, 2, 3} � (AB){1, 2, 3}

By taking adjoints,weobtain analogous results for {1, 2, 4}−generalized inverses.

Theorem 2.24 Let a, b ∈ A be such that a, b, ab and (1−a†a)b are regular. Then
the following conditions are equivalent:

(i′) b{1, 2, 4}a{1, 2, 4} ⊆ (ab){1, 2, 4}
(ii′) a†abb∗a∗ = bb∗a∗ and (a†a − a†ab(a†ab)†)A (b†b − (ab)†(ab)) = {0}.
Theorem 2.25 Let A ∈ C

m×n and B ∈ C
n×k . Then the following statements are

equivalent:

(i) B{1, 2, 4}A{1, 2, 4} ⊆ (AB){1, 2, 4},
(ii) ABB∗A†A = ABB∗ and

(
(A†AB)(A†AB)† = A†A or (AB)†(AB) = B†B

)
,

(iii) B{1, 2, 4}A{1, 2, 4} = (AB){1, 2, 4},

Theorem 2.26 ([24]) LetH ,K andL be Hilbert spaces and let A ∈ B(H ,K ),
B ∈ B(L ,H ) be such that R(A),R(B) and R(AB) are closed and AB �= 0.
Then the following statements are equivalent:

(i) B{1, 2, 4}A{1, 2, 4} ⊆ (AB){1, 2, 4}.
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(ii) R(A∗) = R(BB∗A∗) ⊕⊥ [R(A∗) ∩ N (B∗)],N (AB) = N (B)

Theorem 2.27 Let A ∈ C
n×m and B ∈ C

m×k . The following conditions are equiv-
alent:

(i) (AB){1, 2, 4} ⊆ B{1, 2, 4} · A{1, 2, 4},
(ii) ((AB)† − B†A†)(I − ((I − BB†)A†)†A†) = 0

2.5 Reverse Order Laws for {1, 3, 4}-Generalized Inverses

Reverse order laws for {1, 3, 4}-generalized inverses of matrices A ∈ C
n×m and

B ∈ C
m×k were considered by Liu and Yang [26], who gave certain necessary and

sufficient conditions for

B{1, 3, 4} · A{1, 3, 4} ⊆ (AB){1, 3, 4} (2.89)

and

(AB){1, 3, 4} ⊆ B{1, 3, 4} · A{1, 3, 4}. (2.90)

Let

n1 = r

[
B∗

B∗A∗A

]
, n2 = r

[
B∗B B∗A∗

B∗A∗AB B∗A∗AA∗

]
, n3 = r

[
A

ABB∗

]

and

n4 = r

[
AA∗ ABB∗A∗
B∗A∗ B∗BB∗A∗

]
.

With this notations the following is proved:

Theorem 2.28 ([26]) Let A ∈ C
n×m and B ∈ C

m×k . Then the following conditions
are equivalent:

(i) B{1, 3, 4} · A{1, 3, 4} ⊆ (AB){1, 3, 4},
(ii) r(A) = min{n3, n4 + k − r(B)}, r(B) = min{n1, n2 + m − r(A)}.
Theorem 2.29 ([26]) Let A ∈ C

n×m and B ∈ C
m×k . Then the following conditions

are equivalent:

(i) (AB){1, 3, 4} ⊆ B{1, 3, 4} · A{1, 3, 4},
(ii) r(AB) = max{min{n2, n4},min{k − r(B), n − r(A)} − m + n1 + n3}.

What the authors of [26] did not realize was that (AB){1, 3, 4} ⊆ B{1, 3, 4} ·
A{1, 3, 4} is actually equivalent to (AB){1, 3, 4} = B{1, 3, 4} · A{1, 3, 4}, which
was shown in [27] in the matrix case and later generalized in [28] to the C∗-algebra
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setting. In the following theorem the proof of this fact inC∗-algebraswill be presented
together with some necessary and sufficient conditions for (2.90) to hold.

Theorem 2.30 ([28]) Let a, b ∈ A be such that a, b, ab, a(1−bb†) and (1−a†a)b
are generalized invertible. Then the following conditions are equivalent:

(i) (ab){1, 3, 4} ⊆ b{1, 3, 4} · a{1, 3, 4},
(ii) (ab){1, 3, 4} = b{1, 3, 4} · a{1, 3, 4},
(iii) (ab)† = b†a†,

(
b†b−(ab)†(ab)

)
A

(
aa†−(ab)(ab)†

) = {0} and the equation

(1 − b†b)z(1 − aa†) = (1 − b†b)x(1 − s2s
†
2 ) fbea(1 − s†1 s1)y(1 − aa†), (2.91)

is solvable for any z ∈ A , where s1 = 1 − (ab)†(ab), s2 = (1 − bb†)a†,
ea = 1 − a†a and fb = 1 − bb†.

To give a proof of Theorem 2.30, we will need some auxiliary results given as
follows:

Lemma 2.5 Let a ∈ A be generalized invertible and b ∈ A . Then the following
statements are equivalent:

(1) b ∈ a{1, 3, 4}
(2) a∗ab = a∗ and baa∗ = a∗.
(3) There exists y ∈ A such that b = a† + (1 − a†a)y(1 − aa†).

Proof (1) ⇒ (2) If b ∈ a{1, 3, 4}, then

a∗ab = a∗(ab)∗ = (aba)∗ = a∗ and baa∗ = (aba)∗ = a∗.

(2) ⇒ (1) If a∗ab = a∗ and baa∗ = a∗, then

aba = aa†aba = (a†)∗a∗aba = (a†)∗a∗a = a,

ab = b∗a∗ab = (ab)∗(ab),
ba = baa∗b∗ = (ba)(ba)∗,

so, b ∈ a{1, 3, 4}.
(1) ⇒ (3) If b ∈ a{1, 3, 4}, then b ∈ a{1, 3}, so b = a† + (1 − a†a)t , for some

t ∈ A . Then ba = a†a, so (1 − a†a)ta = 0. Put z = (1 − a†a)t . We have that z
is a solution of the equation za = 0, so z = y(1 − aa†), for some y ∈ A . Now,
b = a† + (1 − a†a)y(1 − aa†).

(3) ⇒ (1) This is evident. �

Now, let p = bb†, q = b†b and r = aa†.

Remark 2.1 ByLemma2.5,weget that b{1, 3, 4} =
{[

b† 0
0 u

]
q,p

: u ∈ (1 − q)A (1 − p)

}

and
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a{1, 3, 4} =
{[

a∗
1d

† z2 − a∗
1d

†a1z2 − a∗
1d

†a2z4
a∗
2d

† z4 − a∗
2d

†a1z2 − a∗
2d

†a2z4

]
p,r

: z2 ∈ pA (1 − r),

z4 ∈ (1 − p)A (1 − r)
}
.

Lemma 2.6 Let a, b ∈ A be such that a, b, ab ∈ A † and (ab)† = b†a†. Then

(abb†)† = b(ab)†. (2.92)

Proof of Theorem2.30: (i) ⇔ (iii) :The fact that (ab){1, 3, 4} ⊆ b{1, 3, 4}·a{1, 3, 4}
is equivalent to the fact that for every (ab)(1,3,4) there exist a(1,3,4) and b(1,3,4) such
that (ab)(1,3,4) = b(1,3,4) · a(1,3,4).
Since, ab =

[
a1b 0
0 0

]
r,q

, by Lemma 2.5,

(ab){1, 3, 4} =
{[

s
(
b†b − (a1b)†(a1b)

)
y2

y3(aa† − (ab)(ab)†) y4

]
q,r

:

y =
[
y1 y2
y3 y4

]
q,r

∈ A

}
,

where s = (a1b)† + (
1 − (a1b)†(a1b)

)
y1

(
1 − (a1b)(a1b)†

)
.

Now, using (ii) of Remark 2.1, we may conclude that (ab){1, 3, 4} ⊆ b{1, 3, 4} ·
a{1, 3, 4} holds if and only if for arbitrary y =

[
y1 y2
y3 y4

]
q,r

∈ A , there exist u, z ∈ A

such that

(a1b)
† + (

1 − (a1b)
†(a1b)

)
y1

(
1 − (a1b)(a1b)

†) = b†a∗
1d

†, (2.93)(
b†b − (a1b)

†(a1b)
)
y2 = b†(z2 − a∗

1d
†a1z2 − a∗

1d
†a2z4), (2.94)

y3(aa
† − (ab)(ab)†) = (1 − b†b)ua∗

2d
†, (2.95)

y4 = (1 − b†b)u(z4 − a∗
2d

†a1z2 − a∗
2d

†a2z4), (2.96)

where z2 = pz(1 − r) and z4 = (1 − p)z(1 − r).
The fact that the equation (2.93) holds for every y1 ∈ qA r is equivalent to

(ab)† = b†a∗d† = b†a†,
(
b†b − (ab)†(ab)

)
A

(
aa† − (ab)(ab)†

) = {0}. (2.97)

Now, using Lemma 2.6 and the fact that (ab)† = b†a† ⇒ a∗
1d

†a2 = 0, we have that
the equations (2.94), (2.95) and (2.96), respectively have the forms:
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(
1 − (ab)†(ab)

)
b†by(1 − aa†) = (

1 − (ab)†(ab)
)
b†z(1 − aa†), (2.98)(

1 − b†b
)
ya(1 − bb†)a† = (

1 − b†b
)
u(1 − bb†)a†, (2.99)(

1 − b†b
)
y(1 − aa†) = (

1 − b†b
)
u fbeaz(1 − aa†). (2.100)

It is evident that the equations (2.98) and (2.99) are solvable for any y ∈ A and that
solutions of these equations are respectively, given by

z = by + t1 − s†1s1t1(1 − aa†), u = ya + t2 − (1 − b†b)t2s2s
†
2 ,

for t1, t2 ∈ A . Notice that s1 ∈ A † because it is a projection and s2 ∈ A † since
a(1 − bb†) ∈ s2{1}.
Since abb† = ab(ab)†a, we have that

a(1 − bb†)(1 − a†a)(1 − bb†) = 0. (2.101)

Also, from a∗
2d

†a1 = 0, we get that

(1 − bb†)(1 − a†a)(1 − bb†) = (1 − bb†)(1 − a†a). (2.102)

Now, by (2.101) and (2.102), it follows that for z and u satisfying the equations (2.98)
and (2.99), respectively, the equation (2.100) is equivalent to

(
1 − b†b

)
y(1 − aa†) = (

1 − b†b
)
t2(1 − s2s

†
2 ) fbea(1 − s†1 s1)t1(1 − aa†). (2.103)

Now, (i)holds if andonly if (2.97) holds and for arbitrary y ∈ A there exist t1, t2 ∈ A
such that the equation (2.103) is satisfied.

(i) ⇒ (ii) : If (i) holds, then there exist a(1,3,4) and b(1,3,4) such that (ab)† =
b(1,3,4)a(1,3,4). Now, if we multiply the last equality by b†b from the left and by aa†

from the right, we get that (ab)† = b†bb(1,3,4)a(1,3,4)aa† = b†bb†a†aa† = b†a†.
Now, by Theorem 2.32, we get that (ii) holds.

(ii) ⇒ (i) : This is evident. �
For matrices in the special case when k = n it was proved in [27] that the

solvability of the equation (2.91) is equivalent to the condition n ≤ m. Hence, when
n > m then

(AB){1, 3, 4} � B{1, 3, 4} · A{1, 3, 4}. (2.104)

The case n ≤ m is treated in the next result.

Theorem 2.31 ([27]) Let A ∈ C
n×m and B ∈ C

m×n and n ≤ m. The following
conditions are equivalent:

(i) (AB){1, 3, 4} ⊆ B{1, 3, 4} · A{1, 3, 4},
(ii) (AB)† = B†A† and

(
B = A†AB or A = ABB†

)
.
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Example 2.16 We will show that (AB){1, 3, 4} ⊆ B{1, 3, 4} · A{1, 3, 4} is not
equivalent with B{1, 3, 4} · A{1, 3, 4} ⊆ (AB){1, 3, 4}. Also, in the case when
(AB){1, 3, 4} � B{1, 3, 4} · A{1, 3, 4}, for some (AB)(1,3,4), we will find particu-
lar A(1,3,4) and B(1,3,4) such that (AB)(1,3,4) = B(1,3,4)A(1,3,4) ∈ (AB){1, 2, 3}: Let
A =

[
1 0
0 0

]
and B =

[
0 0
1 0

]
. Then evidently AB = 0, which implies by Theorem

2.31 that (AB){1, 3, 4} � B{1, 3, 4}·A{1, 3, 4}, and also that (AB){1, 3, 4} = C
2×2.

This further implies that B{1, 3, 4} · A{1, 3, 4} ⊆ (AB){1, 3, 4}. Since A{1, 3, 4} ={[
1 0
0 c

]
: c ∈ C

}
, B{1, 3, 4} =

{[
0 1
d 0

]
: d ∈ C

}
then for each bidiagonal matrix

of the form

[
0 x
y 0

]
∈ (AB){1, 3, 4}, there exist A(1,3,4) and B(1,3,4) such that[

0 x
y 0

]
= B(1,3,4)A(1,3,4).

Example 2.17 It can be shown that for A ∈ C
n×m and B ∈ C

m×k , the condition
min{n, k} ≤ m is necessary for (AB){1, 3, 4} ⊆ B{1, 3, 4} · A{1, 3, 4} to hold.

Recently, some algebraic conditions for B{1, 3, 4} · A{1, 3, 4} ⊆ (AB){1, 3, 4}
to hold in the matrix case were given in [27] and their generalization in the case
of C*-algebras in [28]. Here, we will present only the more general version in the
C*-algebra case.

Theorem 2.32 ([28]) Let a, b ∈ A be such that a, b, ab, a(1−bb†) and (1−a†a)b
are generalized invertible. Then the following conditions are equivalent:

(i) b{1, 3, 4} · a{1, 3, 4} ⊆ (ab){1, 3, 4},
(ii) bb†a∗ab = a∗ab and abb∗a†a = abb∗,
(iii) b†a† = (ab)†.

Proof (i) ⇒ (ii) Since b†a† ∈ (ab){1, 3, 4}, from abb†a†ab = ab it follows that
a1a∗

1d
†a1 = a1 i.e., a2a∗

2d
†a1 = 0. Similarly, from (abb†a†)∗ = abb†a†, we get

that a1a∗
1d

† is Hermitian. Now, d†a1a∗
1a1 = a1, i.e., a2a∗

2a1 = 0. Multiplying the
last equality by a†2 from the left side, we get a∗

2a1 = 0 which is equivalent to
bb†a∗ab = a∗ab. Similarly, we get that abb∗a†a = abb∗.

(ii) ⇒ (i) The condition bb†a∗ab = a∗ab is equivalent to a∗
2a1 = 0, i.e., a∗

1a2 =
0. Let s = a1a

†
1 . Since d ∈ sA s + (1− s)A (1− s), we have that d† ∈ sA s + (1−

s)A (1 − s). Now, a∗
1d

†a2 ∈ A s · (sA s + (1 − s)A (1 − s)) · (1 − s)A = {0}.
Hence, a∗

1d
†a2 = 0, i.e., a∗

2d
†a1 = 0.

For arbitrary a(1,3,4) and b(1,3,4) we have that

abb(1,3,4)a(1,3,4)ab =
[
a1a∗

1d
†a1b 0

0 0

]
r,q

.

Since
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a1a
∗
1d

†a1 = (d − a2a
∗
2)d

†a1 = a1,

it follows that abb(1,3,4)a(1,3,4)ab = ab. To prove that abb(1,3)a(1,3) is Hermitian
it is sufficient to prove that a1a∗

1d
† is Hermitian and a1(z2 − a∗

1d
†a1z2) = 0. By

computation, we get that a1z1 = a1a∗
1d

† = a1a∗
1(a1a

∗
1)

† which is Hermitian. Also,

a1z2 − a1a
∗
1d

†a1z2 = (a1 − (d − a2a
∗
2)d

†a1)z2 = 0.

Hence, b{1, 3, 4} ·a{1, 3, 4} ⊆ (ab){1, 3}. Similarly, the condition abb∗a†a = abb∗
implies that b{1, 3, 4} · a{1, 3, 4} ⊆ (ab){1, 4}, so (i) holds.

(i) ⇒ (iii) : It is sufficient to prove that b†a† is an outer inverse of ab. That is
equivalent to b†a∗

1d
†a1a∗

1d
† = b†a∗

1d
† which holds since a∗

1d
†a1a∗

1 = a∗
1 .

(iii) ⇒ (ii) : The proof of this part follows directly from the proof of the part
(i) ⇒ (ii). �
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Chapter 3
Completions of Operator Matrices
and Generalized Inverses

In this section we will discuss various problems of completions of operator matrices
and present an application of such results to some problems concerning generalized
inverses and to that of invertibility of linear combinations of operators. It is worth
mentioning that this very intensively studied topic of Operator theory finds large
application in the theory of generalized inverses.

Although the reverse order law for {1}-generalized inverses of matrices was com-
pletely resolved already by 1998, the corresponding problem for the operators on
separable Hilbert spaces was only solved in 2015. Namely, the reverse order law
for {1}-generalized inverses for the operators on separable Hilbert spaces was com-
pletely solved in the paper of Pavlović et al. [1]. One of the objective of this chapter
is to present the approach taken in resolving the reverse order law for {1}-generalized
inverses for the operators on separable Hilbert spaces which involves some of the
previous research on completions of operator matrices to left and right invertibility.

We will first go over some characteristic results on the problem of completions of
operator matrices, with a special emphasis on some instructive examples, and then
demonstrate usability of results of that type by showing how they can be applied to
one of the topics in generalized inverses of operators that has seen a great interest
over the years. Also, we will consider the existence of Drazin invertible completions
of an upper triangular operator matrix and applications of results on completions of
operator matrices to the problem of invertibility of a linear combination of operators
with the special emphasis on the set of projectors and orthogonal projectors.
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D. Cvetković Ilić and Y. Wei, Algebraic Properties of Generalized Inverses,
Developments in Mathematics 52, DOI 10.1007/978-981-10-6349-7_3

51



52 3 Completions of Operator Matrices and Generalized Inverses

3.1 Some Specific Problems of Completions of Operator
Matrices

Various aspects of operator matrices and their properties have long motivated
researchers in operator theory. Completion of partially given operator matrices to
operators of fixed prescribed type is an extensively studied area of operator theory,
which is a topic of many various currently undergoing investigations. In this section
we will consider only some specific problems from that field which will be usefull
later in finding necessary and sufficient conditions for the reverse order law for {1}-
generalized inverses for the operators on separable Hilbert spaces to hold. When we
talk about completion problems we usually consider the following three types of
operator matrices

MC =
[
A C
0 B

]
:
[
H
K

]
→

[
H
K

]
,

MX =
[
A C
X B

]
:
[
H
K

]
→

[
H
K

]

and

M(X Y ) =
[
A B
X Y

]
:
[
H
K

]
→

[
H
K

]

and for which the following three questions frequently arise:
Question 1: Is there an operator C ∈ B(Y ,X ) (resp. X and X,Y ) such that

MC (resp. MX and M(X Y )) is invertible (right invertible, left invertible, regular...) ?
Question 2:

⋂
C∈B(Y ,X ) σ∗(MC) =? where σ∗ is any type of spectrum such as

the point, continuous, residual, defect, left, right, essential, Weyl spectrum etc.
Question 3: For given operators A ∈ B(X ) and B ∈ B(Y ), is there an operator

C ′ ∈ B(Y ,X ) such that

σ∗(MC ′) =
⋂

C∈B(Y ,X )

σ∗(MC),

where again σ∗ is any type of spectrum?
In the case of the operator matrix MC it is clear that σ(MC) ⊆ σ(A) ∪ σ(B). In

the following two examples we will show that this inclusion is sometimes actually
an equality, but that also it can be a proper one:

Example 3.1 If {gi }∞i=1 is an orthonormal basis ofK , define an operator B0 by{
B0g1 = 0,
B0gi = gi−1, i = 2, 3, . . .
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If { fi }∞i=1 is an orthonormal basis ofH , define an operator A0 by A0 fi = fi+1, i =
1, 2, . . . , and an operator C0 by C0 = (·, g1) f1 from K into H . Then it is easy to
see that σ(A0) = σ(B0) = {λ : |λ| ≤ 1}. But, in this case, MC0 is a unitary operator,
σ(MC0) ⊆ {λ : |λ| = 1}, so we have the inclusion σ(MC0) ⊂ σ(A) ∪ σ(B).

Example 3.2 If A ∈ B(H ) and B ∈ B(K ) are normal operators, then for any
C ∈ B(K ,H ), σ(MC) = σ(A) ∪ σ(B) (see Theorem 5 from [2]).

Also, the following example shows that the inclusion σgD(MC) ⊆ σgD(A) ∪
σgD(B) may be strict in the case of the generalized Drazin spectrum:

Example 3.3 Define operators A, B1,C1 ∈ B(l2) by

A(x1, x2, x3, . . . ) = (0, x1, x2, x3, . . . ),

B1(x1, x2, x3, . . . ) = (x2, x3, x4, . . . ),

C1(x1, x2, x3, . . . ) = (x1, 0, 0, . . . ).

Consider the operator

MC =
(
A C
0 B

)
: l2 ⊕ (l2 ⊕ l2) → l2 ⊕ (l2 ⊕ l2)

=
⎛
⎝ A C1 0

0 B1 0
0 0 0

⎞
⎠ : l2 ⊕ l2 ⊕ l2 → l2 ⊕ l2 ⊕ l2,

where B =
(
B1 0
0 0

)
: l2 ⊕ l2 → l2 ⊕ l2, C = (C1, 0) : l2 ⊕ l2 → l2.

A direct calculation shows that

(i) σ(MC) = {λ ∈ C : |λ| = 1} ∪ {0}, σ (A) = σ(B) = {λ ∈ C : |λ| ≤ 1};
(ii) σgD(MC) = {λ ∈ C : |λ| = 1}∪{0}, σgD(A) = σgD(B) = {λ ∈ C : |λ| ≤ 1}.
On the other hand the inclusion σc(MC) ⊆ σc(A) ∪ σc(B) is not true in general, in
the case of the continuous spectrum which will be shown in the next example:

Example 3.4 Let H = K = l2. Define the operators A, B, C by

A(x1, x2, x3, x4, . . . ) = (0, 0, x1, x2, x3, x4, . . . )

B(x1, x2, x3, x4, . . . ) = (x3,
x4√
4
,
x5√
5
,
x6√
6
, . . . )

C(x1, x2, x3, x4, . . . ) = (x1, x2, 0, 0, . . . ),

for any x = (xn)∞n=1 ∈ l2. Consider MC =
(
A C
0 B

)
: l2 ⊕ l2 → l2 ⊕ l2. A

direct calculation shows that 0 ∈ σc(Mc), but 0 /∈ σC(A) ∪ σC(B) which implies
σC(MC) � σC(A) ∪ σC(B).
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Given operators A ∈ B(X ) and B ∈ B(Y ), the question of existence of an
operator C ∈ B(K ,H ) such that the operator matrix MC is invertible was con-
sidered for the first time in [2] in the case when X and Y are separable Hilbert
spaces. The results from [2] are generalized in [3] in the case of Banach spaces. In
[4], the same problem is considered in the case of Banach spaces and the set of all
C ∈ B(Y ,X ) for which MC is invertible is completely described and additionally
the set of all C ∈ B(Y ,X ) such that MC is invertible, denoted by S(A, B), is
completely described (in the case when X and Y are Banach spaces).

Theorem 3.1 ([4]) Let A ∈ B(X ) and B ∈ B(Y ) be given operators. The oper-
ator matrix MC is invertible for some C ∈ B(Y ,X ) if and only if

(i) A is left invertible,
(ii) B is right invertible,
(iii) N (B) ∼= X /R(A).

If conditions (i)−(i i i) are satisfied, the set of all C ∈ B(Y ,X ) such that MC is
invertible is given by

S(A, B) ={C ∈ B(Y ,X ) : C =
[
C1 0
0 C4

]
:
[

P
N (B)

]
→

[
R(A)

S

]
,

C4 is invertible,X = R(A) ⊕ S and Y = P ⊕ N (B)}. (3.1)

In Remark2.5 in [4], it is proved that if we take arbitrary but fixed decompositions
of X and Y ,X = R(A) ⊕ S and Y = P ⊕ N (B), then

S(A, B) ={C ∈ B(Y ,X ) : C =
[
C1 C2

C3 C4

]
:
[

P
N (B)

]
→

[
R(A)

S

]
,

C4 is invertible}. (3.2)

Based on the above results and using the fact that the invertibility of C4 ∈
B(N (B),S ) simplymeans that PS ,R(A)C |N (B) is an injective operatorwith range
S , in the case of separable Hilbert spaces we have the following characterization of
invertibility of an upper triangular operator matrix:

Theorem 3.2 Let H and K be separable Hilbert spaces and let A ∈ B(H ),

B ∈ B(K ) and C ∈ B(K ,H ) be given operators. The operator matrix

[
A C
0 B

]

is invertible if and only if A is left invertible, B is right invertible and PS ,R(A)C |N (B)

is an injective operator with (closed) range S , where H = R(A) ⊕ S .

Aside from the existence of invertible completions of the aforementioned operator
matrix, the problems of existence of completions of the operator matrix MC that are
Fredholm, semi-Fredholm, Kato, Browder etc. have subsequently been studied in
literature. In Sect. 3.4, we will consider such problem in the case of Drazin invertible
completions.
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Moving on, in [5] the problem is considered of completing an operator matrix

M(X,Y ) =
[
A C
X Y

]
:
[
H1

H2

]
→

[
H1

H2

]
(3.3)

to left (right) invertibility in the case when A ∈ B(H1) and C ∈ B(H2,H1) are
given and H1,H2 are separable Hilbert spaces.

Theorem 3.3 ([5]) Let M(X,Y ) be given by (3.3).
(i) If dimH2 = ∞, then there exist X ∈ B(H1,H2) and Y ∈ B(H2) such that

M(X,Y ) is left invertible.
(ii) If dimH2 < ∞, then M(X,Y ) is left invertible for some operators X ∈

B(H1,H2) and Y ∈ B(H2) if and only if dimN
([

A C
]) ≤ dimH2 and R(A)

is closed.

Here, we will present a result of this type in the case when

M(X,Y ) =
[
A C
X Y

]
:
[
H1

H2

]
→

[
H3

H4

]
(3.4)

and Hi , i = 1, 4 are separable Hilbert spaces. So, we will give a modification of
Theorem 3.3 for the operator matrix M(X,Y ) given by (3.4).

Theorem 3.4 Let M(X,Y ) be given by (3.4).
(i) If dimH4 = ∞, then there exist X ∈ B(H1,H4) and Y ∈ B(H2,H4) such

that M(X,Y ) is left invertible.
(ii) If dimH4 < ∞, then M(X,Y ) is left invertible for some operators X ∈

B(H1,H4) and Y ∈ B(H2,H4) if and only if dimN
([

A C
]) ≤ dimH4 and

R(A) + R(C) is closed.

Proof (i) If dimH4 = ∞, then there exists a closed infinite dimensional subspace
of H4, M such that dimM⊥ = dimH1. Now, there exist left invertible operators
J1 : H1 → M⊥ and J2 : H2 → M . Let

X =
[
0
J1

]
: H1 →

[
M
M⊥

]
, Y =

[
J2
0

]
: H2 →

[
M
M⊥

]
.

Let

X− = [
0 (J1)

−1
l

] :
[
M
M⊥

]
→ H1,Y

− = [
(J2)

−1
l 0

] :
[
M
M⊥

]
→ H2.

Now, [
0 X−
0 Y−

] [
A C
X Y

]
=

[
I 0
0 I

]
,

i.e., M(X,Y ) is left-invertible.
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(ii) Suppose that dimH4 < ∞. If there exist regular X ∈ B(H1,H4) and
Y ∈ B(H2,H4) such that M(X,Y ) is left invertible, from the fact that R(M(X,Y )) is
closed we get that

R

([
A∗ X∗
C∗ Y ∗

])
= R

([
A∗ 0
C∗ 0

])
+ R

([
0 X∗
0 Y ∗

])

is closed. It follows thatR

([
A C
0 0

])
is closed, i.e.,R(A) + R(C) is closed since

R

([
0 X∗
0 Y ∗

])
is a finite dimensional subspace. From the injectivity of M(X,Y ), it

follows that N
([

A C
]) ∩ N

([
X Y

]) = {0} which implies that

dimN
([

A C
]) ≤ dimN

([
X Y

])⊥ ≤ dimH4.

For the converse, suppose that dimN
([

A C
]) ≤ dimH4 andR(A) + R(C) is

closed. Since N
([

A C
]) = K1 ⊕ K2 ⊕ K3, where K1 =

{[
x
0

]
: x ∈ N (A)

}
,

K2 =
{[

0
y

]
: y ∈ N (C)

}
and K3 =

{[
x
y

]
: x ∈ N (A)⊥, y ∈ N (C)⊥, Ax + Cy = 0

}
,

there exists a subspace M of H4 such that dimM = dimK1. Then dimM⊥ ≥
dimK2 + dimK3. Now, there exist left invertible operators J1 : N (A) → M and
J2 : PH2N

( [
A C

] ) → M⊥. Let

X =
[
J1 0
0 0

]
:
[
N (A)

N (A)⊥

]
→

[
M
M⊥

]

and

Y =
[
0 0
0 J2

]
:
[ (

PH2N
( [

A C
] ))⊥

PH2N
( [

A C
] )

]
→

[
M
M⊥

]
.

Now, as in Theorem 2.1 [5], we can check that M(X,Y ) is left-invertible, i.e.,
we will prove that R(M(X,Y )) is closed and M(X,Y ) is injective. From the fact that
dimH4 < ∞ and Kato’s lemma we have that R(M(X,Y )) is closed. On the other
hand, let [

A C
X Y

] [
x
y

]
=

[
0
0

]
,

which is equivalent to

Ax + Cy = 0, Xx + Y y = 0.
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Then it follows that y ∈ PH2N
( [

A C
] )
. Also, we have that Xx = Y y = 0 which

implies that y = 0. Thus, Ax = 0 which by definition of X implies that x = 0. This
proves that M(X,Y ) is injective. �

As for completions of an operator matrix

MX =
[
A C
X B

]
:
[
H1

H2

]
→

[
H1

H2

]
, (3.5)

where A ∈ B(H1), B ∈ B(H2) and C ∈ B(H2,H1) are given, the first to ever
address any kind of questions (for separable Hilbert spaces not necessarily of finite
dimension) related to it was Takahashi. More specifically, in his paper [6] he gave
necessary and sufficient conditions for the existence of X ∈ B(H1) such that MX

is invertible.
Although Takahashi’s paper was published in 1995, there have only been several

papers since, namely [7, 9–14], which deal with various completions of the operator
matrix of the form MX . Actually in [13] exactly the same problem was considered
as in [6] but using methods of geometrical structure of operators and in it some
necessary and sufficient conditions were given different than those from [6]. In [9]
the authors considered the problem of completions of MX given by (3.5) to right
(left) invertibility in the case when A ∈ B(H1), B ∈ B(H2) and C ∈ B(H2,H1)

are given.

Theorem 3.5 ([9]) Let A ∈ B(H1), B ∈ B(H2) and C ∈ B(H2,H1) be given.
Then MX is right invertible for some X ∈ B(H1,H2) if and only ifR(A)+R(C) =
H1 and one of the following conditions holds:

(1) N (A | C; H2) contains a non-compact operator,

(2) M0 =
[
A C
0 B

]
is a right semi-Fredholm operator and

d(M0) ≤ n(A) + dim
(
R(A) ∩ R

(
C |N (B)

))
,

where N (A | C; H2) = {G ∈ B(H2,H1) : R(AG) ⊆ R(C)}.
Here we will present a result of this type in the case when

MX =
[
A C
X B

]
:
[
H1

H2

]
→

[
H3

H4

]
(3.6)

and give a modification of Theorem 3.5 which shortens significantly one implication
of the original one. Since for the proof we need some auxiliary results, we begin by
stating these.

Lemma 3.1 ([15]) IfH is an infinite dimensional Hilbert space, then T ∈ B(H )

is compact if and only ifR(T ) contains no closed infinite dimensional subspaces.
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Lemma 3.2 LetH1 andH2 be separable Hilbert spaces. If U ⊆ H1 and V ⊆ H2

are closed subspaces with dimU = dim V , then there exists T ∈ B(H1,H2) such
that N (T ) = U⊥, R(T ) = V and T |U : U → V is unitary. In particular, if
U = H1, then T is left invertible; if V = H2, then T is right invertible.

Lemma 3.3 ([9]) Let S ∈ B(H1,H2), and let T be a closed linear operator from
H2 intoH3. IfR(S) ⊆ D(T ), then T S ∈ B(H1,H3).

For Hilbert spaces Hi , i = 1, 4 and operators A ∈ B(H1,H3) and C ∈
B(H2,H3), let

N (A | C; H4) = {G ∈ B(H4,H1) : R(AG) ⊆ R(C)}.

It is well known that G ∈ B(H4,H1) belongs to N (A | C; H4) if and only if
there exists H ∈ B(H4,H2) such that AG = CH .

Lemma 3.4 ([9]) Let A ∈ B(H1,H3), B ∈ B(H2,H4) and C ∈ B(H2,H3) be
given operators. Assume that

M0 = M(A, B,C; 0) =
[
A C
0 B

]

is a right Fredholm operator on H1 ⊕ H2. Then B is a right Fredholm operator,
R(A) + R(C |N (B)) is a closed subspace, and

d(M0) = dim(R(A) + R(C |N (B)))
⊥ + d(B),

n(M0) = n(A) + n(C |N (B)) + dim(R(A) ∩ R(C |N (B))).

Finally, we will give a a modification of Theorem 3.5:

Theorem 3.6 Let A ∈ B(H1,H3), B ∈ B(H2,H4) and C ∈ B(H2,H3) be
given. Then MX is right invertible for some X ∈ B(H1,H4) if and only ifR(A) +
R(C) = H3 and one of the following conditions holds:

(1) N (A | C; H4) contains a non-compact operator,

(2) M0 =
[
A C
0 B

]
is a right semi-Fredholm operator and

d(M0) ≤ n(A) + dim
(
R(A) ∩ R

(
C |N (B)

))
.

Proof Suppose MX given by (3.6) is right invertible for some X ∈ B(H1,H4).
This implies that

[
A C

]
is right invertible and soR(A) + R(C) = H3. LetH ′

2 =
(N (C) ∩ N (B))⊥. Then

MX =
[
A 0 C ′
X 0 B ′

]
:
⎡
⎣ H1

(H ′
2 )⊥

H ′
2

⎤
⎦ →

[
H3

H4

]
,
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where N (C ′) ∩ N (B ′) = {0}. Clearly

M ′
X =

[
A C ′
X B ′

]
:
[
H1

H ′
2

]
→

[
H3

H4

]

is right invertible. Thus there is a bounded linear operator

[
E G
F H

]
:
[
H3

H4

]
→

[
H1

H ′
2

]

such that [
A C ′
X B ′

] [
E G
F H

]
=

[
IH3 0
0 IH4

]
.

From AG + C ′H = 0 it follows that R(AG) ⊆ R(C ′) = R(C) so, if G is a
non-compact operator then (1) holds. If on the other hand G is compact, then from
XG + B ′H = I , we see that B ′H is a Fredholm operator and d(B ′H) = n(B ′H).
Since

[
I 0

−B ′F I

] [
A C ′
0 B ′

] [
E G
F H

]
=

[
IH3 0
0 B ′H

]

and B ′H is a Fredholm operator, it follows that M ′
0 =

[
A C ′
0 B ′

]
is a right Fredholm

operator. AsR(M0) = R(M ′
0) the operator M0 is right Fredholm. Also

d(M0) = d(M ′
0) ≤ d

([
IH3 0
0 B ′H

])
= d(B ′H) = n(B ′H)

≤ n(M ′
0) = n(A) + n

(
C ′ |N (B ′)

) + dim
(
R

(
C ′ |N (B ′)

) ∩ R(A)
)

= n(A) + dim
(
R(A) ∩ R

(
C |N (B)

))
.

For the converse implication: If N (A | C;H4) contains a non-compact operator,
then H1 and H4 are infinite dimensional. By Lemma 3.1, there exists a closed
subspace M ⊆ H1 with dimM = dimH4 = ∞ such that R(A|M ) ⊆ R(C),
and hence R(APM ) = R(A|M ) ⊆ R(C) ⊆, where C+ : R(C) ⊕ R(C)⊥ →
H2 is defined to be 0 on R(C)⊥ and (C |N (C)⊥)−1 on R(C). This, together with
APM ∈ B(H1,H3) and Lemma 3.3, shows that C+APM ∈ B(H2,H3). On the
other hand, it follows from Lemma 3.2 that there exists a right invertible operator
T ∈ B(H1,H4) such that N (T ) = M⊥. Define an operator X ∈ B(H1,H4) by

X = T + BC+APM .

Then MX is a right invertible operator. To prove that let u ∈ H3 and v ∈ H4 be
arbitrary. Since R(A) + R(C) = H3 and R(A|M ) ⊆ R(C), there exist x1 ∈ M⊥
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and y1 ∈ H2 such that Ax1 +Cy1 = u. Also, by right invertibility of T , there exists
x2 ∈ M such that T x2 = v − By1. Let x0 = x1 + x2 and y0 = y1 − C+Ax2. Then

[
A C
X B

] [
x0
y0

]
=

[
u
v

]
.

This establishes right invertibility of MX .
If (2) holds, put E = R(A) + R(C |N (B)). From Lemma 3.4 and the right

Fredholmness of M0 we can infer that B is a right Fredholm operator, E is closed
and dim E⊥ = d(M0) − d(B) < ∞. From R(A) + R(C) = H3 it follows that
R(PE⊥C) = E⊥. Let G = (PE⊥C)+E⊥ and S = BG ⊕ R(B)⊥. Then clearly
G ⊆ N (B)⊥ and so dim E⊥ = dimG = dim BG. Therefore dim S = d(M0).
On the other hand, since d(M0) ≤ n(A) + dim(R(A) ∩ R(C |N (B))), there exists
a subspace M ⊆ H1 with dimM = d(M0) such that R(A|M ) ⊆ R(C |N (B)).
From dimM = dim S = d(M0) < ∞ and Lemma 3.2, there exists an operator
J : H1 → S such that N (J ) = M⊥ and J |M : M → S is unitary. Define
X ∈ B(H1,H2) by

X =
[
J
0

]
: H1 → S ⊕ S⊥.

ThenMX as an operator fromH1⊕N (B)⊕G⊕(N (B)⊥�G) into E⊕E⊥⊕S⊕S⊥
has the following operator matrix:

MX =

⎡
⎢⎢⎣
A1 C1 C2 C3

0 0 C4 0
J 0 B1 B3

0 0 0 B2

⎤
⎥⎥⎦ ,

where N (B)⊥ � G = {y ∈ N (B)⊥ : y ∈ G⊥}. Obviously, C4 is invertible. From
the right Fredholmness of B we can infer that B2 is invertible. Thus there is an
invertible operator U ∈ B(H1,H2) such that

UMX = U

⎡
⎢⎢⎣
A1 C1 C2 C3

0 0 C4 0
J 0 B1 B3

0 0 0 B2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
A1 C1 0 0
0 0 C4 0
J 0 0 0
0 0 0 B2

⎤
⎥⎥⎦ .

It follows that MX is a right invertible operator if and only if

[
A1 C1

J 0

]
: H1 ⊕ N (B) → E ⊕ S,

is a right invertible operator.
For any u ∈ E and v ∈ S, it follows from E = R(A) +R(C |N (B)),R(A|M ) ⊆

R(C |N (B)) and the definition of J that there exist x1 ∈ M , x2 ∈ M⊥ and y1 ∈
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N (B) such that
J x1 = v, Ax2 + Cy1 = u.

Since R(A|M ) ⊆ R(C |N (B)), there exists y2 ∈ N (B) with

Ax1 + Cy2 = 0.

Note that A1 = A : H1 → E , C1 = C |N (B) : N (B) → E and N (J ) = M⊥,
and hence [

A1 C1

J 0

] [
x1 + x2
y1 + y2

]
=

[
u
v

]
.

From the argument above we get that MX is a right invertible operator. �

Remark 3.1 The condition (1) from the previous theorem is equivalent to the exis-
tence of a closed infinite dimensional subspace M of H1 such that R (A |M ) ⊆
R(C).

As a corollary of Theorem 3.6 we have the following result concerning completions
to left invertibility, that parallels Theorem 2.7 [9].

Corollary 3.1 Let A ∈ B(H1,H3), B ∈ B(H2,H4) and C ∈ B(H2,H3) be
given. Then MX is left invertible for some X ∈ B(H1,H4) if and only if R(B∗) +
R(C∗) = H2 and one of the following conditions holds:

(1) N (B∗ | C∗; H1) contains a non-compact operator,

(2) M0 =
[
A C
0 B

]
is a left semi-Fredholm operator and

n(M0) ≤ d(B) + dim
(
R(B∗) ∩ R

(
C∗|N (A∗)

))
.

3.2 Applications of Completions of Operator Matrices
to Reverse Order Law for {1}-Inverses of Operators
on Hilbert Spaces

The reverse order law problem for {1}-inverses for operators acting on separable
Hilbert spaces was completely resolved in the paper [1] and this was done using a
radically new approach than in the recent papers on this subject, one that involves
some of the previous research on completions of operator matrices to left and right
invertibility. More exactly, the solution of this problem relies heavily on the results
on completions of operator matrices presented in Sect. 3.1, so that the results of the
present section can in a way be regarded as an interesting application of the research
related to the topic of completions of operator matrices.

First, we will need the following observations.
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Let A ∈ B(H ,K ) and B ∈ B(L ,H ) be arbitrary regular operators. Using the
following decompositions of the spaces H ,K and L ,

L = R(B∗) ⊕ N (B), H = R(B) ⊕ N (B∗), K = R(A) ⊕ N (A∗),

we have that the corresponding representations of operators A and B are given by

A =
[
A1 A2

0 0

]
:

[
R(B)

N (B∗)

]
→

[
R(A)

N (A∗)

]
,

B =
[

B1 0
0 0

]
:

[
R(B∗)
N (B)

]
→

[
R(B)

N (B∗)

]
,

(3.7)

where B1 is invertible and
[
A1 A2

] :
[
R(B∗)
N (B)

]
→ R(A) is right invertible. In that

case the operator AB is given by

AB =
[
A1B1 0
0 0

]
:
[
R(B∗)
N (B)

]
→

[
R(A)

N (A∗)

]
. (3.8)

The following lemma gives a description of all the {1}-inverses of A, B and AB
in terms of their representations corresponding to appropriate decompositions of
spaces.

Lemma 3.5 Let A ∈ B(H ,K ) and B ∈ B(L ,H ) be regular operators given
by (3.7). Then

(i) an arbitrary {1}-inverse of A is given by:

A(1) =
[
X1 X2

X3 X4

]
:
[

R(A)

N (A∗)

]
→

[
R(B)

N (B∗)

]
, (3.9)

where X1 and X3 satisfy the following equality

A1X1 + A2X3 = IR(A), (3.10)

and X2, X4 are arbitrary operators from appropriate spaces.
(ii) an arbitrary {1}-inverse of B is given by:

B(1) =
[
B−1
1 Y2
Y3 Y4

]
:
[

R(B)

N (B∗)

]
→

[
R(B∗)
N (B)

]
, (3.11)

where Y2,Y3 and Y4 are arbitrary operators from appropriate spaces.
(iii) if AB is regular, then so is A1B1 and an arbitrary {1}-inverse of AB is given

by:
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(AB)(1) =
[

(A1B1)
(1) Z2

Z3 Z4

]
:
[

R(A)

N (A∗)

]
→

[
R(B∗)
N (B)

]
, (3.12)

where (A1B1)
(1) ∈ (A1B1){1} and Zi , i = 2, 4 are arbitrary operators from

appropriate spaces.

Proof (i) Suppose a {1}-inverse of A is given by:

A(1) =
[
X1 X2

X3 X4

]
:
[

R(A)

N (A∗)

]
→

[
R(B)

N (B∗)

]
.

From AX A = A we get that X ∈ A{1} if and only if X1 and X3 satisfy the following
equations

(A1X1 + A2X3)A1 = A1,

(A1X1 + A2X3)A2 = A2. (3.13)

Since S = [
A1 A2

] :
[
R(B∗)
N (B)

]
→ R(A) is a right invertible operator, there exists

S−1
r : R(A) →

[
R(B∗)
N (B)

]
such that

[
A1 A2

]
S−1
r = IR(A). Notice that (3.13) is

equivalent to [
A1 A2

] [
X1

X3

] [
A1 A2

] = [
A1 A2

]
. (3.14)

Multiplying (3.14) by S−1
r from the right, we get that (3.14) is equivalent with[

A1 A2
] [

X1

X3

]
= IR(A), i.e.,

A1X1 + A2X3 = IR(A). (3.15)

Note, that for X1 and X3 which satisfy (3.15), (3.13) also holds.
(ii) Suppose that a {1}-inverse of B is given by:

B(1) =
[
Y1 Y2
Y3 Y4

]
:
[

R(B)

N (B∗)

]
→

[
R(B∗)
N (B)

]
.

From BB(1)B = B it follows that B1Y1B1 = B1 and since B1 is invertible,Y1 = B−1
1 .

(iii) Suppose that a {1}-inverse of AB is given by:

(AB)(1) =
[
Z1 Z2

Z3 Z4

]
:
[

R(A)

N (A∗)

]
→

[
R(B∗)
N (B)

]
.

From AB(AB)(1)AB = AB, we get
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A1B1Z1A1B1 = A1B1, (3.16)

and we also see that the operators Z2, Z3 and Z4 can be arbitrary. Now, from (3.16)
we see that Z1 ∈ (A1B1){1}. �

Lemma 3.6 Let K1 ∈ B(H1,H3) be left invertible and K2 ∈ B(H2,H3) be
arbitrary. If (I −K1K

(1)
1 )K2 is left invertible for some inner inverse K

(1)
1 of K1, then[

K1 K2
] :

[
H1

H2

]
→ H3 is left invertible.

Proof By our assumptions there are X ∈ B(H3,H1), an inner inverse K (1)
1 of K1

and Y0 ∈ B(H3,H2) such that XK1 = I and Y0(I − K1K
(1)
1 )K2 = I . It is easily

verified that D
[
K1 K2

] = I , where

D =
[
X − XK2Y

Y

]
: H3 →

[
H1

H2

]

for Y = Y0(I − K1K
(1)
1 ). �

To enhance readability of the proof of our main result, we will first prove it under the
assumption that dimN (A∗) ≤ dimN (B), then directly derive from that the version
in the remaining case dimN (B) ≤ dimN (A∗), and finally simply combine the two
results in Theorem 3.10 in which no assumptions are made.

The following auxiliary theorem will play a key role in the proof of our main
result.

Theorem 3.7 Let regular operators A ∈ B(H ,K ) and B ∈ B(L ,H ) be given
by (3.7). If dimN (A∗) ≤ dimN (B) and AB is regular, then the following condi-
tions are equivalent:

(i) (AB){1} ⊆ B{1}A{1},

(ii) For any (A1B1)
(1) ∈ (A1B1){1} and Z2 ∈ B(N (A∗),R(B∗)), there exist

operators W3 ∈ B(R(A),N (B∗)) with R(I − A2W3) ⊆ R(A1) and W4 ∈
B(N (A∗), N (B∗)) such that

X ′ =
[
B1(A1B1)

(1) B1Z2

W3 W4

]
:
[

R(A)

N (A∗)

]
→

[
R(B)

N (B∗)

]
(3.17)

is left invertible,
(iii) For any (A1B1)

(1) ∈ (A1B1){1} and Z2 ∈ B(N (A∗),R(B∗)), there exists
W3 ∈ B(R(A),N (B∗)) withR(I − A2W3) ⊆ R(A1) such that at least one
of the following two conditions is satisfied

(1) N (W ∗
3 | (B1(A1B1)

(1))∗; N (A∗)) contains a non-compact operator
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(2) X0 =
[
B1(A1B1)

(1) B1Z2

W3 0

]
is a left-Fredholm operator and

n(X0) ≤ d(W3) + dim
(
R(W ∗

3 ) ∩ R
(
((B1(A1B1)

(1))∗|N ((B1Z2)∗)
))

.

Proof Condition (i) states that for any (AB)(1) ∈ (AB){1} there exist A(1) ∈ A{1}
and B(1) ∈ B{1} such that

(AB)(1) = B(1)A(1)

which is using Lemma 3.5, equivalent with the fact that for any (A1B1)
(1) ∈

(A1B1){1}, Z2 ∈ B(N (A∗),R(B∗)), Z3 ∈ B(R(A),N (B)) and Z4 ∈ B(N
(A∗), N (B)), there exist Y2 ∈ B(N (B∗),R(B∗)), Y3 ∈ B(R(B),N (B)), Y4 ∈
B(N (B∗), N (B)) and X =

[
X1 X2

X3 X4

]
:

[
R(A)

N (A∗)

]
→

[
R(B)

N (B∗)

]
satisfying

(3.10) such that

[
(A1B1)

(1) Z2

Z3 Z4

]
=

[
B−1
1 Y2
Y3 Y4

] [
X1 X2

X3 X4

]
,

i.e.,

[
(A1B1)

(1) Z2
] = [

B−1
1 Y2

]
X (3.18)[

Z3 Z4
] = [

Y3 Y4
]
X. (3.19)

In general for arbitrary but fixed Y2 the Eq. (3.18) is solvable for X and the set of the
solutions is given by

S =
{[

B1

0

] [
(A1B1)

(1) Z2
] +

(
I −

[
B1

0

] [
B−1
1 Y2

])
W :

W ∈ B(K ,H )}
=

{[
B1(A1B1)

(1) − B1Y2W3 B1Z2 − B1Y2W4

W3 W4

]
: (3.20)

[
W1 W2

W3 W4

]
:
[

R(A)

N (A∗)

]
→

[
R(B)

N (B∗)

]}
.

Thus (i) is equivalent with the existence of at least one X ∈ S ∩ A{1} for
which the Eq. (3.19) is solvable for

[
Y3 Y4

]
. That is (i) holds if and only if for

any (A1B1)
(1) ∈ (A1B1){1}, Z2 ∈ B(N (A∗),R(B∗)), Z3 ∈ B(R(A),N (B))

and Z4 ∈ B(N (A∗), N (B)) there exist operators W3 ∈ B(R(A),N (B∗)),
W4 ∈ B(N (A∗),N (B∗)) and Y2 ∈ B(N (B∗),R(B∗)) such that

K1 =
[
B1(A1B1)

(1) − B1Y2W3

W3

]
is a right inverse of

[
A1 A2

]
and the following

system

http://dx.doi.org/10.1007/978-981-10-6349-7_3
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Z3 = [
Y3 Y4

]
K1 (3.21)

Z4 = [
Y3 Y4

]
K2, (3.22)

is solvable for
[
Y3 Y4

]
, where K2 =

[
B1Z2 − B1Y2W4

W4

]
.

This is the reformulation of the condition (i) that we will use in proving the
implication (i) ⇒ (ii).

(i) ⇒ (ii): Let (A1B1)
(1) ∈ (A1B1){1} and Z2 ∈ B(N (A∗),R(B∗)). Tak-

ing Z3 = 0 and a left invertible Z4 ∈ B(N (A∗),N (B)) (such Z4 exists
since dimN (A∗) ≤ dimN (B)), the condition (i) yields an operator

[
K1 K2

]
as

described above. Since the Eqs. (3.21) and (3.22) have a common solution and K1 is
regular, we get that

Z4 = W (I − K1K
(1)
1 )K2,

for some W ∈ B(H ,N (B)) and some (any) K (1)
1 . Left invertibility of Z4 implies

left invertibility of T = (I − K1K
(1)
1 )K2 which, given that K1 is left invertible,

implies that X = [
K1 K2

]
is a left invertible operator by Lemma 3.6. It can easily

be checked that X is left invertible if and only if

X ′ =
[
B1(A1B1)

(1) B1Z2

W3 W4

]

is left invertible.
Finally,

[
A1 A2

]
K1 = I means just that

A1B1Y2W3 = A2W3 − (
I − (A1B1)(A1B1)

(1)
)

which upon multiplication from the left by I − (A1B1)(A1B1)
(1) gives

(
I − (A1B1)(A1B1)

(1)
)
A2W3 = I − (A1B1)(A1B1)

(1),

i.e.,R(I − A2W3) ⊆ R(A1B1) = R(A1).
(ii) ⇒ (i): Let (A1B1)

(1) ∈ (A1B1){1}, Z2 ∈ B(N (A∗),R(B∗)), Z3 ∈
B(R(A),N (B)) and Z4 ∈ B(N (A∗), N (B)) be arbitrary. By our assumption,
there are operatorsW3 andW4 acting between appropriate spaces such that X ′ given
by (3.17) is left invertible and R(I − A2W3) ⊆ R(A1B1). The latter condition
implies that for Y2 = (A1B1)

(1)A2 the operator

X =
[
B1(A1B1)

(1) − B1Y2W3 B1Z2 − B1Y2W4

W3 W4

]
, (3.23)
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is an inner inverse of A. Also X ∈ S so (3.18) is satisfied. As before, left invertibility
of X ′ implies left invertibility of X , so the Eq. (3.19) is solvable for

[
Y3 Y4

]
. Thus[

(A1B1)
(1) Z2

L3 Z4

]
∈ B{1}A{1}.

(ii) ⇔ (iii): This follows from Corollary 3.1. �
The following lemma of technical character will be needed later.

Lemma 3.7 Let

D = [
A1 A2

] :
[
H1

H2

]
→ H3

be a right invertible operator such that A1 has closed range. Suppose H2 = M ⊕
N (A2) and H3 = R(A1) ⊕ N , withM and N closed, and let

A2 =
[
A

′
2 0

A
′′
2 0

]
:
[

M
N (A2)

]
→

[
R(A1)

N

]

(i) An operator W : H3 → H2 satisfies R(I − A2W ) ⊆ R(A1) if and only if it
has a representation

W =
[
W1 W2

W3 W4

]
:
[
R(A1)

N

]
→

[
M

N (A2)

]
(3.24)

where A
′′
2W1 = 0 and A

′′
2W2 = I . There is at least one such operator.

(ii) dimN ≤ dimM .

Proof (i) Suppose W is given by (3.24). From

I − A2W =
[
I − A

′
2W1 −A

′
2W2

−A
′′
2W1 I − A

′′
2W2

]
:
[
R(A1)

N

]
→

[
R(A1)

N

]

we see that R(I − A2W ) ⊆ R(A1) holds if and only if A
′′
2W1 = 0 and A

′′
2W2 = I .

One such operator is obtained by taking W = X2 where

[
X1

H2

]
: H3 →

[
H1

H2

]

is any right inverse of D.
(ii) The inequality follows from the fact that the existence of an operator W as in

(i) implies that A
′′
2 : M → N is right invertible. It can also be trivially seen to hold

true directly, without any recourse to (i). �
The following theorem gives necessary and sufficient conditions for the inclusion

(AB){1} ⊆ B{1}A{1} to hold under the additional assumption that dimN (A∗) ≤
dimN (B). As we will explain later, the main result is practically a direct conse-
quence of it.



68 3 Completions of Operator Matrices and Generalized Inverses

Theorem 3.8 Let regular operators A ∈ B(H ,K ) and B ∈ B(L ,H ) be given
by (3.7). IfdimN (A∗) ≤ dimN (B)and AB is regular, then the following conditions
are equivalent:
(i) (AB){1} ⊆ B{1}A{1},
(ii) One of the following conditions is satisfied:

(a) dimN (B∗) < ∞ and dimN (A∗
1) + dimN (A∗) ≤ dimN (B∗)

(b) dimN (B∗) = ∞ and dimN (A∗) ≤ dimN (A
′′
2) + dimN (A2),

where A
′′
2 = PN (A∗

1)
A2|R(A∗

2).

Proof (i) ⇒ (ii): We distinguish two cases:
Case 1. dimN (B∗) < ∞. Using Theorems 3.7 and 3.4 we see that

dimN
( [

B1(A1B1)
† B1Z2

] )
≤ dimN (B∗),

for any operator Z2 which belongs to B(N (A∗),R(B∗)), since by our
assumption there always are W3 ∈ B(R(A),N (B∗)) and W4 ∈ B(N (A∗),
N (B∗)) such that X ′ is left invertible. In particular, for Z2 = 0 we have that

N
( [

B1(A1B1)
(1) B1Z2

] )
= N (A∗

1) ⊕ N (A∗), hence dimN (A∗
1) + dim

N (A∗) ≤ dimN (B∗). Thus (a) holds.
Case 2. dimN (B∗) = ∞. Taking Z2 = 0 and (A1B1)

(1) = (A1B1)
† we obtain

an operator W3 such that R(I − A2W3) ⊆ R(A1) for which one of the conditions
(1) and (2) from (iii) of Theorem 3.7 is satisfied. From Lemma 3.7, we know that

W3 =
[
L J
K T

]
:
[
R(A1)

N (A∗
1)

]
→

[
R(A∗

2)

N (A2)

]
, (3.25)

where A
′′
2L = 0, A

′′
2 J = I and

A2 =
[
A

′
2 0

A
′′
2 0

]
:
[
R(A∗

2)

N (A2)

]
→

[
R(A1)

N (A∗
1)

]
.

IfN (W ∗
3 | (B1(A1B1)

†)∗) contains a non-compact operator, then there is a (closed)
infinite dimensional subspace M ofN (B∗) such that

R
(
W ∗

3 |M
) ⊆ R

(
(B1(A1B1)

†)∗
) = R(A1). (3.26)

From (3.26) it follows that M ⊆ N
([

J ∗ T ∗ ])
. Now

dimN
([

J ∗ T ∗ ]) ≤ dimN (J ∗) + dimN (A2) = dimN (A
′′
2) + dimN (A2),

sincedimN (J ∗) = dimN (A
′′
2), given that J is a right inverse of A

′′
2, so dimN (A

′′
2)+

dimN (A2) = ∞. Thus (b) holds.
Suppose the condition (2) from (iii) of Theorem 3.7 holds. We have
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R
(
((B1(A1B1)

†)∗|N ((B1Z2)∗)
) = R(A1)

and also

d(W3) = n

([
L∗ K ∗ ] |

N
([
J ∗ T ∗ ])

)

and

R(W ∗
3 ) ∩ R

(
((B1(A1B1)

†)∗|N ((B1Z2)∗)
) = R

([
L∗ K ∗ ] |

N
([
J ∗ T ∗ ])

)
.

The inclusion R(I − A2W3) ⊆ R(A1) implies that for Y2 = (A1B1)
(1)A2 the first

column of the operator X given by (3.23) is left invertible. Thus the first column
of the operator X0 is also left invertible so N (X0) = N (A∗). Hence n(A∗) ≤
n

([
J ∗ T ∗ ])

. Now using A
′′
2 J = I we get

n
([

J ∗ T ∗ ]) = n(J ∗) + n(T ∗) + dim(R(J ∗) ∩ R(T ∗))

= dimN (A
′′
2) + dimN (A2).

Again, (b) holds.
We now turn to establishing the implication (ii) ⇒ (i).
(a) ⇒ (i): We will show that condition (ii) from Theorem 3.7 is satisfied. Let

(A1B1)
(1) ∈ (A1B1){1} and Z2 ∈ B(N (A∗),R(B∗)) be given.

By Lemma 3.7, we can fix a right inverse J : N (A∗
1) → R(A∗

2) of A
′′
2 =

PN (A∗
1)
A2|R(A∗

2). Consider

W3 =
[
J 0
0 0

]
:
[
N (A∗

1)

R(A1)

]
→

[
R(A∗

2)

N (A2)

]
.

UsingLemma3.7,we have thatR(I−A2W3) ⊆ R(A1). PutM = R(W3) = R(J ).
Since J is left invertible, dimM = dimN (A∗

1). Since dimN (A∗
1)+dimN (A∗) ≤

dimN (B∗) < ∞ it follows that dimN (A∗) ≤ dimM⊥, where M⊥ is the
orthogonal complement of M in N (B∗). Hence there is a left invertible W4 ∈
B(N (A∗),N (B∗)) such that R(W4) ⊆ M⊥. We will show that X ′ given by
(3.17) is left invertible.

To see that X ′ has closed range suppose xn ∈ R(A) and yn ∈ N (A∗) for n ∈ N

are such that

B1(A1B1)
(1)xn + B1Z2yn → u, W3xn + W4yn → v.
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Since R(W4) ⊆ R(W3)
⊥ and W4 is left invertible, it follows that yn → y for some

y ∈ N (A∗). Using left invertibility of
[
B1(A1B1)

(1)

W3

]
, we get that xn → x for some

x ∈ R(A). Hence

[
u
v

]
∈ R(X ′).

We now show that X ′ is injective. If
[
x
y

]
∈ N (X ′), then

B1(A1B1)
(1)x + B1Z2y = 0

W3x + W4y = 0.

Since M = R(W3) and R(W4) ⊆ M⊥ it follows that W3x = W4y = 0. The
injectivity of W4 now gives y = 0 and so B1(A1B1)

(1)x = 0. The inclusion R(I −
A2W3) ⊆ R(A1) = R(A1B1) implies

A1B1(A1B1)
(1)(I − A2W3) = I − A2W3

yielding x = 0.
(b) ⇒ (i): Let (A1B1)

(1) ∈ (A1B1){1} and Z2 ∈ B(N (A∗),R(B∗)) be given.
By Lemma 3.7 we have R(I − A2W3) ⊆ R(A1) for the operator W3 defined by
(3.25) where L = 0, K = 0 and T = 0 and J : N (A∗

1) → R(A∗
2) is any right

inverse of A
′′
2 = PN (A∗

1)
A2|R(A∗

2) (Lemma 3.7 guaranties that there is one).

Since J is a right inverse of A
′′
2 we have that R(J ) ⊕ N

(
A

′′
2

) = R
(
A∗
2

)
, so

dimR(J )⊥ = dimN (A
′′
2) + dimN (A2), where R(J )⊥ is the orthogonal comple-

ment of R(J ) in N (B∗). Hence there is a left invertible W4 : N (A∗) → N (B∗)
such that R(W4) ⊆ R(J )⊥. That the operator X ′ given by (3.17) is left invertible
can now be proved exactly as in (a) ⇒ (i).

We have thus shown that (ii) of Theorem 3.7 holds. �

Astandard argument allows us to easily turn the previous theorem into one dealing
with the remaining case dimN (B) ≤ dimN (A∗).

Theorem 3.9 Let regular operators A ∈ B(H ,K ) and B ∈ B(L ,H ) be given
by (3.7). IfdimN (B) ≤ dimN (A∗)and AB is regular, then the following conditions
are equivalent:
(i) (AB){1} ⊆ B{1}A{1},
(ii) One of the following conditions is satisfied:

(a) dimN (A) < ∞ and dimN (B∗
1 ) + dimN (B) ≤ dimN (A)

(b) dimN (A) = ∞ and dimN (B) ≤ dimN (B
′′
2) + dimN (B2),

where B1 = PR(B∗)B∗|R(A∗), B2 = PR(B∗)B∗|N (A) and B
′′
2 = PN (B∗

1 )B2|R(B∗
2 ).

Proof Since (i) is equivalent with

(B∗A∗){1} ⊆ A∗{1}B∗{1}, (3.27)
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we can apply Theorem 3.8 to the operators B∗ and A∗ instead of A and B,
respectively. �

Combining Theorems 3.8 and 3.9 we are finally in the position to state the main
result of this section.

Theorem 3.10 Let regular operators A ∈ B(H ,K ) and B ∈ B(L ,H ) be
given by (3.7) and let AB be regular. Then the following conditions are equivalent:
(i) (AB){1} ⊆ B{1}A{1},
(ii) One of the following conditions is satisfied:

(a) dimN (A∗) ≤ dimN (B), dimN (A∗
1) + dimN (A∗) ≤ dimN (B∗) and

dimN (B∗) < ∞,
(b) dimN (A∗) ≤ dimN (B), dimN (A∗) ≤ dimN (A

′′
2) + dimN (A2) and

dimN (B∗) = ∞,
(c) dimN (B) ≤ dimN (A∗), dimN (B∗

1 ) + dimN (B) ≤ dimN (A) and
dimN (A) < ∞,
(d) dimN (B) ≤ dimN (A∗), dimN (B) ≤ dimN (B

′′
2) + dimN (B2) and

dimN (A) = ∞,

where A
′′
2 = PN (A∗

1)
A2|R(A∗

2), B1 = PR(B∗)B∗|R(A∗), B2 = PR(B∗)B∗|N (A) and

B
′′
2 = PN (B∗

1 )B2|R(B∗
2 ).

As a corollary of the previous theorem, in the case of matrices we have the
following already known result:

Corollary 3.2 Let A ∈ C
m×n and B ∈ C

n×p. The following conditions are equiva-
lent:
(i) (AB){1} ⊆ B{1}A{1},
(ii) r(A) + r(B) − n ≤ r(AB) − min{m − r(A), p − r(B)}.

3.3 Applications of Completions of Operator Matrices
to Invertibility of Linear Combination of Operators

In this section for given operators A, B ∈ B(H ), we consider the problem of
invertibility of the linear combination αA + βB, α, β ∈ C \ {0} using the results
concerning the invertibility of an upper triangular operator matrix of the form MC .
The motivation behind this section was the paper of G. Hai et al. [8] where the
invertibility of the linear combination αA + βB, was considered in the case when
A, B ∈ B(H ) are regular operators and α, β ∈ C \ {0} but also some recently
published papers (see [16–20])which considered the independence of the invertibility
of the linear combination αA+βB in the cases, when A, B ∈ B(H ) are projectors
or orthogonal projectors.

Here, we will consider the general case, without the assumptions that A, B ∈
B(H ) are closed range operators or that they belong to any particular classes of
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operators. As corollaries of our main result, we obtain results for certain special
classes of operators. Hence, we completely solve the problem of invertibility of the
linear combination αA + βB in each of the following cases:

• if A, B ∈ B(H ) are regular operators,
• if A, B ∈ B(H ) are projectors or orthogonal projectors,
• ifR(A) ∩ R(B) = {0}.
• ifR

(
APN (B)

) = R(A)

• if either one of A, B ∈ B(H ) is injective.

The following well-known lemma will be used throughout this section.

Lemma 3.8 Let M and N be subspaces of a Hilbert space H . Then

(M + N )⊥ = M⊥ ∩ N ⊥.

In the following theorem we will reduce the problem of invertibility of the linear
combination αA + βB to an equivalent one which concerns the invertibility of a
certain upper triangular operator matrix. Of course, instead of the linear combination
one could have simply considered the sum A + B throughout the sequel.

Theorem 3.11 Let A, B ∈ B(H ) be given operators and α, β ∈ C \ {0}. Then
αA + βB is invertible if and only if the following conditions hold:

(i) N (A) ∩ N (B) = {0},R(A) + R(B) = H ,
(ii) A|N (B) has a closed range,
(iii) PS ,R(A|N (B)) (αA + βB) |T is an injective operator with range S ,

whereR(A) = R(A|N (B))⊕S ,T = B−1
(
R(A)

)
∩P andH = N (B)⊕P .

Proof Let H = N (B) ⊕ P = R(A) ⊕ Q be decompositions of the space H .
With respect to these decompositions the given operators A, B ∈ B(H ) have the
following representations:

A =
[
A1 A2

0 0

]
:
[
N (B)

P

]
→

[
R(A)

Q

]
, (3.28)

B =
[
0 B1

0 B2

]
:
[
N (B)

P

]
→

[
R(A)

Q

]
. (3.29)

Take arbitrary α, β ∈ C \ {0}. Using the above decompositions of A, B ∈ B(H ), it
follows that the linear combination αA+ βB is invertible if and only if the operator
matrix [

αA1 αA2 + βB1

0 βB2

]
:
[
N (B)

P

]
→

[
R(A)

Q

]
(3.30)
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is invertible. Using Theorem 3.2 we have that this holds if and only if the following
three conditions are satisfied:

(i) αA1 is left invertible
(ii) βB2 is right invertible
(iii) PS ,R(A1) (αA2 + βB1) |N (B2) is an injective operator with range S , where

R(A) = R(A1) ⊕ S .

Evidently, (i) holds if and only if N (A) ∩ N (B) = {0} and R(A|N (B)) is closed.
Also, (ii) is satisfied if and only if R(PQ,R(A)B) = Q. Since

R(PQ,R(A)B) = Q ⇔ Q ⊆ R(A) + R(B) ⇔ R(A) + R(B) = H

we have that (ii) is equivalent withR(A) + R(B) = H .
To discuss the third condition notice that

N (B2) = N
(
PQ,R(A)B

) ∩ P = B−1
(
R(A)

)
∩ P

and let T = B−1
(
R(A)

)
∩ P . Evidently,

N
(
PS ,R(A1) (αA2 + βB1) |T

) = N
(
PS ,R(A1) (αA + βB) |T

)

and
R

(
PS ,R(A1) (αA2 + βB1) |T

) = R
(
PS ,R(A1) (αA + βB) |T

)
.

Hence, we can conclude that αA + βB is invertible if and only if the following
conditions hold:

(i) N (A) ∩ N (B) = {0},R(A) + R(B) = H ,
(ii) APN (B) has closed range,
(iii) PS ,R(A1) (αA + βB) |T is an injective operator with range S .

Notice that the second condition in (i), R(A) + R(B) = H , can be replaced by
R(A) + R(B) = H : Suppose that (i) − (iii) are satisfied. Since

S = R(PS ,R(A1) (αA + βB) |T ),

we have that

S ⊆ R ((αA + βB) |T ) + R(A1) ⊆ R(A) + R(B).

Now, R(A) = R(A1) ⊕ S implies that R(A) ⊆ R(A) + R(B). Hence, R(A) +
R(B) = H . (Also, directly from the invertibility of αA + βB, we can conclude
that R(A) + R(B) = H ). �
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In the special case, when S is the orthogonal complement of R(A|N (B)) =
R(APN (B)) in R(A) and P = N (B)⊥, applying Theorem 3.11 we get the fol-
lowing result:

Theorem 3.12 Let A, B ∈ B(H ) be given operators and α, β ∈ C \ {0}. Then
αA + βB is invertible if and only if the following conditions hold:

(i) N (A) ∩ N (B) = {0},R(A) + R(B) = H ,
(ii) A|N (B) has a closed range,
(iii) PS (αA + βB) |T is an injective operator with range S ,

where S = R
(
APN (B)

)⊥ ∩ R(A) and T = N
(
PR(A)⊥ B

) ∩ N (B)⊥.

Evidently from the theorem given above, we can conclude that the invertibility of
the linear combination αA + βB is possible for some constants α, β ∈ C \ {0} only
if

dimN
(
PR(A)⊥ B

) ∩ N (B)⊥ = dimR
(
APN (B)

)⊥ ∩ R(A),

so we get the following result:

Corollary 3.3 Let A, B ∈ B(H ) be given operators. If

dimN
(
PR(A)⊥ B

) ∩ N (B)⊥ �= dimR
(
APN (B)

)⊥ ∩ R(A),

then the linear combination αA + βB is not invertible for any α, β ∈ C \ {0}.
Now we will reconsider the condition (iii) from Theorem 3.12, which says that
R (PS (αA + βB) |T ) = S and N (PS (αA + βB) |T ) = {0}. Suppose that
A, B ∈ B(H ) are given by (3.28) and (3.29), respectively, whereS is the orthog-
onal complement of R(A|N (B)) = R(APN (B)) in R(A), T = N

(
PR(A)⊥ B

) ∩
N (B)⊥ and P = N (B)⊥. The first condition is equivalent with

R(A) = R(APN (B)) + R(A) ∩ R
(
(αA + βB) PN (B)⊥

)
, (3.31)

sinceR ((αA + βB) |T ) = R(A)∩R
(
(αA + βB) PN (B)⊥

)
. The second condition

from (iii),N (PS (αA + βB) |T ) = {0} is equivalent with

N (αA2 + βB1) ∩ N (B2) = {0},
R ((αA2 + βB1) |T ) ∩ R(APN (B)) = {0}. (3.32)

Evidently the first condition from (3.32) is equivalent with

N (αA + βB) ∩ N (B)⊥ = {0}

while the second one is equivalent with

R
(
(αA + βB) PN (B)⊥

) ∩ R(APN (B)) = {0}.
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Now, in view of the previous two conditions and (3.31), we can conclude that the
condition (iii) from Theorem 3.12 is equivalent with

R(A) = R(APN (B)) ⊕ R(A) ∩ R
(
(αA + βB) PN (B)⊥

)

and
N (αA + βB) ∩ N (B)⊥ = {0}

and we can formulate the following result:

Theorem 3.13 Let A, B ∈ B(H ) be given operators and α, β ∈ C \ {0}. Then the
operator αA + βB is invertible if and only if the following conditions hold:

(i) N (A) ∩ N (B) = {0},R(A) + R(B) = H ,
(ii) APN (B) has closed range,
(iii) R(A) = R(APN (B)) ⊕ R(A) ∩ R

(
(αA + βB) PN (B)⊥

)
, N (αA + βB) ∩

N (B)⊥ = {0}.
In Theorems 3.11 and 3.12, the problem of invertibility of a linear combination of
two given operators is reduced to one in which yet another linear combination is
required to be injective and to have a prescribed range, which at first glance might
not strike the reader as much of an achievement. However, the conditions we have
obtained (those given in Theorems 3.11 and 3.12) lend themselves for applications
in further analysis of the initial problem for many special classes of operators where
they will lead to its complete solution.

Since the condition that αA + βB be nonsingular is symmetrical in A and B, we
can obtain new variants of the necessary and sufficient conditions in Theorems 3.11,
3.12 and 3.13 by interchanging the operators A and B in them.

Now, will be the focus of our attention on invertibility of linear combinations for
some special classes of operators using the above mentioned results:
(1) The problem of invertibility of αA + βB, in the case when A, B ∈ B(H ) are
regular operators and α, β ∈ C \ {0} was considered in [9].

Theorem 3.14 ([9]) Let A, B ∈ B(H ) be given operators with closed ranges and
α, β ∈ C \ {0}. The operator αA + βB is invertible if and only if the following
conditions hold:

(i′) N (A) ∩ N (B) = {0},R(A)⊥ ∩ R(B)⊥ = {0},
(ii′) Both A†A(I − B†B) and (I − AA†)BB† are closed range operators,
(iii′) P ′

L

(
αAB†B + βAA†B

) |M is an invertible,

where L = (A∗)† (R(A∗) ∩ R(B∗)), M = B† (R(A) ∩ R(B)) and P ′
L ∈

B(H ,L ) is defined by P ′
L x = PL x, x ∈ H .

As a corollary of Theorem 3.12 we get some different conditions for the invert-
ibility of αA + βB than the ones given in [9]. First give the following lemma.
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Lemma 3.9 Let A, B ∈ B(H ) be given operators. If A and B have closed ranges
then

(i) N
(
PR(A)⊥ B

) ∩ N (B)⊥ = B−1 (R(A)) ∩ N (B)⊥ = B† (R(A) ∩ R(B))

(ii) R(A) ∩ R
(
APN (B)

)⊥ = (A∗)† (R(A∗) ∩ R(B∗))

Proof (i) The first equality is evident. Let x ∈ B−1 (R(A)) ∩ N (B)⊥. Then
Bx ∈ R(A) and x = B†Bx . So, x ∈ B† (R(A) ∩ R(B)). Now, suppose that
x ∈ B† (R(A) ∩ R(B)). Then for some s, t ∈ H we have that x = B†Bt = B†As
and Bt = As. Evidently, x ∈ R(B∗) = N (B)⊥ and Bx = Bt = As ∈ R(A).
(ii) Let y ∈ R(A) ∩ R

(
APN (B)

)⊥
. Then y = AA†y and A∗y = B†BA∗y. Hence,

A∗y = B†BA∗y ∈ R(A∗) ∩ R(B∗). Now

y = (A†)∗A∗y = (A†)∗B†BA∗y.

Now, suppose that x ∈ (A∗)† (R(A∗) ∩ R(B∗)). Then for some s, t ∈ H we have
that y = (A†)∗A∗t = (A†)∗B∗s and A∗t = B∗s. Evidently, y ∈ R(A) which
implies y = AA†y. Now, we will prove that y ∈ R

(
APN (B)

)⊥ = N (PN (B)A∗):

B†BA∗y = B†BA∗(A†)∗B∗s = B†BA†AB∗s

= B†BA†AA∗t = B†BB∗s = B∗s
= A∗t = A∗y.

�

Now, in the case when A, B ∈ B(H ) are closed range operators, from Theorem
3.12 we get the following:

Theorem 3.15 Let A, B ∈ B(H ) be given closed range operators and α, β ∈
C \ {0}. Then αA + βB is invertible if and only if the following conditions hold:

(i) N (A) ∩ N (B) = {0},R(A) + R(B) = H ,
(ii) A|N (B) has a closed range,
(iii) PS ,R(A|N (B)) (αA + βB) |T is an injective operator with range S ,

where S = (A∗)† (R(A∗) ∩ R(B∗)) and T = B† (R(A) ∩ R(B)).

(2) The problem of invertibility of projections (idempotents) has been considered in
several papers. Coming from that line of research we can single out the result that the
invertibility of any linear combination αP + βQ, where α, β ∈ C \ {0}, α + β �= 0,
is in fact equivalent to the invertibility of P + Q which means that it is independent
of the choice of the scalars α and β. For the first time, this was realized by J.K.
Baksalary et al. [16] for the finite-dimesional case who proved that

αP + βQ is nonsing. ⇔ R(P(I − Q)) ∩R(Q(I − P)) = N (P) ∩N (Q) = {0}
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and later generalized byDu et al. [21] to the case of idempotent operators on aHilbert
space and finally by Koliha et al. [19] to the Banach algebra case, without giving any
necessary and sufficient conditions for the invertibility of αP + βQ. The necessary
and sufficient conditions for the invertibility of a linear combination of projections
P and Q on a Hilbert space are given later in another paper by Koliha et al. [17] (as
well as for the elements of a unital ring):

Theorem 3.16 ([17]) Let P, Q ∈ B(H ) be projections on a Hilbert space H .
Then the following conditions are equivalent:

(i) P + Q is invertible.
(ii) The range of P + Q is closed and

R(P) ∩ R(Q(I − P)) = N (P) ∩ N (Q) = {0},

R(P∗) ∩ R(Q∗(I − P∗)) = N (P∗) ∩ N (Q∗) = {0}.

In the case when P, Q ∈ B(H ) are projections, applying Theorem 3.11 to the
decompositions H = N (Q) ⊕ R(Q) = R(P) ⊕ N (P) we get the main result
from [21], which says that the invertibility of the linear combination αP + βQ is
independent of the choice of the scalars α, β ∈ C, but additionally we also obtain
necessary and sufficient conditions for the invertibility of the linear combination
αP + βQ which are different from those given in Theorem 3.16.

Theorem 3.17 Let P, Q ∈ B(H ) be given projections and α, β ∈ C\{0}, α+β �=
0. Then αP + βQ is an invertible operator if and only if the following conditions
hold:

(i) N (P) ∩ N (Q) = {0},R(P) + R(Q) = H ,
(ii) R(P) = R(P) ∩ R(Q) ⊕ R(P|N (Q)).

Proof Indeed, in this case the subspace T defined in Theorem 3.11 by T =
Q−1 (R(P)) ∩ R(Q) is equal to T = R(P) ∩ R(Q). Hence, for any x ∈ T ,
we have that (αP +βQ)x = (α +β)x which implies that the injectivity of operator
PS ,R(P|N (Q)) (αP + βQ) |T is equivalent withR(P|N (Q)) ∩ T = {0}. i.e.,

R(P|N (Q)) ∩ R(Q) = {0}. (3.33)

Also, operator PS ,R(P|N (Q)) (αP + βQ) |T has range S if and only if S ⊆ T +
R(P|N (Q)), which is equivalent withR(P) = R(P)∩R(Q)+R(P|N (Q)). Now,
by (3.33), we have that

R(P) = R(P) ∩ R(Q) ⊕ R(P|N (Q)). (3.34)

Using (3.34), the fact that the intersection of two operator ranges is an operator
range and Theorem 2.3 [22], we conclude thatR(P|N (Q)) is closed. Now, the proof
follows by Theorem 3.11. �

http://dx.doi.org/10.1007/978-981-10-6349-7_2
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Obviously, from Theorem 3.17 we get the following corollary:

Corollary 3.4 Let P, Q ∈ B(H ) be given projections and α, β ∈ C\{0}, α+β �=
0. Then the invertibility of the linear combination αP + βQ is independent of the
choice of the scalars α, β ∈ C \ {0}, α + β �= 0.

(3) The problem of invertibility of the linear combination αP + βQ when P and
Q are orthogonal projections has also received a lot of attention. In [20] Buckholtz
considers the special case when α + β = 1 and gives conditions under which the
difference of projections on aHilbert space is invertible, aswell as an explicit formula
for its inverse. In the paper of Koliha et al. [17], the invertibility of the sum of two
orthogonal projections was considered which is, as we already know, equivalent with
the invertibility of the linear combination αP + βQ:

Theorem 3.18 ([17]) Let P, Q ∈ B(H ) be orthogonal projections on a Hilbert
space H . Then the following conditions are equivalent:

(i) P + Q is invertible,
(ii) The range of P + Q is closed and

R(P) ∩ R(Q(I − P)) = N (P) ∩ N (Q) = {0}

Here, using Theorem 3.11 we obtain the following result:

Theorem 3.19 Let P, Q ∈ B(H ) be given orthogonal projections and α, β ∈
C \ {0}, α + β �= 0. Then αP + βQ is an invertible operator if and only ifR(P) +
R(Q) = H .

Proof Notice that in the case when P, Q ∈ B(H ) are orthogonal projections, the
subspacesS and T defined in Theorem 3.12 byS = R

(
PPN (Q)

)⊥ ∩R(P) and
T = N

(
PR(P)⊥ Q

) ∩N (Q)⊥ coincide andS = T = R(P) ∩R(Q). Indeed, if
P, Q ∈ B(H ) are orthogonal projections, then

S = R
(
PPN (Q)

)⊥ ∩ R(P) = R(P(I − Q))⊥ ∩ R(P)

= N ((I − Q)P) ∩ R(P) = R(P) ∩ R(Q)

and

T = N
(
PR(P)⊥ Q

) ∩ N (Q)⊥ = N ((I − P)Q) ∩ R(Q)

= R(P) ∩ R(Q).

Hence, for any x ∈ T , we have that (αP+βQ)x = (α+β)x and PS (αP+βQ)x =
(α + β)x . So, the operator PS (αP + βQ) |T from item (iii) of Theorem 3.12 is
an injective operator with range S if and only if α + β �= 0. Also, the condition
R(P) + R(Q) = H implies N (P) ∩ N (Q) = {0}. Now, from Theorem 3.12
we can conclude that in the case when P, Q ∈ B(H ) are orthogonal projections,
αP + βQ is an invertible operator if and only if the following conditions hold:
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(i) R(P) + R(Q) = H ,
(ii) P|N (Q) has closed range.

Notice that the condition (ii) that P|N (Q) has closed range can be replaced by
the condition that R(P(I − Q)) is closed. By Proposition 2.4 [23], we have that
R(P(I − Q)) is closed if and only ifR(P + Q) is closed, which is by Corollary 3
[22] equivalent with the fact that R(P) + R(Q) is closed. Since the condition (i)
guarantees closedness ofR(P)+R(Q), we conclude that condition (i) is necessary
and sufficient for the invertibility of αP + βQ. �.

If we compare Theorem 3.18 from [17] and our Theorem 3.19, it is evident that the
condition R(P) ∩ R(Q(I − P)) = {0} is superfluous. In the following lemma we
will give an explanation for that:

Lemma 3.10 Let P, Q ∈ B(H ) be orthogonal projections on a Hilbert spaceH .
Then

R(P) ∩ R(Q(I − P)) = {0}.

Proof First, let us observe that

R(P) ∩ R(Q(I − P)) = R(P) ∩ R(Q(I − P)) ∩ R(Q).

So, it is sufficient to prove thatR(P)∩R(Q(I − P))∩R(Q) = {0}. It can be easy
checked that

R(Q(I − P))⊥ ∩ R(Q) = N ((I − P)Q) ∩ R(Q) = R(P) ∩ R(Q),

implying thatR(P)∩R(Q) ⊆ R(Q(I−P))⊥, i.e.,R(P)∩R(Q)∩R(Q(I−P)) =
{0}. �

(4) Now we will consider the invertibility of the linear combination αA + βB for
given operators A, B ∈ B(H ) in two special cases: whenR(A)∩R(B) = {0} and
when R

(
APN (B)

) = R(A). In both of these two cases, beside giving necessary
and sufficient conditions for the the invertibility of αA + βB, we will conclude that
the invertibility of the linear combination αA + βB is independent of the choice of
the scalars α, β ∈ C \ {0}.

In the special case when A, B ∈ B(H ) are such thatR(A)∩R(B) = {0} using
Theorem 3.12 we get the following:

Theorem 3.20 Let A, B ∈ B(H ) be given operators and α, β ∈ C\{0}. IfR(A)∩
R(B) = {0}, then the operator αA + βB is invertible if and only if

R(A) ⊕ R(B) = H , N (A) ⊕ N (B) = H . (3.35)

Proof Suppose that αA+ βB is invertible. By Theorem 3.12, we have thatR(A) ⊕
R(B) = H which by Theorem 2.3 [22] gives that R(A) and R(B) are closed.
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Now R(A) ∩ R(B) = {0} together with the fact that R(A) is closed implies that
T = N

(
PR(A)⊥ B

) ∩ N (B)⊥ = {0} which by the condition (iii) from Theorem

3.12 gives that S = R
(
APN (B)

)⊥ ∩ R(A) = {0}. Hence, R(A) = R(APN (B))

which implies that N (A)⊥ ⊆ N (B) + N (A). So, H = N (B) + N (A). By
the condition (i) of Theorem 3.12, we have that N (A) ∩ N (B) = {0}, so H =
N (B) ⊕ N (A). On the other hand suppose that (3.35) holds. Evidently, R(A)

and R(B) are closed and the first condition from Theorem 3.12 is satisfied. Also,
R(A) = A(H ) = A(N (A) ⊕ N (B)) = A(N (B)) = R(APN (B)), so (ii) of
Theorem 3.12 is satisfied. To conclude that (iii) of Theorem 3.12 is true, simply
notice that T = S = {0}. �

Similarly, we get the following:

Theorem 3.21 Let A, B ∈ B(H ) be given operators and α, β ∈ C \ {0}. If
R

(
APN (B)

) = R(A), then the operator αA + βB is invertible if and only if the
following conditions hold:

(i) N (A) ∩ N (B) = {0},R(A) ⊕ R(B) = H ,
(ii) APN (B) has closed range.

Proof If R
(
APN (B)

) = R(A), then for S defined in Theorem 3.11 we have that
S = {0}. So the condition (iii) fromTheorem3.11 is satisfied if and only ifT = {0},
i.e.,R(A) ∩ R(B) = {0}. Now, the proof follows directly from Theorem 3.11. �

Corollary 3.5 Let A, B ∈ B(H ) be given operators. If one of the conditions

R(A) ∩ R(B) = {0} and R
(
APN (B)

) = R(A) holds, then the invertibility of the
linear combinationαA+βB is independent of the choice of the scalarsα, β ∈ C\{0}.
(5) Now we will consider the case when either one of the operators A, B ∈ B(H )

is injective.
Since the condition αA + βB is nonsingular is symmetrical in A and B, let us

suppose that B ∈ B(H ) is injective:

Theorem 3.22 Let A, B ∈ B(H ) be given operators such that B is injective and
α, β ∈ C \ {0}. Then αA + βB is invertible if and only if the following conditions
hold:

(i) R(A) + R(B) = H ,
(ii) (αA + βB) |B−1(R(A)) is an injective operator with range R(A).

Considering some special classes of operators we have seen that the invertibility
of the linear combination αA + βB is independent of the choice of the scalars
α, β ∈ C \ {0}. Another instance of this phenomenon is provided by the following
result.

Theorem 3.23 Let A, B ∈ B(H ) be given operators and α, β ∈ C \ {0}. If there
exists a closed subspaceP such thatH = N (B)⊕P and A|P = 0 or PR(A)B =
0, then the invertibility of the linear combination αA + βB is independent of the
choice of the scalars.
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Proof Using the representations (3.28) and (3.29) of the operators A and B, and
the representation (3.30) of αA + βB, from Theorem 3.11 the desired conclusion is
immediately reached. �

3.4 Drazin Invertible Completion of an Upper Triangular
Operator Matrix

In this section we will consider the existence of a Drazin invertible completion of an
upper triangular operator matrix of the form

[
A ?
0 B

]
:
[
H
K

]
→

[
H
K

]
,

where A ∈ B(H ) and B ∈ B(K ) are given operators.
Throughout the sectionH ,K are infinite dimensional separable complexHilbert

spaces. For a given operator A ∈ B(H ,K ), we set n(A) = dimN (A) and
d(A) = dimR(A)⊥.

Let us recall that for A ∈ B(H ), the smallest nonnegative integer k such that
N (Ak+1) = N (Ak) (resp. R(Ak+1) = R(Ak)), if one exists, is called the ascent
(resp. descent) of the operator A and is denoted by asc(A) (resp. dsc(A)); if there is
no such integer k, the operator A is said to be of infinite ascent (resp. infinite descent),
which is abbreviated by asc(A) = ∞ (resp. dsc(A) = ∞). Also K (0, δ) = {λ ∈ C :
|λ| < δ} stands for the open disc with center 0 and radius δ.

An operator A ∈ B(H ) is left Drazin invertible if asc(A) < ∞ andR(Aasc(A)+1)

is closed while A ∈ B(H ) is right Drazin invertible if dsc(A) < ∞ andR(Adsc(A))

is closed.
The question of existence of Drazin invertible completions of the upper-triangular

operator matrix

MC =
[
A C
0 B

]
:
[
H
K

]
→

[
H
K

]
,

was addressed in [24] where some sufficient conditions were given but the proof of
the result presented there is not correct as it is explained in [25].

Theorem 3.24 ([23]) LetH andK be separable Hilbert spaces and A ∈ B(H )

and B ∈ B(K ) be given operators such that

(i) A is left Drazin invertible,
(ii) B is right Drazin invertible,
(iii) There exists a constant δ > 0 such that d(A − λ) = n(B − λ), for every

λ ∈ K (0, δ) \ {0}.
Then there exists an operator C ∈ B(K ,H ) such that MC is Drazin invertible.
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In order to give a correct proof of Theorem 3.24, we will first list some auxiliaries
results:

Two completely different proofs of the following lemma that will be extensively
used throughout the paper can be found in [26, 27]:

Lemma 3.11 For a Banach space X , a given nonnegative integer m and A ∈
B(X ), the following conditions are equivalent:

(i) dsc(A) ≤ m < ∞,
(ii) N (Am) + R(An) = X , for every n ∈ N,
(iii) N (Am) + R(An) = X , for some n ∈ N.

We will also need the following result which is proved in [27, 28].

Lemma 3.12 Let A ∈ B(X ). We have the following

(1) If dsc(A) = m < ∞, then there exists a constant δ > 0 such that for every
λ ∈ K (0, δ) \ {0}:

(i) dsc(A − λ) = d(A − λ) = 0,
(ii) n(A − λ) = dimN (A) ∩ R(Am).

(2) If asc(A) = m < ∞ and R(Am+k) is closed for some k ≥ 1, then there exists
a constant δ > 0 such that for every λ ∈ K (0, δ) \ {0}:

(i) asc(A − λ) = n(A − λ) = 0,
(ii) d(A − λ) = dim

(
R(Am)/R(Am+1)

) = dim (X /(R(A) + N (Am))).

The following technical lemmawill be usedmultiple times throughout this section.

Lemma 3.13 Suppose B ∈ B(K ) and p is a positive integer such that R(Bp) is
closed. If B is represented by

B =
[
0 B1

0 B2

]
:
[

N (B) ∩ R(Bp)

(N (B) ∩ R(Bp))⊥

]
→

[
N (B) ∩ R(Bp)

(N (B) ∩ R(Bp))⊥

]
, (3.36)

then B1 and B2 must satisfy the following two conditions:

(i) The restriction of B1B
p−1
2 on N (Bp

2 ) is onto (equivalently: the restriction of
B1 to the subspace R(Bp−1

2 ) ∩ N (B2) is onto)
(ii) R(Bp

2 ) ⊆ R(Bp),
(iii) R(Bp

2 ) ∩ N (B1) ∩ N (B2) = {0} (equivalently: the restriction of B1 to the
subspace R(Bp

2 ) ∩ N (B2) is injective).

Proof Put S := N (B) ∩ R(Bp). To see that (i) is true, notice that if y ∈ S

then

[
y
0

]
=

[
B1B

p−1
2 x

B p
2 x

]
for some x ∈ S ⊥. To see that (ii) is true, notice that

for any x ∈ S⊥ we have

[
0

Bp
2 x

]
=

[
B1B

p−1
2 x

B p
2 x

]
−

[
B1B

p−1
2 x
0

]
, and that by

(i) we know that

[
B1B

p−1
2 x
0

]
∈ R(Bp). Finally to show (iii), notice that if y ∈

R(Bp
2 ) ∩ N (B1) ∩ N (B2) then y ∈ S by (ii), and also y ∈ S ⊥, so y = 0. �
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The following is a key lemma in the proof of our Theorem 3.24. Suppose that
A ∈ B(H ) is a left Drazin invertible operator, B ∈ B(K ) is an operator with
finite descent and suppose in addition that there exists a constant δ > 0 such that
d(A − λ) = n(B − λ), for every λ ∈ K (0, δ) \ {0}. Note that if p is any integer
with p ≥ max{asc(A), dsc(B)}, then R(A) + N (Ap) = A−asc(A)[R(Aasc(A)+1)]
is a closed subspace of codimension equal to the dimension of the subspace
N (B) ∩ R(Bp), by Lemma 3.12. Thus we can fix an invertible operator J ∈
B(N (B) ∩ R(Bp), (R(A)+N (Ap))⊥). Indeed, ifN (B)∩R(Bp) is closed then
this is clear. If it is not, then it must be infinite dimensional and so must be the closed
subspace (R(A) +N (Ap))⊥. But thenN (B) ∩ R(Bp) and (R(A) +N (Ap))⊥)

are both infinite dimensional separable Hilbert spaces and as such are isomorphic to
one another.

Lemma 3.14 Let A ∈ B(H ), B ∈ B(K ) be given operators such that

(i) A is left Drazin invertible,
(ii) dsc(B) < ∞,
(iii) There exists a constant δ > 0 such that d(A − λ) = n(B − λ), for every

λ ∈ K (0, δ) \ {0}.
Let C ∈ B(K ,H ) be given by

C =
[
J 0
0 0

]
:
[

N (B) ∩ R(Bp)

(N (B) ∩ R(Bp))⊥

]
→

[
(R(A) + N (Ap))⊥
R(A) + N (Ap)

]
, (3.37)

where p ∈ N is such that p ≥ max{asc(A), dsc(B)} and J ∈ B(N (B) ∩ R(Bp),

(R(A) + N (Ap))⊥) is any invertible operator. The following are equivalent:

(i) dsc(MC) ≤ p,
(ii) for any x ∈ H and y ∈ K , there exist x ′ ∈ H and y′ ∈ K such that

Apx = Ap+1x ′ + ApCy′, (3.38)

and

y − By′ ∈ N (C) ∩ N (CB) ∩ ... ∩ N (CBp−1) ∩ N (Bp). (3.39)

(iii) K = R(B) +N (C) ∩N (CB) ∩N (CB2) ∩ · · · ∩N (CBp−1) ∩N (Bp).

Proof (i) ⇔ (ii) Since for any k ∈ N

Mk
C =

[
Ak Ak−1C + Ak−2CB + ... + ACBk−2 + CBk−1

0 Bk

]
:
[
H
K

]
→

[
H
K

]
,

it follows that dsc(MC) ≤ p if and only if for any x ∈ H and y ∈ K , there exist
x ′ ∈ H and y′ ∈ K such that
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Apx + Ap−1Cy + Ap−2CBy + ... + ACBp−2y + CBp−1y =
Ap+1x ′ + ApCy′ + Ap−1CBy′ + ... + ACBp−1y′ + CBpy′ (3.40)

and Bpy = Bp+1y′.

The case p = 1 is evident, so suppose that p > 1. Ifwe suppose that dsc(MC) ≤ p, by
the second equality in (3.32) we get that y− By′ ∈ N (Bp). SinceR(C) ⊆ R(A)⊥,
by the first equality in (3.32) we get that y − By′ ∈ N (CBp−1) and

Apx + Ap−1Cy + Ap−2CBy + ... + ACBp−2y =
Ap+1x ′ + ApCy′ + Ap−1CBy′ + ... + ACBp−1y′.

(3.41)

By (3.41), we have that

Ap−1x+Ap−2Cy+...+CB p−2y−(Apx ′+Ap−1Cy′+...+CB p−1y′) ∈ N (A) ⊆ N (Ap)

which implies that CBp−2y − CBp−1y′ ∈ N (Ap) + R(A), i.e., y − By′ ∈
N (CBp−2). Continuing in the same manner, we get that (3.39) holds. Now, by
(3.32) it follows that (3.31) is also satisfied.
If (ii) holds, then evidently (3.32) is satisfied, i.e., dsc(MC) ≤ p.
(ii) ⇒ (iii) Evidently (3.39) implies (iii).
(iii) ⇒ (ii) Let x ∈ H and y ∈ K be arbitrary. Then there exists y0 ∈ K such that

y − By0 ∈ N (C) ∩ N (CB) ∩ ... ∩ N (CBp−1) ∩ N (Bp).

Let S = R(A) + N (Ap). By the definition of the operator C , for given x there
exists y00 ∈ N (B) ∩ R(Bp) such that (I − PS )x = J y00 = Cy00. Since N (B)

is closed we have By00 = 0. Define y′ = PN (B)⊥ y0 + y00. Then By′ = By0 and
Cy′ = Cy00 which implies that

y − By′ ∈ N (C) ∩ N (CB) ∩ ... ∩ N (CBp−1) ∩ N (Bp)

and that

(I − PS )x = Cy′. (3.42)

Now, Apx = ApCy′ + ApPS x . Since PS x ∈ R(A) + N (Ap) it follows that
ApPS x ∈ R(Ap+1) so there exists x ′ ∈ H such that ApPS x = Ap+1x ′. Now,

Apx = Ap+1x ′ + ApCy′.

�
Now, we are ready to make clear which conditions on the operators A and B are

necessary for the existence of some C ∈ B(K ,H ) such that the operator MC is
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Drazin invertible. Combining Lemma 2.6 from [29], Lemma 3.12 and Theorem 3.24,
we obtain the following result:

Theorem 3.25 Let A ∈ B(H ) and B ∈ B(K ) be given operators. If there exists
an operator C ∈ B(K ,H ) such that MC is Drazin invertible, then the following
hold:

(i) asc(A) < ∞,
(ii) dsc(B) < ∞,
(iii) There exists a constant δ > 0 such that A − λ is left invertible, B − λ is right

invertible and

d(A − λ) = n(B − λ) = dimN (B) ∩ R(Bdsc(B)),

for every λ ∈ K (0, δ) \ {0}.
We will show that the three conditions above together with the assumption that

both subspaces R(Aasc(A)+1) and R(Bdsc(B)) are closed (thus meaning that A is
left Drazin invertible and B is right Drazin invertible) are actually sufficient for the
existence of a Drazin completion of the operator matrix in question.

In [16], the authors correctly showed that asc(MC) < ∞, for C ∈ B(K ,H )

given by the following:

C =
[
J 0
0 0

]
:
[

N (B) ∩ R(Bp)

(N (B) ∩ R(Bp))⊥

]
→

[
(R(A) + N (Ap))⊥
R(A) + N (Ap)

]
, (3.43)

where p ≥ max{asc(A), dsc(B)} and J is an invertible operator. However we will
show that the operator C as defined in (3.37) by the authors indeed does the trick.
To properly show that, we first give an equivalent description of when exactly the
operator MC is Drazin invertible for this particular choice of C .

Theorem 3.26 Let A ∈ B(H ), B ∈ B(K ) be given operators such that

(i) A is left Drazin invertible,
(ii) dsc(B) < ∞,
(iii) There exists a constant δ > 0 such that d(A − λ) = n(B − λ), for every

λ ∈ K (0, δ) \ {0}.
Then MC is Drazin invertible for C ∈ B(K ,H ) given by (3.37) if and only if

K = R(B) + N (C) ∩ N (CB) ∩ N (CB2) ∩ · · · ∩ N (CBp−1) ∩ N (Bp).

Proof In [23] it is proved that asc(MC) ≤ p. Thus we can conclude that MC is
Drazin invertible if and only if dsc(MC) ≤ p. Now the assertion follows by Lemma
3.14. �

Remark If B ∈ B(K ) is right Drazin invertible and is given by (3.36), where
p = dsc(B), and if C ∈ B(K ,H ) is given by (3.37), then
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N (C) ∩ N (CB) ∩ N (CB2) ∩ · · · ∩ N (CBp−1) ∩ N (Bp) =
N (B1) ∩ N (B1B2) ∩ · · · ∩ N (B1B

p−1
2 ) ∩ N (Bp

2 ) .
(3.44)

Indeed, this is a consequence of the following equalities:

N (C) = [N (B) ∩ R(Bp)]⊥, N (CBk) = [N (B) ∩ R(Bp)] ⊕ N (B1B
k−1
2 ) ,

the latter of which follows from the representation

CBk =
[
0 J B1B

k−1
2

0 0

]
:
[

N (B) ∩ R(Bp)

(N (B) ∩ R(Bp))⊥

]
→

[
(R(A) + N (Ap))⊥
R(A) + N (Ap)

]
.

Since we make use of Lemma 3.13 in the following theorem, in contrast to the
previous auxiliary results here we must assume that B is right Drazin invertible.

Theorem 3.27 Let A ∈ B(H ), B ∈ B(K ) be given operators such that

(i) A is left Drazin invertible,
(ii) B is right Drazin invertible,
(iii) There exists a constant δ > 0 such that d(A − λ) = n(B − λ), for every

λ ∈ K (0, δ) \ {0}.
Then MC is Drazin invertible for C ∈ B(K ,H ) given by (3.37).

Proof Let B be given by (3.36). Suppose first that p = 1. By Theorem 3.26, to prove
that MC is Drazin invertible for C ∈ B(K ,H ) given by (3.37) it is sufficient to
prove that K = R(B) + N (C) ∩ N (B). Since dsc(B) = 1, by Lemma 3.11 it
follows that K = R(B) + N (B). Put S = N (B) ∩ R(B). As N (B) = S ⊕
N (B1)∩N (B2), andS ⊆ R(B), it follows thatK = R(B)+N (B1)∩N (B2).
SinceN (C)∩N (B) = N (B1)∩N (B2), we haveK = R(B)+N (C)∩N (B).

Now, consider the case when p > 1. By Theorem 3.26, we have to prove that

K = R(B) + N (C) ∩ N (CB) ∩ N (CB2) ∩ · · · ∩ N (CBp−1) ∩ N (Bp)

which is by (3.44) from the preceding remark equivalent with

K = R(B) + N (B1) ∩ N (B1B2) ∩ · · · ∩ N (B1B
p−1
2 ) ∩ N (Bp

2 ) .

Since K = R(B) + N (Bp), which is equivalent with

K = R(B) + N (B1B
p−1
2 ) ∩ N (Bp

2 ),

it is sufficient to prove that

N (B1B
p−1
2 ) ∩ N (Bp

2 ) ⊆
R(B) + N (B1) ∩ N (B1B2) ∩ · · · ∩ N (B1B

p−1
2 ) ∩ N (Bp

2 ).
(3.45)
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Take arbitrary x ∈ N (B1B
p−1
2 )∩N (Bp

2 ). Now B1B
p−2
2 ∈ B((N (B)∩R(Bp))⊥,

N (B)∩R(Bp)) so B1B
p−2
2 x ∈ N (B)∩R(Bp). Lemma 6.13 says that the operator

B1B
p−1
2 ∈ B((N (B)∩R(Bp))⊥,N (B)∩R(Bp))maps the subspaceN (Bp

2 )onto
N (B) ∩ R(Bp). Hence there exists y ∈ N (Bp

2 ) such that B1B
p−2
2 x = B1B

p−1
2 y.

Now, x − B2y ∈ N (B1B
p−2
2 )∩N (B1B

p−1
2 )∩N (Bp

2 ) which together with (ii) of
Lemma 6.13 gives that x ∈ R(B)+N (B1B

p−2
2 )∩N (B1B

p−1
2 )∩N (Bp

2 ).We have
thus shown thatN (B1B

p−1
2 ) ∩N (Bp

2 ) ⊆ R(B) +N (B1B
p−2
2 ) ∩N (B1B

p−1
2 ) ∩

N (Bp
2 ).

Continuing in the same manner we further obtain consecutively

N (B1B
p−2
2 ) ∩ N (B1B

p−1
2 ) ∩ N (Bp

2 ) ⊆
R(B) + N (B1B

p−3
2 ) ∩ N (B1B

p−2
2 ) ∩ N (B1B

p−1
2 ) ∩ N (Bp

2 ),

..., and finally

N (B1B2) ∩ · · · ∩ N (B1B
p−1
2 ) ∩ N (Bp

2 ) ⊆
R(B) + N (B1) ∩ N (B1B2) ∩ · · · ∩ N (B1B

p−1
2 ) ∩ N (Bp

2 ).

Taking into account all these inclusions, we immediately get (3.45). �

Open question: We wonder if at least one of the conditions (if not both) (i) and
(ii) in Theorem 3.27 could be relaxed to the requirement that simply asc(A) < ∞
and dsc(B) < ∞, respectively?
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Chapter 4
Generalized Inverses and Idempotents

In the recent years, a number of researchers have focused their attention to questions
concerning ordinary invertibility of differences, sums and linear combinations of
idempotents (see [1–7]). Consequently, this topic was considered in some papers,
extending ordinary invertibility to Drazin invertibility, for instance [3, 8–13], and
differences and sums to linear combinations of idempotents [8–10, 13].

In this chapter, wewill present related results onDrazin invertibility of the product
and difference of two idempotent operators, Drazin and generalized Drazin invert-
ibility of linear combinations of idempotents, commutators and anticommutators in
Banach algebras as well as on the Moore-Penrose inverse of a linear combination of
commuting generalized and hypergeneralized projectors.

4.1 Drazin Invertibility of the Product and Difference
of Two Idempotent Operators

The aim of this section is to present, using the spectral theory of linear operators, nec-
essary and sufficient conditions for Drazin invertibility of the product and difference
of two idempotents on an infinite dimensional Hilbert space.

Throughout this section, we assume that P, Q are idempotents in B(H ). The
matrix forms of P, Q with respect to the decomposition H = R(P) ⊕ N (P) are
given by

P =
[
I 0
0 0

]
, Q =

[
Q1 Q2

Q3 Q4

]
. (4.1)

It is interesting to remark that without loss of generality, we can assume that one of
the operators P and Q is an orthogonal projection: If P and Q are idempotents, by
Lemma 1.1 [14], there exists an invertible operator S ∈ B(H ) such that SPS−1 is
an orthogonal projection. Hence, we can consider P1 = SPS−1 and Q1 = SQS−1
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instead of P and Q. Obviously, Q1 is an idempotent and Drazin invertibility of
PQ, P ± Q, P + Q − PQ is equivalent to Drazin invertibility of P1Q1, P1 ± Q1,
P1 + Q1 − P1Q1, respectively. So, from now on in the proofs we always assume that
P is an idempotent and Q is an orthogonal projection.

We shall begin with some lemmas, the first of which is proved in [15] (see also
[16, 17] for the finite dimensional case and [18] for the elements in aBanach algebra).

Lemma 4.1 If A ∈ B(X ) and B ∈ B(Y ) are Drazin invertible, C ∈ B(Y ,X )

and D ∈ B(X ,Y ), then

M =
[
A C
0 B

]
and N =

[
A 0
D B

]

are also Drazin invertible and

Md =
[
Ad S
0 Bd

]
, Nd =

[
Bd 0
S Ad

]
, (4.2)

where S =
∞∑
n=0

(Ad)n+2CBnBπ +
∞∑
n=0

Aπ AnC(Bd)n+2 − AdCBd.

Lemma 4.2 Let M ∈ B(H ⊕ K ) have the operator matrix form

M =
(
A B
0 C

)
. (4.3)

If two of the elements M, A and C are Drazin invertible, then the third element is
also Drazin invertible. In particular, if B = 0, then M is Drazin invertible if and
only if A and C are Drazin invertible.

Proof The first part of the assertion is just a special case of Theorem 3.2 (ii) [18].
As for the second part we just have to note that if B = 0, then σ(M) = σ(A)

∪ σ(C). �
The following lemma is proved in [19] for the finite dimensional case but the

proof is similar for bounded linear operators.

Lemma 4.3 Let M ∈ B(H ⊕ K ) have the operator matrix form

M =
(
0 A
B 0

)
. (4.4)

Then M is Drazin invertible if and only if AB (or BA) is Drazin invertible. In this
case,

Md =
(

0 (AB)dA
B(AB)d 0

)
=

(
0 A(BA)d

(BA)dB 0

)
.

In the following theorem, we can find some equivalents of Drazin invertibility
of PQ based on the facts that σ(PQ) ∪ {0} = σ(QP) ∪ {0} and that P is Drazin
invertible if and only if P∗ is Drazin invertible.
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Theorem 4.1 Let P be an idempotent and Q be an orthogonal projection inB(H ).

The following statements are equivalent:

(1) PQ is Drazin invertible,
(2) QP is Drazin invertible,
(3) PQP is Drazin invertible,
(4) QPQ is Drazin invertible,
(5) P∗Q is Drazin invertible,
(6) QP∗ is Drazin invertible,
(7) P∗QP∗ is Drazin invertible,
(8) QP∗Q is Drazin invertible.

If in Theorem 4.1 we replace P and Q by I − P and I − Q, respectively, we get the
following:

Corollary 4.1 Let P be an idempotent and Q beanorthogonal projection inB(H ).

The following statements are equivalent:

(1) (I − P)(I − Q) is Drazin invertible,
(2) (I − Q)(I − P) is Drazin invertible,
(3) (I − P)(I − Q)(I − P) is Drazin invertible,
(4) (I − Q)(I − P)(I − Q) is Drazin invertible,
(5) (I − P)∗(I − Q) is Drazin invertible,
(6) (I − Q)(I − P)∗ is Drazin invertible,
(7) (I − P)∗(I − Q)(I − P)∗ is Drazin invertible,
(8) (I − Q)(I − P)∗(I − Q) is Drazin invertible.

Lemma 4.4 Let A, B ∈ B(H ). Then I − AB is Drazin invertible if and only if
I − BA is Drazin invertible.

Proof Since, σ(AB) ∪ {0} = σ(BA) ∪ {0} the assertion follows. �

Let us remark that for ordinary invertibility the result analogous to that given by the
next theorem is proved in Theorem 3.2 [6].

Theorem 4.2 Let P, Q be idempotents inB(H ). Then P − Q is Drazin invertible
if and only if I − PQ and P + Q − PQ are Drazin invertible.

Proof The matrix forms of P, Q with respect to the decomposition H = R(P) ⊕
N (P) are given by (4.1). If I − PQ and P + Q − PQ are Drazin invertible, by
Lemma 4.2 we conclude that IR(P) − Q1 is Drazin invertible in R(P) and Q4 is
Drazin invertible inN (P). Since,

(P − Q)2 =
[
I − Q1 0

0 Q4

]
: R(P) ⊕ N (P) → R(P) ⊕ N (P)



92 4 Generalized Inverses and Idempotents

and

σ((P − Q)2) = {λ2 : λ ∈ σ(P − Q)}, (4.5)

we have that P − Q is Drazin invertible.
If P −Q is Drazin invertible, by (4.5) we have that (P −Q)2 is Drazin invertible.

Now, we can check that

(I − PQP)d =
(
(P − Q)d

)2
P + I − P

also, byLemma4.4, I−PQ isDrazin invertible. Similarly, from theDrazin invertibil-
ity of (I−P)−(I−Q) = −(P−Q), it follows that I−(I−P)(I−Q) = P+Q−PQ
is Drazin invertible. �

Also, we have the following result:

Corollary 4.2 Let P, Q be idempotents in B(H ). The following statements are
equivalent:

(1) I − PQ is Drazin invertible,
(2) P − PQ is Drazin invertible,
(3) I − PQP is Drazin invertible,
(4) P − PQP is Drazin invertible,
(5) I − QP is Drazin invertible,
(6) Q − QP is Drazin invertible,
(7) I − QPQ is Drazin invertible,
(8) Q − QPQ is Drazin invertible.

Proof Using thematrix forms of P, Q given by (4.1), it is easy to see that (1)−(4) are
all equivalent to the fact that IR(P) − Q1 is Drazin invertible inR(P). Analogously,
(5) − (8) are equivalent. Evidently, (1) is equivalent to (5). �

As before, if in Corollary 3.4 we replace P and Q by I − P and I − Q, respectively,
we have the following:

Corollary 4.3 Let P, Q be idempotents in B(H ). The following statements are
equivalent:

(1) P + Q − PQ is Drazin invertible,
(2) Q − PQ is Drazin invertible,
(3) P + (I − P)Q − (I − P)QP is Drazin invertible,
(4) (I − P)Q(I − P) is Drazin invertible,
(5) P + Q − QP is Drazin invertible,
(6) P − QP is Drazin invertible,
(7) Q + (I − Q)P − (I − Q)PQ is Drazin invertible,
(8) (I − Q)P(I − Q) is Drazin invertible.

http://dx.doi.org/10.1007/978-981-10-6349-7_3
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Corollary 4.4 (1) ([4]) Let P and Q be orthogonal projections inB(H ). Then the
conditions in Theorem 4.2, Corollary 4.2 and Corollary 4.3 are all equivalent to the
fact that P + Q is Drazin invertible.
(2) Let P, Q ∈ B(H ) be idempotents. Then P − Q is Drazin invertible if and only
if one of the conditions from Corollary 4.2 and one of the conditions from Corollary
4.3 hold.

4.2 Drazin and Generalized Drazin Invertibility
of Combinations of Idempotents, Commutators
and Anticommutators in Banach Algebra

The basic motivation for the results presented in this section was the result of Koliha
and Rakočević concerning invertibility of the difference and the sum of idempotents
in the setting of rings:

p − q ∈ Rinv ⇐⇒ 1 − pq ∈ Rinv and p + q ∈ Rinv.

In this section, we will show that in the case of Drazin and generalized Drazin
invertibility in a Banach algebra A we have the equivalence between the following
three conditions

p − q ∈ A D, p + q ∈ A D and 1 − pq ∈ A D.

More generallywewill look at linear combinationsαp+βq and consider generalized
Drazin and Drazin invertibility of them.

For the sake of brevity we will sometimes use the terms ‘d-invertible’ and ‘D-
invertible’ for ‘Drazin invertible’ and ‘generalized Drazin invertible’, respectively.

First, we gather various known results we will rely on.

Lemma 4.5 [20] Let a ∈ A . Then a ∈ A D if and only if 0 is not an accumulation
point of σ(a), and a ∈ A d if and only if 0 is not an essential singularity of the
resolvent (λ − a)−1 of a.

Lemma 4.6 If b, c ∈ A , then σ(bc) \ {0} = σ(cb) \ {0}. Further,

bc ∈ A qnil ↔ cb ∈ A qnil, bc ∈ A D ↔ cb ∈ A D,

bc ∈ A nil ↔ cb ∈ A nil, bc ∈ A d ↔ cb ∈ A d.
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Proof The spectral relation is well known; the rest follows from it on application of
the preceding lemma and the equation

λ(λ − cb)−1 = 1 + c(λ − bc)−1b, λ �= 0.

�

Combining the results of [21] on isolated spectral points and Exercise VII.5.21 in
[22] on poles of the resolvent (interpreted for elements of a Banach algebra in place
of operators), we obtain the following result.

Lemma 4.7 Let a ∈ A , let f be a function holomorphic in an open neighborhood
of σ(a), and let f −1(0) ∩ σ(a) = {λ1, . . . , λm} (a finite set). Then

f (a) ∈ A D ⇐⇒ λi − a ∈ A D for all i = 1, . . . ,m,

f (a) ∈ A d ⇐⇒ λi − a ∈ A d for all i = 1, . . . ,m.

If p ∈ A idem, then each element a of A has a matrix representation

a =
[
a11 a12
a21 a22

]
p

, where ai j = piap j , p1 = p, p2 = 1 − p, i, j = 1, 2.

Lemma 4.8 Let a ∈ A , p ∈ A idem, δ ∈ {D,d}, and let

a =
[
b d
0 c

]
p

.

If two of the elements a, b, c are in A δ , then so is the third. In each case,

aδ =
[
bδ u
0 cδ

]
p

with a uniquely determined u ∈ pA (1 − p).

Proof The case δ = D follows from Theorem 2.3 of [18]. Let b and c be Drazin
invertible. By the preceding part of the proof, a ∈ A D. Let k ∈ N. Then

(a(1 − aaD))2k =
[

(b(1 − bbd))k uk
0 (c(1 − ccd))k

]2

p

with a uniquely determined uk ∈ pA (1 − p). If k ≥ max{ind(b), ind(c)}, then
(b(1 − bbd))k = 0 = (c(1 − ccd))k , and (a(1 − aaD))2k = 0 and aD = ad with
ind(a) ≤ 2max{ind(b), ind(c)}.

Next assume that a and c are Drazin invertible. Again b ∈ A D by the first part
of the proof. The matrix representation then ensures that (a(1 − aad))k = 0 =

http://dx.doi.org/10.1007/978-981-10-6349-7_2
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(c(1− ccd))k implies (b(1− bbD))k = 0, that is, bD = bd. We note that in this case
ind(b) ≤ max{ind(a), ind(c)}. The case a, b ∈ A d is symmetric.

Remark 4.1 There is also a lower triangular version of the preceding lemma.

In the next lemma we extend Lemma 2.1 in [10] to the generalized Drazin inverse.
In our proof we succeed in avoiding the use of Cline’s formula (ba)D = b((ab)D)2a
originally employed in [10], which would require a proof for the generalized Drazin
inverse.

Lemma 4.9 Let a ∈ A , p ∈ A idem, and let

a =
[
0 b
c 0

]
p

.

If δ ∈ {D,d}, then a ∈ A δ if and only if bc ∈ A δ , and in this case

aδ =
[

0 (bc)δb
c(bc)δ 0

]
p

. (4.6)

Proof Let δ = D. Let bc be D-invertible and let x be defined by the matrix on the
right-hand side of (4.6). A direct calculation shows that ax = xa and ax2 = x .
Write w = a − a2x . Then

w =
[
0 u
v 0

]
p

, w2 =
[
uv 0
0 vu

]
p

,

where u = b − bc(bc)Db, v = c − cbc(bc)D and uv = bc − (bc)2(bc)D. Since uv

is quasi-nilpotent by the definition of (bc)D, vu is quasi-nilpotent by Lemma 4.6.
Hence w2, and also w, is quasi-nilpotent, and x is the D-inverse of a.

Conversely assume that a is D-invertible. Then so is

a2 =
[
bc 0
0 cb

]
p

,

and σ(a2) \ {0} = σ(bc) \ {0} = σ(cb) \ {0}. This implies that bc and cb are
D-invertible.

Let δ = d. Suppose that bc is Drazin invertible and put x =
[

0 (bc)db
c(bc)d 0

]
p

.

By computation, we get

ax = xa =
[
bc(bc)d 0

0 c(bc)db

]
p

http://dx.doi.org/10.1007/978-981-10-6349-7_2
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and xax = x . Since a2k+2 =
[

(bc)k+1 0
0 (cb)k+1

]
p

, for k = ind(bc) it follows that

a2k+2x = a2k+1. Hence, a is Drazin invertible and ad = x . Moreover, ind(a) ≤
2ind(bc) + 1.

If a is Drazin invertible, then a2 is Drazin invertible. Since a2 =
[
bc 0
0 cb

]
p

, we

conclude that bc and cb are Drazin invertible. �

Lemma 4.10 Let p, q ∈ A idem and let α, β ∈ C \ {0}. If λ ∈ C \ {0, α, β}, then

λ ∈ σ(αp + βq) ⇐⇒ (1 − α−1λ)(1 − β−1λ) ∈ σ(pq). (4.7)

Proof Let λ ∈ C \ {0, α, β}. Observe that

(1−α−1λ−p)(λ−(αp+βq))(1−β−1λ−q) = λ((1−α−1λ)(1−β−1λ)−pq). (4.8)

This implies (4.7). �

Theorem 4.3 Let p, q ∈ A idem and α, β ∈ C \ {0}. If δ ∈ {D,d}, then

1 − pq ∈ A δ =⇒ αp + βq ∈ A δ. (4.9)

Proof Suppose that 1 − pq is D-invertible, and for a proof by contradiction
assume that 0 is an accumulation point of σ(αp + βq). There is a sequence
(λn) in σ(αp + βq) \ {0} convergent to zero. According to the preceding lemma,
μn = (1 − α−1λn)(1 − β−1λn) is a sequence in σ(pq) \ {1} convergent to 1; hence
(1−μn) is a sequence in σ(1− pq)\ {0} convergent to 0 contrary to the assumption
about 1 − pq. This proves αp + βq ∈ A D.

Assume that 1 − pq ∈ A d and write

μ = 1 − (1 − α−1λ)(1 − β−1λ) = (αβ)−1λ(α + β − λ).

Taking into account (4.8) and the inclusion σ(t) ⊂ {0, 1} valid for any idempotent t ,
we conclude that there is ρ > 0 such that

(λ − (αp + βq))−1 = (1 − β−1λ − q)λ−1(1 − pq − μ)−1(1 − α−1λ − p) (4.10)

for all λ satisfying 0 < |λ| < ρ. The resolvent (μ − (1 − pq))−1 has a pole at
μ = 0. Expanding (1 − pq − μ)−1 in a Laurent series at μ = 0 and substituting
μ = (αβ)−1λ(α +β −λ), we obtain the right hand side of (4.10) as a Laurent series
in λ with only a finite number of nonzero terms in negative powers of λ. Thus 0 is a
pole of the resolvent of αp + βq, and αp + βq is Drazin invertible. �

We now come to the main result which contrasts the case of the ordinary inverse.
In view of the following theorem, the generalized Drazin and Drazin invertibility
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of the linear combination αp + βq of idempotents are independent of the choice of
scalars α, β ∈ C \ {0}, and the case α + β = 0 is allowed.

Theorem 4.4 Let p, q ∈ A idem, α, β ∈ C \ {0}, and δ ∈ {D,d}. Then

αp + βq ∈ A δ ⇐⇒ 1 − pq ∈ A δ.

In particular,

p − q ∈ A D ⇐⇒ p + q ∈ A D ⇐⇒ 1 − pq ∈ A D,

p − q ∈ A d ⇐⇒ p + q ∈ A d ⇐⇒ 1 − pq ∈ A d.

Proof In view of the preceding theorem we only need to prove that p − q ∈ A δ

implies 1 − pq ∈ A δ . For this we could turn to the proof of Lemma 3.1 in [5].
Instead, we offer an alternative proof based on a matrix representation which will
then be useful in the proof of the next theorem. Relative to the idempotent p,

p =
[
p 0
0 0

]
, q =

[
q1 q2
q3 q4

]
, (p − q)2 =

[
p − q1 0

0 q4

]
, 1 − pq =

[
p − q1 −q2

0 1 − p

]
. (4.11)

Clearly p−q ∈ A δ if and only if (p−q)2 ∈ A δ . The implication p−q ∈ A δ =⇒
1 − pq ∈ A δ then follows from Lemma 4.8. �

Theorem 4.5 Let p, q ∈ A idem and let

L1 = {p − q, p + q, 1 − pq, p − pq, p − qp, 1 − pqp, p − pqp},
L2 = {q − qp, q − pq, 1 − qpq, q − qpq},
L3 = {p + q − pq, p + q − pq − qp + pqp, q − pq − qp + pqp},
K = {p + q − 1, 1 + p − q, 1 − p + pq, pq, qp, 1 − p + pqp, pqp}.

Let δ ∈ {D,d}. If one of the elements of the set L1 ∪ L2 ∪ L3 (resp. K ) is in A δ ,
then they all are.

Proof Theorem 4.4 accounts for the first three elements of L1. For the rest of L1

use the matrix representations as in (4.11),

p − pq =
[
p − q1 −q2

0 0

]
, p − qp =

[
p − q1 0
−q3 0

]

1 − pqp =
[
p − q1 0

0 1 − p

]
, p − pqp =

[
p − q1 0

0 0

]
,

and Lemma 4.8. L2 is obtained from L1 by interchanging p and q, and L3 by
replacing p by 1−p and simultaneously q by 1−q inL1 (note that (1−p)−(1−q) =
q − p).K is obtained fromL1 by replacing q by 1 − q. �

http://dx.doi.org/10.1007/978-981-10-6349-7_3
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Further equivalences are obtained when we interchange p and q inK .
In the following result, for given idempotents p and q in A , we consider the

generalized Drazin and Drazin invertibility of their commutator pq − qp and anti-
commutator pq + qp.

Theorem 4.6 Let p, q ∈ A idem and δ ∈ {D,d}. Then

pq − qp ∈ A δ ⇐⇒ pq + qp ∈ A δ ⇐⇒ (p − q ∈ A δ and pq ∈ A δ).

Proof (a) First we prove that

pq − qp ∈ A δ ⇐⇒ (p − q ∈ A δ and pq ∈ A δ).

Represent p and q by matrices as in (4.11). Then

pq − qp =
[

0 q2
−q3 0

]
.

By Lemma 4.9, pq − qp ∈ A δ if and only if q2q3 ∈ A δ . We have q2q3 = pq(1 −
p)qp = pqp(1− pqp) = f (pqp)with f (λ) = λ(1−λ). Thus pq−qp ∈ A δ ⇐⇒
f (pqp) ∈ A δ . Since f −1(0) = {0, 1}, Lemma 4.7 implies that f (pqp) ∈ A δ if
and only if pqp ∈ A δ and 1− pqp ∈ A δ . The conclusion follows by Theorem 4.5
as pqp ∈ A δ ⇐⇒ pq ∈ A δ and 1 − pqp ∈ A δ ⇐⇒ p − q ∈ A δ .

(b) Next we show that

pq + qp ∈ A δ ⇐⇒ (p + q ∈ A δ and 1 − p − q ∈ A δ).

A straightforward check shows that pq + qp = f (p + q), where f (λ) = λ(λ − 1).
Since f −1(0) = {0, 1}, Lemma4.7 says that f (p+q) ∈ A δ if and only if p+q ∈ A δ

and 1 − p − q ∈ A δ .
By Theorem 4.5, p−q ∈ A δ ⇐⇒ p+q ∈ A δ , and pq ∈ A δ ⇐⇒ 1− p−q ∈

A δ . This completes the proof of the theorem. �

4.3 Some Results for Idempotent Operators on Banach
Spaces

Let X be a Banach space and B(X ) the Banach algebra of all bounded linear
operators on X . We recall that an operator A ∈ B(X ) is generalized Drazin
invertible if and only if A = A1 ⊕ A2, where A1, A2 are bounded linear operators
acting on closed subspaces of X , with A1 invertible and A2 quasi-nilpotent. If A2

is nilpotent, A is Drazin invertible.
Let P, Q ∈ B(X ) be idempotent. Relative to the space decomposition X =

R(P)⊕N (P), whereR(P) andN (P) are the range and nullspace of P , we have



4.3 Some Results for Idempotent Operators on Banach Spaces 99

P =
[
I1 0
0 0

]
, Q =

[
Q1 Q2

Q3 Q4

]
.

Theorem 4.7 If P, Q ∈ B(X ) are idempotent and δ ∈ {D,d}, then the following
conditions are equivalent:

(i) I − PQ is δ-invertible.
(ii) αP + βQ is δ-invertible for any α, β ∈ C \ {0}.
(iii) I1 − Q1 is δ-invertible inB(R(P)).
(iv) Q4 is δ-invertible inB(N (P)).

Proof The equivalence of (i) and (ii) follows from Theorem 4.4. For the proof of
(iii) and (iv), consider

I − PQ =
[
I1 − Q1 −Q2

0 I2

]
, P + Q − PQ =

[
I1 0
Q3 Q4

]
.

By Theorem 4.5, I − PQ is δ-invertible if and only if P + Q − PQ is δ-invertible.
Lemma 4.8 modified for operator matrices then shows that the δ-invertibility of
I − PQ is equivalent to the δ-invertibility of either I1 − Q1 or Q4 in the appropriate
spaces. The Drazin inverse case follows similarly. �

Remark 4.2 If Q ∈ B(X ) is an idempotent with the operator matrix

Q =
[
Q1 Q2

Q3 Q4

]

relative to the space decompositionX = X1 ⊕X2, then the generalized Drazin or
Drazin invertibility of I1 − Q1 and Q4 are closely linked, in fact, one is generalized
Drazin or Drazin invertible if and only if the other is. This follows from the preceding
theorem when we define P as the projection in B(X ) with R(P) = X1 and
N (P) = X2.

Remark 4.3 (i) For projections P, Q in a Hilbert space, Böttcher and Spitkovsky
[8] gave criteria for the Drazin invertibility of operators in the von Neumann algebra
generated by two orthogonal projections along with explicit representations for the
corresponding inverses.

(ii) Theorem 3.2 of [11] proves the equivalence of the Drazin invertibility of the
difference P − Q of two Hilbert space idempotent operators with the simultaneous
Drazin invertibility of P + Q and I − PQ. This is now strengthened to provide the
equivalence of all three conditions.

For the commutator and anticommutator of P, Q we have the following result.

Theorem 4.8 Let P, Q ∈ B(X ) be idempotent and let δ ∈ {D,d}. Then the
following are equivalent:

(i) PQ − QP is δ-invertible.

http://dx.doi.org/10.1007/978-981-10-6349-7_3
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(ii) PQ + QP is δ-invertible.
(iii) Both P − Q and PQ are δ-invertible.

4.4 Moore-Penrose Inverse of a Linear Combination
of Commuting Generalized and Hypergeneralized
Projectors

The concepts of generalized and hypergeneralized projectors were introduced by
Groß and Trenkler [23] who presented interesting properties of these classes of
projectors. Some related results concerning this subject can be found in the papers
of Baksalary et al. [24], Baksalary [25], Baksalary et al. [26], Benítez [27] and
Stewart [28].

In this sectionwe give a form for theMoore-Penrose inverse, i.e., the group inverse
of a linear combination c1A+c2B of two commuting generalized or hypergeneralized
projectors. Also, we study invertibility of c1A+c2B and c1A+c2B+c3C , where A,
B and C are commuting generalized or hypergeneralized projectors under various
conditions.

We use the notationsCP
n ,COP

n ,CEP
n ,CGP

n andCHGP
n for the subsets ofCn×n con-

sisting of projectors (idempotent matrices), orthogonal projectors (Hermitian idem-
potent matrices), EP (range-Hermitian) matrices, generalized and hypergeneralized
projectors, respectively, i.e.,

C
P
n = {A ∈ C

n×n : A2 = A},
C

OP
n = {A ∈ C

n×n : A2 = A = A∗},
C

EP
n = {A ∈ C

n×n : R(A) = R(A∗)} = {A ∈ C
n×n : AA† = A†A},

C
GP
n = {A ∈ C

n×n : A2 = A∗},
C

HGP
n = {A ∈ C

n×n : A2 = A†}.

Baksalary et al. ([24]), proved that any generalized projector A ∈ C
n×n
r can be

represented by

A = U

[
K 0
0 0

]
U ∗, (4.12)

whereU ∈ C
n×n is unitary and K ∈ C

r×r is such that K 3 = Ir and K ∗ = K−1. Any
hypergeneralized projector A ∈ C

n×n
r has the form

A = U

[∑
K 0
0 0

]
U ∗, (4.13)
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where U ∈ Cn×n is unitary,
∑ = diag(σ1 Ir1 , . . . , σt Irt ) is a diagonal matrix of

singular values of A, σ1 > σ2 > · · · > σt > 0, r1 + r2 + · · · + rt = r and K ∈ C
r×r

satisfies (
∑

K )3 = Ir and KK ∗ = Ir .
There are also some other very useful representations for generalized and hyper-

generalized projectors: Using the fact that any generalized projector A ∈ C
n×n
r is a

normal matrix, by the spectral theorem we have that A = Udiag(λ1, λ2, . . . , λn)U ∗,
where U is a unitary matrix and λ j , j = 1, n are the eigenvalues of A. By Theorem
2.1 [27] we have that λ j ∈ {0, 1, ω, ω}, j = 1, n, where ω = exp 2π i/3. Hence,

A ∈ C
GP
n ⇔ A = Udiag(λ1, λ2, . . . , λn)U

∗, (4.14)

where U ∗ = U−1 and λ j ∈ {0, 1, ω, ω}, j = 1, n, ω = exp 2π i/3 .
Similarly, for A ∈ C

HGP
n using the fact that A is EP-matrix, by Theorem 4.3.1

[29] we can conclude that

A ∈ C
HGP
n ⇔ A = U (K ⊕ 0)U ∗, (4.15)

where U ∈ C
n×n is a unitary matrix and K ∈ C

r×r is invertible such that K 3 = Ir ,
where r = r(A).

From the above representations it is obvious that any generalized projector is a
hypergeneralized projector.

The following fact will be used very often:
If X,Y ∈ C

n×n and c1, c2 ∈ C, then

X3 = Y 3 = In, XY = Y X ⇒
(c1X + c2Y )(c21X

2 − c1c2XY + c22Y
2) = (c31 + c32)In. (4.16)

In this section,wefirst present a form for theMoore-Penrose inverse, i.e., the group
inverse of c1A+c2B, where A, B are two commuting generalized or hypergeneralized
projectors and c1, c2 ∈ C \ {0} are such that c31 + c32 �= 0.

Theorem 4.9 Let A ∈ C
n×n and B ∈ C

n×n be commuting hypergeneralized pro-
jectors, and let c1, c2 ∈ C \ {0} be such that c31 + c32 �= 0. Then

(c1A + c2B)† = 1

c31 + c32

(
c21A

2B3 − c1c2AB + c22A
3B2

)
+ 1

c1
A2(In − B3)

+ 1

c2
B2(In − A3). (4.17)

Furthermore, c1A + c2B is invertible if and only if n = r(A) + r(B) − r(AB) and
in this case (c1A + c2B)−1 is given by (4.17).

http://dx.doi.org/10.1007/978-981-10-6349-7_2
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Proof Since A and B are two commuting EP-matrices, by Corollary 3.9 from [30],
we have that

A = U (A1 ⊕ A2 ⊕ 0t,t ⊕ 0)U ∗, B = U (B1 ⊕ 0s,s ⊕ B2 ⊕ 0)U ∗,

where A1, B1 ∈ C
r×r , A2 ∈ C

s×s , B2 ∈ C
t×t are invertible and A1B1 = B1A1. If in

addition A and B are hypergeneralized projectors, then A3
1 = B3

1 = Ir , A3
2 = Is and

B3
2 = It . Since

c1A + c2B = U
(
(c1A1 + c2B1) ⊕ c1A2 ⊕ c2B2 ⊕ 0

)
U ∗, (4.18)

we can use (4.16) to get the expression for (c1A+ c2B)†. Thus, by (4.16) we get that
c1A1 + c2B1 is invertible and that

(c1A1 + c2B1)
−1 = 1

c31 + c32

(
c21A

2
1 − c1c2A1B1 + c22B

2
1

)
.

Now, using that

In − A3 = U (0 ⊕ 0 ⊕ It ⊕ In−(r+t+s))U
∗, A3B3 = U (Ir ⊕ 0 ⊕ 0 ⊕ 0)U ∗

and
In − B3 = U (0 ⊕ Is ⊕ 0 ⊕ In−(r+t+s))U

∗,

we have

(c1A + c2B)† = U ((c1A1 + c2B1)
−1 ⊕ 1

c1
A2
2 ⊕ 1

c2
B2
2 ⊕ 0)U ∗

= 1

c31 + c32

(
c21A

2 − c1c2AB + c22B
2
)
A3B3

+ 1

c1
A2(In − B3) + 1

c2
B2(In − A3).

Since A4 = A and B4 = B, we get that (4.17) holds. Also, it is evident that
r(A) = r + s, r(B) = r + t and r(AB) = r . So, the last summand in the direct
sum in (4.18) does not appear if and only if n = r(A) + r(B) − r(AB) which is a
necessary and sufficient condition for the invertibility of c1A + c2B. �

As a corollary we get that in the case when A is a hypergeneralized projector
and c1, c2 ∈ C, c1 �= 0, c31 + c32 �= 0, the linear combination c1 In + c2A is always
invertible.

Theorem 4.10 Let A ∈ C
n×n be a hypergeneralized projector, c1, c2 ∈ C, c1 �= 0,

c31 + c32 �= 0. Then c1 In + c2A is invertible and

http://dx.doi.org/10.1007/978-981-10-6349-7_3
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(c1 In + c2A)−1 = 1

c31 + c32

(
c21A

3 − c1c2A + c22A
2
)

+ 1

c1
(In − A3).

We say that a family G ⊂ Cn of matrices is commuting if each pair of elements of
the set G commutes under multiplication. If we consider a finite commuting family
{Ai }mi=1 where all of the members are hypergeneralized projectors, then

∏m
i=1 A

ki
i ,

where k1, . . . , km ∈ N , is also a hypergeneralized projector. Hence, we have the
following result:

Proposition 4.1 Let Ai ∈ C
n×n, i = 1,m be pairwise commuting generalized or

hypergeneralized projectors, c1, c2 ∈ C, c1 �= 0, c31 + c32 �= 0 and k1, . . . , km ∈ N .
Then c1 In + c2

∏m
i=1 A

ki
i is invertible.

With the additional requirements of Theorem 4.9 it is possible to give a more
precise form of the Moore-Penrose inverse, i.e., the group inverse.

Corollary 4.5 Let c1, c2 ∈ C \ {0}. If A, B are commuting hypergeneralized pro-
jectors such that AB = 0, then

(c1A + c2B)† = 1

c1
A2 + 1

c2
B2. (4.19)

In the next result, we present a form of Moore-Penrose inverse, i.e., the group
inverse of c1Am + c2Ak , where m, k ∈ N and A is a hypergeneralized projector. It is
a corollary of Theorem 4.9.

Corollary 4.6 Let A ∈ C
n×n
r be a hypergeneralized projector and let c1, c2 ∈ C,

c31 + c32 �= 0 and m, k ∈ N. Then

(c1A
m + c2A

k)† = 1

c31 + c32

(
c21A

2m − c1c2A
m+k + c2A

2k
)
,

where At =
⎧⎨
⎩

A3, t ≡3 0,
A, t ≡3 1
A2, t ≡3 2

. Furthermore, c1Am + c2Ak is invertible if and only if

A is invertible and in this case the inverse of c1Am + c2Ak is given by

(c1A
m + c2A

k)−1 = 1

c31 + c32

(
c21A

p − c1c2A
q + c2A

r
)
,

where 2m ≡3 p, m + k ≡3 q and 2k ≡3 r .

Proof This follows from Theorem 4.9 and the fact that r(Ap) = r(A), for any
p ∈ N. �

As a corollary we get a result from [24]:
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Corollary 4.7 ([24]) Let A ∈ C
n×n
r be a generalized projector and let c1, c2 ∈ C,

c31 + c32 �= 0. Then

(c1A + c2A
∗)† = 1

c31 + c32
(c21A

2 − c1c2A
3 + c22A).

Let us recall that for matrices A, B ∈ C
n×m , the matrix A is less than or equal to

the matrix B with respect to the star partial ordering, which is denoted by A
∗≤ B

(see [31]), if
A∗A = A∗B and AA∗ = BA∗.

If A ∈ C
EP
n , then for any B ∈ C

n×n ,

A
∗≤ B ⇔ AB = A2 = BA.

In the next theorem, we present a form of Moore-Penrose inverse, i.e., the group
inverse of c1Am + c2Bk under the condition that A, B are generalized projectors and
AB = BA = A2. Remark that the same result holds if we suppose that A, B are
generalized projectors such that B − A ∈ C

GP
n or if A ∈ C

EP
n , B ∈ C

HGP
n are such

that A
∗≤ B.

Theorem 4.11 Let c1, c2 ∈ C, c2 �= 0, c31 + c32 �= 0 and m, k ∈ N. If A ∈ C
n×n and

B ∈ C
n×n are hypergeneralized projectors such that AB = BA = A2, then

(c1A
m + c2B

k)† = 1

c31 + c32

(
c21A

2m − c1c2A
m+k + c22A

2k) + 1

c2
B2k(In − A3) (4.20)

where At =
⎧⎨
⎩

A3, t ≡3 0
A, t ≡3 1
A2, t ≡3 2

and Bs =
⎧⎨
⎩

B3, s ≡3 0
B, s ≡3 1
B2, s ≡3 2

.

Proof By Corollary 3.9 from [30] and the fact that AB = BA = A2, we have that

A = U (A1 ⊕ 0t,t ⊕ 0)U ∗, B = U (B1 ⊕ B2 ⊕ 0)U ∗,

where A1, B1 ∈ C
r×r , B2 ∈ C

t×t are invertible and A1B1 = B1A1 = A2
1. Evidently

A1 = B1. If in addition A and B are hypergeneralized projectors, then A3
1 = Ir and

B3
2 = It . Hence,

c1A
m + c2B

k = U
(
(c1A

m
1 + c2A

k
1) ⊕ c2B

k
2 ⊕ 0

)
U ∗.

By (4.16), we get that c1Am
1 + c2Ak

1 is invertible and that

(c1A
m
1 + c2A

k
1)

−1 = 1

c31 + c32

(
c21A

2m
1 − c1c2A

m+k
1 + c22A

2k
1

)
.

http://dx.doi.org/10.1007/978-981-10-6349-7_3
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Now, using the equalities

A3 = U (Ir ⊕ 0 ⊕ 0)U ∗, B3 − A3 = U (0 ⊕ It ⊕ 0)U ∗,

we have that (4.20) holds. �

Remark: If A ∈ C
EP
n , B ∈ C

HGP
n and A

∗≤ B, we can conclude that B − A is a

hypergeneralized projector (if A and B are hypergeneralized projectors, then A
∗≤ B

or AB = A2 = BA are sufficient for B − A to be a hypergeneralized projector (see
[23]).

Theorem 4.12 Let A ∈ C
n×n
r and B ∈ C

n×n be commuting hypergeneralized pro-
jectors. Let c1, c2 ∈ C \ {0}, c31 + c32 �= 0 and m, k, l ∈ N. Then

[
Am(c1A

k + c2B
l)

]†

= 1

c31 + c32

(
c21A

2(m+k) − c1c2A
(m+k)Bl + c22A

3B2l)

+ 1

c1
A2(m+k)(In − B3),

where At =
⎧⎨
⎩

A3, t ≡3 0
A, t ≡3 1
A2, t ≡3 2

and Bs =
⎧⎨
⎩

B3, s ≡3 0
B, s ≡3 1
B2, s ≡3 2

.

Proof The proof is similar to that of Theorem 4.11 and for that reason is left to the
reader. �

The following theorem presents necessary and sufficient conditions for the invert-
ibility of c1A+ c2B+ c3C in the case when A, B,C are pairwise commuting hyper-
generalized projectors such that BC = 0 and c1, c2, c3 ∈ C \ {0}, c31 + c32 �= 0,
c31 + c33 �= 0.

Theorem 4.13 Let c1, c2, c3 ∈ C\{0}, c31 +c32 �= 0, c31 +c33 �= 0. If A, B,C ∈ C
n×n

are pairwise commuting hypergeneralized projectors such that BC = 0, then the
following conditions are equivalent:

(i) c1A + c2B + c3C is invertible,
(ii) B3 + C3 + A(In − B3 − C3) is invertible,
(iii) r(A(In − B3 − C3)) = n − (r(B) + r(C)).

Proof By [30, Corollary 3.9], we have that

B = U (B1 ⊕ 0s,s ⊕ 0)U ∗, C = U (0r,r ⊕ C1 ⊕ 0)U ∗, (4.21)

where B1 ∈ C
r×r , C1 ∈ C

s×s are invertible and U is unitary. Since B2 = B† and
C2 = C†, we get that B3

1 = Ir and C3
1 = Is . Also, since A commutes with B and

C , it follows that A = U (A1 ⊕ A2 ⊕ A3)U ∗ where A1, A2, A3 are hypergeneralized
projectors and A1B1 = B1A1, A2C1 = C1A2.
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Now,

c1A + c2B + c3C = U
(
(c1A1 + c2B1) ⊕ (c1A2 + c3C1) ⊕ c1A3

)
U ∗, (4.22)

so c1A + c2B + c3C is invertible if and only if c1A1 + c2B1, c1A2 + c3C1 and A3

are invertible. By Proposition 4.1 we get that c1A1B2
1 + c2 I is invertible. Now, by

c1A1+c2B1 = (c1A1B2
1 +c2 I )B1 it follows that c1A1+c2B1 is invertible. Similarly,

we get that c1A2 +c3C1 is invertible. Thus, c1A+c2B+c3C is invertible if and only
if A3 is invertible i.e., B3 + C3 + A(In − B3 − C3) is invertible. Hence, (i) ⇔ (ii).
Also, we have that A3 is invertible if and only if r(A3) = n − (r + s) which is
equivalent with the fact that r(A(In − B3 −C3)) = n− (r + s) = n− (r(B)+ r(C)).
So, (i) ⇔ (iii). �

Remark that from the proofs of Theorems 4.13 and 4.9, if one of the conditions
(i) − (iii) holds, we get the following formula for the inverse of c1A + c2B + c3C :

(c1A + c2B + c3C)−1 = 1

c31 + c32

(
c21A

2B3 − c1c2AB + c22A
3B2

)
+ 1

c2
B2(In − A3)

+ 1

c31 + c33

(
c21A

2C3 − c1c3AC + c22A
3C2

)
+ 1

c3
C2(In − A3)

+ 1

c1

(
B3 + C3 + A(In − B3 − C3)

)−1
(In − B3 − C3),

(4.23)

which will be useful later.
In the remainder of the section we will be concerned with the notion of star-

orthogonality which was introduced by Hestenes [32]. Let us recall that matrices

A, B ∈ C
n×m are star-orthogonal, which is denoted by A

∗⊥ B, if AB∗ = 0 and
A∗B = 0. It is well-known that for A, B ∈ C

EP
n ,

A
∗⊥ B ⇔ AB = 0 ⇔ BA = 0.

If A,B are hypergeneralized projectors, then A
∗⊥ B or AB = BA = 0 are sufficient

for A + B to be a hypergeneralized projector (see [23]).
Remark that the conclusion of Theorem 4.13 remains valid if we suppose that

A, B,C are pairwise commuting generalized projectors such that B + C ∈ C
GP
n or

if A, B,C are pairwise commuting hypergeneralized projectors such that B
∗⊥ C

with the same conditions for the scalars c1, c2, c3.
In the following theorem, under the assumption that c1, c2, c3 ∈ C, c1 �= 0,

c31 + c32 �= 0, c31 + c33 �= 0, we show that c1 In + c2A + c3B is invertible, in the case
when A, B are commuting hypergeneralized projectors such that AB = 0. Remark
that the theorem remains true if we suppose that A, B are generalized projectors such

that A + B ∈ C
GP
n or when A, B are hypergeneralized projectors such that A

∗⊥ B.
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Theorem 4.14 Let c1, c2, c3 ∈ C, c1 �= 0, c31 + c32 �= 0, c31 + c33 �= 0. If A, B ∈ C
n×n

are commuting hypergeneralized projectors such that AB = 0, then c1 In+c2A+c3B
is invertible and

(c1 In + c2A + c3B)−1 = 1

c31 + c32

(
c21A

3 − c1c2A + c22A
2
)

+ 1

c31 + c33

(
c21B

3 − c1c3B + c23B
2
)

+ 1

c1
(In − A3 − B3).

Proof The proof follows by Theorem 4.13 and (4.23). �

Corollary 4.8 Let c1, c2, c3 ∈ C \ {0}, c31 + c32 �= 0, c31 + c33 �= 0. If A, B,C ∈ C
n×n

are pairwise commuting hypergeneralized projectors such that BC = 0, then the
invertibility of c1A+c2B+c3C is independent of the choice of the scalars c1, c2, c3.

Corollary 4.9 Let c1, c2, c3 ∈ C \ {0}, c31 + c32 �= 0, c31 + c33 �= 0. If A, B,C ∈ C
n×n

are pairwise commuting generalized projectors such that B+C ∈ C
GP
n or A, B,C ∈

C
n×n are pairwise commuting hypergeneralized projectors such that B

∗⊥ C, then the
invertibility of c1A+c2B+c3C is independent of the choice of the scalars c1, c2, c3.
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Chapter 5
Drazin Inverse of a 2× 2 Block Matrix

The problem of finding representations of the Drazin inverse of a 2× 2 block matrix
is of great significance primarily due to its applications in solving systems of linear
differential equations, linear difference equations [1–4] and perturbation theory of
the Drazin inverse [5–7].

We begin by a brief exposition of an application of the Drazin inverse of a 2 × 2
block matrix: suppose that E, F ∈ C

n×n and that E is singular. Assume that there
exists a scalar μ such that μE + F is invertible. Then the general solution of the
singular system of differential equations

Ex ′(t) + Fx(t) = 0, t ≥ t0, (5.1)

is given by
x(t) = e−̂ED

̂F(t−t0)
̂ED

̂Eq, (5.2)

where ̂E = (μE + F)−1E, ̂F = (μE + F)−1F and q ∈ C
n (for more details see

[8]).
Now consider the following second-order system where G ∈ C

n×n is invertible,

Ex ′′(t) + Fx ′(t) + Gx(t) = 0. (5.3)

Evidently there is a nonzero λ such that λ2E +λF +G is invertible. With x(t) =
eλt y(t), we have that (5.3) is equivalent to

(λ2E + λF + G)−1Ey′′(t) + (λ2E + λF + G)−1(F + 2λE)y′(t) + y(t) = 0.

© Springer Nature Singapore Pte Ltd. 2017
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Upon letting w(t) = y′(t) the above system becomes equivalent to the following
first-order system,

[

0 −I
˜E ˜F

] [

w
y

]′
+
[

I 0
0 I

] [

w
y

]

=
[

0
0

]

, (5.4)

where

˜E = (λ2E + λF + G)−1E, ˜F = (λ2E + λF + G)−1(F + 2λE). (5.5)

As obviouslyμ

[

0 −I
˜E ˜F

]

+
[

I 0
0 I

]

is invertible for sufficiently smallμ, the previous

remarks about the system (5.1) apply. In order to express the solutions of (5.4)
explicitly in terms of ˜E and ˜F , we need to find an explicit representation for the
Drazin inverse of a 2 × 2 block matrix,

̂E =
[

I −μI
μ˜E μ˜F + I

]−1 [
0 −μI

μ˜E μ˜F

]

. (5.6)

Yet another differential equation example with the Drazin inverse of a 2 × 2 block
matrix is given in [9].

5.1 General Representations for the Drazin Inverse of a
2× 2 Block Matrix

In 1979 Campbell and Meyer [2] posed the problem of finding an explicit represen-
tation for the Drazin inverse of a 2 × 2 complex block-matrix

M =
[

A B
C D

]

, (5.7)

in terms of its blocks, where A and D are square matrices, not necessarily of the same
size. To this day no formula has still been found for MD without any side conditions
for the blocks of the matrix M . However, many papers studied special cases of this
open problem and offered a formula for MD under some specific conditions for the
blocks of M . Here we list some of them:

(i) B = 0 (or C = 0) (see [10, 11]);
(ii) BC = 0, BD = 0 and DC = 0 (see [3]);
(iii) BC = 0, DC = 0 (or BD = 0) and D is nilpotent (see [12]);
(iv) BC = 0 and DC = 0 (see [13]);
(v) CB = 0 and AB = 0 (or CA = 0) (see [13, 14]);
(vi) BCA = 0, BCB = 0, DCA = 0 and DCB = 0 (see [15]);
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(vii) ABC = 0, CBC = 0, ABD = 0 and CBD = 0 (see [15]);
(viii) BCA = 0, BCB = 0, ABD = 0 and CBD = 0 (see [16]);
(ix) BCA = 0, DCA = 0, CBC = 0, and CBD = 0 (see [16]);
(x) BCA = 0, BD = 0 and DC = 0 (or BC is nilpotent) (see [17]);
(xi) BCA = 0, DC = 0 and D is nilpotent (see [17]);
(xii) ABC = 0, DC = 0 and BD = 0 (or BC is nilpotent, or D is nilpotent)

(see [18]);
(xiii) BCA = 0 and BD = 0 (see [19]);
(xiv) ABC = 0 and DC = 0 (or BD = 0) (see [19, 20]).

In this section we will derive expressions for MD under less restrictive assumptions
than those listed above.

First, we derive an explicit representation for MD under the conditions BCA = 0,
DCA = 0 and DCB = 0. Therefore we can see that the condition BCB = 0 from
[15] is superfluous.

Theorem 5.1 Let M be a matrix of the form (5.7) such that BC A = 0, DC A = 0
and DCB = 0. Then

MD =
⎡

⎣

AD + Σ0C BΨ + AΣ0

ΨC + CAΣ1C + C(AD)2

−CAD(BΨ 2D + ABΨ 2)C
DD + CΣ0

⎤

⎦ ,

where

Σk = (

V1Ψ
k + (AD)2kV2

)

D + A
(

V1Ψ
k + (AD)2kV2

)

, for k = 0, 1, (5.8)

V1 =
ν1−1
∑

i=0

Aπ A2i BΨ i+2, (5.9)

V2 =
μ1−1
∑

i=0

(AD)2i+4B(D2 + CB)i Dπ −
μ1
∑

i=0

(AD)2i+2B(CB)iΨ, (5.10)

Ψ = (D2 +CB)D =
t2−1
∑

i=0

(CB)π (CB)i (DD)2i+2 +
ν2−1
∑

i=0

((CB)D)i+1D2i Dπ , (5.11)

ν1 = Ind(A2), μ1 = Ind(D2 + CB), t2 = Ind(CB) and ν2 = Ind(D2).

Proof Consider the splitting of matrix M

M =
[

A B
C D

]

=
[

0 B
C D

]

+
[

A 0
0 0

]

:= P + Q.
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Since BCA = 0 and DCA = 0 we get P2Q = 0 and QPQ = 0. Hence matrices
P and Q satisfy the conditions of Lemma 2.2 [21] and

(P+Q)D = Y1+Y2 + PQY1(P
D)2 + PQDY2 − PQQD(PD)2 − PQDPD, (5.12)

where Y1 and Y2 are defined by

Y1 =
s−1
∑

i=0

Qπ Qi (PD)i+1, Y2 =
r−1
∑

i=0

(QD)i+1Pi Pπ . (5.13)

By one of the assumptions of the theorem DCB = 0, so we have that the matrix P
satisfies the conditions of Lemma 2.6 [21]. After applying Lemma 2.6 [21], we get

Y1 =
[

(V1D + AV1)C Aπ BΨ + A(V1D + AV1)

ΨC Ψ D

]

, (5.14)

Y2 =
[

AD + (V2D + AV2)C BΨ − Aπ BΨ + A(V2D + AV2)

0 0

]

, (5.15)

where V1 and V2 are defined by (5.9) and (5.10), respectively. After substituting
(5.14) and (5.15) into (5.12) and computing all the terms in (5.12) we obtain the
result. �

As a direct corollary of the previous theorem, we get the following result.

Corollary 5.1 Let M be as in (5.7). If DCB = 0 and C A = 0, then

MD =
[

AD + Σ0C BΨ + AΣ0

ΨC Ψ D

]

,

where Σ0 and Ψ are defined by (5.8) and (5.11), respectively.

Notice that Corollary 5.1, therefore Theorem 5.1 also, is a generalization of the result
about the representation for MD under the conditions CB = 0 and CA = 0 which
is given in [14].

The next result which is a corollary of Theorem5.1, also follows using the splitting

M =
[

0 0
0 D

]

+
[

A B
C 0

]

:= P + Q and applying Lemmas 2.1 and 2.5 from [21].

Corollary 5.2 Let M be a matrix of the form (5.7). If BC A = 0 and DC = 0, then

MD =
[

AΩ ΩB + RD
CΩ DD + CR

]

,

http://dx.doi.org/10.1007/978-981-10-6349-7_2
http://dx.doi.org/10.1007/978-981-10-6349-7_2
http://dx.doi.org/10.1007/978-981-10-6349-7_2
http://dx.doi.org/10.1007/978-981-10-6349-7_2
http://dx.doi.org/10.1007/978-981-10-6349-7_2
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where

R = (R1 + R2)D + A(R1 + R2),

R1 =
μ2−1
∑

i=0

Aπ (A2 + BC)i B(DD)2i+4 −
μ2
∑

i=0

Ω(BC)i B(DD)2i+2,

R2 =
ν2−1
∑

i=0

Ω i+2BD2i Dπ ,

Ω = (A2 + BC)D =
t1−1
∑

i=0

(AD)2i+2(BC)i (BC)π +
ν1−1
∑

i=0

Aπ A2i ((BC)D)i+1,

ν2 = Ind(D2), μ2 = Ind(A2 + BC), t1 = Ind(BC), ν1 = Ind(A2).

We remark that Corollary 5.2, hence also Theorem 5.1, is an extension of the results
from [17], where beside the conditions BCA = 0 and DC = 0 the additional con-
dition BD = 0 (or that D is nilpotent) is required.

Castro–González et al. [17] gave an explicit representation for MD under the
conditions BCA = 0, BD = 0 and that BC is nilpotent (or DC = 0). This result
was extended to the case when BCA = 0 and BD = 0 (see [19]). The following
theorem is a common extension of both of these results.

Theorem 5.2 Let M be a matrix of the form (5.7) such that BC A = 0, ABD = 0
and CBD = 0. Then

MD =
⎡

⎣

AΩ + B(F1 + F2)
ΩB + BD(F1Ω + (DD)2F2)B

+B(DD)2 − BDD(CA + DC)Ω2B
CΩ + D(F1 + F2) DD + (F1 + F2)B

⎤

⎦ , (5.16)

where

F1 =
ν2−1
∑

i=0

Dπ D2i (CA + DC)Ω i+2,

F2 =
μ2−1
∑

i=0

(DD)2i+4(CA + DC)(A2 + BC)i (BC)π −
μ2
∑

i=0

(DD)2i+2(CA + DC)A2iΩ,

Ω = (A2 + BC)D =
t1−1
∑

i=0

(AD)2i+2(BC)i (BC)π +
ν1−1
∑

i=0

Aπ A2i ((BC)D)i+1,

ν2 = Ind(D2), μ2 = Ind(A2 + BC).
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Proof If we split the matrix M as

M =
[

A B
C 0

]

+
[

0 0
0 D

]

:= P + Q.

we have that QPQ = 0 and P2Q = 0. Hence, the matrices P and Q satisfy the
conditions of Lemma 2.2 [21]. Since BCA = 0, the matrix P satisfies the conditions
of Lemma 2.5 [21]. Using a method similar to that used in the proof of Theorem 5.1,
after applying Lemmas 2.2 and 2.5 from [21], we get that (5.16) holds. �

In [16] a formula for MD is given under the conditions BCA = 0, DCA = 0,
CBD = 0 and CBC = 0. In the next theorem we offer a representation for MD

under the conditions BCA = 0, DCA = 0 and CBD = 0, without the additional
condition CBC = 0.

Theorem 5.3 Let M be given by (5.7). If BC A = 0, DC A = 0 and CBD = 0,
then

MD =
⎡

⎣

AD + (G1 + G2)C BΓ + A(G1 + G2)

ΓC + CA(G1Γ + (AD)2G2)C
+C(AD)2 − CAD(AB + BD)Γ 2C

DΓ + C(G1 + G2)

⎤

⎦ ,

where

G1 =
ν1−1
∑

i=0

Aπ A2i (AB + BD)Γ i+2, (5.17)

G2 =
μ1−1
∑

i=0

(AD)2i+4(AB+BD)(D2+CB)i (CB)π −
μ1
∑

i=0

(AD)2i+2(AB+BD)D2iΓ,

(5.18)

Γ =
t2−1
∑

i=0

(DD)2i+2(CB)i (CB)π +
ν2−1
∑

i=0

Dπ D2i ((CB)D)i+1, (5.19)

ν1 = Ind(A2), μ1 = Ind(D2 + CB), t2 = Ind(CB) and ν2 = Ind(D2).

Proof Using the splitting of matrix M

M =
[

0 B
C D

]

+
[

A 0
0 0

]

:= P + Q,

we get that conditions of Lemma 2.6 [21] are satisfied. Also, we have that the matrix
P satisfies the conditions of Lemma 2.7 [21]. Using these lemmas, we get that the
statement of the theorem is valid. �
We can see that Theorem 5.3 is an extension of the result from [13] giving a repre-
sentation for MD under the conditions CB = 0 and CA = 0.

http://dx.doi.org/10.1007/978-981-10-6349-7_2
http://dx.doi.org/10.1007/978-981-10-6349-7_2
http://dx.doi.org/10.1007/978-981-10-6349-7_2
http://dx.doi.org/10.1007/978-981-10-6349-7_2
http://dx.doi.org/10.1007/978-981-10-6349-7_2
http://dx.doi.org/10.1007/978-981-10-6349-7_2
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In [13] a representation for MD is offered under the conditions AB = 0 and
CB = 0. This result is extended in [15], where a formula for MD is given under the
conditions ABC = 0, ABD = 0, CBD = 0 and CBC = 0. In our following result
we derive a representation for MD under the conditions ABC = 0, ABD = 0 and
CBD = 0, without the additional condition CBC = 0.

Theorem 5.4 Let M be a matrix of the form (5.7). If ABC = 0, ABD = 0 and
CBD = 0, then

MD =
⎡

⎣

AD + BΘ0
BΓ + BΘ1AB + (AD)2B
−B(Γ 2CA + DΓ 2C)ADB

ΓC + Θ0A DD + Θ0B

⎤

⎦ , (5.20)

where

Θk = (

K1(A
D)2k + Γ k K2

)

A + D
(

K1(A
D)2k + Γ k K2

)

, for k = 0, 1, (5.21)

K1 =
μ1−1
∑

i=0

Dπ (D2 + CB)iC(AD)2i+4 −
μ1
∑

i=0

Γ (CB)iC(AD)2i+2, (5.22)

K2 =
ν1−1
∑

i=0

Γ i+2CA2i Aπ , (5.23)

ν1 = Ind(A2), μ1 = Ind(D2 + CB), t1 = Ind(BC).

Proof We can split the matrix M as M = P + Q, where

P =
[

A 0
0 0

]

, Q =
[

0 B
C D

]

.

According to the assumptions of the theorem, we have that PQP = 0 and PQ2 = 0.
Hence we can apply Lemma 2.1 [21] and we have

(P+Q)D = Y1+Y2+
(

Y1(P
D)2 + (QD)2Y2 − QD(PD)2 − (QD)2PD

)

PQ, (5.24)

where Y1 and Y2 are defined by (5.13). Since CBD = 0, the matrix Q satisfies the
conditions of Lemma 2.7 [21]. After applying Lemma 2.7 [21], we get

Y1 =
[

AD + B(K1A + DK1) 0
ΓC − ΓCAπ + (K1A + DK1)A 0

]

, (5.25)

Y2 =
[

B(K2A + DK2) BΓ

ΓCAπ + (K2A + DK2)A DΓ

]

, (5.26)

http://dx.doi.org/10.1007/978-981-10-6349-7_2
http://dx.doi.org/10.1007/978-981-10-6349-7_2
http://dx.doi.org/10.1007/978-981-10-6349-7_2
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where K1 and K2 are given by (5.22) and (5.23), respectively. Now, substituting
(5.26) and (5.25) into (5.24) we get that (5.20) holds. �

Notice that Theorem 5.4 generalizes the result found in [21], where it is assumed
that ABC = 0 and BD = 0.

As another extension of a result from [13], where a formula for MD is given
under the conditions AB = 0 and CB = 0, we offer the following theorem and its
corollary.

Theorem 5.5 Let M be a matrix of the form (5.7). If ABC = 0, ABD = 0 and
DCB = 0, then

MD =
⎡

⎣

AD + B(N1 + N2)
BΨ + B(N1(AD)2 + Ψ N2)AB

+(AD)2B − BΨ 2(CA + DC)ADB
ΨC + (N1 + N2)A Ψ D + (N1 + N2)B

⎤

⎦ , (5.27)

where

N1 =
μ1−1
∑

i=0

(CB)π (D2+CB)i (CA+DC)(AD)2i+4−
μ1
∑

i=0

Ψ D2i (CA+DC)(AD)2i+2,

(5.28)

N2 =
ν1−1
∑

i=0

Ψ i+2(CA + DC)A2i Aπ , (5.29)

ν1 = Ind(A2), μ1 = Ind(D2 + CB) and Ψ is defined by (5.11).

Proof Using the splitting

M =
[

A 0
0 0

]

+
[

0 B
C D

]

:= P + Q,

we get that the matrices P and Q satisfy the conditions of Lemma 2.1 [21]. Further-
more, the matrix Q satisfies the conditions of Lemma 2.6 from [21]. After applying
these lemmas and computing, we get that (5.27) holds. �

Cvetković and Milovanović [18] offered a representation for MD under the con-
ditions ABC = 0, DC = 0, along with a third condition BD = 0 (or that BC is
nilpotent, or that D is nilpotent). In [19] a formula for MD was given under the con-
ditions ABC = 0 and DC = 0, without any additional conditions. In our next result
we replace the second condition DC = 0 from [19] with two weaker conditions.

http://dx.doi.org/10.1007/978-981-10-6349-7_2
http://dx.doi.org/10.1007/978-981-10-6349-7_2
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Theorem 5.6 Let M be a matrix of the form (5.7), such that ABC = 0, DC A = 0
and DCB = 0. Then

MD =
⎡

⎣

ΦA + (U1 +U2)C ΦB + (U1 +U2)D
CΦ + C(U1(DD)2 + ΦU2)DC

+(DD)2C − CΦ2(AB + BD)DDC
DD + C(U1 +U2)

⎤

⎦ ,

where

U1 =
μ2−1
∑

i=0

(BC)π (A2 + BC)i (AB + BD)(DD)2i+4 −
μ2
∑

i=0

ΦA2i (AB + BD)(DD)2i+2,

U2 =
ν2−1
∑

i=0

Φ i+2(AB + BD)D2i Dπ ,

Φ = (A2 + BC)D =
t1−1
∑

i=0

(BC)π (BC)i (AD)2i+2 +
ν1−1
∑

i=0

((BC)D)i+1A2i Aπ ,

ν2 = Ind(D2), μ2 = Ind(A2 + BC), t1 = Ind(BC) and ν1 = Ind(A2).

Proof If we split the matrix M as

M =
[

0 0
0 D

]

+
[

A B
C 0

]

:= P + Q,

we have PQP = 0 and PQ2 = 0. Also, the matrix P satisfies conditions of Lemma
2.4 [21]. After applying Lemmas 2.1 and 2.4 from [21] and computing we get that
the statement of the theorem is valid. �

Example 5.1 [15] Consider the block matrix M =
[

A B
C D

]

, where A =
[

1 1
0 0

]

,

B =
[

1 −1
0 0

]

, C =
[

1 1
1 −1

]

, D =
[

0 0
−1 1

]

.

We observe that BCA = 0, BCB = 0, DCA = 0 and DCB = 0. Hence, by
applying Theorem 5.1, we obtain

MD =

⎡

⎢

⎢

⎣

1 −1 −1 1
0 −2 0 0
1 −5 −2 2
1 −7 −3 3

⎤

⎥

⎥

⎦

.

http://dx.doi.org/10.1007/978-981-10-6349-7_2
http://dx.doi.org/10.1007/978-981-10-6349-7_2
http://dx.doi.org/10.1007/978-981-10-6349-7_2
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5.2 Representations for the Drazin Inverse of a 2× 2 Block
Matrix Involving the Schur Complement

Let M be a 2 × 2 complex block matrix given by

M =
[

A C
B D

]

, (5.30)

where A and D are square matrices, not necessarily of the same size.

Definition 5.1 If M is given by (5.30), the generalized Schur complement of M , is
defined by

Z = D − BADC.

In this section, we present some representations for the Drazin inverse of M , in terms
of its blocks under conditions that involve its generalized Schur complement. These
results will fall into two classes: those that assume that the Schur complement of M
is invertible and those where it is assumed to be to zero.

Throughout this section, we adopt some notation as follows. Let

K = ADC, H = BAD, Γ = HK , Z = D − BADC, (5.31)

and
P = (I − AAD)C, Q = B(I − ADA). (5.32)

First, we will present some representations for MD in the case when the general-
ized Schur complement of M is invertible.

The Drazin inverse of a 2 × 2 block matrix in the case when the generalized
Schur complement Z = D − CADB is invertible has been studied by Wei [22] and
Miao [23].

Theorem 5.7 ([22, 23]) Let M be given by (5.30). If

C(I − AAD) = 0, (I − AAD)B = 0, (5.33)

and the generalized Schur complement Z = D − CADB is invertible, then

MD =
[

AD + ADBZ−1CAD −ADBZ−1

−Z−1CAD Z−1

]

. (5.34)

Here, we will derive formulae for the Drazin inverse of a 2 × 2 block matrix under
conditions weaker than those in the theorem above.
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First we present an auxiliary additive result for the Drazin inverse:

Lemma 5.1 ([4]) Let P and Q be square matrices of the same order. If PQ = 0
and Q2 = 0, then

(P + Q)D = PD + Q(PD)2.

We introduce another simple lemma which will be used later.

Lemma 5.2 Let M ∈ C
n×n, G ∈ C

m×n and H ∈ C
n×m be such that HG = In and

m ≥ n. Then
(GMH)D = GMDH,

and

Ind(GMH) = 0, if M is invertible and m = n;
Ind(GMH) = 1, if M is invertible and m > n;
Ind(GMH) = Ind(M), if M is singular.

Proof Notice that
r((GMH)p) = r(GMpH) = r(Mp),

for any positive integer p. The case when M is invertible and m = n is trivial.
Let M be invertible and m > n. It is easy to verify that

r(GMH) = r(M) = n < m,

but
r((GMH)2) = r(M2) = r(M) = r(GMH).

Thus, Ind(GMH) = 1 andwe can check thatGM−1H is the group inverse ofGMH.

Now we consider the case where M is singular (or Ind(M) = k > 0). We have

r(GMH) = r(M) < n < m,

which implies Ind(GMH) > 0. Thus k is the smallest positive integer such that

r((GMH)k+1) = r(Mk+1) = r(Mk) = r((GMH)k).

In other words, Ind(GMH) = Ind(M) = k. It can be verified that

(GMH)k(GMDH)(GMH) = (GMH)k;
(GMDH)(GMH)(GMDH) = GMDH ;
(GMH)(GMDH) = (GMDH)(GMH).

Therefore, (GMH)D = GMDH . �
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Suppose that A has a Jordan canonical form,

A = X

[

Σ 0
0 N

]

X−1, (5.35)

where X and Σ are invertible matrices, and N is nilpotent (for more details see [2,
24]). Then

AD = X

[

Σ−1 0
0 0

]

X−1, Ind(N ) = Ind(A) = k. (5.36)

Let X and X−1 in (5.35) be partitioned compatibly as

X = [

U1 U2
]

, X−1 =
[

V1

V2

]

, (5.37)

where the column dimensions of U1 and V ∗
1 are the same as that of Σ. Then the

following holds:

A = U1ΣV1 +U2NV2, AD = U1Σ
−1V1,

AAD = U1V1, I − AAD = U2V2. (5.38)

Using the notation in (5.37), let us define

[

P1
P2

]

:=
[

V1B
V2B

]

= X−1B,
[

Q1 Q2
] := [

CU1 CU2
] = CX.

Then

M =
[

A B
C D

]

=
[

U1 U2 0
0 0 I

]

⎡

⎣

Σ 0 P1
0 N P2
Q1 Q2 D

⎤

⎦

⎡

⎣

V1 0
V2 0
0 I

⎤

⎦ (5.39)

and
⎡

⎣

I 0 0
0 0 I
0 I 0

⎤

⎦

⎡

⎣

Σ 0 P1
0 N P2
Q1 Q2 D

⎤

⎦

⎡

⎣

I 0 0
0 0 I
0 I 0

⎤

⎦ =
⎡

⎣

Σ P1 0
Q1 D Q2

0 P2 N

⎤

⎦ . (5.40)

Next we define

M1 :=
⎡

⎣

Σ P1 0
Q1 D Q2

0 P2 N

⎤

⎦ .

From (5.39) and (5.40), we have that
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M =
[

U1 0 U2

0 I 0

]

M1

⎡

⎣

V1 0
0 I
V2 0

⎤

⎦ .

Notice that both M and M1 are square matrices of the same order and that the product
⎡

⎣

V1 0
0 I
V2 0

⎤

⎦×
[

U1 0 U2

0 I 0

]

is the identity matrix. Consequently, it follows from Lemma

5.2 that

Ind(M) = Ind(M1), MD =
[

U1 0 U2

0 I 0

]

MD
1

⎡

⎣

V1 0
0 I
V2 0

⎤

⎦ . (5.41)

In order to get an explicit formula for MD
1 by an application of Lemma 5.2, we

repartition M1 as a 2 × 2 block matrix, i.e.,

M1 =
⎡

⎣

Σ P1 0
Q1 D Q2

0 P2 N

⎤

⎦ =
[

F ˜Q2
˜P2 N

]

, (5.42)

where

F =
[

Σ P1
Q1 D

]

, ˜P2 = [

0 P2
]

, ˜Q2 =
[

0
Q2

]

. (5.43)

Now, we can prove one of the main results of this section.

Theorem 5.8 Let M be given by (5.30). If

C(I − AAD)B = 0, A(I − AAD)B = 0, (5.44)

and Z = D − CADB is invertible, then Ind(M) ≤ Ind(A) + 1 and

MD =
(

I +
[

0 (I − AAD)B
0 0

]

R

)

R

(

I +
k−1
∑

i=0

Ri+1

[

0 0
C(I − AAD)Ai 0

]

)

,

(5.45)
where k = Ind(A) and

R =
[

AD + ADBZ−1CAD −ADBZ−1

−Z−1CAD Z−1

]

. (5.46)

Proof We first convert (5.44) into an equivalent form in terms of matrices ˜P2, ˜Q2

and N . Using the identities in (5.38), we obtain

C(I − AAD)B = CU2V2B = Q2P2,

A(I − AAD)B = (U1ΣV1 +U2NV2)U2V2B = U2N P2.
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Then (5.44) is equivalent to

˜Q2˜P2 = 0, N ˜P2 = 0.

Recall that N is nilpotent. Applying Corollary 5.2 to M1 in (5.42) yields

Ind(M1) ≤ Ind(F) + Ind(N ) + 1

and

MD
1 =

[

I
S

]

FD

[

I
k−1
∑

i=0
(FD)i T N i

]

, (5.47)

where k = Ind(A), F is given by (5.43) and

S = ˜P2F
D = [

0 P2
]

FD, T = FD
˜Q2 = FD

[

0
Q2

]

.

Substituting (5.47) into (5.41), we have

MD =
([

U1 0
0 I

]

+
[

U2

0

]

S

)

FD

(

[

V1 0
0 I

]

+
k−1
∑

i=0

(FD)i T N i
[

V2 0
]

)

=
(

I +
[

U2

0

]

S

[

V1 0
0 I

])

R

(

I +
[

U1 0
0 I

] k−1
∑

i=0

(FD)i T N i
[

V2 0
]

)

(5.48)

where

R =
[

U1 0
0 I

]

FD

[

V1 0
0 I

]

. (5.49)

It is easy to verify that

[

U2

0

]

S

[

V1 0
0 I

]

=
[

0 (I − AAD)B
0 0

]

R,

[

U1 0
0 I

]

T
[

V2 0
] = R

[

0 0
C(I − AAD) 0

]

,

[

U2

0

]

Ni
[

V2 0
] =

[

(I − AAD)Ai 0
0 0

]

. (5.50)

Equation (5.45) immediately follows from (5.48) and (5.50), where R is given by
(5.49).

It suffices to show that Ind(F) = 0 and that (5.46) follows from (5.49). As amatter
of fact, the Schur complement of F in (5.43), Z = D − Q1Σ

−1P1 = D −CADB is
invertible by hypothesis. Then F is invertible and its index is zero. ApplyingTheorem
5.7 to F , we have
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F−1 =
[

Σ−1 + Σ−1P1Z−1Q1Σ
−1 −Σ−1P1Z−1

−Z−1Q1Σ
−1 Z−1

]

. (5.51)

Substituting (5.51) into (5.49), we obtain

R =
[

U1(Σ
−1 + Σ−1P1Z−1Q1Σ

−1)V1 −U1Σ
−1P1Z−1

−Z−1Q1Σ
−1V1 Z−1

]

.

Now (5.46) follows from (5.38). �

Remark 5.2.1 We remark that (5.44) is weaker than (5.33). To see this in the case
when k = Ind(A) ≥ 1, one could consider the following geometric interpretations
of these two conditions. Equation (5.33) in Theorem 5.7 means thatR(B) ⊂ R(Ak)

and N (Ak) ⊂ N (C) while (5.44) in Theorem 5.8 means that R(B) ⊂ R(Ak−1)

and that the projection of R(B) on N (Ak) along R(Ak) is contained inN (C).

Two corollaries are easily derived from Theorem 5.8 by taking adjoints. If
A(I − AAD)B = 0 in (5.44) is replaced by C(I − AAD)A = 0 (which means
that N (Ak−1) ⊂ N (C)) we have the following:

Corollary 5.3 Let M be given by (5.30). If

C(I − AAD)B = 0, C(I − AAD)A = 0,

and Z = D − CADB is invertible, then Ind(M) ≤ Ind(A) + 1 and

MD =
(

I +
k−1
∑

i=0

[

0 Ai (I − AAD)B
0 0

]

Ri+1

)

R

(

I + R

[

0 0
C(I − AAD) 0

])

,

where k = Ind(A) and R is given by (5.46).

If the extra condition C(I − AAD)A = 0 is imposed in Theorem 5.8, then we
have a simpler formula for MD.

Corollary 5.4 Let M be given by (5.30). If

C(I − AAD)B = 0, A(I − AAD)B = 0, C(I − AAD)A = 0, (5.52)

and Z = D − CADB is invertible, then Ind(M) ≤ Ind(A) + 1 and

MD =
[

I − (I − AAD)BZ−1CAD (I − AAD)BZ−1

0 I

]

×
[

AD + ADBZ−1CAD −ADBZ−1

−Z−1CAD Z−1

] [

I − ADBZ−1C(I − AAD) 0
Z−1C(I − AAD) I

]

.

(5.53)
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It is easy to see that Theorem 5.8 and Corollaries 5.3 and 5.4 are extensions of
Theorem 5.7. As consequences they entail many results related to the Drazin inverse
of a partitioned matrix in [22].

Below we will extend Theorem 5.7 and establish a new representation for MD.

Theorem 5.9 Let M be given by (5.30). Suppose P = 0, Q = 0, C ZDZ = C, and
ZDZ B = B. Then

MD =
[

AD + K ZDH −K ZD

−ZDH ZD

]

. (5.54)

Proof Denote the right-hand side of (5.54) by X . Since

MX =
[

AAD + AADCZDBAD − CZDBAD −AADCZD + CZD

BAD + (D − Z)ZDBAD − DZDBAD −(D − Z)ZD + DZD

]

=
[

AAD 0
0 Z ZD

]

,

and

XM =
[

ADA + ADCZDBADA − ADCZDB ADC + ADCZD(D − Z) − ADCZDD
−ZDBADA + ZDB −ZD(D − Z) + ZDD

]

=
[

ADA 0
0 ZDZ

]

,

we thus obtain

XMX =
[

ADA(AD + ADCZDBAD) −ADAADCZD

−ZDZ ZDBAD −ZDZ ZD

]

= X.

It is not difficult to verify that for every m ≥ Ind(A),

Mm+1X = Mm .

�

If Z = D − BADC is invertible, then we have the following corollary:

Corollary 5.5 Let M be given by (5.30). Suppose P = 0, Q = 0, and Z is invertible.
Then

MD =
[

AD + K Z−1H −K Z−1

−Z−1H Z−1

]

=
[

AD 0
0 0

]

+ SZ−1T, (5.55)

where S =
[−K

I

]

and T = [−H I
]

.

We now turn our attention to the problem of finding representations for MD in the
case when the generalized Schur complement of M is zero, to which the remainder
of this section is devoted.
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Theorem 5.10 Let M be given by (5.30). Suppose P = 0, Q = 0 and Z = 0, and
C(I + Γ )D(I + Γ ) = C, (I + Γ )(I + Γ )DB = B. Then

MD =
[

(I − K (I + Γ )DH)AD(I − K (I + Γ )DH) (I − K (I + Γ )DH)ADK (I + Γ )D

(I + Γ )DH AD(I − K (I + Γ )DH) (I + Γ )DH ADK (I + Γ )D

]

= (I − S(I + Γ )DT )

[

AD 0
0 0

]

(I − S(I + Γ )DT ). (5.56)

Proof Denote the right-hand side of (5.56) by X. By direct manipulations, we have

MX =
[

AAD(I − K (I + Γ )DH) K (I + Γ )D

(I − Γ (I + Γ )D)H Γ (I + Γ )D

]

,

and

XM =
[

(I − K (I + Γ )DH)ADA K (I − (I + Γ )D)Γ )

(I + Γ )DH (I + Γ )DΓ

]

.

Since

K (I − (I + Γ )DΓ ) = K (I − (I + Γ )D(I + Γ )) + K (I + Γ )D = K (I + Γ )D,

a similar argument leads to

(I − Γ (I + Γ )D)H = (I + Γ )DH.

The relation Γ (I + Γ )D = (I + Γ )DΓ follows from the fact that (I + Γ )D is a
polynomial of Γ [2, Theorem 7.5.1]. Thus MX = XM . Furthermore, we have

(XMX)11 = ([I − K (I + Γ )DH ][I − K (I + Γ )DH ]
+ K (I + Γ )D(I + Γ )DH ])AD[I − K (I + Γ )DH ]
= [I − 2K (I + Γ )DH + K (I + Γ )D(I + Γ − I )(I + Γ )DH

+ K (I + Γ )D(I + Γ )DH ]AD[I − K (I + Γ )DH ]
= [I − K (I + Γ )DH ]AD[I − K (I + Γ )DH ]
= (X)11,

and similarly (XMX)12 = (X)12. Notice that

(I + Γ )DH − (I + Γ )DΓ (I + Γ )DH + Γ (I + Γ )D(I + Γ )DH

= (I + Γ )DH − (I + Γ )D(I + Γ − I )(I + Γ )DH + Γ (I + Γ )D(I + Γ )DH

= (I + Γ )DH,

Hence, we obtain

(XMX)21 = (X)21, (XMX)22 = (X)22,
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Thus
XMX = X.

Finally from P = 0, Q = 0 and Z = 0, we get M =
[

I
H

]

A
[

I K
]

, and

Mm =
[

I
H

]

(AE)m−1A
[

I K
]

, m = 2, 3, . . .

where E = I + K H. Now we have

Mk+2X =
[

I
H

]

(AE)k+1A
[

I K
]

X

=
[ [

I
H

]

(AE)k+1AAD[I − K (I + Γ )DH ]
[

I
H

]

(AE)k+1AADK (I + Γ )D
]

=
[ [

I
H

]

(AE)k AADA

[

I
H

]

(AE)k AK (I + Γ )(I + Γ )D
]

=
[ [

I
H

]

(AE)k A

[

I
H

]

(AE)k AK

]

= Mk+1.

�

Combining Corollary 5.5 and Theorem 5.10, we get the following:

Theorem 5.11 Let M be given by (5.30). Suppose P = 0, Q = 0, Ind(Z) = 1,
C(I + Γ )D(I + Γ ) = C, (I + Γ )(I + Γ )DB = B, D(I + Γ )D(I + Γ ) = D and
Γ Z = ZΓ. Then

MD = (I − S(I − Z#Z)(I + Γ )DT )

[

AD 0
0 0

]

(I − S(I + Γ )D(I − Z Z#)T )

+ SZ#T . (5.57)

Proof Denote the right-hand side of (5.57) by X . We can verify that

MX =
[

AAD[I − K (I + Γ )D(I − Z Z#)H ] K (I + Γ )D(I − Z Z#)

(I − (I + Γ )(I + Γ )D)(I − Z Z#)H Γ (I + Γ )D(I − Z Z#)

]

+
[

0 0
(I + Γ )D(I − Z Z#)H ZZ#

]

and

XM =
[ [I − K (I − Z Z#)(I + Γ )DH ADA K (I − Z Z#)[I − (I + Γ )D(I + Γ )]

(I − Z Z#)(I + Γ )D)H (I − Z Z#)(I + Γ )DΓ

]

+
[

0 K (I − Z Z#)(I + Γ )D

0 Z#Z

]

.
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Since (I + Γ )D is a polynomial of Γ, I − Z Z# is a polynomial of Z , and from
ZΓ = Γ Z , we get

(I + Γ )D(I − Z Z#) = (I − Z#Z)(I + Γ )D

and

[I − (I + Γ )(I + Γ )D](I − Z Z#) = (I − Z#Z)[I − (I + Γ )D(I + Γ )],
Γ (I + Γ )D(I − Z Z#) = (I − Z#Z)(I + Γ )DΓ.

Thus
MX = XM,

The proofs of XMX = X and Mk+1X = Mk are analogous to that of
MX = XM. �

Remark 5.2.2 Using Theorem 1 of [12], we can replace the condition P = 0 and
Q = 0 with P = 0 or Q = 0 in Theorems 5.9–5.11.

In Theorem 5.7, if the invertibility of the generalized Schur complement is re-
placed by the requirement that it is equal to zero, it is again possible to give a
representation of the Drazin inverse of M as follows.

Theorem 5.12 ([23]) Let M be given by (5.30). If

C(I − AAD) = 0, (I − AAD)B = 0,

and the generalized Schur complement Z = D − CADB is equal to 0, then

MD =
[

I
C AD

]

[(AW )D]2A [ I ADB
]

, (5.58)

where W = AAD + ADBCAD.

In order to mention onemore expression forMD, wewill first introduce the notion
of the weighted Drazin inverse defined by Cline and Greville in [25].

Definition 5.2 For G ∈ C
m×n and W ∈ C

n×m , the weighted Drazin inverse of G
with weight W , denoted by Gd,W , is defined as

Gd,W = [(GW )D]2G. (5.59)

It is well-known that Gd,W is the unique matrix satisfying the following three equa-
tions:

(GW )k = (GW )k+1Gd,WW, Gd,W = Gd,WWGWGd,W GWGd,W = Gd,WWG,

where k = Ind(GW ).
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If G ∈ C
n×n and W = In then the weighted Drazin inverse of G with weight I is

the Drazin inverse of G, i.e.,
Gd,I = GD.

Thus, the weighted Drazin inverse of G with weight W is a generalization of the
notion of the Drazin inverse of a square matrix.

Theorem 5.13 Let M be given by (5.30) and let

W = AAD + ADBCAD.

If the generalized Schur complement Z = D − CADB is equal to 0, and

C(I − AAD)B = 0, A(I − AAD)B = 0, (5.60)

then
Ind(M) ≤ Ind(AW ) + Ind(A) + 2, (5.61)

and

MD =
(

I +
[

0 (I − AAD)B
0 0

]

R1

)

R1

(

I +
k−1
∑

i=0

Ri+1
1

[

0 0
C(I − AAD)Ai 0

]

)

,

(5.62)
where k = Ind(A),

R1 =
[

I
C AD

]

Ad,W
[

I ADB
]

, (5.63)

and Ad,w = [(AW )D]2A is the weighted Drazin inverse of A with weight W.

Proof Let

M1 =
[

F ˜Q2
˜P2 N

]

,

where

F =
[

Σ P1
Q1 D

]

, ˜P2 = [

0 P2
]

, ˜Q2 =
[

0
Q2

]

are as in (5.43). Using the same arguments as in the proof of Theorem 5.8 following
(5.50), we know that (5.60) implies

Ind(M) ≤ Ind(F) + Ind(A) + 1, (5.64)

and that (5.62) is valid for R1 given by

R1 =
[

U1 0
0 I

]

FD

[

V1 0
0 I

]

. (5.65)
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It suffices to derive (5.61) and (5.63) under the assumption Z = D − CADB = 0.
We first show that (5.63) follows from (5.65). Note that Σ is invertible and

rank(F) = rank(Σ) since D − Q1Σ
−1P1 = D − CADB = 0 by our hypothe-

sis. It follows from ([2, Theorems 7.7.5 and 7.7.6]) that

Ind(F) = Ind
[

Σ(I + Σ−1P1Q1Σ
−1)

] + 1, (5.66)

and

FD =
[

I
Q1Σ

−1

]

[

(ΣH)2
]D

Σ
[

I Σ−1P1
]

, (5.67)

where H = I + Σ−1P1Q1Σ
−1.

Notice that
[

U1 0
0 I

] [

I
Q1Σ

−1

]

=
[

I
C AD

]

U1,

[

I Σ−1P1
]

[

V1 0
0 I

]

= V1
[

I ADB
]

.

Applying (5.38) yields

U1ΣHV1 = U1ΣV1 +U1V1BCU1Σ
−1V1

= (U1ΣV1 +U2NV2)U1V1 +U1V1BCU1V1A
DU1V1

= A(AAD + ADBCAD) = AW.

By an application of Lemma 5.2, we obtain

U1
[

(ΣH)2
]D

V1 = [

U1(ΣH)DV1
]2 = [

(U1ΣHV1)
D
]2 = [(AW )D]2. (5.68)

Then it follows from (5.65) and (5.67) that

R1 =
[

I
C AD

]

[(AW )D]2A2AD
[

I ADB
]

.

From (5.68) and Lemma 5.2 we have that

[(AW )D]2AAD = U1[(ΣH)2]DV1U1V1 = U1[(ΣH)2]DV1 = [(AW )D]2.

Thus (5.63) follows immediately.
Finally, we show (5.61). By (5.64) and (5.66), we have

Ind(M) ≤ Ind[Σ(I + Σ−1P1Q1Σ
−1)] + Ind(A) + 2.
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By an application of Lemma 5.2, we obtain

Ind[Σ(I + Σ−1P1Q1Σ
−1)] ≤ Ind

[

U1ΣV1U1(I + Σ−1P1Q1Σ
−1)V1

]

= Ind
[

A(AAD + ADBCAD)
] = Ind(AW ),

which immediately leads to (5.61). �

Remark 5.2.3 The constraint on Z = D −CADB in Theorem 5.8 or 5.13 (i.e., Z is
either invertible or zero) is essential in this section. It is an open problem to find an
explicit formula for MD in terms of A, B, C, D, A−1 and DD in the case where A
is invertible and Z = D − CA−1B is a non-zero singular matrix.

If we replace A(I − AAD)B = 0 in (5.60) in Theorem 5.13 by C(I − AAD)A = 0,
we obtain the following corollary by taking adjoints.

Corollary 5.6 Let M be given by (5.30) and let W = AAD + ADBCAD. If for the
generalized Schur complement we have Z = D − CADB = 0, and

C(I − AAD)B = 0, C(I − AAD)A = 0,

then Ind(M) ≤ Ind(AW ) + Ind(A) + 2 and

MD =
(

I +
k−1
∑

i=0

[

0 Ai (I − AAD)B
0 0

]

Ri+1
1

)

R1

(

I + R1

[

0 0
C(I − AAD) 0

])

,

where k = Ind(A) and R1 is given by (5.63) in Theorem 5.13.

If the condition C(I − AAD)A = 0 is added in Theorem 5.13, then we have a
simpler formula for MD.

Corollary 5.7 Let M be given by (5.30) and let W = AAD + ADBCAD. If Z =
D − CADB = 0 and

C(I − AAD)B = 0, A(I − AAD)B = 0, C(I − AAD)A = 0,

then Ind(M) ≤ Ind(AW ) + Ind(A) + 2 and

MD =
[

I + (I − AAD)BCADAd,W (I − AAD)BCADAd,W ADB
0 I

]

× R1

[

I + Ad,W ADBC(I − AAD) 0
CADAd,W ADBC(I − AAD) I

]

,

where R1 is given by (5.63) in Theorem 5.13.

It is evident that Theorem 5.13 and Corollaries 5.4 and 5.7 are extensions of
Theorem 5.12.
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Example 5.2 [12] Consider a 2 × 2 block matrix M =
[

A B
C D

]

, where

A =

⎡

⎢

⎢

⎣

0 1 −1 1
0 1 −1 1
0 1 −1 1
0 0 0 1

⎤

⎥

⎥

⎦

, B =

⎡

⎢

⎢

⎣

4 5
3 4
3 4
2 3

⎤

⎥

⎥

⎦

, C =
[−1 4 −2 0

−2 3 1 0

]

, D =
[

3 3
5 7

]

.

It is calculated that

AD =

⎡

⎢

⎢

⎣

0 0 0 1
0 0 0 1
0 0 0 1
0 0 0 1

⎤

⎥

⎥

⎦

, I − AAD =

⎡

⎢

⎢

⎣

1 0 0 −1
0 1 0 −1
0 0 1 −1
0 0 0 0

⎤

⎥

⎥

⎦

.

Then D − CADB =
[

1 0
1 1

]

is nonsingular and (5.44) is satisfied. It is verified that

Ind(A) = 2 and Ind(M) = 3 satisfying Theorem 5.8. Equation (5.45) gives the exact
value of MD,

MD =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−106 734 −522 −126 −5 11
−37 255 −181 −44 −2 4
−37 255 −181 −44 −2 4
32 −224 160 38 1 −3
−6 47 −35 −7 1 0
−5 31 −21 −6 −1 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

5.3 Generalized Drazin Inverse of Operator Matrices
on Banach Spaces

In this section we will consider the generalized Drazin inverse of a 2 × 2 operator
matrix

M =
(

A B
C D

)

, (5.69)

where A ∈ B(X ) and D ∈ B(Y ) are generalized Drazin invertible andX , Y are
complex Banach spaces.

Generalized Drazin inverses of operator matrices have various applications in
singular differential and difference equations, Markov chains, and iterative methods
(see [1, 4, 8, 13, 17, 26–38]). Various formulae for Md appear frequently in con-
nection with many problems arising in diverse areas of research and have thus long
been studied [3, 12, 22, 39], but it is still an open problem to find an explicit formula
for Md in the general case. Here, we list some explicit generalized Drazin inverse
formulae for a 2 × 2 operator matrix M under a number of different conditions.
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Throughout the section if T ∈ B(X ) is generalized Drazin invertible, then the
spectral idempotent T π of T corresponding to {0} will be denoted by
T π = I − T T d. The operator matrix form of T with respect to the space decompo-
sition X = N (T π ) ⊕ R(T π ) is given by T = T1 ⊕ T2, where T1 is invertible and
T2 is quasi-nilpotent.

First we present an additive result for the generalized Drazin inverse of P + Q,
which is closely connected with the generalized Drazin inverse of a 2 × 2 operator
matrix.

Lemma 5.3 Let P and Q ∈ B(X ) be generalized Drazin invertible.
(1) ([40]) If PQ = QP , then P + Q is generalized Drazin invertible if and only

if I + PdQ is generalized Drazin invertible. In this case we have

(P + Q)d = Pd(I + PdQ)dQQd + (I − QQd)

[ ∞
∑

n=0

(−Q)n(Pd)n

]

Pd

+ Qd

[ ∞
∑

n=0

(Qd)n(−P)n

]

(I − PPd).

(2) ([41]) If PQ = 0, then P + Q is generalized Drazin invertible and

(P + Q)d = (I − QQd)

[ ∞
∑

n=0

Qn(Pd)n

]

Pd + Qd

[ ∞
∑

n=0

(Qd)n Pn

]

(I − PPd).

Throughout this section, we will use the following notation

S0 =
∞
∑

n=0

(Ad)n+2BDn(I − DDd), T0 = (I − AAd)

∞
∑

n=0

AnB(Dd)n+2, (5.70)

S = (I − DDd)

∞
∑

n=0

DnC(Ad)n+2, T =
∞
∑

n=0

(Dd)n+2CAn(I − AAd). (5.71)

Using different splittings of the operator matrix M as M = P + Q, i.e., carefully
choosing the operators P and Q (the operator Q being fully determined by the choice
of the operator Q of course), and then imposing the one-sided condition PQ = 0 or
the two-sided condition PQ = QP , we will then apply Lemma 5.3 to obtain various
explicit expressions for Md = (P + Q)d. This will be carried out in Theorems
5.14–5.18.

Theorem 5.14 Let A ∈ B(X ) and D ∈ B(Y ) be generalized Drazin invertible
and let M be given by (5.69).

(1) If BC = 0 and BD = 0, then M is generalized Drazin invertible, and
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Md =
(

Ad (Ad)2B
S + T − DdCAd Dd + (DdT + SAd)B − Dd(DdC + CAd)AdB

)

.

(2) If AB = 0 and CB = 0, then M is generalized Drazin invertible and

Md =
(

Ad + B(DdT + SAd) − BDd(DdC + CAd)Ad B(Dd)2

S + T − DdCAd Dd

)

.

Proof (1) Let

P =
(

A B
0 0

)

, Q =
(

0 0
C D

)

.

For n ≥ 1, then

Pn =
(

An An−1B
0 0

)

, Qn =
(

0 0
Dn−1C Dn

)

.

Since A and D are generalized Drazin invertible, using the assumptions from (1) and
Corollary 7.7.2 from [2], we have

Pd =
(

Ad (Ad)2B
0 0

)

, Qd =
(

0 0
(Dd)2C Dd

)

.

Now, for n ≥ 1,

(Pd)n =
(

(Ad)n (Ad)n+1B
0 0

)

, (Qd)n =
(

0 0
(Dd)n+1C (Dd)n

)

,

so

(I − QQd)

[ ∞
∑

n=0

Qn(Pd)n

]

Pd =
(

Ad (Ad)2B
−DdCAd + S −DdC(Ad)2B + SAdB

)

,

and

Qd

[ ∞
∑

n=0

(Qd)n Pn

]

(I − PPd) =
(

0 0
T Dd − (Dd)2CAdB + DdT B

)

.

Since PQ = 0, by (2) from Lemma 5.3, we obtain

Md = (I − QQd)

[ ∞
∑

n=0
Qn(Pd)n

]

Pd + Qd

[ ∞
∑

n=0
(Qd)n Pn

]

(I − PPd)

=
(

Ad (Ad)2B
S + T − DdCAd Dd + (DdT + SAd)B − Dd(DdC + CAd)AdB

)

.
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(2) Let P =
(

A 0
C 0

)

and Q =
(

0 B
0 D

)

. Since AB = 0 and CB = 0

we have PQ = 0. The proof then follows a similar argument as previously and is
therefore omitted. �

It is obvious that although the two previous formulae for MD in general apply under
different conditions, they coincidewhen B = 0. Next, wewill present some formulae
valid if the blocks satisfy certain new requirements.

Theorem 5.15 Let A ∈ B(X ) and D ∈ B(Y ) be generalized Drazin invertible
and let M be given by (5.69).

(1) If C A = 0 and CB = 0, then M is generalized Drazin invertible, and

Md =
(

Ad + (T0Dd + AdS0)C − Ad(BDd + AdB)DdC S0 + T0 − AdBDd

(Dd)2C Dd

)

.

(2) If BC = 0 and DC = 0, then M is generalized Drazin invertible, and

Md =
(

Ad S0 + T0 − AdBDd

C(Ad)2 Dd + C(T0Dd + AdS0) − CAd(BDd + AdB)Dd

)

.

Proof (1) Observe that CA = 0 and CB = 0 implies A∗C∗ = 0 and B∗C∗ = 0.
Hence, M∗ is generalized Drazin invertible and by (2) in Theorem 5.14,

(M∗)d =
( [Ad + (T0Dd + AdS0)C − Ad(BDd + AdB)DdC]∗ [(Dd)2C]∗

(S0 + T0 − AdBDd)∗ (Dd)∗

)

.

Consequently, we deduce that M is generalized Drazin invertible and obtain the
corresponding expression for Md.
Item (2) can be proved in a similar manner. �

From Theorems 5.14 and 5.15, a number of results obtained in literature follow
as can be seen from the corollary below.

Corollary 5.8 Let A ∈ B(X ) and D ∈ B(Y ) be generalized Drazin invertible
and let M be given by (5.69).

(1) ([3]) If BC = 0, DC = 0 and BD = 0, then

Md =
(

Ad (Ad)2B
C(Ad)2 Dd + C(Ad)3B

)

.

(2) ([12, Lemma 2.2]) If BC = 0, DC = 0 and D is quasi-nilpotent, then

Md =

⎛

⎜

⎜

⎝

Ad
∞
∑

n=0
(Ad)n+2BDn

C(Ad)2 CAd
∞
∑

n=0
(Ad)n+2BDn

⎞

⎟

⎟

⎠

.
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(3) ([3, 4, 42]) If C = 0, then

Md =
(

Ad S0 + T0 − AdBDd

0 Dd

)

(4) ([3, 4, 42]) If B = 0, then

Md =
(

Ad 0
T + S − DdCAd Dd

)

.

(5) ([30]) If BC = 0 and D = 0, then

Md =
(

Ad (Ad)2B
C(Ad)2 C(Ad)3B

)

.

�

In the next three theorems to derive explicit expressions for Md, the two-sided con-
dition is used.

Theorem 5.16 Let A ∈ B(X ) and D ∈ B(Y ) be generalized Drazin invertible
and M be given by (5.69).

(1) If BC = 0, CB = 0 and DC = CA, then M is generalized Drazin invertible,
and

Md =
(

Ad S0 + T0 − AdBDd

−C(Ad)2 Dd + CAd(AdB + BDd)Dd − C(AdS0 + T0Dd)

)

.

(2) If BC = 0, CB = 0 and AB = BD, then M is generalized Drazin invertible,
and

Md =
(

Ad + BDd(CAd + DdC)Ad − B(SAd + DdT ) −B(Dd)2

S + T − DdCAd Dd

)

.

Proof (1) Let

P =
(

A B
0 D

)

, Q =
(

0 0
C 0

)

.

By (3) of Corollary 5.8, we have

Pd =
(

Ad S0 + T0 − AdBDd

0 Dd

)

and Qd = Q2 = 0. From BC = 0,CB = 0 and DC = CA, we know that
PQ = QP. By Lemma 5.3, we obtain
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(P + Q)d = Pd − Q(Pd)2.

Note that AdT0 = 0 and S0Dd = 0. Direct computations now leads to

(P + Q)d = Pd − Q(Pd)2

=
(

Ad S0 + T0 − AdBDd

−C(Ad)2 Dd + CAd(AdB + BDd)Dd − C(AdS0 + T0Dd)

)

.

(2) This is done similarly as in the proof of (1). The details are omitted. �

Theorem 5.17 Let A ∈ B(X ) and D ∈ B(Y ) be generalized Drazin invertible
and M be given by (5.69).

(1) If BC = 0, C B = 0, C A(I − Aπ ) = (I − Dπ )DC and AAπ B = BDDπ ,
then M is generalized Drazin invertible, and

Md =
∞
∑

n=0

(−AAπ 0
−C −DDπ

)n (
Ad (Ad)2BDπ + Aπ B(Dd)2 − AdBDd

0 Dd

)n+1

.

(2) If CB = 0, C A(I − Aπ ) = 0, and AAπ B = 0, then M is generalized Drazin
invertible, and

Md =
∞
∑

n=0

(

Ad (Ad)2BDπ + Aπ B(Dd)2 − AdBDd

0 Dd

)n+1 (
AAπ 0
C DDπ

)n

.

(3) If BC = 0, (I −Dπ )DC = 0, and BDDπ = 0, then M is generalized Drazin
invertible, and

Md =
∞
∑

n=0

(

AAπ 0
C DDπ

)n (
Ad (Ad)2BDπ + Aπ B(Dd)2 − AdBDd

0 Dd

)n+1

.

Proof (1) Let

P =
(

A2Ad B
0 D2Dd

)

, Q =
(

AAπ 0
C DDπ

)

.

Then M = P + Q. We can show that Qd = 0 by proving that Q is quasi-nilpotent
or using (4) in Corollary 5.8. By [2, Theorem 7.7.3], we have

Pd =
(

Ad (Ad)2BDπ + Aπ B(Dd)2 − AdBDd

0 Dd

)

.
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Since PQ = QP , by Lemma (2) in 5.3 it follows that

(P + Q)d =
∞
∑

n=0
(−Q)n(Pd)n+1

=
∞
∑

n=0

(−AAπ 0
−C −DDπ

)n (
Ad (Ad)2BDπ + Aπ B(Dd)2 − AdBDd

0 Dd

)n+1

.

(2) Choosing the same P and Q as in (1) we have that QP = 0. Hence,

(P + Q)d =
∞
∑

n=0
(Pd)n+1Qn

=
∞
∑

n=0

(

Ad (Ad)2BDπ + Aπ B(Dd)2 − AdBDd

0 Dd

)n+1 (
AAπ 0
C DDπ

)n

.

(3) Choosing the same P and Q as in (1) we have that PQ = 0. Hence,

(P + Q)d =
∞
∑

n=0
Qn(Pd)n+1

=
∞
∑

n=0

(

AAπ 0
C DDπ

)n (
Ad (Ad)2BDπ + Aπ B(Dd)2 − AdBDd

0 Dd

)n+1

.

�

Theorem 5.18 Let A ∈ B(X ) and D ∈ B(Y ) be generalized Drazin invertible
and M be given by (5.69).

(1) If BC = 0, CB = 0, C A(I − Aπ ) = Dπ DC, and Aπ AB = BD(I − Dπ ),
then M is generalized Drazin invertible and

Md =
⎛

⎝

Ad S0

T − DπC(Ad)2 Dd − DπCAdS0 +
∞
∑

n=0
(−Dd)n+1T B(DDπ )n

⎞

⎠ .

(2) If BC = 0, BD(I −Dπ ) = 0, and Dπ DC = 0, then M is generalized Drazin
invertible and

Md =
⎛

⎝

Ad S0

T + DπC(Ad)2 Dd + DπCAdS0 +
∞
∑

n=0
(Dd)n+1T B(DDπ )n

⎞

⎠ .
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Proof Let

P =
(

A(I − Aπ ) B
0 DDπ

)

, Q =
(

AAπ 0
C D(I − Dπ )

)

.

Evidently, M = P + Q. By (3) in Corollary 5.8,

Pd =
⎛

⎝

Ad
∞
∑

n=0
(Ad)n+2BDnDπ

0 0

⎞

⎠ =
(

Ad S0
0 0

)

, I − PPd =
(

Aπ −AS0
0 I

)

and by (4) in Corollary 5.8

Qd =
⎛

⎝

0 0
∞
∑

n=0
(Dd)n+2CAn Aπ Dd

⎞

⎠ =
(

0 0
T Dd

)

, I − QQd =
(

I 0
−DT Dπ

)

.

(1) It is easy to verify that PQ = QP . Also S0DT = 0, T AS0 = 0, S0Dd = 0
and T Ad = 0, so

Md = Pd(I + PdQ)dQQd + (I − QQd)

[ ∞
∑

n=0
(−Q)n(Pd)n

]

Pd

+Qd

[ ∞
∑

n=0
(Qd)n(−P)n

]

(I − PPd)

=
(

Ad S0
0 0

)(

(I + S0C)d 0
0 I

)(

0 0
DT DdD

)

+
(

I 0
−DT Dπ

) ∞
∑

n=0

(−AAπ 0
−C −D2Dd

)n (
(Ad)n+1 (Ad)n S0

0 0

)

+
∞
∑

n=0

(

0 0
(Dd)nT (Dd)n+1

)(−A2Ad −B
0 −DDπ

)n (
Aπ −AS0
0 I

)

=0 +
(

Ad S0
−DπC(Ad)2 −DπCAdS0

)

+
⎛

⎝

0 0

T Dd +
∞
∑

n=0
(−Dd)n+1T B(DDπ )n

⎞

⎠

=
⎛

⎝

Ad S0

T − DπC(Ad)2 Dd − DπCAdS0 +
∞
∑

n=0
(−Dd)n+1T B(DDπ )n

⎞

⎠ .
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(2) Since PQ = 0, we have

Md = (I − QQd)

[ ∞
∑

n=0
Qn(Pd)n

]

Pd + Qd

[ ∞
∑

n=0
(Qd)n Pn

]

(I − PPd)

=
(

I 0
−DT Dπ

) ∞
∑

n=0

(

AAπ 0
C D2Dd

)n (
(AD)n+1 (AD)n S0

0 0

)

+
∞
∑

n=0

(

0 0
(Dd)nT (Dd)n+1

)(

A2Ad B
0 DDπ

)n (
Aπ −AS0
0 I

)

=
(

Ad S0
DπC(Ad)2 DπCAdS0

)

+
⎛

⎝

0 0

T Dd +
∞
∑

n=0
(Dd)n+1T B(DDπ )n

⎞

⎠

=
⎛

⎝

Ad S0

T + DπC(Ad)2 Dd + DπCAdS0 +
∞
∑

n=0
(Dd)n+1T B(DDπ )n

⎞

⎠ .

�

Assuming that A ∈ B(X ) is generalized Drazin invertible and that the gener-
alized Schur complement S = D − CAdB is invertible, the next theorem gives a
representation for Md under some additional conditions. Denote X1 = N (Aπ ) and
X2 = R(Aπ ). The operator

I0 = I ⊕
(

0 I
I 0

)

from X1 ⊕ X2 ⊕ Y onto X1 ⊕ Y ⊕ X2 is invertible. Then M as an operator on
X1 ⊕ X2 ⊕ Y has the following operator matrix form

M =
⎛

⎝

A1 0 B1

0 A2 B2

C1 C2 D

⎞

⎠ = I−1
0

⎛

⎝

A1 B1 0
C1 D C2

0 B2 A2

⎞

⎠ I0 = I−1
0

(

A0 B0

C0 D0

)

I0, (5.72)

where A1 is invertible and D0 = A2 is quasi-nilpotent.

Let A =
(

A1 0
0 A2

)

, B =
(

B1

B2

)

, C = (

C1 C2
)

, A0 =
(

A1 B1

C1 D1

)

,

B0 =
(

0
C2

)

and C0 = (

0 B2
)

. With these notations the following can be proved.

Theorem 5.19 Let A ∈ B(X ) be generalized Drazin invertible, D ∈ B(Y ) and
M be given by (5.69). If

Aπ BC = 0, CAπ B = 0, Aπ AB = Aπ BD
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and S = D − CAdB is invertible, then M is generalized Drazin invertible,

Md =
[

R −
(

0 (I − AAd)B
0 0

)

R2

]

[

I +
∞
∑

n=0

Rn+1

(

0 0
C(I − AAd)An 0

)

]

,

where

R =
(

Ad + AdBS−1CAd −AdBS−1

−S−1CAd S−1

)

. (5.73)

Proof Note that the Schur complement S can be expressed as

S = D − CAdB = D − (

C1 C2
)

(

A−1
1 0
0 0

)(

B1

B2

)

= D − C1A
−1
1 B1.

Since S and A1 are invertible, we conclude that A0 is invertible and that

A−1
0 =

(

A−1
1 + A−1

1 B1S−1C1A
−1
1 −A−1

1 B1S−1

−S−1C1A
−1
1 S−1

)

=
(

I 0 0
0 0 I

)

⎛

⎝

A−1
1 + A−1

1 B1S−1C1A
−1
1 0 −A−1

1 B1S−1

0 0 0
−S−1C1A

−1
1 0 S−1

⎞

⎠

⎛

⎝

I 0
0 0
0 I

⎞

⎠

=
(

I 0 0
0 0 I

)

R

⎛

⎝

I 0
0 0
0 I

⎞

⎠ .

Also,

A−(n+2)
0 =

(

I 0 0
0 0 I

)

Rn+2

⎛

⎝

I 0
0 0
0 I

⎞

⎠ .

From Aπ BC = 0, we have

(

0 0
0 I

)(

B1

B2

)

(

C1 C2
) =

(

0 0
B2C1 B2C2

)

= 0.

Similarly, CAπ B = 0 implies C2B2 = 0 and Aπ AB = Aπ BD implies
A2B2 = B2D. Hence

B0C0 = 0, C0B0 = 0, D0C0 = C0A0.
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By Theorem 5.18 (1), we get

Md = I−1
0

(

A0 B0

C0 D0

)d

I0

= I−1
0

⎛

⎜

⎜

⎝

A−1
0

∞
∑

n=0
A−(n+2)
0 B0Dn

0

−C0A
−2
0 −C0A

−1
0

∞
∑

n=0
A−(n+2)
0 B0Dn

0

⎞

⎟

⎟

⎠

I0.

Now we express B0,C0 and D0 in terms of A, B,C and Ad. We have

B0 =
(

0
I

)

C(I − AAd)

(

0
I

)

, Dn
0 = (

0 I
)

An

(

0
I

)

and
C0 = (

0 I
)

(I − AAd)B
(

0 I
)

.

Direct calculation shows that

Md =
⎛

⎝

I 0 0
0 0 I
0 I 0

⎞

⎠

⎛

⎜

⎜

⎝

A−1
0

∞
∑

n=0
A−(n+2)
0 B0Dn

0

−C0A
−2
0 −C0A

−1
0

∞
∑

n=0
A−(n+2)
0 B0Dn

0

⎞

⎟

⎟

⎠

⎛

⎝

I 0 0
0 0 I
0 I 0

⎞

⎠

=
⎛

⎝

I 0 0
0 0 0
0 0 I

⎞

⎠ R

⎛

⎝

I 0 0
0 0 0
0 0 I

⎞

⎠ −
⎛

⎝

0 0
0 I
0 0

⎞

⎠ (I − AAd)B
(

0 0 I
)

R2

⎛

⎝

I 0 0
0 0 0
0 0 I

⎞

⎠

+
⎡

⎣I −
⎛

⎝

0 0
0 I
0 0

⎞

⎠ (I − AAd)B
(

0 0 I
)

R

⎤

⎦

×
∞
∑

n=0

⎛

⎝

I 0 0
0 0 0
0 0 I

⎞

⎠ Rn+2

⎛

⎝

0
0
I

⎞

⎠C(I − AAd)An

(

0 0 0
0 I 0

)

= R −
(

0 (I − AAd)B
0 0

)

R2 +
[

I −
(

0 (I − AAd)B
0 0

)

R

]

×
∞
∑

n=0
Rn+2

(

0 0
C(I − AAd)An 0

)

=
[

R −
(

0 (I − AAd)B
0 0

)

R2

] [

I +
∞
∑

n=0
Rn+1

(

0 0
C(I − AAd)An 0

)]

.

�

Using (2) from Theorem 5.18 and the notations from above, we can derive the
following result.
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Theorem 5.20 Let A ∈ B(X ) be generalized Drazin invertible, D ∈ B(Y ) and
M be given by (5.69). Let R be defined by (5.73). If

BC Aπ = 0, CAπ B = 0, CAAπ = DCAπ ,

and S = D − CAdB invertible, then M is generalized Drazin invertible, and

Md = R+
∞
∑

n=0

(

0 An(I − AAd)B
0 0

)

Rn+2−
∞
∑

n=0

(

0 0
0 CAn(I − AAd)B

)

Rn+3.

Proof Using the notations from the proof of Theorem 5.19, we can show that

B0C0 = 0, C0B0 = 0, A0B0 = B0D0.

By (2) from Theorem 5.18, we get

Md =
⎛

⎝

I 0 0
0 0 I
0 I 0

⎞

⎠

⎛

⎜

⎜

⎝

A−1
0 − B0

∞
∑

n=0
Dn
0C0A

−(n+3)
0 0

∞
∑

n=0
Dn
0C0A

−(n+2)
0 0

⎞

⎟

⎟

⎠

⎛

⎝

I 0 0
0 0 I
0 I 0

⎞

⎠

=
⎛

⎝

I 0 0
0 0 0
0 0 I

⎞

⎠ R

⎛

⎝

I 0 0
0 0 0
0 0 I

⎞

⎠ −
⎛

⎝

0
0
I

⎞

⎠C
∞
∑

n=0
An(I − AAd)B

(

0 0 I
)

Rn+3

⎛

⎝

I 0 0
0 0 0
0 0 I

⎞

⎠

+
∞
∑

n=0

⎛

⎝

0 0
0 I
0 0

⎞

⎠ An(I − AAd)B
(

0 0 I
)

Rn+2

⎛

⎝

I 0 0
0 0 0
0 0 I

⎞

⎠

= R +
∞
∑

n=0

(

0 An(I − AAd)B
0 0

)

Rn+2 −
∞
∑

n=0

(

0 0
0 CAn(I − AAd)B

)

Rn+3.

�
Now, we consider the case when the generalized Schur complement S = D −

CAdB is equal to zero. We recall one result from [12].

Lemma 5.4 ([12, Theorem 1.2]) Let A ∈ B(X ) be generalized Drazin invertible,
D ∈ B(Y ) and let M be given by (5.69). Let W = AAd + AdBCAd. If AW is
generalized Drazin invertible,

C(I − AAd) = 0, (I − AAd)B = 0

and if for the generalized Schur complement we have S = D −CAdB = 0, then M
is generalized Drazin invertible, and

Md =
(

I
C Ad

)

[

(AW )d
]2

A
(

I AdB
)

.

In the following result, we present an expression forMd using theweightedDrazin
inverse Ad,W of A with weight W = AAd + AdBCAd.
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Theorem 5.21 Let A ∈ B(X ) be generalized Drazin invertible, D ∈ B(Y ) and
M be given by (5.69). Let W = AAd + AdBCAd. If AW is generalized Drazin
invertible,

Aπ BC = 0, CAπ B = 0, Aπ AB = Aπ BD

and the generalized Schur complement S = D −CAdB = 0, then M is generalized
Drazin invertible, and

Md =
[

R0 −
(

0 (I − AAd)B
0 0

)

R2
0

]

[

I +
∞
∑

n=0

Rn+1
0

(

0 0
C(I − AAd)An 0

)

]

,

where

R0 =
(

I
C Ad

)

Ad,W
(

I AdB
)

, W = AAd + AdBCAd. (5.74)

Proof Following the proof of Theorem 5.18, notice that for the Schur complement
we have

S = D − CAdB = D − C1A
−1
1 B1 = 0.

LetW1 = I + A−1
1 B1C1A

−1
1 . Since AW is generalized Drazin invertible, so is A1W1.

Let (A1)d,W1 = [

(A1W1)
d
]2

A1. By Lemma 5.4, we obtain

Ad
0 =

(

A1 B1

C1 D1

)

d =
(

I
C1A1

d

)

Ad,W1
1

(

I A1
dB1

)

=
(

I 0 0
0 0 I

)

R0

⎛

⎝

I 0
0 0
0 I

⎞

⎠

and

(A0
d)n+2 =

(

I 0 0
0 0 I

)

Rn+2
0

⎛

⎝

I 0
0 0
0 I

⎞

⎠ .

From Aπ BC = 0,CAπ B = 0, and Aπ AB = Aπ BD, we have B0C0 = 0,C0B0 = 0
and D0C0 = C0A0. By (1) from Theorem 5.16, we get
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Md = I−1
0

(

A0 B0

C0 D0

)

d I0 = I−1
0

⎛

⎜

⎜

⎝

Ad
0

∞
∑

n=0
(A0

d)n+2B0Dn
0

−C0(A0
d)2 −C0Ad

0

∞
∑

n=0
(A0

d)n+2B0Dn
0

⎞

⎟

⎟

⎠

I0.

=
⎛

⎝

I 0 0
0 0 I
0 I 0

⎞

⎠

⎛

⎜

⎜

⎝

Ad
0

∞
∑

n=0
(A0

d)n+2B0Dn
0

−C0(A0
d)2 −C0Ad

0

∞
∑

n=0
(A0

d)n+2B0Dn
0

⎞

⎟

⎟

⎠

⎛

⎝

I 0 0
0 0 I
0 I 0

⎞

⎠

=
[

R0 −
(

0 (I − AAd)B
0 0

)

R2
0

] [

I +
∞
∑

n=0
Rn+1
0

(

0 0
C(I − AAd)An 0

)]

.

�

Using Lemma 5.21 and (2) in Theorem 5.8, we can prove the following theorem.

Theorem 5.22 Let A ∈ B(X ) be generalized Drazin invertible, D ∈ B(Y ) and
M be given by (5.69). Let W = AAd + AdBCAd. If AW is generalized Drazin
invertible,

BC Aπ = 0, CAπ B = 0, CAAπ = DCAπ

and for the generalized Schur complement we have S = D −CAdB = 0, then M is
generalized Drazin invertible, and

Md = R0 +
∞
∑

n=0

(

0 An(I − AAd)B
0 0

)

Rn+2
0 −

∞
∑

n=0

(

0 0
0 CAn(I − AAd)B

)

Rn+3
0 ,

where R0 is defined by (5.74).

Proof Similarly as in the proof of Theorem 5.20, we have

B0C0 = 0, C0B0 = 0, A0B0 = B0D0.

By (2) of Theorem 5.8 and Lemma 5.21, we get

Md =
⎛

⎝

I 0 0
0 0 I
0 I 0

⎞

⎠

⎛

⎜

⎜

⎝

Ad
0 − B0

∞
∑

n=0
Dn
0C0(A0

d)n+3 0

∞
∑

n=0
Dn
0C0A

−(n+2)
0 0

⎞

⎟

⎟

⎠

⎛

⎝

I 0 0
0 0 I
0 I 0

⎞

⎠

= R0 +
∞
∑

n=0

(

0 An(I − AAd)B
0 0

)

Rn+2
0 −

∞
∑

n=0

(

0 0
0 CAn(I − AAd)B

)

Rn+3
0 .

�



5.4 Representations for the Drazin Inverse of the Sum P + Q + R + S 145

5.4 Representations for the Drazin Inverse of the Sum
P + Q + R + S

A representation for the Drazin inverse of a complex upper triangular block-matrix

[

A B
0 C

]

,

which is known as theHartwig-Shoaf-Meyer-Rose formulawas given in [2, Theorem
7.7.1] and [11, 12] independantly.

In the literature, we can find numerous applications of the Hartwig-Shoaf-Meyer-
Rose formula, since it is an effective and basic tool for finding various explicit
representations for the Drazin inverse of block matrices and modified matrices in
particular. In this section we will extend the Hartwig-Shoaf-Meyer-Rose formula in
several ways.

For a 2 × 2 block matrix M = [

A B
D C

]

, where A and C are square matrices of
different sizes in general, we consider the decomposition of M = P + Q + R + S,
where

P = [

A 0
0 0

]

, Q = [

0 0
0 C

]

, R = [

0 B
0 0

]

, S = [

0 0
D 0

]

.

We can check that P, Q, R and S satisfy the following relations:

PQ = QP = 0, PS = SQ = QR = RP = 0, RD = SD = 0. (5.75)

Motivated by this we introduce the following definition:

Definition 5.3 Let M ∈ C
n×n . If there exist P, Q, R, S ∈ C

n×n satisfying (5.75)
such that M = P + Q + R + S, then the quadruple (P, Q, R, S) is called a pseudo-
block decomposition of M . Moreover, M is called the pseudo-block matrix corre-
sponding to (P, Q, R, S).

It is obvious that a 2 × 2 block-matrix
[

A B
0 C

]

has the pseudo-block decomposition
(P0, Q0, R0, 0), where P0 = [

A 0
0 0

]

, Q0 = [

0 0
0 C

]

, R0 = [

0 B
0 0

]

and that then

R2
0 = 0, rank(P0 + Q0) = rank(P0) + rank(Q0).

This is a very special kind of a pseudo-block decomposition of M .
One of the main goals of this section will be to find explicit formulae for (P+Q+

R)D, where (P, Q, R, 0) is a pseudo-block decomposition of the matrix P + Q + R
and to extend the Hartwig-Shoaf-Meyer-Rose formula in three aspects. Firstly, the
condition

rank(P + Q) = rank(P) + rank(Q)

will be removed. Secondly, the condition Ind(P + Q + R) ≥ max{Ind(P), Ind(Q)}
will also be relaxed. Thirdly, the condition R2 = 0 will be replaced by RD = 0,
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i.e., that R is nilpotent. Also, we will find a formula for (P + Q + R + S)D under
some restrictions, where (P, Q, R, S) is a pseudo-block decomposition of thematrix
P + Q + R + S and generalize the Hartwig-Shoaf-Meyer-Rose formula to the case
S 
= 0.

We begin by recalling an additive result for the sum of two matrices which will
be used later.

Lemma 5.5 ([12, Lemma 4], [4, Corollary 2.1]) Let P, Q, R ∈ C
n×n and Rk = 0.

(1) If RP = 0, then (R + P)D = PD +
k−1
∑

i=1

(PD)i+1Ri ,

(2) If QR = 0, then (Q + R)D = QD +
k−1
∑

i=1

Ri (QD)i+1.

Now, we present a representation for the Drazin inverse of the pseudo-block matrix
P + Q + R corresponding to (P, Q, R, 0) under some conditions.

Theorem 5.23 Let P, Q, R ∈ C
m×m and let (P, Q, R, 0) be a pseudo-block

decomposition of M. Suppose that Ind(P) ≤ 1, Ind(Q) ≤ 1 and k = Ind(R) ≥ 2.
Then the following hold:

(1) Ind(M) ≤ Ind(R),

(2) Ind(M) ≤ 1 if and only if

k−2
∑

i=1

(P#)i Ri+1(I − QQ#) +
k−2
∑

j=1

(I − PP#)R j+1(Q#) j

=(I − PP#)R(I − QQ#) +
k−3
∑

i=1

k−i−2
∑

j=1

(P#)i Ri+ j+1(Q#) j . (5.76)

Furthermore, MD is given by

MD =
k
∑

i=1

(P#)i Ri−1(I − QQ#) +
k
∑

j=1

(I − PP#)R j−1(Q#) j

−
k−1
∑

i=1

k−i
∑

j=1

(P#)i Ri+ j−1(Q#) j . (5.77)
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Proof Denote the right-hand side of (5.77) by X . First, we will show that X = MD.
Since

MX =
[

(

PP# +
k−1
∑

i=1

(P#)i Ri (I − QQ#)
) − (

k−1
∑

j=1

PP#R j (Q#) j

+
k−2
∑

i=1

k−i−1
∑

j=1

(P#)i Ri+ j (Q#) j
)

]

+ QQ# +
k−1
∑

j=1

R j (Q#) j (5.78)

= PP# + QQ# +
k−1
∑

i=1

(P#)i Ri (I − QQ#) +
k−1
∑

j=1

(I − PP#)R j (Q#) j

−
k−2
∑

i=1

k−i−1
∑

j=1

(P#)i Ri+ j (Q#) j .

and

XM = PP# + QQ# +
k−1
∑

i=1

(P#)i Ri (I − QQ#) +
k−1
∑

j=1

(I − PP#)R j (Q#) j

−
k−2
∑

i=1

k−i−1
∑

j=1

(P#)i Ri+ j (Q#) j , (5.79)

we have that

MX = XM. (5.80)

We now prove that XMX = X . Let us denote the first, second and third term on the
right-hand side of (5.77) by X1, X2 and X3, respectively. Then X = X1 + X2 − X3.
Expanding XM as (5.79), we obtain that

XMX2 =
(

Q# +
k−1
∑

j=1

(I − PP#)R j (Q#) j+1 −
k−2
∑

i=1

k−i−1
∑

j=1

(P#)i Ri+ j (Q#) j+1
)

+
k−2
∑

i=1

k−i−1
∑

j=1

(P#)i Ri+ j (Q#) j+1

=
k
∑

j=1

(I − PP#)R j−1(Q#) j .
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Hence

XMX =
k
∑

i=1

(P#)i Ri−1(I − QQ#) +
k
∑

j=1

(I − PP#)R j−1(Q#) j

−
k−1
∑

i=1

k−i
∑

j=1

(P#)i Ri+ j−1(Q#) j .

Thus, XMX = X . Now we claim that

Mk+1X = Mk . (5.81)

In fact, by induction on l > 1, one can see that

Ml = Pl + Ql + Rl +
l−1
∑

i=1

l−i
∑

j=0

P j Ri Ql−i− j . (5.82)

Notice that P(I−PP#) = 0, Q(I−QQ#) = 0, and Rk = Rk+1RD = 0. Combining
(5.82) and (5.78), we obtain

Mk+1X =
(

Pk +
k−1
∑

i=1

Pk−i Ri (I − QQ#) −
k−2
∑

i=1

k−i−1
∑

j=1

Pk−i Ri+ j (Q#) j
)

+Qk +
(

k−1
∑

i=1

k−i
∑

j=0

P j Ri Qk−i− j QQ# +
k−1
∑

i=1

k−1
∑

j=1

Pk−i Ri+ j (Q#) j
)

(5.83)

=Pk + Qk +
k−1
∑

i=1

k−i
∑

j=0

P j Ri Qk−i− j

=Mk .

Hence, Ind(M) ≤ Ind(R) and (5.77) is satisfied. Since

M2X =
[

P +
(

PP#R(I − QQ#) +
k−2
∑

i=1

(P#)i Ri+1(I − QQ#)
)

−
(

k−2
∑

j=1

PP#R j+1(Q#) j +
k−3
∑

i=1

k−i−2
∑

j=1

(P#)i Ri+ j+1(Q#) j
)]

+ Q (5.84)

+
[

(

R − R(I − QQ#)
) +

k−1
∑

j=1

R j+1(Q#) j
]
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= (P + Q + R) +
(

k−2
∑

i=1

(P#)i Ri+1(I − QQ#) +
k−2
∑

j=1

(I − PP#)R j+1(Q#) j
)

−
(

(I − PP#)R(I − QQ#) +
k−3
∑

i=1

k−i−2
∑

j=1

(P#)i Ri+ j+1(Q#) j
)

,

it is evident that Ind(M) ≤ 1 if and only if (5.76) holds. �

Remark 5.4.1 The importance of Theorem 5.23 lies not only in representing the
Drazin inverse, but can also be very useful for the existence of the group inverse. If
we assume that Ind(R) < 2 (equivalently that R = 0, if (P, Q, R, 0) is a pseudo-
block decomposition of M), and keep the remaining assumptions of Theorem 5.23,
then (5.77) still holds and gives an expression for the group inverse of M .

Finally, we present an explicit representation for the Drazin inverse of the pseudo-
block matrix P + Q + R corresponding to (P, Q, R, 0).

Theorem 5.24 Let P, Q, R ∈ C
m×m and (P, Q, R, 0) be a pseudo-block

decomposition of M. Let k = Ind(R), lP = Ind(P), and lQ = Ind(Q). Then

MD = PD + QD −
k−1
∑

i=1

k−i
∑

j=1

(PD)i Ri+ j−1(QD) j (5.85)

+
(

k−1
∑

i=1

iQ
∑

j=0

(PD)i+ j+1Ri Q j +
k−2
∑

i=1

k−i−1
∑

j=1

(PD)m+i+1Ri+ j Qm− j
)

(I − QQD)

+ (I − PPD)
(

k−1
∑

i=1

iP
∑

j=0

P j Ri (QD)i+ j+1 +
k−2
∑

i=1

k−i−1
∑

j=1

Pm−i Ri+ j (QD)m+ j+1
)

,

where iP = min{lP − 1,m − i} and iQ = min{lQ − 1,m − i}, and also

MD = PD + QD −
m−1
∑

i=1

m−i
∑

j=1

(PD)i Ri+ j−1(QD) j (5.86)

+
(

m−1
∑

i=1

m−i
∑

j=0

(PD)i+ j+1Ri Q j +
m−2
∑

i=1

m−i−1
∑

j=1

(PD)m+i+1Ri+ j Qm− j
)

(I − QQD)

+ (I − PPD)
(

m−1
∑

i=1

m−i
∑

j=0

P j Ri (QD)i+ j+1 +
m−2
∑

i=1

m−i−1
∑

j=1

Pm−i Ri+ j (QD)m+ j+1
)

.
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Proof Using Lemma 5.5, we have

MD = [P + (R + Q)]D

=
l−1
∑

t=0

(PD)t+1(R + Q)tΠ +
lP−1
∑

t=0

(I − PPD)Pt [(R + Q)D]t+1, (5.87)

where Π = I − (R + Q)(R + Q)D and l = Ind(R + Q).
Similarly, we have

(R + Q)D =
k−1
∑

j=0

R j (QD) j+1, Π = I − QQD +
k−1
∑

j=0

R j+1(QD) j+1.

Since

(R + Q)t =
t

∑

i=0

Rt−i Qi , [(R + Q)D]t+1 =
k−1
∑

j=0

Ri (QD)t+ j+1,

substituting the above expressions in (5.87), by computing we obtain the expressions
from the theorem. �

The following is an obvious corollary of Theorem 5.24 and contains as a special
case the Hartwig-Shoaf-Meyer-Rose formula.

Corollary 5.9 Let P, Q, R ∈ C
m×m and (P, Q, R, 0) be a pseudo-block decom-

position of M. Let lP = Ind(P) and lQ = Ind(Q). If Ind(R) ≤ 2 (i.e., R2 = 0),
then

(P + Q + R)D =PD + QD − PDRQD +
(

m−1
∑

j=0

(PD) j+2RQ j
)

(I − QQD)

+ (I − PPD)
(

m−1
∑

j=0

P j R(QD) j+2
)

(5.88)

=PD + QD − PDRQD +
(

lQ−1
∑

j=0

(PD) j+2RQ j
)

(I − QQD)

+ (I − PPD)
(
lP−1
∑

j=0

P j R(QD) j+2
)

.

Remark 5.4.2 For P = [

A 0
0 0

]

, Q = [

0 0
0 C

]

and R = [

0 B
0 0

]

, we have that (P, Q, R, 0)
is a pseudo-block decomposition of M = [

A B
0 C

]

. So the Hartwig-Shoaf-Meyer-Rose
formula follows immediately from Corollary 5.9 taking into account that PD =
[

AD 0
0 0

]

and QD = [

0 0
0 CD

]

.
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Corollary 5.10 (Hartwig-Shoaf-Meyer-Rose formula [2, Theorem 7.7.1], [11, 12])
Let M = [

A B
0 C

] ∈ C
(m+n)×(m+n), A ∈ C

n×n, C ∈ C
m×m, lA=Ind(A) and lC=Ind(C).

Then

MD =
[

AD X
0 CD

]

,

where

X =
(
lC−1
∑

j=0

(AD) j+2BC j
)

(I −CCD) + (I − AAD)
(
lA−1
∑

j=0

A j B(CD) j+2
)

− ADBCD.

Our next goal is to find some explicit representations for the Drazin inverse of a
pseudo-block matrix P + Q + R + S corresponding to (P, Q, R, S) under certain
assumptions. First, we need to list some auxiliary results for the case S = 0.

Lemma 5.6 Let P, Q, R ∈ C
m×m and (P, Q, R, 0) be a pseudo-block decomposi-

tion of M. Then

(

MD
)l =(

(P + Q + R)D
)l

=(PD)l + (QD)l +
l−1
∑

k=1

m−2
∑

i=1

m−i−1
∑

j=1

(PD)k+i Ri+ j (QD)l−k+ j

−
l

∑

k=1

m−1
∑

i=1

m−i
∑

j=1

(PD)k+i−1Ri+ j−1(QD)l−k+ j

+
(

m−1
∑

i=1

m−i
∑

j=0

(PD)l+i+ j Ri Q j +
m−2
∑

i=1

m−i−1
∑

j=1

(PD)l+m+i Ri+ j Qm− j
)

(I − QQD)

+(I − PPD)
(

m−1
∑

i=1

m−i
∑

j=0

P j Ri (QD)l+i+ j +
m−2
∑

i=1

m−i−1
∑

j=1

Pm−i Ri+ j (QD)l+m+ j
)

,

for any l ≥ 2.

Proof By (5.86) in Theorem 5.24 and induction on l, the desired result follows after
careful verification. �

Theorem 5.25 Let P, Q, R ∈ C
m×m and (P, Q, R,S) be a pseudo-block

decomposition of M such that SP = SR = 0. Then
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MD = PD + QD +
lS
∑

l=2

(QD)l Sl−1 +
lS
∑

l=2

l−1
∑

k=1

m−1
∑

i=1

m−i
∑

j=1

(PD)k+i Ri+ j (QD)l−k+ j Sl−1

+
lS
∑

l=1

m−1
∑

i=1

m−i
∑

j=0

(PD)l+i+ j Ri Q j (I − QQD)Sl−1

+
lS
∑

l=1

m−1
∑

i=1

m−i
∑

j=0

(I − PPD)P j Ri (QD)l+i+ j Sl−1

+
lS
∑

l=1

m−2
∑

i=1

m−i−1
∑

j=1

(PD)l+m+i Ri+ j Qm− j (I − QQD)Sl−1 (5.89)

+
lS
∑

l=1

m−2
∑

i=1

m−i−1
∑

j=1

(I − PPD)Pm−i Ri+ j (QD)l+m+ j Sl−1

−
lS
∑

l=1

l
∑

k=1

m−1
∑

i=1

m−i
∑

j=1

(PD)k+i−1Ri+ j−1(QD)l−k+ j Sl−1,

where lS = Ind(S). Replacing lS by an integer n ( m ≥ n ≥ lS) in (5.89), the above
explicit representation still holds.

Proof From Lemma 5.5 and SP = SQ = SR = 0, it follows that

MD = (P + Q + R + S)D =
lS
∑

l=1

(

(P + Q + R)D
)l
Sl−1. (5.90)

Combining (3.8) with Lemma 5.6, we get (5.89). �

Replacing the condition SP = SR = 0 in the above theorem by RS = QS = 0,
we can obtain a similar result.

Theorem 5.26 Let P, Q, R ∈ C
m×m and (P, Q, R,S) be a pseudo-block decompo-

sition of M such that RS = QS = 0. Then

MD = PD + QD +
lS
∑

l=2

Sl−1(PD)l +
lS
∑

l=1

m−1
∑

i=1

m−i
∑

j=0

Sl−1(PD)l+i+ j Ri Q j (I − QQD)

+
lS
∑

l=2

l−1
∑

k=1

m−2
∑

i=1

m−i−1
∑

j=1

Sl−1(PD)k+i Ri+ j (QD)l−k+ j

+
lS
∑

l=1

m−1
∑

i=1

m−i
∑

j=0

Sl−1(I − PPD)P j Ri (QD)l+i+ j

http://dx.doi.org/10.1007/978-981-10-6349-7_3
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+
lS
∑

l=1

m−2
∑

i=1

m−i−1
∑

j=1

Sl−1(PD)l+m+i Ri+ j Qm− j (I − QQD) (5.91)

+
lS
∑

l=1

m−2
∑

i=1

m−i−1
∑

j=1

Sl−1(I − PPD)Pm−i Ri+ j (QD)l+m+ j

−
lS
∑

l=1

l
∑

k=1

m−1
∑

i=1

m−i
∑

j=1

Sl−1(PD)k+i−1Ri+ j−1(QD)l−k+ j ,

where lS = Ind(S). Replacing lS by any integer n ( m ≥ n ≥ lS) in (5.91), the above
explicit representation still holds.

Proof The proof is similar to that of Theorem 5.25. �

Specializing Theorem 5.25 to the case Ind(S) ≤ 2 and Ind(R) ≤ 2 (i.e., R2 =
S2 = 0), we have the following corollary.

Corollary 5.11 Let P, Q, R ∈ C
m×m and (P, Q, R,S) be a pseudo-block decom-

position of M such that SP = SR = 0 and S2 = R2 = 0. Then

MD = PD + QD − PDRQD + (

(QD)2 − PDR(QD)2 − (PD)2RQD
)

S

+
m−1
∑

j=0

(PD) j+2RQ j (I − QQD) +
m−1
∑

j=0

(I − PPD)P j R(QD) j+2 (5.92)

+
m−1
∑

j=0

(

(PD) j+3RQ j (I − QQD) + (I − PPD)P j R(QD) j+3)S,

or alternatively,

MD = PD + QD − PDRQD + (

(QD)2 − PDR(QD)2 − (PD)2RQD
)

S

+
lQ−1
∑

j=0

(PD) j+2RQ j (I − QQD) +
lP−1
∑

j=0

(I − PPD)P j R(QD) j+2 (5.93)

+
lQ−1
∑

j=0

(PD) j+3RQ j (I − QQD)S +
lP−1
∑

j=0

(I − PPD)P j R(QD) j+3S,

where lP = Ind(P) and lQ = Ind(Q). Furthermore,

Ind(M) ≤ Ind(P) + Ind(Q) + 2. (5.94)
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Proof The formulae (5.92) and (5.93) are immediate from Theorem 5.25. All we
need to do now is to prove (5.94).

By induction on l, we have

Ml+1 = Pl+1 + Ql+1 + Ql S +
l

∑

i=0

Pl−i RQi +
l−1
∑

i=0

Pl−i−1RQi S,

for l ≥ 1. Denote the five terms on the right-hand side of the above equality by Yi
(i = 1, 2, . . . , 5), respectively, and put X = MD. Combining the above equality
with (5.93), for l ≥ lP + lQ + 2, we obtain

Ml+1MD = Y1X + Y2X + Y3X + Y4X + Y5X = Y1X + Y2X + Y4X (5.95)

=
[

Pl − Pl RQD − Pl RQD − (

Pl R(QD)2 + Pl−1RQD
)

S

+
l−1
∑

j=0

Pl− j−1RQ j (I − QQD) +
l−2
∑

j=0

Pl− j−2RQ j (I − QQD)S
]

+ (

Ql + Ql−1S
) +

[

(

Pl RQD +
l−1
∑

i=0

Pl−i+1RQi · QQD
)

+ (

Pl R(QD)2S + Pl−1RQDS +
l−2
∑

i=0

Pl−i−2RQi · QQDS
)

]

= Ml,

since SX3 = 0, SX5 = 0,
l−1
∑

j=lQ

Pl− j−1RQ j (I − QQD) = 0, Pl(PD) j = Pl− j for

l−max{Ind(P), 1} ≥ j > 0, and
l−2
∑

j=lQ

Pl− j−2RQ j (I −QQD)S = 0. Clearly, (5.94)

follows from (5.95). �

We now pay our attention to finding expressions for the Drazin inverse of a 2× 2
block matrix, M = [

A B
0 C

] ∈ C
m×m ,where A and C are square matrices.

Let P = [

A 0
0 0

]

, Q = [

0 0
0 C

]

, R = [

0 B
0 0

]

and S = [

0 0
D 0

]

. Considering the block
decomposition (P, Q, R, S) of M = P + Q + R + S = [

A B
D C

]

, the desired results
are derived from Corollary 5.11 and Theorem 5.26, respectively.

Corollary 5.12 Let M = [

A B
D C

] ∈ C
m×m, lA=Ind(A) and lC=Ind(C), where A and

C are square matrices. If DA = 0 and DB = 0, then

MD =
[

AD + X2D X1

(CD)2D CD

]

,
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where

Xi =
m−1
∑

j=0

(

(AD)i+ j+1BC j (I − CCD) + (I − AAD)A j B(CD)i+ j+1
)

−
i−1
∑

j=0

(AD) j+1B(CD)i− j (5.96)

=
(
lC−1
∑

j=0

(AD)i+ j+1BC j
)

(I − CCD) + (I − AAD)
(
lA−1
∑

j=0

A j B(CD)i+ j+1
)

−
i−1
∑

j=0

(AD) j+1B(CD)i− j , ( i = 1, 2)

Furthermore,

Ind(M) ≤ Ind(A) + Ind(C) + 2.

Corollary 5.13 ([13, Theorem 2.1]) Let M = [

A B
D C

] ∈ C
m×m, lA=Ind(A) and

lC=Ind(C), where A and C are square matrices. If BD = 0 and CD = 0, then

MD =
[

AD X1

D(AD)2 CD + DX2

]

,

where X1 and X2 are defined in (5.96). Furthermore,

Ind(M) ≤ Ind(A) + Ind(C) + 2.

We conclude this section with the following example in which none of the results on
representations of MD using block decompositions of M can be applied to compute
MD but choosing a special pseudo-block decomposition of M does the job.

Example 5.3 Let

M =

⎡

⎢

⎢

⎣

8 0 8 8
0 0 −6 6
4 −4 −7 15
4 −4 −7 15

⎤

⎥

⎥

⎦

=
[

A B
D C

]

.

There are three block forms for M given as follows:

Case (1): A = [ 8 ], B = [ 0, 8, 8],C =
⎡

⎣

0 −6 6
−4 −7 15
−4 −7 15

⎤

⎦ , D =
⎡

⎣

0
4
4

⎤

⎦ .
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Case (2): A =
[

8 0
0 0

]

, B =
[

8 8
−6 6

]

,C =
[−7 15

−7 15

]

, D =
[

4 −4
4 −4

]

.

Case (3): A =
⎡

⎣

8 0 8
0 0 −6
4 −4 −7

⎤

⎦ , B =
⎡

⎣

8
6
15

⎤

⎦ ,C = [15 ], D = [ 4, − 4, − 7].

In each case, one can verify that DB 
= 0 and BD 
= 0. Thus the block matrix
version results in Corollaries 5.12 and 5.13 cannot apply to yield MD. Similarly, let
(P1, Q1, R1, S1) be the block decompositions of M , where

P1 =
[

A 0
0 0

]

, Q1 =
[

0 0
0 C

]

R1 =
[

0 B
0 0

]

, S1 =
[

0 0
D 0

]

.

We see that Theorems 5.25, 5.26 and Corollary 5.11, can neither be used to produce
MD, since S1R1 
= 0 and R1S1 
= 0. If we take a special pseudo-block decomposition
(P2, Q2, R2, S2) of M as follows:

P2 =

⎡

⎢

⎢

⎣

8 −8 8 8
0 0 0 0
4 −4 2 6
4 −4 2 6

⎤

⎥

⎥

⎦

, Q2 =

⎡

⎢

⎢

⎣

0 0 2 −2
0 0 −2 2
0 0 −2 2
0 0 −2 2

⎤

⎥

⎥

⎦

, R2 =

⎡

⎢

⎢

⎣

0 8 0 0
0 0 −4 4
0 0 −8 8
0 0 −8 8

⎤

⎥

⎥

⎦

, S2 =

⎡

⎢

⎢

⎣

0 0 −2 2
0 0 0 0
0 0 1 −1
0 0 1 −1

⎤

⎥

⎥

⎦

,

then we can compute MD using Theorem 5.25. Indeed, one can verify that (P2, Q2,

R2, S2) is a pseudo-block decomposition of M , as S2P2 = 0 and S2R2 = 0.
Let αT

1 = (0, 0, 1, 1), αT
2 = (1, 0, 0, 0), αT

3 = (−1, 1, 1, 1), βT
1 = (4,−4, 2, 6),

βT
2 = (8,−8, 8, 8), and βT

3 = (0, 0,−2, 2). We have

PD
2 = (α1β

T
1 + α2β

T
2 )D =

(

[α1, α2]

[

βT
1

βT
2

])D

= [α1, α2]

[

([

βT
1

βT
2

]

[α1, α2]

)D
]2 [

βT
1

βT
2

]

= 1

256

⎡

⎢

⎢

⎣

8 −8 6 10
0 0 0 0
4 −4 3 5
4 −4 3 5

⎤

⎥

⎥

⎦

,

and QD
2 = (α3β

T
3 )D = α3

[

(βT
3 α3)

D
]2

βT
3 = 0. Hence by Theorem 5.25, we obtain
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MD =PD
2 +

lS2
∑

l=1

m−1
∑

i=1

m−i
∑

j=0

(PD
2 )l+i+ j Ri

2Q
j
2S

l−1
2 +

lS2
∑

l=1

m−2
∑

i=1

m−i−1
∑

j=1

(PD
2 )l+m+i Ri+ j

2 Qm− j
2 Sl−1

2

=PD
2 + (PD

2 )2R2 + (PD
2 )3(R2Q2 + R2

2)

= 1

256

⎡

⎢

⎢

⎣

8 −8 6 10
0 0 0 0
4 −4 3 5
4 −4 3 5

⎤

⎥

⎥

⎦

+ 1

256

⎡

⎢

⎢

⎣

0 4 −6 6
0 0 0 0
0 2 −3 3
0 2 −3 3

⎤

⎥

⎥

⎦

+ 3

1024

⎡

⎢

⎢

⎣

0 0 −2 2
0 0 0 0
0 0 −1 1
0 0 −1 1

⎤

⎥

⎥

⎦

= 1

1024

⎡

⎢

⎢

⎣

32 −16 −6 70
0 0 0 0
16 −8 −3 35
16 −8 −3 35

⎤

⎥

⎥

⎦

,

since QD
2 = 0, lS2 = Ind(S2) = 2 (since S22 = 0 and S2 
= 0), m = 4, and R3

2 = 0,
Q2S2 = 0, R2S2 = 0, Q2

2 = 0, and R2
2Q2 = 0.
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18. Cvetković, A.S., Milovanović, G.V.: On Drazin inverse of operator matrices. J. Math. Anal.
Appl. 375, 331–335 (2011)
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Chapter 6
Additive Results for the Drazin Inverse

The Drazin inverse, introduced in [1], named after Michael P. Drazin in 1958 in the
setting of an abstract ring, is a kind of generalized inverse of a matrix. Many inter-
esting spectral properties of the Drazin inverse make it as a concept that is extremely
useful in various considerations in topics such as Markov chains, multibody sys-
tem dynamics, singular difference and differential equations, differential-algebraic
equations and numerical analysis ([1–6]).

In this chapter we will focus our attention on the behavior of the Drazin inverse
of a sum of two Drazin invertible elements in the setting of matrices as well as in
Banach algebras, where we will also consider the concept of the generalized Drazin
inverse. In 1958, while considering the question of Drazin invertibility of a sum of
two Drazin invertible elements of a ring Drazin proved that

(A + E)D = AD + ED

provided that AE = E A = 0. After that this topic received considerable interest with
many authors working on this problem [4, 7–10], which in turn lead to a number
of different formulae for the Drazin inverse (A + E)D as a function of A, E, AD

and ED.

6.1 Additive Results for the Drazin Inverse

Although it was already even in 1958 that Drazin [1] pointed out that computing
the Drazin inverse of a sum of two elements in a ring was not likely to be easy, this
problem remains open to this day even for matrices. It is precisely this problemwhen
considered in rings of matrices that will be the subject of our interest in this section,
i.e., under various conditions we will compute (P + Q)D as a function of P , Q, PD

and QD. We will extend Drazin’s result in the sense that only one of the conditions
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PQ = 0 or PQ = QP is assumed. The results obtained will be then used to analyze
a special class of perturbations of the type A − X.

Throughout the section, we shall assume familiarity with the theory of Drazin
inverses (see [11]). Also, for A ∈ C

n×n , we denote ZA = I − AAD.
First, we will give a representation of (P + Q)D under the condition PQ = 0

which was considered in [10, Theorem 2.1]:

Theorem 6.1 Let P, Q ∈ C
n×n. If PQ = 0, then

(P + Q)D = (I − QQD)[I + QPD + · · · + Qk−1(PD)k−1]PD

+ QD[I + QDP + · · · + (QD)k−1Pk−1](I − PPD), (6.1)

and

(P + Q)(P + Q)D = (I − QQD)[I + QPD + · · · + Qk−1(PD)k−1]PPD

+ QQD[I + QDP + · · · + (QD)k−1Pk−1](I − PPD) + QQDPPD, (6.2)

where max{Ind(P), Ind(Q)} ≤ k ≤ Ind(P) + Ind(Q).

Proof Under the assumption PQ = 0, we have

PDQ = PQD = 0, ZPQ = Q and PZQ = P. (6.3)

Using Cline’s Formula [12], (AB)D = A[(BA)D]2B, we have

(P + Q)D =
(

[I, Q]
[
P
I

])D

= [I, Q]
([

P PQ
I Q

]D
)2 [

P
I

]
.

Now, by Theorem 1 of [4], we have that

[
P 0
I Q

]D

=
[
PD 0
R QD

]
,

for
R = −QDPD + ZQYk(P

D)k+1 + (QD)k+1Yk ZP

and
Yk = Qk−1 + Qk−2P + · · · + QPk−2 + Pk−1,

where max{Ind(P), Ind(Q)} ≤ k ≤ Ind(P) + Ind(Q).

Hence

(P + Q)D = [I, Q]
([

PD 0
R QD

])2 [
P
I

]
= PD + QRPPD + QQDRP + QD.
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Substituting R in the above equality, we get (6.1). It is straightforward to prove (6.2)
from (6.1) and (6.3). ��
Now we list some special cases of the previous result:

Corollary 6.1 Let P, Q ∈ C
n×n be such that PQ = 0 and let k be such that max{

Ind(P), Ind(Q)} ≤ k ≤ Ind(P) + Ind(Q).

(i) If Q is nilpotent, then (P + Q)D = PD + Q(PD)2 + · · · + Qk−1(PD)k .

(ii) If Q2 = 0, then (P + Q)D = PD + Q(PD)2.

(iii) If P is nilpotent, then (P + Q)D = QD + (QD)2P + · · · + (QD)k Pk−1.

(iv) If P2 = 0, then (P + Q)D = QD + (QD)2P.

(v) If P2 = P, then (P + Q)D = (I − QQD)(I + Q + · · · + Qk−1)P +
QD(I − P), and
(P + Q)D(I − P) = QD(I − P).

(vi) If Q2 = Q, then (P + Q)D = (I − Q)PD + Q(I + P + · · · + Pk−1)

(I − PPD), and
(I − Q)(P + Q)D = (I − Q)PD.

(vii) If P R = 0, then (P + Q)DR = (I − QQD)PDR + QDR = QDR.

Theorem 6.1may be used to obtain several additional perturbation results concerning
the matrix Γ = A − X. Needless to say these are rather special, since addition and
inversion rarely mix. First a useful result.

Lemma 6.1 Let A, F, X ∈ C
n×n. If AF = FA and FX = X, then

(AF − X)k X = (A − X)k X, f or all k ∈ N . (6.4)

Proof Since AF = FA and (I − F)X = 0, we have that

(I − F)(A − X)k X = 0. (6.5)

Now the assertion is proved by induction. The case k = 1 is trivial. Suppose (AF −
X)k X = (A − X)k X. Then by (6.5),

(AF − X)k+1X = (AF − X)(A − X)k X = AF(A − X)k X − X (A − X)k X

= A(A − X)k X − X (A − X)k X = (A − X)k+1X.�

Now we present a perturbation result.

Corollary 6.2 Let A, F, X ∈ C
n×n and let F be an idempotent matrix which

commutes with A. Let Γ = A − X and let max{Ind(A), Ind(X)} ≤ k ≤ Ind(A) +
Ind(X). If F X = X and R = Γ F = AF − XF, then
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(A − X)D = RD −
k−1∑
i=0

(RD)i+2X (I − F)Ai (I − AAD)

+ (I + RDX)(I − F)AD − (I − RRD)

k−2∑
i=0

(A − X)i X (I − F)(AD)i+2. (6.6)

Proof LetΓ = A − X = P + Q,where P = A(I − F) andQ = AF − FX.Since
F2 = F we have that (I − F)2 = I − F and (I − F)D = (I − F). Since

PQ = A(I − F)(AF − FX) = A(I − F)AF = A2[(I − F)F] = 0,

after applying Theorem 6.1 we get

(P + Q)D = (I − QQD)V + W (I − PPD) = T1 + T2,

whereV = [PD + Q(PD)2 + · · · + Qk−1(PD)k] andW = [QD + (QD)2P + · · · +
(QD)k Pk−1]. Put T1 = (I − QQD)V and T2 = W (I − PPD). So we see that we
need to compute QD and PD. The latter is easily found because A and F commute:

PD = [A(I − F)]D = (I − F)AD, PPD = (I − F)AAD.

On the other hand, in order to compute QD, we split Q further as

Q = R − S,

where R = (A − X)F = AF − FXF and S = FX (I − F). Since

SR = FX (I − F)(FA − FXF) = FX [(I − F)F](A − XF) = 0,

and S2 = FX [(I − F)F]X (I − F) = 0, by (iv) of Corollary 6.1 we get

QD = (−S + R)D = RD − (RD)2S, QQD = (R − S)[RD − (RD)2S].

Since SRD = SR = 0, it follows that QQD = RRD − RDS. Also, RDP = 0,
because

RP = (AF − FXF)A(I − F) = (A − FX)[F(I − F)]A = 0.

So QDP = −(RD)2SP = −(RD)2X P. Similarly, since SRD = 0, we get

(QD)2P = [RD − (RD)2S][−(RD)2X P] = −(RD)3X P.
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Repeating the process, we obtain

(QD)t+1Pt = −(RD)t+2X Pt , t = 1, 2, . . .

which when substituted yields the second term:

T2 = W (I − PPD) = [RD − (RD)2S − (RD)3X P − · · · − (RD)k+1X Pk−1](I − PPD)

= [RD − (RD)2X (I − F) − (RD)3X A(I − F) · · · − (RD)k+1X Ak−1(I − F)]
− [RD − (RD)2X (I − F) − (RD)3X A(I − F) · · · − (RD)k+1X Ak−1(I − F)](I − F)AAD

= RD −
k−1∑
i=0

(RD)i+2X (I − F)Ai (I − AAD).

Let us next examine the first term

T1 = (I − QQD)V = [I − (RRD − RDS)][PD + Q(PD)2 + · · · + Qk−1(PD)k].

We compute the powers Qi (PD)i+1 = (AF − X)i (I − F)(AD)i+1. For i = 1,
this becomes (AF − X)(I − F)(AD)2 = −X (I − F)(AD)2, while for higher pow-
ers of i we may use Lemma 6.1 to obtain

Qi (PD)i+1 = (AF − X)i−1(AF − X)(I − F)(AD)i+1

= −(AF − X)i−1X (I − F)(AD)i+1 = −(A − X)i−1X (I − F)(AD)i+1.

Now

S(A − X)i−1X = X (I − F)(A − X)(A − X)i−2X

= X A(I − F)(A − X)i−2X = · · · = X Ai−1(I − F)X = 0

for all i, and RD(I − F) = (RD)2R(I − F) = (RD)2(A − X)[F(I − F)] = 0, so

T1 = (I − RRD + RDS)(I − F)AD + (I − RRD + RDS)[Q(PD)2 + · · · + Qk−1(PD)k ]

= [I + RDX (I − F)](I − F)AD − (I − RRD)

k−1∑
i=1

(A − X)i−1X (I − F)(AD)i+1

= (I + RDX)(I − F)AD − (I − RRD)

k−2∑
i=0

(A − X)i X (I − F)(AD)i+2,

completing the proof. ��
Using the previous result we will analyze some special types of perturbations

of the matrix A − X. We shall thereby extend earlier work by several authors [13–
16] and partially solve a problem posed in 1975 by Campbell and Meyer [17], who
considered it difficult to establish norm estimates for the perturbation of the Drazin
inverse.
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In the following five special cases, we assume FX = X and R = AF − XF.

Case (1) XF = 0.
Clearly (RD)i = (AD)i F and S = X. Moreover (A − X)i F X = Ai X for i ≥ 0.

Thus (6.6) reduces to

(A − X)D = ADF −
k−1∑
i=0

(AD)i+2X Ai (I − AAD)

+ (I − F + ADX)AD −
k−2∑
i=0

Ai (I − AAD)X (AD)i+2. (6.7)

Case (1a) XF = 0 and F = AAD.

If we in addition assume that F = AAD, then X AD = 0 and (6.7) is reduced to

(A − X)D = AD −
k−1∑
i=0

(AD)i+2X Ai . (6.8)

Case (1b) XF = 0 and F = I − AAD.

In this case, ADX = 0 and (6.7) becomes

(A − X)D = AD −
k−2∑
i=0

Ai X (AD)i+2. (6.9)

Case (2) F = AAD.

Now AADX = X , R = A2AD(I − ADX AAD) and (6.6) simplifies to

(A − X)D = RD −
k−1∑
i=0

(RD)i+2X Ai (I − AAD). (6.10)

If we set U = I − ADX AAD and V = I − AADX AD, then U AD = ADV and R =
A2ADU = V A2AD. Now if we assume that U is invertible, then so will be V and
U−1AD = ADV−1. It is now easily verified that R# exists and

R# = U−1AD = ADV−1.

In fact RR# = A2ADUU−1AD = AAD = ADV−1V A2AD = R#R and R2R# =
RAAD = R and R#RR# = U−1ADAAD = U−1AD = R#. We then have two sub-
cases.

Case (2a) F = AAD, and U = I − ADX AAD is invertible.
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In this case, (6.10) is just

(A − X)D = R# −
k−1∑
i=0

(R#)i+2X Ai (I − AAD), (6.11)

where R = A2ADU, R# = U−1AD. In general, (R#)i �= U−i (AD)i .

Remark 6.1.1 The matrix U = I − ADX AAD is invertible if and only if I − ADX
is invertible. This result generalizes the main results from [13–16].

Case (2b) F = I − AAD.

We have ADX = ADF = 0, and (6.6) becomes

(A − X)D = RD + (I + RDX)AD − (I − RRD)

k−2∑
i=0

(A − X)i X (AD)i+2, (6.12)

where R = A(I − AAD) − (I − AAD)X (I − AAD).

Case (3) AADXF = XFAAD = XF, U = I − ADXF is invertible and (AF)#

exists.
Now R = AF − XF = AF − AADFXF= AF(I − ADXF)= AFU = V FA,

where V = I − XFAD. Furthermore ADFV = U ADF. We may now conclude that
U is invertible exactly when V is, in which case Y = U−1ADF = ADFV−1.

We then have RY = AFU (U−1ADF) = AADF = ADFV−1(V FA) = Y R.

Lastly,
Y 2R = U−1ADF(AADF) = U−1ADF = Y

and R2Y = RAADF = A2ADF − AADFXFAAD = A2ADF − XF.

If (AF)# exists then AF = AF(AF)#AF = AFF#ADAF = AFF#FAAD =
A2ADF , so R2Y = AF − XF = R, i.e., Y = R# and (6.6) becomes

(A − X)D = R# −
k−1∑
i=0

(R#)i+2X (I − AAD)Ai . (6.13)

Case (4) FX = XF = X.

In this case, (6.6) reduces to

(A − X)D = RD + (I − F)AD. (6.14)

If in addition to F = AAD, the matrix U = I − ADX is invertible, this reduces
further to [15]

(A − X)D = RD = U−1AD. (6.15)

Case (5) If X = A2AD then Γ is nilpotent and Γ D = 0.
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Although Theorem 6.1 solves our problem under the assumption that PQ = 0,
the condition can be relaxed and the result therefore generalized as follows: Since

([
P PQ
I Q

]D)k

=
([

P PQ
I Q

]k)D

=
[
P(P + Q)k−1 P(P + Q)k−1Q
(P + Q)k−1 (P + Q)k−1Q

]D
, for all k ∈ N,

we may extend the considerations above to the case when P(P + Q)k−1Q = 0.
In fact

(P + Q)D = [I, Q]
([

P PQ
I Q

]k
)D [

P PQ
I Q

]k−2 [
P
I

]
=

[I, Q]
[
P(P + Q)k−1 0
(P + Q)k−1 (P + Q)k−1Q

]D [
P(P + Q)k−3 P(P + Q)k−3Q
(P + Q)k−3 (P + Q)k−3Q

] [
P
I

]
.

This requires computation of [P(P + Q)k−1]D and [(P + Q)k−1Q]D, which may
actually be easier than that of (P + Q)D.

A second attempt to generalize Theorem 6.1 would be to assume only that P2Q =
0. Needless to say, this is the best attempted via the block form, which in turn should
give a suitable formula.

Now, we will investigate explicit representations for the Drazin inverse (A + E)D

in the casewhen AE = E A, whichwas considered in [18, Theorem2]. For A ∈ C
n×n

with Ind(A) = k and rank(Ak) = r , there exists an nonsingular matrix P ∈ C
n×n

such that

A = P

[
C 0
0 N

]
P−1, (6.16)

where C ∈ C
r×r is a nonsingular matrix, N is nilpotent of index k and Ind(N ) =

Ind(A) = k. In that case

AD = P

[
C−1 0
0 0

]
P−1, (6.17)

If P = I, then the block-diagonal matrices A and AD are written as A = C ⊕ N and
AD = C−1 ⊕ 0.

Now we state the following result which was obtained by Hartwig and Shoaf [19]
and Meyer and Rose [20], since it will be used in the theorem to follow.

Theorem 6.2 If M =
[
A C
0 B

]
, where A ∈ C

n×n and B ∈ C
m×m with Ind(A) = k

and Ind(B) = l, then MD =
[
AD X
0 BD

]
,
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where

X =
[
l−1∑
n=0

(AD)n+2CBn

]
(I − BBD) + (I − AAD)

[
k−1∑
n=0

AnC(BD)n+2

]
− ADCBD.

Theorem 6.3 If A, E ∈ C
n×n, AE = E A and Ind(A) = k, then

(A + E)D = (I + ADE)DAD + (I − AAD)

k−1∑
i=0

(ED)i+1(−A)i

= (I + ADE)DAD + (I − AAD)ED[I + A(I − AAD)ED]−1,

and
(A + E)D(A + E) = (I + ADE)DAD(A + E) + (I − AAD)EED.

Proof Let A ∈ C
n×n be given by (6.16). Without loss of generality, we assume that

P = I and A = C ⊕ N , whereC is invertible and N is nilpotent with Nk = 0. From
AE = E A, we have AkE = E Ak . Now E = E1 ⊕ E2, CE1 = E1C and NE2 =
E2N . Hence

(A + E)D = (C + E1)
D ⊕ (N + E2)

D.

Since C and I + C−1E1 commute, we get

(C + E1)
D ⊕ 0 = (I + C−1E1)

DC−1 ⊕ 0 = (I + ADE)DAD.

Notice that (I + T )−1 =
k−1∑
i=0

(−T )i if T k = 0. Applying Lemma 4 [19] we get (N +
E2)

D = ED
2 (I + ED

2 N )−1 and

0 ⊕ ED
2 (I + ED

2 N )−1 = 0 ⊕
k−1∑
i=0

(ED
2 )i+1(−N )i = (I − AAD)

k−1∑
i=0

(ED)i+1(−A)i

= (I + ADE)DAD + (I − AAD)ED[I + A(I − AAD)ED]−1.

Hence

(A + E)D = (I + ADE)DAD + (I − AAD)

k−1∑
i=0

(ED)i+1(−A)i

= (I + ADE)DAD + (I − AAD)ED[I + A(I − AAD)ED]−1,

and
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(A + E)D(A + E)

=
{
(I + ADE)DAD + (I − AAD)

k−1∑
i=0

(ED)i+1(−A)i
}
(A + E)

= (I + ADE)D(A + E)AD + (I − AAD)EDA
k−1∑
i=0

(ED)i (−A)i

+(I − AAD)EDE
k−1∑
i=0

(ED)i (−A)i

= (I + ADE)D(A + E)AD + (I − AAD)

(
−

k∑
i=1

(ED)i (−A)i
)

+(I − AAD)

(
EDE +

k−1∑
i=1

(ED)i (−A)i
)

= (I + ADE)D(A + E)AD + (I − AAD)EED. ��

From Theorem 6.3, we can see that the generalized Schur complement I + ADE
[21] plays an important role in the representation of the Drazin inverse (A + E)D.
In some special cases, it is possible to give an expression for (I + ADE)D.

Theorem 6.4 Let A, E ∈ C
n×n be such that AE = E A and let Ind(A) = k and

Ind(E) = l.
(1) If ADED = 0, then

(A + E)D = (I − AAD)

k−1∑
i=0

(ED)i+1(−A)i +
l−1∑
i=0

(−E)i (AD)i+1(I − EED).

(2) If ADE = 0, then (A + E)D = AD + (I − AAD)
k−1∑
i=0

(ED)i+1(−A)i .

(3) If Ind(A) = 1, then (A + E)D = (I + A#E)DA# + (I − AA#)ED.

Proof We use the notations from the proof of Theorem 6.3.
(1) If ADED = 0, then E1 is nilpotent with El

1 = 0. So we have

(I + ADE)DAD = (I + C−1E1)
−1C−1 ⊕ 0 =

l−1∑
i=0

(−E1)
i (C)−(i+1) ⊕ 0

=
l−1∑
i=0

(−E)i (AD)i+1(I − EED).

The result now follows from Theorem 6.3.
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(2)–(3) Note that if ADE = 0, then E1 = 0; if Ind(A) = 1, then N = 0. The
results follow directly from the proof of Theorem 6.3. ��

Let A, E ∈ C
n×n . If there exists a nonzero idempotent matrix P = P2 such that

AEP = E AP (or PAE = PE A), then A and E are partially commutative. For
A, E ∈ C

n×n , let Aπ = I − AAD and Ind(A) = k and suppose E2 = 0. In [22],
Castro-González proved that if Aπ E = E and AE Aπ = 0, then

(A + E)D = AD +
k∑

i=0

Ai E(AD)i+2 +
k−1∑
i=0

E Ai E(AD)i+3.

But no representations of (A + E)D assuming only partial commutativity are known.
Under the conditions Aπ E = E and AE Aπ = E AAπ ,we are able to give an expres-
sion for (A + E)D.

Theorem 6.5 Let A ∈ C
n×n with Ind(A) = k and E ∈ C

n×n be nilpotent of index l.
If E AD = 0 and Aπ AE = Aπ E A, then

(A + E)D = AD +
k+l−2∑
i=0

(AD)i+2ET (i),

where T (i) = (I − AAD)
i∑

j=0

( j
i

)
A j Ei− j .

Proof Similarly as in the proof of Theorem6.3, let A = C ⊕ N , whereC is invertible
and N is nilpotent with Nk = 0. It follows from E AD = 0 that E can be written as

E =
[
0 E1

0 E2

]
with El

2 = 0. Also by Aπ AE = Aπ E A, we get E2N = NE2. Thus

(N + E2)
i ⊕ 0 =

i∑
j=0

(
j

i

)
N j Ei− j

2 ⊕ 0 = (I − AAD)

⎛
⎝ i∑

j=0

(
j

i

)
A j Ei− j

⎞
⎠ = T (i).

We observe that N + E2 is nilpotent of index k + l − 1. From Theorem 6.2, we
further obtain

(A + E)D =
[
C E1

0 N + E2

]D

=
[
C−1 X
0 0

]
,

where

X =
k+l−2∑
i=0

C−(i+2)E1(N + E2)
i =

k+l−2∑
i=0

C−(i+2)E1

(
i∑

j=0

( j
i

)
N j Ei− j

2

)
. (6.18)
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Hence

AD +
k+l−2∑
i=0

(AD)i+2ET (i) =
⎡
⎣C−1

k+l−2∑
i=0

C−(i+2)E1

(
i∑

j=0

( j
i

)
N j Ei− j

2

)

0 0

⎤
⎦ = (A + E)D.

��
The following result generalizes Theorems 6.3 and 6.5 to the case of partial

commutativity.

Theorem 6.6 Let A, E ∈ C
n×n and Ind(A) = k. Also let Q ∈ C

n×n be an idempo-
tent matrix such that QA = AQ and EQ = 0. If (I − Q)AE = (I − Q)E A, then

(A + E)D = QAD + (I − Q)Ψ − QADEΨ + Q(I − AAD)

[
k−1∑
i=0

Ai EΨ i+2

]

+ Q

[
h−1∑
i=0

(AD)i+2E(A + E)i
]

(I − Q)[I − (A + E)Ψ ],
(6.19)

where Ψ = (I + ADE)DAD + (I − AAD)
k−1∑
i=0

(ED)i+1(−A)i and h = Ind

[(I − Q)(A + E)].
Proof Suppose that Q = Ir×r ⊕ 0(n−r)×(n−r), where r ≤ n. If QA = AQ, EQ =
0 and (I − Q)AE = (I − Q)E A, then A = A1 ⊕ A2 and E =

[
0 E1

0 E2

]
with

A2E2 = E2A2. Using Theorems 6.2 and 6.3, we have

(A + E)D =
⎡
⎣ AD

1 X

0 (I + AD
2 E2)

DAD
2 + (I − A2AD

2 )
k−1∑
i=0

(ED
2 )i+1(−A2)

i

⎤
⎦ ,

where

X =
[
h−1∑
i=0

(AD
1 )i+2E1(A2 + E2)

i

]
[I − (A2 + E2)(A2 + E2)

D]

+(I − A1A
D
1 )

[
k−1∑
i=0

Ai
1E1((A2 + E2)

D)i+2

]
− AD

1 E1(A2 + E2)
D,

and Ind(A2 + E2) = h.

If we write Ψ = (I + ADE)DAD + (I − AAD)
k−1∑
i=0

(ED)i+1(−A)i , then (I − Q)

Ψ = 0 ⊕ (A2 + E2)
D.We can simplify the expression for (A + E)D using the block

decomposition above. We deduce
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Σ1 = Q

[
h−1∑
i=0

(AD)i+2E(A + E)i

]
(I − Q)[I − (A + E)Ψ ]

=
⎡
⎣0

[
h−1∑
i=0

(AD
1 )i+2E1(A2 + E2)

i

]
[I − (A2 + E2)(A2 + E2)

D]
0 0

⎤
⎦ ,

Σ2 = QAπ

[
k−1∑
i=0

Ai EΨ i+2

]
=

⎡
⎣0 Aπ

1

[
k−1∑
i=0

Ai
1E1((A2 + E2)

D)i+2

]

0 0

⎤
⎦

and Σ3 = QADEΨ =
[
0 AD

1 E1(A2 + E2)
D

0 0

]
.

Thus
(A + E)D = QAD + (I − Q)Ψ + Σ1 + Σ2 − Σ3.

��
Now a few special cases follow immediately.

Corollary 6.3 Let A, E ∈ C
n×n with Ind(A) = k and Ind(E) = l.

(1) If E Aπ = 0 and (I − Aπ )AE = (I − Aπ )E A, then

(A + E)D = AADΨ + (I − AAD)

[
k−1∑
i=0

Ai EΨ i+2

]
,

where Ψ = (I + ADE)DAD + (I − AAD)
k−1∑
i=0

(ED)i+1(−A)i .

(2) If E is nilpotent, E Aπ = E and Aπ AE = Aπ E A, then

(A + E)D = AD +
k+l−2∑
i=0

(AD)i+2E(A + E)i .

Proof We adopt the notations from Theorem 6.6.
(1) Let Q = I − AAD in Theorem 6.6 and apply QAD = 0 to (6.19).
(2) Let Q = AAD in Theorem 6.6. Since E Aπ = E , we obtain E AD = E Aπ

AD = 0.Thus (ADE)2 = ADE ADE = 0 and (I + ADE)DAD = (I + ADE)−1AD =
AD. Note that E is nilpotent so that Ψ = AD. Hence

E(A + E)i (I − Q)[I − (A + E)Ψ ] = E(A + E)i Aπ = E(A + E)i , f or i ≥ 0.

The result follows directly from (6.19). ��
Let A be an n × n complex matrix and B = A + E be a perturbation of A. The

classical Bauer-Fike theorem on eigenvalue perturbation gives a bound on the dis-
tance between an eigenvalue μ of B and the closest eigenvalue λ of A, which is
required to be diagonalizable.
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Let A = XΣX−1 be an eigendecomposition, where Σ is a diagonal matrix, and
X is an eigenvector matrix. The Bauer-Fike theorem [23, Theorem IIIa] states that
for any eigenvalue μ of B, there exists an eigenvalue λ of A such that |μ − λ| ≤
κ(X)‖E‖, where κ(X) = ‖X‖ ‖X−1‖ is the condition number of X .

The relative perturbation version of the Bauer-Fike theorem [24, Corollary 2.2]
below requires, in addition, that A be invertible. That is, if A is diagonalizable and
invertible, then for any eigenvalueμ of B, there exists an eigenvalue λ of A such that

|μ − λ|
|λ| ≤ κ(X)‖A−1E‖. (6.20)

Without the assumption of diagonalizability and invertibility of A, we refine the
bound (6.20) under the condition that AE = E A.

Theorem 6.7 Let B = A + E ∈ C
n×n be such that A is not nilpotent and AE =

E A. For any eigenvalue μ of B, there exists a nonzero eigenvalue λ of A such that

|μ − λ|
|λ| ≤ ρ(ADE), (6.21)

where ρ(ADE) is the spectral radius of ADE.

Proof Assume that AE = E A and that A is not nilpotent. Then for any nonzero
eigenvalue λ of A, there exits a common eigenvector x [25, p.250] such that

Ax = λx, (A + E)x = μx .

Therefore

ADx = 1

λ
x, ADEx = AD(μx − Ax) = (μ − λ)ADx = μ − λ

λ
x,

whence |μ − λ|
|λ| ≤ ρ(ADE).

��
Recently, the perturbation of theDrazin inverse has been studied by several authors

([6, 9, 22, 26–33]). As one application of our results in Theorem 6.3, we can establish
upper bounds for the relative error ‖BD‖ and ‖BD − AD‖/‖AD‖ under the assump-
tion that AE = E A.

Theorem 6.8 If B = A + E ∈ C
n×n, AE = E A and max{‖ADE‖, ‖Aπ AED‖} <

1, then

‖BD‖ ≤ ‖AD‖
1 − ‖ADE‖ + ‖Aπ ED‖

1 − ‖Aπ AED‖
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and

‖BD − AD‖
‖AD‖ ≤ ‖ADE‖

1 − ‖ADE‖ + ‖A‖‖ED‖
1 − ‖Aπ AED‖ .

Proof Note that the assumption max{‖ADE‖, ‖Aπ AED‖} < 1 implies invertibility
of I + ADE and I + Aπ AED. It follows directly from Theorem 6.3 that

‖BD‖ ≤ ‖(I + ADE)−1AD‖ + ‖Aπ ED[I + Aπ AED]−1‖
≤ ‖AD‖

1 − ‖ADE‖ + ‖Aπ ED‖
1 − ‖Aπ AED‖ ,

and

‖BD − AD‖ ≤ ‖(I + ADE)−1AD − AD‖ + ‖Aπ ED[I + Aπ AED]−1‖
≤ ‖(I + ADE)−1ADE AD‖ + ‖Aπ‖‖ED‖

1 − ‖Aπ AED‖
≤ ‖ADE‖‖AD‖

1 − ‖ADE‖ + ‖AAD‖‖ED‖
1 − ‖Aπ AED‖

≤
( ‖ADE‖
1 − ‖ADE‖ + ‖A‖‖ED‖

1 − ‖Aπ AED‖
)

‖AD‖.

��
Remark 6.1.2 For any non-zero eigenvalue μ of the spectral set σ(A + E), we
can estimate its lower bound: let μ ∈ σ(A + E). We have 1/μ ∈ σ [(A + E)D] and
|1/μ| ≤ ρ[(A + E)D] ≤ ‖(A + E)D‖, i.e.,

|μ| ≥ 1/‖(A + E)D‖ ≥ 1/

[ ‖AD‖
1 − ‖ADE‖ + ‖Aπ ED‖

1 − ‖Aπ AED‖
]

.

Next we will apply Theorem 6.5 to obtain a perturbation bound in terms of AD

and El = Bl − Al for some positive integer l.

Theorem 6.9 Let B = A + E ∈ C
n×n with Ind(A) = k and Ind(B) = s. Denote

El = Bl − Al , where l = max{k, s}. Assume that the conditions in Theorem 6.5 hold.
Then ‖BD − AD‖

‖AD‖ ≤ ‖Bπ − Aπ‖ = ‖(AD)lEl‖. (6.22)

Proof Since l = max{k, s}, using the notations in the proof of Theorem 6.5, we have

El = Bl − Al =
⎡
⎣ 0

l−1∑
i=0

Cl−1−i E1

(
(N + E2)

i
)

0 0

⎤
⎦ =

⎡
⎣ 0

l−1∑
i=0

Cl−1−i E1

(
i∑

j=0

( j
i

)
N j Ei− j

2

)

0 0

⎤
⎦ .
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Then

AD + (AD)l+1El =
[
C−1 0
0 0

]
+

[
(C−1)l+1 0

0 0

]⎡
⎣ 0

l−1∑
i=0

Cl−1−i E1

(
i∑

j=0

( j
i

)
N j Ei− j

2

)

0 0

⎤
⎦

=
⎡
⎣C−1

l−1∑
i=0

(C−1)i+2E1

(
i∑

j=0

( j
i

)
N j Ei− j

2

)

0 0

⎤
⎦ = BD,

and

AAD + (AD)lEl =
[
I 0
0 0

]
+

[
(C−1)l 0

0 0

]⎡
⎣0

l−1∑
i=0

Cl−1−i E1

(
i∑

j=0

( j
i

)
N j Ei− j

2

)

0 0

⎤
⎦

=
⎡
⎣ I

l−1∑
i=0

(C−1)i+1E1

(
i∑

j=0

( j
i

)
N j Ei− j

2

)

0 0

⎤
⎦ = BBD.

We then have
‖BD − AD‖ = ‖(AD)l+1El‖ ≤ ‖AD‖‖(AD)lEl‖,

and
‖Bπ − Aπ‖ = ‖BBD − AAD‖ = ‖(AD)lEl‖.

The proof is complete. ��
Generalizations of the results of this section to linear operators on Banach spaces

can be found in [9, 34–36] while their generalizations to Banach algebra elements
can be found in [37] and some will also be given in the next section where the
generalized Drazin inverse will be considered.

6.2 Additive Results for the Generalized Drazin Inverse
in Banach Algebra

LetA be a complex Banach algebra with the unit 1. ByA −1,A nil,A qnil we denote
the sets of all invertible, nilpotent and quasi-nilpotent elements in A , respectively.
Let us recall that the Drazin inverse of a ∈ A [1] is the (unique) element x ∈ A
(denoted by aD) which satisfies

xax = x, ax = xa, ak+1x = ak, (6.23)
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for some nonnegative integer k. The least such k is the index of a, denoted by ind(a).
When ind(a) = 1 then the Drazin inverse aD is called the group inverse and it is
denoted by a#. The conditions (6.23) are equivalent to

xax = x, ax = xa, a − a2x ∈ A nil. (6.24)

The concept of the generalized Drazin inverse in a Banach algebra was introduced
by Koliha [38]. The condition a − a2x ∈ A nil was replaced by a − a2x ∈ A qnil.
Hence, the generalized Drazin inverse of a is the (unique) element x ∈ A (written
ad) which satisfies

xax = x, ax = xa, a − a2x ∈ A qnil. (6.25)

We mention that an alternative definition of the generalized Drazin inverse in a ring
is also given in [39–41]. These two concepts of the generalized Drazin inverse are
equivalent in the case when the ring is actually a complex Banach algebra with a unit.
It is well known that ad is unique whenever it exists [38]. The setA d consists of all
a ∈ A such that ad exists. For many interesting properties of the Drazin inverse see
[1, 38, 42].

This section is a continuation of the previous one with the difference that here we
investigate additive properties of the generalized Drazin inverse in a Banach algebra
and find explicit expressions for the generalized Drazin inverse of the sum a + b
under various conditions.

Hartwig et al. [10] for matrices and Djordjević and Wei [9] for operators used the
condition AB = 0 to derive a formula for (A + B)d. After that Castro and Koliha
[43] relaxed this hypothesis by assuming the following complimentary condition
symmetric in a, b ∈ A d,

aπb = b, abπ = a, bπabaπ = 0 (6.26)

thus generalizing the results from [9]. It is easy to see that ab = 0 implies (6.26), but
the converse is not true (see [43, Example 3.1]).

In the first part of the section we will find some new conditions, which are not
equivalent with the conditions from [43], allowing for the generalized Drazin inverse
of a + b to be expressed in terms of a, ad, b, bd. It is interesting to note that in some
cases the same expression for (a + b)d are obtained as in [43]. In the rest of the
section we will generalize some recent results from [43].

Let a ∈ A and let p ∈ A be an idempotent (p = p2). Then we can write

a = pap + pa(1 − p) + (1 − p)ap + (1 − p)a(1 − p)

and use the notations

a11 = pap, a12 = pa(1 − p), a21 = (1 − p)ap, a22 = (1 − p)a(1 − p).
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Every idempotent p ∈ A induces a representation of an arbitrary element a ∈ A
given by the following matrix

a =
[

pap pa(1 − p)
(1 − p)ap (1 − p)a(1 − p)

]
p

=
[
a11 a12
a21 a22

]
p

. (6.27)

Let aπ be the spectral idempotent of a corresponding to {0}. It is well known that
a ∈ A d can be represented in the matrix form:

a =
[
a11 0
0 a22

]
p

,

relative to p = aad = 1 − aπ , where a11 is invertible in the algebra pA p and a22 is
quasi-nilpotent in the algebra (1 − p)A (1 − p). Then the generalizedDrazin inverse
is given by

ad =
[
a−1
11 0
0 0

]
p

.

The following result is proved in [4, 20] for matrices, extended in [44] for a
bounded linear operator and in [43] for arbitrary elements in a Banach algebra.

Theorem 6.10 Let x, y ∈ A and

x =
[
a c
0 b

]
p

, y =
[
b 0
c a

]
(1−p)

relative to the idempotent p ∈ A .

(1) If a ∈ (pA p)d and b ∈ ((1 − p)A (1 − p))d, then x and y areDrazin invertible
and

xd =
[
ad u
0 bd

]
p

, yd =
[
bd 0
u ad

]
(1−p)

(6.28)

where u =
∞∑
n=0

(ad)n+2cbnbπ +
∞∑
n=0

aπanc(bd)n+2 − adcbd.

(2) If x ∈ A d and a ∈ (pA p)d, then b ∈ ((1 − p)A (1 − p))d and xd, yd are given
by (6.28).

We will need the following auxiliary result.

Lemma 6.2 Let a, b ∈ A qnil. If ab = ba or ab = 0, then a + b ∈ A qnil.
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Proof If ab = ba, we have that

ρ(a + b) ≤ ρ(a) + ρ(b),

which gives a + b ∈ A qnil. The case when ab = 0 follows from the equation

(λ − a)(λ − b) = λ(λ − (a + b))

�

In view of the previous lemma, the first approach to the problem addressed in this
section was to replace the condition ab = 0 used in [9, 10] by ab = ba. As expected,
this alone was not enough to derive a formula for (a + b)d. We will thus impose the
following three conditions on a, b ∈ A d:

a = abπ , bπbaπ = bπb, bπaπba = bπaπab. (6.29)

Instead of the condition ab = ba we are thus assuming the weaker condition
bπaπba = bπaπab. Notice that

a = abπ ⇔ abd = 0 ⇔ A a ⊆ A bπ , (6.30)

bπbaπ = bπb ⇔ bπbad = 0 ⇔ A bπb ⊆ A aπ , (6.31)

bπaπba = bπaπab ⇔ (ba − ab)A ⊆ (bπaπ )◦, (6.32)

where for u ∈ A , u◦ = {x ∈ A : ux = 0}.
For matrices and bounded linear operators on a Banach space the conditions

(6.30)–(6.32) are equivalent to

N (bπ ) ⊆ N (a), N (aπ ) ⊆ N (bπb), R(ba − ab) ⊆ N (bπaπ ).

Remark that, unlike the conditions (3.1) from [43], the conditions (6.29) are not
symmetric in a, b so our expression for (a + b)d will not be symmetric in a, b.

In the next theorem, under the assumption that (6.29) holds, we can give an
expression for (a + b)d as follows.
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Theorem 6.11 Let a, b ∈ A d be such that (6.29) is satisfied. Then a + b ∈ A d and

(a + b)d = (bd +
∞∑
n=0

(bd)n+2a(a + b)n)aπ (6.33)

−
∞∑
n=0

∞∑
k=0

(bd)n+2a(a + b)n(ad)k+2b(a + b)k+1

+
∞∑
n=0

(bd)n+2a(a + b)nadb −
∞∑
n=0

bda(ad)n+2b(a + b)n

Before proving Theorem 6.11, we first have to prove the special case of it given
below.

Theorem 6.12 Let a ∈ A qnil, b ∈ A d satisfy bπab = bπba and a = abπ . Then
(6.29) is satisfied, a + b ∈ A d and

(a + b)d = bd +
∞∑
n=0

(bd)n+2a(a + b)n. (6.34)

Proof First, suppose that b ∈ A qnil. Then bπ = 1 and from bπab = bπba we obtain
ab = ba. Using Lemma 6.2, a + b ∈ A qnil and (6.28) holds. Now, we assume that
b is not quasi-nilpotent and consider the matrix representations of a and b relative
to p = 1 − bπ . We have

b =
[
b1 0
0 b2

]
p

, a =
[
a11 a12
a21 a22

]
p

,

where b1 ∈ (pA p)−1 and b2 ∈ ((1 − p)A (1 − p))qnil ⊂ A qnil. From a = abπ , it
follows that a11 = 0 and a21 = 0. We denote a1 = a12 and a2 = a22. Hence

a + b =
[
b1 a1
0 a2 + b2

]
p

.

The condition bπab = bπba implies that a2b2 = b2a2. Hence, using Lemma 6.2,
we get a2 + b2 ∈ ((1 − p)A (1 − p))qnil. Now, by Theorem 6.10, we obtain a + b ∈
A d and

(a + b)d =
⎡
⎣b−1

1

∞∑
n=0

b−(n+2)
1 a1(a2 + b2)n

0 0

⎤
⎦

p

= bd +
∞∑
n=0

(bd)n+2a(a + b)n.

�
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Let us observe that the expression for (a + b)d in (6.28) and that in (3.6) of
Theorem 3.3 in [43] are exactly the same. If we assume that ab = ba instead of
bπab = bπba, we get a much simpler expression for (a + b)d.

Corollary 6.4 Suppose a ∈ A qnil, b ∈ A d satisfy ab = ba and a = abπ . Then a +
b ∈ A d and

(a + b)d = bd.

Proof From a = abπ , as we mentioned before, it follows that abd = 0. Because the
Drazin inverse bd is a double commutant of a, we have

(bd)n+2a(a + b)n = a(bd)n+2(a + b)n = 0.

�

Proof of Theorem 6.11: If b is quasi-nilpotent we can apply Theorem 6.12.
Hence, we assume that b is neither invertible nor quasi-nilpotent and consider the
matrix representations of a and b relative to p = 1 − bπ :

b =
[
b1 0
0 b2

]
p

, a =
[
a11 a12
a21 a22

]
p

,

where b1 ∈ (pA p)−1 and b2 ∈ ((1 − p)A (1 − p))qnil. As in the proof of Theorem
6.12, from a = abπ it follows that

a =
[
0 a1
0 a2

]
p

, a + b =
[
b1 a1
0 a2 + b2

]
p

.

From the conditions bπaπba = bπaπab and bπbaπ = bπb, we obtain aπ
2 b2a2 =

aπ
2 a2b2 and b2 = b2aπ

2 . Now, from Theorem 6.12 it follows that (a2 + b2) ∈ ((1 −
p)A (1 − p))d and

(a2 + b2)
d = ad2 +

∞∑
n=0

(ad2 )
n+2b2(a2 + b2)

n. (6.35)

By Theorem 6.10, we get

(a + b)d =
[
b−1
1 u
0 (a2 + b2)d

]
p

,

where u =
∞∑
n=0

b−(n+2)
1 a1(a2 + b2)n(a2 + b2)π − b−1

1 a1(a2 + b2)d and b−1
1 is the

inverse of b1 in the algebra pA p. Using (6.35), we have
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u =
∞∑
n=0

b−(n+2)
1 a1(a2 + b2)

n = aπ
2 −

∞∑
n=0

b−(n+2)
1 a1(a2 + b2)

nad2b2

∞∑
n=0

∞∑
k=0

(b1)
−(n+2)a1(a2 + b2)

n(ad2 )
k+2b2(a2 + b2)

k+1 − b−1
1 a1a

d
2

−
∞∑
n=0

b−1
1 a1(a

d
2 )

n+2b2(a2 + b2)
n.

By a straightforward manipulation, (6.33) follows. �

Corollary 6.5 Suppose a, b ∈ A d are such that ab = ba, a = abπ and bπ =
baπ = bπb. Then a + b ∈ A d and

(a + b)d = bd.

If a is invertible and b is group invertible, then conditions (6.31) and (6.32) are
satisfied, so we only have to assume a = abπ . In the remaining case when b is
invertible we get a = 0.

It is interesting to remark that conditions (6.26) and (6.29) are independent, i.e.,
neither of them implies the other, but in some cases the same expressions for (a + b)d

are obtained.
If we consider the algebraA of all complex 3 × 3 matrices and a, b ∈ A which

are given in the Example 3.1 [43], we can see that condition (6.26) is satisfied,
whereas condition (6.29) fails. In the following example we have the opposite case.
We construct a, b in the algebraA of all complex 3 × 3 matrices such that (6.29) is
satisfied but (6.26) is not. If we assume that ab = ba in Theorem 6.11 the expression
for (a + b)d will be exactly the same as that in [43, Theorem 3.5] (which is Corollary
6.7 there).

Example 6.1 Let

a =
⎛
⎝ 1 0 0
0 0 0
0 0 0

⎞
⎠ , b =

⎛
⎝0 1 0
0 0 0
0 0 0

⎞
⎠ .

Then

aπ =
⎛
⎝0 0 0
0 1 0
0 0 1

⎞
⎠

and bπ = 1. We can see that a = abπ , aπab = aπ = ba and baπ = b, i.e., (6.29)
holds. Also, aπb = 0 �= b, so (6.26) is not satisfied.

In the rest of the section, we present a generalization of the results from [43].
We use some weaker conditions than those in [43]. For example in the next the-
orem, which generalizes [43, Theorem 3.3], we assume that e = (1 − bπ )(a +
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b)(1 − bπ ) ∈ A d instead of abπ = a. If abπ = a, then e = (1 − bπ )b =
[
b1 0
0 0

]
p

for p = 1 − bπ and ed = bd.

Theorem 6.13 Let b ∈ A d, a ∈ A qnil be such that

e = (1 − bπ )(a + b)(1 − bπ ) ∈ A d, bπab = 0.

Then a + b ∈ A d and

(a + b)d = ed +
∞∑
n=0

(ed)n+2abπ (a + b)n .

Proof The case when b ∈ A qnil follows from Lemma 6.2. Hence, we assume that b
is not quasi-nilpotent. Then

b =
[
b1 0
0 b2

]
p

, a =
[
a11 a12
a21 a22

]
p

,

where p = 1 − bπ . From bπab = 0 we have bπa(1 − bπ ) = 0, i.e., a21 = 0. Put
a1 = a11, a22 = a2 and a12 = a3. Then,

a + b =
[
a1 + b1 a3

0 a2 + b2

]
p

.

Also, bπab = 0 implies that a2b2 = 0, so a2 + b2 ∈ ((1 − p)A (1 − p))qnil, accord-
ing to Lemma 6.2. Applying Theorem 6.10, we obtain

(a + b)d =
[

(a1 + b1)d u
0 0

]
p

,

where u =
∞∑
n=0

((a1 + b1)d)n+2a3(a2 + b2)n .

By direct computation, we verify that

(a + b)d = ed +
∞∑
n=0

(ed)n+2abπ (a + b)n .

�

Now, as a corollary we obtain Theorem 3.3 from [43].

Corollary 6.6 Let b ∈ A d, a ∈ A qnil and abπ = a, bπab = 0. Then a + b ∈ A d

and
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(a + b)d = bd +
∞∑
n=0

(bd)n+2a(a + b)n.

The next result is a generalization of [43, Theorem 3.5]. For simplicity, we use
the following notation:

e = (1 − bπ )(a + b)(1 − bπ ) ∈ A d,

f = (1 − aπ )(a + b)(1 − aπ ),

A1 = (1 − aπ )A (1 − aπ ),

A2 = (1 − bπ )A (1 − bπ ),

for given a, b ∈ Ad.

Theorem 6.14 Let a, b ∈ A d be such that (1 − aπ )b(1 − aπ ) ∈ A d, f ∈ A −1
1 and

e ∈ A d
2 . If

(1 − aπ )baπ = 0, bπabaπ = 0, aπ = a(1 − bπ )aπ = 0,

then a + b ∈ A d and

(a + b)d = (bd +
∞∑
n=0

(bd)n+2a(a + b)n)aπ +
∞∑
n=0

bπ (a + b)naπb( f )−(n+2)
A1

−
∞∑
n=0

∞∑
k=0

(bd)k+1a(a + b)n+kaπb( f )−(n+2)
A1

− bdaπb( f )−1
A1

−
∞∑
n=0

(bd)n+2a(a + b)naπb( f )−1
A1

+ ( f )−1
A1

,

where by ( f )−1
A1

we denote the inverse of f in A1.

Proof Obviously, if a is invertible, then the statement of the theorem holds. If a is
quasi-nilpotent, then the result follows from Theorem 6.13. Hence, we assume that
a is neither invertible nor quasi-nilpotent. As in the proof of Theorem 6.11, we have

a =
[
a1 0
0 a2

]
p

, b =
[
b11 b12
b21 b22

]
p

,

where p = 1 − aπ , a1 ∈ (pA p)−1 and a2 ∈ ((1 − p)A (1 − p))qnil. From (1 −
aπ )baπ = 0, we have that b12 = 0. Let b1 = b11, b22 = b2 and b21 = b3. Then,

a + b =
[
a1 + b1 0

b3 a2 + b2

]
p

.
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The condition aπbπabaπ = 0 expressed in the matrix form yields

aπbπabaπ =
[
0 0
0 bπ

2

] [
a1 0
0 a2

] [
0 0
0 b2

]

=
[
0 0
0 bπ

2 a2b2

]
=

[
0 0
0 0

]
.

Similarly, aπa(1 − bπ ) = 0 implies that a2bπ
2 = a2. From Corollary 6.6, we get

a2 + b2 ∈ A d and

(a2 + b2)
d = bd2 +

∞∑
n=0

(bd2)
n+2a2(a2 + b2)

n.

Using Theorem 6.10, we obtain a + b ∈ A d and

(a + b)d =
[

(a1 + b1)d 0
u (a2 + b2)d

]
p

,

where

u =
∞∑
n=0

bπ
2 (a2 + b2)

nb3( f )
−(n+2)
A1

−
∞∑
n=0

∞∑
k=0

(bd2)
k+1a2(a2 + b2)

n+kb3( f )
−(n+2)
A1

− bd2b3( f )
−1
A1

−
∞∑
n=0

(bd2)
n+2a2(a2 + b2)

nb3( f )
−1
A1

.

By straightforward computation, the desired result follows. �
Corollary 6.7 Suppose a, b ∈ A d satisfy condition (6.26). Then a + b ∈ A d and

(a + b)d = (bd +
∞∑
n=0

(bd)n+2a(a + b)n)aπ +
∞∑
n=0

bπ (a + b)nb(ad)(n+2)

−
∞∑
n=0

∞∑
k=0

(bd)k+1a(a + b)n+kb(ad)(n+2) + bπad

−
∞∑
n=0

(bd)n+2a(a + b)nbad

Proof We have that f = (1 − aπ )a, so ( f )−1
A1

= ad. ��
Next we generalize the results from [45] to the Banach algebra case.
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Theorem 6.15 Let a, b ∈ A d and ab = ba. Then a + b ∈ A d if and only if 1 +
adb ∈ A d. In this case, we have

(a + b)d = ad(1 + adb)dbbd + (1 − bbd)

[ ∞∑
n=0

(−b)n(ad)n
]
ad

+bd
[ ∞∑
n=0

(bd)n(−a)n

]
(1 − aad),

and

(a + b)(a + b)d = (aad + bad)(1 + adb)dbbd + (1 − bbd)aad

+bbd(1 − aad).

Moreover, if ‖b‖‖ad‖ < 1 and ‖a‖‖bd‖ < 1, then we have

‖(a + b)d − ad‖ ≤ ‖bbd‖‖ad‖ [‖(1 + adb)d‖ + 1
]

+‖1 − bbd‖
[ ∞∑
n=1

‖(−b)n(ad)n‖
]

‖ad‖

+‖bd‖
[ ∞∑
n=0

‖(bd)n(−a)n‖
]

‖1 − aad‖,

and

‖(a + b)(a + b)d − aad‖ ≤ [‖aad + bad‖‖(1 + adb)d‖ + ‖1 − 2aad‖] ‖bbd‖.

Proof Since a is generalized Drazin invertible, and

a =
[
a11 0
0 a22

]
p

,

relative to p = 1 − aπ , where a11 is invertible in the algebra pA p and a22 is a

quasi-nilpotent element of the algebra (1 − p)A (1 − p). Let b =
[
b11 b12
b21 b22

]
p

.

Fromab = ba,wehaveb12 = (a11)
−1
pA pb12a22 which implies thatb12 = (a11)

−n
pA p

b12an22, for arbitrary n ∈ N. Since a22 is a quasi-nilpotent, we obtain b12 = 0.
Similarly, from ab = ba it follows that b21 = a22b21(a11)

−1
pA p, i.e., b21 = 0. Also,

a11b11 = b11a11 and a22b22 = b22a22.
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Since, b ∈ A d and σ(b) = σ(b1)pA p ∪ σ(b2)(1−p)A (1−p), using Theorem 4.2
from [38], we deduce b1 ∈ pA p and b2 ∈ (1 − p)A (1 − p), so b11, b22 ∈ A d and
we can represent b11 and b22 as

b11 =
[
b′
11 0
0 b′

22

]
p1

, b22 =
[
b′′
11 0
0 b′′

22

]
p2

,

where p1 = 1 − bπ
11 and p2 = 1 − bπ

22, b
′
11, b

′′
11 are invertible in the algebras p1A p1

and p2A p2 respectively, and b′
22, b

′′
22 are quasi-nilpotent. Since b11 commutes with

an invertible a11 and b22 with a quasi-nilpotent a22, we prove as before that

a11 =
[
a′
11 0
0 a′

22

]
p1

, a22 =
[
a′′
11 0
0 a′′

22

]
p2

.

Since p1 p = pp1 = p1, from the fact that a11 is invertible in the sub-algebra pA p,
we prove that a′

11 and a
′
22 are invertible in the algebras p1A p1 and (p − p1)A (p −

p1), respectively. Also, a′′
11 and a′′

22 are quasi-nilpotent, thus a
′
i i commutes with b′

i i
and a′′

i i with b
′′
i i , for i = 1, 2.

Since a′
22 is invertible and b′

22 is quasi-nilpotent and they commute, we have
that (a′

22)
−1
(1−p1)A (1−p1)

b′
22 is quasi-nilpotent, so (1 − p1) + (a′

22)
−1
(1−p1)A (1−p1)

b′
22 is

invertible in (1 − p1)A (1 − p1) and a′
22 + b′

22 ∈ A d.
Similarly,we conclude that a′′

11 + b′′
11 ∈ A d. Also, a′′

22 + b′′
22 is generalizedDrazin

invertible.
Now, we obtain

a + b = a′
11 + b′

11 + a′
22 + b′

22 + a′′
11 + b′′

11 + a′′
22 + b′′

22.

Since, a′
11 + b′

11 ∈ p1A p1 and b′
22 + a′′

11 + b′′
11 + a′′

22 + b′′
22 ∈ (1 − p1)A (1 − p1)

we have

a + b ∈ A d ⇔
(
a′
11 + b′

11 ∈ A d, a′
22 + b′

22 + a′′
11 + b′′

11 + a′′
22 + b′′

22 ∈ A d
)
.

Next, we inspect generalized Drazin invertibility of y = a′
22 + b′

22 + a′′
11 + b′′

11 +
a′′
22 + b′′

22. From p2yp2 = a′′
11 + b′′

11 and (1 − p2)y(1 − p2)y = a′
22 + b′

22 + a′′
22 +

b′′
22, we conclude

y ∈ A d ⇔
(
a′′
11 + b′′

11 ∈ A d and a′
22 + b′

22 + a′′
22 + b′′

22 ∈ A d
)
.

Previously, we showed that a′′
11 + b′′

11 ∈ A d, so y ∈ A d if and only if z = a′
22 +

b′
22 + a′′

22 + b′′
22 ∈ A d.Notice that z = pzp + (1 − p)z(1 − p),where pzp = a′

22 +
b′
22 ∈ A d and (1 − p)z(1 − p) = a′′

22 + b′′
22 ∈ A d, so z ∈ A d. Hence, y ∈ A d and

we obtain a + b ∈ A d if and only if a′
11 + b′

11 ∈ A d.
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Now,

(a′
11 + b′

11)
d = a′

11(p1 + (a′
11)

−1
p1A p1

b′
11)

d = p1 pa
d(1 + adb)dbbd pp1.

From the first equation, we obtain

(a + b)d − ad = ad(1 + adb)dbbd + (1 − bbd)

[ ∞∑
n=0

(−b)n(ad)n
]
ad

+bd
[ ∞∑
n=0

(bd)n(−a)n

]
(1 − aad) − ad

= ad(1 + adb)dbbd − bbdad + (1 − bbd)

[ ∞∑
n=1

(−b)n(ad)n
]
ad

+bd
[ ∞∑
n=0

(bd)n(−a)n

]
(1 − aad).

Consequently, we have the estimates

‖(a + b)d − ad‖ ≤ ‖bbd‖‖ad‖ [‖(1 + adb)d‖ + 1
]

+‖(1 − bbd)‖
[ ∞∑
n=1

‖(−b)n(ad)n‖
]

‖ad‖

+‖bd‖
[ ∞∑
n=0

‖(bd)n(−a)n‖
]

‖(1 − aad)‖,

and

‖(a + b)(a + b)d − aad‖ = ‖(aad + bad)(1 + adb)dbbd − bbdaad + bbd(1 − aad)‖
≤

[
‖aad + bad‖‖(1 + adb)d‖ + ‖1 − 2aad‖

]
‖bbd‖.

�

Corollary 6.8 Let a, b ∈ A d be such that ab = ba and 1 + adb ∈ A d.

(1) If b is quasi-nilpotent, then

(a + b)d =
∞∑
n=0

(ad)n+1(−b)n = (1 + adb)−1ad.

(2) If bk = 0, then (a + b)d =
k−1∑
n=0

(ad)n+1(−b)n = (1 + adb)−1ad.
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(3) If bk = b (k ≥ 3), then bd = bk−2 and

(a + b)d = ad(1 + adb)dbk−1 + (1 − bk−1)ad + bk−2
[ ∞∑
n=0

(bd)n(−a)n
]

(1 − aad)

= ad(1 + adb)dbk−1 + (1 − bk−1)ad + bk−2(1 + abk−2)d(1 − aad).

(4) If b2 = b, then bd = b and

(a + b)d = ad(1 + adb)db + (1 − b)ad + b

[ ∞∑
n=0

(−a)n
]

(1 − aad)

= ad(1 + adb)db + (1 − b)ad + b(1 + a)d(1 − aad).

(5) If a2 = a and b2 = b, then 1 + ab is invertible and a(1 + ab)−1b = 1
2ab. 1n

this case,
(a + b)d = a(1 + ab)−1b + b(1 − a) + (1 − b)a

= a + b − 3
2ab.

Theorem 6.16 Let a, b ∈ A d be such that ‖adb‖ < 1, aπbaπ = aπb and aπab =
aπba. If aπb ∈ A d, then a + b ∈ A d. In this case,

(a + b)d = (1 + adb)−1ad + (1 + adb)−1(1 − aad)
∞∑
n=0

(bd)n+1(−a)n

+
[ ∞∑
n=0

(
(1 + adb)−1ad

)n+2

b(1 − aad)(a + b)n
]

(1 − aad)

×
[
1 − (a + b)(1 − aad)

∞∑
n=0

(bd)n+1(−a)n

]
.

Moreover, if ‖a‖‖bd‖ < 1, ‖b‖‖ad‖ < 1 and ‖ad‖‖adb‖
1−‖adb‖ ‖a + b‖ < 1, then

‖(a + b)d − ad‖ ≤ ‖ad‖‖adb‖
1 − ‖adb‖ + ‖1 − aad‖

1 − ‖adb‖
∞∑
n=0

‖bd‖n+1‖a‖n

+
[ ∞∑
n=0

(‖ad‖‖adb‖
1 − ‖adb‖

)n+2

‖b‖‖a + b‖n
]

‖1 − aad‖2

+‖1 − aad‖3
[ ∞∑
n=0

(‖ad‖‖adb‖
1 − ‖adb‖

)n+2

‖b‖‖a + b‖n+1

]

×
[ ∞∑
n=0

‖bd‖n+1‖a‖n
]

.
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Proof Since a ∈ A d and aπb(I − aπ ) = 0, we have that for p = 1 − aπ

a =
(
a1 0
0 a2

)
p

, b =
(
b1 b3
0 b2

)
p

(6.36)

where a1 is invertible in the algebra pA p and a2 is a quasi-nilpotent element of the
algebra (1 − p)A (1 − p). Also from aπab = aπba and the fact that aπb ∈ A d, we
conclude that a2b2 = b2a2 and b2 ∈ A d. It follows from ‖adb‖ < 1 that 1 + adb is
invertible. Now, from Theorem 6.15, we have

(a2 + b2)
d =

∞∑
n=0

(bd2)
n+1(−a2)

n.

Using Theorem 6.10, we get

(a + b)d =
⎛
⎝ (a1 + b1)−1 S

0
∞∑
n=0

(bd2)
n+1(−a2)n

⎞
⎠

p

,

where

S =
[ ∞∑
n=0

(a1 + b1)
−n−2b3(a2 + b2)

n

] [
1 − p − (a2 + b2)

∞∑
n=0

(bd2)
n+1(−a2)

n

]

−(a1 + b1)
−1b3

∞∑
n=0

(bd2)
n+1(−a2)

n.

We know that [
(a1 + b1)−1 0

0 0

]
p

= (1 + adb)−1ad

and ⎡
⎣0 0

0
∞∑
n=0

(bd2)
n+1(−a2)n

⎤
⎦

p

= aπ

∞∑
n=0

(bd)n+1(−a)n.

By computation we obtain
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(
0 S
0 0

)
p

=
[ ∞∑
n=0

(
(1 + adb)−1ad

)n+2
baπ (a + b)n

]
aπ

×
[
1 − (a + b)aπ

∞∑
n=0

(bd)n+1(−a)n

]

−(1 + adb)−1adbaπ

∞∑
n=0

(bd)n+1(−a)n .

Hence, we have

(a + b)d = (1 + adb)−1ad + (1 + adb)−1aπ

∞∑
n=0

(bd)n+1(−a)n

+
[ ∞∑
n=0

(
(1 + adb)−1ad

)n+2
baπ (a + b)n

]
aπ

×
[
1 − (a + b)aπ

∞∑
n=0

(bd)n+1(−a)n

]
.

If ‖a‖‖bd‖ < 1, ‖b‖‖ad‖ < 1 and ‖ad‖‖adb‖
1−‖adb‖ ‖a + b‖ < 1, we obtain

‖(a + b)d − ad‖ =
∥∥∥

∞∑
n=1

(adb)nad +
∞∑
n=0

(adb)n(1 − aad)
∞∑
n=0

(bd)n+1(−a)n

+
[ ∞∑
n=0

( ∞∑
n=0

(adb)nad
)n+2

b(1 − aad)(a + b)n
]

(1 − aad)

×
[
1 − (a + b)(1 − aad)

∞∑
n=0

(bd)n+1(−a)n

] ∥∥∥

≤ ‖ad‖‖adb‖
1 − ‖adb‖ + ‖1 − aad‖

1 − ‖adb‖
∞∑
n=0

‖(bd)‖n+1‖(−a)‖n

+
[ ∞∑
n=0

(‖ad‖‖adb‖
1 − ‖adb‖

)n+2

‖b‖‖a + b‖n
]

‖(1 − aad)‖2

+‖(1 − aad)‖3
[ ∞∑
n=0

(‖ad‖‖adb‖
1 − ‖adb‖

)n+2

‖b‖‖a + b‖n+1

]

×
[ ∞∑
n=0

‖(bd)‖n+1‖a‖n
]

.

�
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Corollary 6.9 Let a ∈ A d and b ∈ A be such that ‖bad‖ < 1, aπb(1 − aπ ) = 0
and aπab = aπba,

(1) If baad = 0 and b is quasi-nilpotent, then a + b ∈ A d and

(a + b)d =
∞∑
n=0

(ad)n+2b(a + b)n + ad.

(2) If aπb = baπ , σ(aπb) = 0, then a + b ∈ A d and

(a + b)d = (1 + adb)−1ad = ad(1 + bad)−1.

The following theorem is a generalization of Theorem 6.16 and Theorem 6
from [45].

Theorem 6.17 Let a, b ∈ A d and q be an idempotent such that aq = qa, (1 −
q)bq = 0, (ab − ba)q = 0 and (1 − q)(ab − ba) = 0. If (a + b)q and (1 − q)(a +
b) are generalized Drazin invertible, then a + b ∈ A d and

(a + b)d =
∞∑
n=0

Sn+2qb(1 − q)(a + b)n(1 − q)

[
1 − (a + b)S

]

+
[
1 − (a + b)S

]
q

∞∑
n=0

(a + b)nqb(1 − q)Sn+2

+ (1 − Sqb) (1 − q)S + Sq,

where

S = ad(1 + adb)dbbd + (1 − bbd)

[ ∞∑
n=0

(−b)n(ad)n+1

]

+
[ ∞∑
n=0

(bd)n+1(−a)n
]

(1 − aad).
(6.37)

Proof The proof is a similar to that of Theorem 6.16. �
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