Chapter 2
Adsorption of Dyes

Abstract Adsorption is one of the most commonly used, traditional separation
technologies utilized for separation. Since it is an equilibrium-governed process,
the process efficiency is excellent, but the throughput is relatively low. Neverthe-
less, because of its simplicity, this is one of the normally used technologies for dye
removal from aqueous stream. Therefore, it is imperative to understand the model-
ing aspects of such adsorbent-based systems which is necessary for design and
implementation of the technology. Additionally, the chapter describes the charac-
teristics of the different commonly used adsorbents and its applicability.
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The word “adsorption” was formulated in 1881 by German physicist Heinrich
Kayser to differentiate between the surface phenomena and intermolecular pene-
tration. Adsorption can be divided into physical and chemical adsorption. Physical
adsorption is controlled by the physical forces such as van der Waals forces,
hydrophobicity, hydrogen bond, polarity, static interaction, dipole-dipole interac-
tion, 7 — 7z interaction, etc. When the species are adsorbed to the surface of the
adsorbent by means of strong chemical interactions or bonding, it is referred to as
chemisorption. The extent of adsorption depends on the nature of adsorbate such as
molecular weight, molecular structure, molecular size, polarity, and solution con-
centration. It is also dependent on the surface properties of adsorbent such as
particle size, porosity, surface area, surface charge, etc. The primary advantages
of adsorption processes are:

. Simple in design

. Relatively safe and easy to operate

. Inexpensive (compared to other separation processes)

. Provides sludge-free cleaning operations (Gupta et al. 2000).
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Selection of a suitable adsorbent is the primary concern for adopting adsorption
in any process industries. The performance of the process is often limited by the
equilibrium capacity of the adsorbent.
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2 Adsorption of Dyes

2.1 Application of Adsorption in the Treatment of Process
Wastewater

Various low-cost adsorbents for treatment of effluent containing heavy metals have
been studied by various researchers in the past. Most of these adsorbents are
prepared from the waste or by-products of other process plants or naturally occur-
ring materials. A list of most commonly used low-cost adsorbents for heavy metal
removal that is prepared from naturally occurring materials and processes are
presented in Table 2.1.

2.2 Experimental Studies of Dye Adsorption

In the following sections, adsorption of chrysoidine, eosin, and Congo red by
commercial activated carbon (CAC) has been presented.

2.2.1 Batch Adsorption

The batch adsorption is typically carried out in the solution phase containing dyes.
The effects of agitation time and initial dye concentration on the percentage
adsorption of dye by activated carbon at room temperature are shown in
Figs. 2.1a, 2.1b, and 2.1c for chrysoidine, eosin, and Congo red. For all the cases,
the percentage adsorption increases with agitation time for different initial dye
concentration and attains equilibrium after some time.

Table 2.1 Low-cost high-capacity metal ion adsorbents

Metals Adsorbent Adsorption capacity (mg/g) Reference
Zn** Blast-furnace slag 103.3 83

Powdered waste slag 168.0 147
Ni* Red mud 160.0 112
Cu** Blast-furnace slag 133.3 83

Red mud 106.4 153
ot Waste slurry 640.0 459

Tea industry waste 455.0 165
Hg** Waste slurry 560.0 159
Ccd** Fly ash 207.3 152
Pb>* Waste slurry 1030.0 159
V* Waste metal sludge 24.8 97
As™, As™ Acid-activated laterite 24.5, 8.0
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From Fig. 2.1a, it may be observed that for all initial chrysoidine concentration,
the percentage adsorption is found to be constant beyond 80 min. This indicates that
equilibrium is attained at about 80 min for initial dye concentration in the range of
100-400 mg/L. It is also clear that the extent of adsorption depends on the initial
dye concentration. For dye solution of lower initial concentration (up to 100 mg/L),
the adsorption is very fast and almost 100% adsorption is achieved quickly. The dye
adsorption at equilibrium decreases from 100% to about 94% as the dye concen-
tration increases from 100 to 400 mg/L.

It is clear from Fig. 2.1b that up to an initial eosin concentration of 100 mg/L,
more than 99% adsorption is achieved within 5 min. For an initial concentration of
200 mg/L, the percentage adsorption increases until 90 min and becomes constant
thereafter. For a feed concentration of 400 mg/L, the percentage adsorption
increases rapidly for about 90 min, and the increase becomes gradual thereafter.
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For 210 min of operation, the dye adsorption is 99.6% for an initial dye concentra-
tion of 100 mg/L but only 72.3% for 400 mg/L.

Figure 2.1c describes the variation of Congo red adsorption with time for
different initial dye concentration. The percentage adsorption of Congo red is
found to be constant beyond 50 min. This indicates that the equilibrium is attained
within 50 min for the range of initial dye concentrations. It is also clear that the
extent of adsorption depends on the initial dye concentration. For dye solution of
lower initial concentration, the adsorption is very fast and 90% of adsorption is
achieved quickly. The percentage dye adsorption at equilibrium decreases from
90% to 28% as the dye concentration increases from 50 to 545 mg/L.

The effects of adsorbent dose on the extent of chrysoidine adsorption are shown
in Fig. 2.2 for initial dye concentrations of 700 mg/L. It is clear from the figure that
percentage adsorption increases with time up to 80 min and also with adsorbent
dose. Percentage adsorption increases from about 77 to 99% when the adsorbent
dose increases from 0.75 to 1.40 g/L. This increase in percentage adsorption may be
due to the fact that the number of available sites for adsorption increases with
adsorbent dose.

The pH of the solution has significant influence in the rate of adsorption. The
percentage dye adsorption at different pH is shown in Figs. 2.3a, 2.3b, and 2.3c for
chrysoidine, eosin, and Congo red, respectively. Figure 2.3a describes the variation
of chrysoidine adsorption at different pH for an initial dye concentration of 400 mg/L.
The color of chrysoidine dye in aqueous medium is red (Ayax: 457 nm) in acidic pH
but changes its color from red to yellow (Ay.x: 442 nm) in basic pH. This is due to
the presence of chromophore in the structure of chrysoidine. A chromophore is any
structural feature (in this case, —N = N—) which produces light absorption in the
ultraviolet region or color in the visible region. An auxochrome is any group
(in this case -NH,) which, although not a chromophore, leads to a red shift when
attached to a chromophore. Thus, the combination of chromophore and
auxochrome behaves as a new chromophore. Bathochromic effect (red shift) and
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hypsochromic effect (blue shift) are the shifting of the absorption band to the
longer and shorter wavelengths (Finar 1973). Therefore, due to blue shift,
chrysoidine changes its color in basic pH.

Adsorption followed by desorption technique is generally used to get the more
concentrated form of the dye solution. One of the most common desorption
technique is the pH treatment. But problem arises for the dyes which are highly
pH sensitive, like chrysoidine as discussed in the previous paragraph.

Most of the activated carbon contains some oxygen complexes on the surface,
e.g., (a) strongly carboxylic groups, (b) carbonyl groups, and (c) phenolic groups
(Motoyuki 1990). These groups are nucleophilic in nature and potential adsorbing
sites. In acidic pH, these active sites get blocked by hydrogen ion leading to
reduction in adsorption. Hence, adsorption of chrysoidine on activated carbon is
less in acidic pH. It is found from Fig. 2.3a that at pH 2.6, adsorption is nearly 62%



54 2 Adsorption of Dyes
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for the feed dye concentrations of 400 mg/L at the end of experiment. The
percentage adsorption decreases from about 98 to 40%, when pH decreases from
11.1 to 2.6. From Fig. 2.3a, it may be observed that the adsorption of this dye is
more at the basic pH.

The percentage of eosin adsorption at different pH levels are shown in Fig. 2.3b
for an initial dye concentration of 100 mg/L. pH plays an important role on
adsorption capacity by influencing the chemistry of both the dye molecule and
the activated carbon in aqueous solution. Eosin is a dipolar molecule at low
pH. Activated carbon contains oxygen complexes on its surface, e.g., strongly
carboxylic groups, carbonyl groups, and phenolic groups (Motoyuki 1990). These
groups are nucleophilic in nature. With decrease in pH of the dye solution, more dye
molecules are protonated and get adsorbed on the surface of the activated carbon. It
can be observed from Fig. 2.3b that at pH 2, adsorption is about 100% for an initial
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dye concentration of 100 mg/L. Percentage adsorption decreases with increase in
pH. For the initial dye concentration of 100 mg/L, the removal is 91% for a pH of
12.

The percentage of Congo red adsorption at different pH has been shown in
Fig. 2.3c for the initial dye concentrations of 200 mg/L. The initial pH of dye
solution plays an important role particularly on the adsorption capacity by influenc-
ing the chemistry of both dye molecule and activated carbon in aqueous solution.
Congo red is a dipolar molecular at lower pH and exists as anionic form at higher
pH as shown in Fig. 2.3c. The sodium and potassium salt of anionic Congo red in
aqueous medium is red in color in basic pH up to 10. Above the pH value of 10, the
degree of red color changes from the original one. It has also been found that as the
pH decreases, the color of Congo red solution changes from red to dark blue.
Therefore, the pH of the medium needs to be maintained between 5 and 10 to
treat Congo red. These variations of color with pH suggest that the extent and nature
of ionic character of Congo red molecule depend on the pH of the medium. The
variations in the extent of adsorption of Congo red on activated carbon with pH are
due to the difference in ionic character of the dye molecule. With decrease in pH of
dye solution, more dye molecules are protonated and chemisorbed on the nucleo-
philic sites of the surface of CAC. It is found from the figure that at pH 2, adsorption
is about 100%. On the other hand, the percentage adsorption decreases with
increase in pH of the dye solution. This is because at higher pH, dye molecules
exist in anionic form, and due to interionic repulsion, less adsorption takes place.
For the feed dye concentration of 200 mg/L, the percentage adsorption decreases to
25% at the end of the experiment when the pH is 12. From Fig. 2.3c, it may be
observed that the adsorption of Congo red is maximum at the acidic pH. Therefore,
when Congo red is present in the solution as red color, the operating pH for
maximum adsorption should be kept at 5.

Effects of temperature on the extent of adsorption are shown in Figs. 2.4a, 2.4b,
and 2.4c for chrysoidine, eosin, and Congo red, respectively. Adsorption experi-
ments are carried out for aqueous solution of chrysoidine for two different concen-
trations (400 and 700 mg/L) at three different temperatures (30, 50, and 70 °C) and
at a pH of 4.4. It has been observed that the adsorption capacity increases signif-
icantly with temperature as shown in Fig. 2.4a for the initial chrysoidine concen-
tration of 400 mg/L. The percentage adsorption increases from about 94 to 99% for
the feed dye concentration of 400 mg/L and about 80 to 87% for the feed dye
concentration of 700 mg/L, at the end of experiment, when temperature is raised
from 30 to 70 °C. This endothermic nature of adsorption is due to the positive AH’
value as shown in Table 2.4a.

In order to observe the effect of temperature on the adsorption capacity, exper-
iments are carried out for 100 mg/L eosin at three different temperatures (30, 40,
and 50 °C) using 1.0 g of activated carbon per liter of the solution. It has been
observed that with increase in temperature, adsorption capacity decreases as shown
in Fig. 2.4b. This is due to the negative value of AH” value (refer to Table 2.4b).

Experiments are carried out to observe the effect of temperature on the extent of
adsorption for Congo red of different initial concentration (50, 100, and 200 mg/L)
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in aqueous solution at three different temperatures (e.g., 30, 40, and 50 °C) and at
neutral pH. It has been observed that the adsorption capacity increases significantly
with temperature as shown in Fig. 2.4c for the initial Congo red concentration of
100 mg/L. This is because of positive AH” value as shown in Table 2.4c.

The thermodynamic parameters AGO, AS,O and AH’ for the adsorption of
chrysoidine, eosin, and Congo red have been determined by using the following
equations (Khan et al. 1995):

AG® = AH® — TAS® (2.1)

AS? —AH®
1 C,) =
08(¢¢/Ce) = 5303p + 2303RT

(2.2)
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where ¢, is the amount of dye adsorbed per unit mass of activated carbon (mg/g), C.
is equilibrium concentration (mg/L), and T is temperature in Kelvin. ¢./C. is called
the adsorption affinity. It may be noted here that the experimental data considered
here for the calculation of the thermodynamic parameters, namely, AGO,AHO, and
AS°, are in the linear range of the equilibrium adsorption isotherm (e.g., for
chrysoidine, g.varies from 2.5 to 3.0 mmol/g and C.varies from 0.012 to
0.2 mmol/L as shown in Fig. 2.5a). The values of Gibbs free energy (AG") have
been calculated by knowing the enthalpy of adsorption (AH®) and the entropy of
adsorption (AS®). AS® and AH° are obtained from a plot of log(g./C,) versus %, from
Eq. (2.2). Once these two parameters are obtained, AG® is determined from
Eq. (2.1). The values ofAG®, AH®, and ASare listed in Tables 2.2a, 2.2b and
2.2¢ for chrysoidine, eosin, and Congo red, respectively.

Gibbs free energy (AG®) for all the three dyes is negative (as shown in
Tables 2.2a, 2.2b, 2.2c). This indicates that the adsorption process is spontaneous
for all the three dyes. Adsorption of chrysoidine and Congo red is endothermic in
nature (since AHC value is positive; refer to Tables 2.2a and 2.2¢). On the other
hand, eosin adsorption is exothermic in nature (as AH° value is negative; refer to
Table 2.2b). The positive value of AS° for chrysoidine and Congo red (refer to
Tables 2.2a and 2.2c) dictates that the adsorbed dye molecules on the activated
carbon surface are organized in a more random fashion compared to those in the
aqueous phase. Similar observations have been reported in the literature
(Bhattacharyya and Sharma 2003). For eosin, the negative value of AS° (refer to
Table 2.2b) suggests decreased randomness at the solid solution interface during
adsorption (Manju et al. 1998).
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Table 2.2a Thermodynamic parameters for adsorption of chrysoidine in activated charcoal at
different temperature and dye concentrations

Adsorbent | Chrysoidine | AH® AS° —AG"(kJ/mol) at temperature
(g/L) (mg/L) (kJ/mol) | (J/molK) |303K 323K 343 K
0.5 400 43.6 171.4 8.3 11.8 152
1.0 700 48.9 180.9 5.9 9.6 13.2
Mean 46.3 176.2 7.1 10.7 14.2

Reproduced from Purkait et al. (2004). With permission from Taylor & Francis Ltd

Table 2.2b Thermodynamic parameters for adsorption of eosin in activated charcoal at different
temperature and 100 mg/L of eosin

—AG° (kJ/mol) at temperature
Eosin (mg/L) AH® (kJ/mol) AS° (J/mol.K) 303 K 313K 323 K
100 27.0 52.6 11.0 10.5 10.0

Reproduced from Purkait et al. (2005). With permission from Elsevier

Table 2.2¢ Thermodynamic parameters for adsorption of Congo red in activated charcoal at
different temperature and dye concentrations

—AGO(kJ/mol) at temperature
Congo red (mg/L) | AH® (kJ/mol) | AS® J/molLK) [303 K 313K 323K
50 21.5 86.8 4.8 5.7 6.6
100 51.1 178.1 29 4.6 6.4
200 10.1 345 0.3 0.67 1.0
Mean 27.6 99.8 2.7 3.7 4.7

2.2.1.1 Langmuir Adsorption Isotherm

Langmuir adsorption isotherm is applicable to explain the equilibrium data for
many adsorption processes. The basic assumption of this process is the formation of
monolayer of adsorbate on the outer surface of adsorbent, and after that no further
adsorption takes place. The expression of the Langmuir model is given as follows
(Ozacar and Sengil 2003):

0bC,

=_=""c 23
T =15bC, 23)
A linear form of this expression is
1 1 1 1
=y 2.4
. Q 0bC. (24)

where ¢.is the amount of adsorbate adsorbed per unit weight of adsorbent (mg/g)
and C, is the equilibrium concentration of adsorbate (mg/L). The constant Q and
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b are the Langmuir constants and are the significance of adsorption capacity (mg/g)
and energy of adsorption (I/mg), respectively. Values of Q and b are calculated
from the intercept and slope of the plot 1/g. versus 1/Ce.

2.2.1.2 Freundlich Adsorption Isotherm

This model is an indicative of the extent of heterogeneity of the surface of adsorbent
and is given as follows:

q. = KeCl/" (2.5)

where K and n are Freundlich constants. A linear form of the Freundlich expres-
sion is as follows:

1
logg. = logKF + ZlogCe (2.6)

The constants K and n are the Freundlich constants and are the significance of
adsorption capacity and intensity of adsorption, respectively. Values of K and n are
calculated from the intercept and slope of the plot logg. versus logCe.

Adsorption isotherms of chrysoidine, eosin, and Congo red on activated carbon
at 30 °C are shown in Figs. 2.5a, 2.5b, and 2.5c¢, respectively. The coefficients of
these two isotherm models for the three dyes are given in Table 2.3. These data
provide information on the amount of activated carbon required to adsorb a
particular mass of dye under specified system conditions. Correlation coefficients
are evaluated by fitting the experimental adsorption equilibrium data for three dyes
separately using both Langmuir and Freundlich adsorption isotherms and are also
shown in Table 2.3. It is found from the correlation coefficients () that adsorption
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Table 2.3 Langmuir and Freundlich isotherm constants for adsorption of dyes on activated

charcoal

Langmuir isotherm constant Freundlich isotherm constant
Dye Q (mg/g) | b (/mg) r Kr (mg/g(L/mg)'™) | n r
Chrysoidine 3652.0 2.84 x 1073 0.94 384.2 3.66 0.97
Eosin 5714 435 x 1073 0.96 75.5 4.14 0.99
Congo red 300.0 6.50 x 1072 0.94 20.78 2.90 0.96
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isotherm for the present three dye-activated charcoal systems is best explained by
Freundlich equation.

2.2.1.3 Adsorption Kinetics

The kinetics of adsorption of chrysoidine, eosin, and Congo red on activated carbon
have been described using both first- and pseudo-second-order model. The
Lagergren’s equation for first-order kinetics is as follows:

kit
2.303

log(q. — ¢,) = logg, — (2.7)

The expression for pseudo-second-order rate equation is given as (Ho et al.
1996)

t 1 t
——— 2.8
9 kg q. 2:8)

where ¢. and ¢, are the amounts of dye adsorbed (mg/g) at equilibrium and at any
time ¢ and k; is the rate constant (min ). Figures 2.6a, 2.6b, and 2.6¢ show (#/q;)
versus ¢ plot for pseudo-second-order kinetics for chrysoidine, eosin, and Congo
red, respectively. In Eq. (2.8), k, (g/mg min) is the rate constant for the pseudo-
second-order adsorption kinetics. The slope of the plot (#/g,) versus ¢ gives the value
of ¢,, and from the intercept, k, can be calculated. The values of ki, k,, and
correlation coefficients (1’2), both in the first and pseudo-second-order kinetics,
are presented in Tables 2.4a, 2.4b, and 2.4c for chrysoidine, eosin, and Congo
red, respectively. It may be observed from Tables 2.4a, 2.4b, and 2.4c that the
adsorption of chrysoidine, eosin, and Congo red on activated carbon follows
pseudo-second-order kinetics more closely.

Fig. 2.6a Plot of the

pseudo-second-order 0.30 CAC:05g/L
kinetic model for adsorption 0.25L | pH-4.4

of chrysoidine on activated Chrysoidine:
carbon (0.5 g/L). Feed 0.20L | 200mg/lL =
chrysoidine: 200 and 400mg/L a

400 mg/L (Reproduced ‘.E—T 0.15¢
from Purkait et al. (2004).
With permission from

Taylor & Francis Ltd) 0.05.

0 20 40 60 80 100 120
t (min)




62 2 Adsorption of Dyes
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Table 2.4a Comparison of the first- and second-order adsorption rate constants, calculated and
experimental g, value for chrysoidine on activated charcoal

First-order Pseudo-second-order
Chrysoidine (¢g) | g.,expt qe . fit ky qe . fit ky (g/mg
(mg/L) (mg/g) (mg/g) | (1/min) | (mg/g) | min) r
Feed CAC: 0.25 g/L
200 737.2 710.4 0.30 0.422 |751.8 54 x107% 10.998
250 831.9 770.2 0.46 0.202 |833.3 35 % 107% 10.997
300 907.5 890.6 0.71 0.210 |917.4 13.5 x 107* | 0.999
400 972.0 921.9 0.44 0.395 |980.4 43 x 107* 0.998
Feed CAC: 0.50 g/L.
200 400.0 399.4 1.08 0.454 |400.0 74 % 107" {0.998
250 500.0 495.6 0.62 0.576 |500.0 54 %107 {0.999
300 599.5 589.9 0.55 0.547 |602.4 23 % 107 |0.999
400 759.6 738.2 0.56 0.255 |787.4 49 x 107* ]0.998

Reproduced from Purkait et al. (2004). With permission from Taylor & Francis Ltd
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Table 2.4b Comparison of the first- and second-order adsorption rate constants, calculated and
experimental ¢, value for eosin on activated charcoal

First-order Pseudo-second-order
Eosin (o) de.€Xpt qe . fit qe . fit ks (g/mg
(mg/L) (mg/g) (mg/g) |k (I/min) |/* | (mg/g) | min) r
Feed CAC: 1.0 g/L
200 175.0 152.3 6.7 x 1072 (091 |173.4 54 x107* ]0.998
400 286.0 232.2 44 x 1072 0.86 |302.1 43 x 107* 0.998

Reproduced from Purkait et al. (2005). With permission from Elsevier

Table 2.4c Comparison of the first- and second-order adsorption rate constants, calculated and
experimental ¢, value for Congo red on activated charcoal

First-order Pseudo-second-order
Congo red (co) |¢e.expt qe » fit qe,fit ks (g/mg
(mg/L) (mg/g) (mg/g) | ki (1/min) | (mg/g) | min) r
Feed CAC: 1.0 g/L
50 45.7 22 1.8 x 1072 [0.925 | 45.9 2 x 1072 0.999
100 76.2 75.0 4.1 % 107% [0.879 | 88.5 53 x 1072 |0.987
380 171.1 119.0 29 %1072 |0.964 |181.8 45 % 1072 ]0.997
545 183.1 144.8 3.0 x 1072 |0.978 |207.5 25 %1072 10.995

Reproduced from Purkait et al. (2007). With permission from Elsevier

2.2.2 Column Adsorption

Column adsorptions studies are essential for design of industrial scale fixed-bed
adsorber system. Figure 2.7 shows the breakthrough curves for different bed depths.
It may be observed from Fig. 2.8 that the breakthrough time (duration for zero
column outlet concentration) increases from 18 to 39 h, when the bed depth is
increased from 4.5 x 10 2mto 7.0 x 1072 m, for the same flow rate of 0.18 L/hr.
The shape and the gradient of the breakthrough curves for the two bed depths are
almost identical.

2.3 Generalized Shrinking Core Model for Batch
Adsorption Data

To develop a mathematical model that describes the adsorption dynamics, the
following information are generally required:

1. A complete description of equilibrium behavior, i.e., the maximum level of
adsorption attained in a sorbent/sorbate system as a function of the sorbate
liquid-phase concentration
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Fig. 2.7 Variation of the 1.0
breakthrough curve with
bed depth (Reproduced

from Purkait et al. (2005). by - —
With permission from Temp: 30°C
Elsevier) S 0.6} pH:5.0

< 041 Bed depth

—=—4.5¢m

——T7.0cm

Initial concentration of eosin: 500 mg/L
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2. Mathematical representation of associated rate of adsorption, which is controlled
by the resistances within the sorbent particles

In adsorption, mainly two resistances prevail — the external liquid film resistance
and the resistance in the adsorbent particle. The intraparticle diffusion resistance
may be neglected for solutes that exhibit strong solid to liquid-phase equilibrium
solute distribution, in the initial period of operation. However, even for such
systems, the above assumption leads to errors that are substantial beyond the first
few minutes if the agitation is high (Mathews and Weber 1976). So, both the
resistances are important for kinetic study (Chatzopoulos et al. 1993; McKay
1984; Costa et al. 1987; Komiyama and Smith 1974; Liapis and Rippin 1977).

The external liquid film resistance is characterized by the external liquid film
mass transfer coefficient (k¢). The mass transport within the adsorbent particles is
assumed to be a pore diffusion (Dedrick and Beckman 1967; Weber and Rumer
1965; Furusawa and Smith 1973; McKay 1982) or homogeneous solid diffusion
process (McKay 1982; Hand et al. 1983; Kapoor et al. 1989).

The pore diffusion model outlined in this paper is based on the unreacted
shrinking core model (Yen 1968; Levenspiel 1972) with pseudo-steady-state
approximation. This model has mostly been applied to gas-solid non-catalytic
reactions, but a number of liquid-solid reactions also have been analyzed using
this model (Neretnieks 1976; Spahn and Schlunder 1975). In the pore diffusion
model, there is adsorption of the adsorbate into the pores with a cocurrent solute
distributed all along the pore wall.

The assumptions made in this model are as follows:

(a) Pore diffusivity is independent of concentration.

(b) Adsorption isotherm is irreversible.

(c) Pseudo-steady-state approximation is valid.

(d) The driving force in both film and particle mass transfer is directly proportional.
(e) Adsorbent particles are spherical.

The major limitation of this model is that it is specific to the nature of isotherm.
This means that the model available in literature is most suitable for Langmuir-type
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isotherm, i.e., formation of a monolayer of adsorbate on the adsorbent. Besides, this
model is only applicable for higher initial adsorbate concentration in solution so
that the batch process operating line intercepts the invariant zone of isotherm. For
example, for Astrazone blue-silica system, the literature model is applicable for
Co >> 200 mg/lit (McKay 1984). The present model, which is more generalized,
overcomes the above limitations. The model proposed, here in, can be applied to
wide ranges of initial adsorbate concentrations for all possible nature of isotherms.
The system reported here is adsorption of Astrazone blue dye on Sorbsil Silica.

The equations considered for the kinetics of the adsorption process for spherical
adsorbent particles for the present model are as follows:

The mass transfer from external liquid phase can be written as

N(1) = 42R*K;(C, — Ce) (2.9)
The diffusion of solute through the pores as per Fick’s law can be written as

47D, C
N() =73
-

where D,, is the effective diffusivity in the porous adsorbent (Fogler 1997).
The mass balance on a spherical element of adsorbate particle can be written as

(2.10)

dR
N(1) = —4aR¢*Yep [7;] (2.11)
The average concentration on adsorbent particle can be written as
_ Re\’
Y, = Y [1 - (Ff) (2.12)

The differential mass balance over the system by equating the decrease in
adsorbate concentration in the solution with the accumulation of the adsorbate in
the adsorbent can be written as

N(@t) = —V(‘ldc;‘) = W(ﬁ?) (2.13)

The dimensionless terms used for simplification are as follows:

Cq Ry . kiR w Cet Dyt
Cf=—r=—7.Bi=——, Ch=r-—.Ca*=_"and7=—5
CT6 TR T D, VGt T TR

Simplifying Egs. (2.9) and (2.10)
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«  Bi(1—-rCf

et _[r+Bi(1—r)}:gl(Ct*7r) (2.14)
Now differentiating the above equation with respect to T
ac Bi(l1—r) dC; BiC dr
de Bl dr [r 3 Bi(l_r)fds (2.15)
From the equilibrium relationship
Ye(t) = g,(CX) (2.16)

where g, is any equilibrium isotherm relationship. Simplifying Eqgs. (2.9) and (2.11)

(cC
ary _—Bif)(c - c”) (2.17)
dr) 2 '
Simplifying Eqs. (2.12) and (2.13)
acy N ™ o (dr
— 1 - = Y — 2.1
< I ) —|—Ch( r ) T 3Ch-Yer e (2.18)
For Langmuir isotherm
Y Ys * Yo C*
Yo = sCet _ COCet = esiet - (219)
1+kCo 1+ koCoCe[ 1+ kO Cq
where Y., = Y,Co and kg = koC.
The time derivative of Eq. (2.19) becomes
dY e _ Yes acs (2.20)

. (1+k5ch)” dr

Combining Eqs. (2.14), (2.18), and (2.20) and after algebraic manipulation, the
following expression is obtained (for Langmuir-type isotherm):

() (/) (2)
YeBi(1 — 1)

(1+ &3 CH)’[r+ (1 = r)Bi)

ChY Bi(1 — 1*)C¥
es ’2( )G . Using Eq. (2.14), Eq. (2.17) may be
* 12
(1445 CE) I+ (1 = r)Bi]

where M = 1 + Ch(l — r3) and,

N = 3ChY o +

written as
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- Co * *
d - —Bi Te (C[ — Cet )
d—; - (” ) > =£1(CF.7) (2.22)

Using Eqs. (2.14) and (2.22), Eq. (2.21) may be expressed as

N(CF,r)fi(CF,r)

<d§;*) () =/ (Clr) (2.23)

The initial conditions for Egs. (2.22) and (2.23), Cy = 1.0 and r = 1.0 at time,
7 = 0.0. Equations (2.22) and (2.23) can be solved to find the bulk concentration at
any time “¢” if we know all the process parameters. The two process parameters —
the external mass transfer coefficient (k¢) and internal effective diffusivity (D) —
are unknown to us. These two parameters are estimated by optimizing the exper-
imental concentration profile as outlined in the next section.

2.3.1 Numerical Analysis

The above set of equations are numerically solved using fourth-order Runge-Kutta
of step size (dt) of the order 10> along with a nonlinear optimization technique
(Levenberg-Marquardt) to estimate the two process parameters described above, so
that the experiment kinetic profile (i.e., bulk concentration versus time) is matched.
For this purpose, optimization subroutine UNLSF/DUNLSF from IMSL math
library has been used.

The adsorption systems studied here encompass Radke-Prausnitz isotherm
(Tables 2.5 and 2.6). The systems considered here are (1) Astrazone blue dye on
silica, (2) para-nitrophenol on granular activated carbon from Lurgi, and (3) toluene
on F300 activated carbon. The experimental data on kinetics and the isotherm
constants have been reported in literature (McKay 1984; Costa et al. 1987
Chatzopoulos et al. 1993).

The adsorption of Astrazone blue on silica follows Langmuir isotherm (McKay
1984). The isotherm constants are Y, = 0.5 lit/g and Ky = 0.016 lit/mg, where Y, in
mg/g and C. inmg/l. For W=17¢g,V=1.71,R = 0.3025 mm, and p = 2.2 g/cc, the
concentration decay data for Cy = 520 mg/l has been used to determine the
unknown process parameters using the above numerical procedure as shown in
Fig. 2.8a. The estimated values of the parameters are as follows: k; = 130.0 x 10~¢
cm/s and D, = 16.16 x 10~° cm?/s. These values of k¢ and D), are used to simulate
the adsorption kinetics for different operating conditions. It is interesting to note
that the estimated values of kr and D,, are close to the values reported by Mckay
(1984), i.e., kf = 80 x 10 cm/s and D, =18 x 1072 cm?/s. The experimental
observations and the model-simulated concentration profiles for different initial dye
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Tal;lle 2.5 Radke-Prausnitz Isotherm T(°C) A (L/g) B (L/2) 5
popmensane Radke-Prausnitz | 10 95891 | 2.523 0.195
[(YT) = (Ace> + (W)} 25 608.16 2.269 0.188
40 315.37 2.078 0.196

Table 2.6 Model parameters Temp. (°C) ke % 10° (m/s) D, x 10% (m?/s)
using Radke-Prausnitz
. . 10 11.48
isotherm at various
temperatures 25 19.10 6.0

40 27.86

concentrations, masses of silica, and particle sizes of silica have been shown in
Figs. 2.8b, 2.8c and 2.8d, respectively. From the above figures, it may be observed
that beyond 120 min (2 h) of the process, the model underpredicts the bulk
concentration profile. This may be due to the increase of the resistance inside the
micropores which inhibits the process of adsorption. The present model can be used
for multicomponent adsorption processes and also with concentration-dependent
diffusivity. The model is useful to estimate k¢ and D, values, which are required for
the design of fixed-bed adsorber.

2.4 Discussion of Mathematical Model Analysis

The adsorption experiments in the fixed-bed column are carried out to study the
adsorption dynamics and quantify the breakthrough curve. One of the crucial
aspects of design of adsorption columns for any separation process is the prediction
of the breakthrough time. This is necessary to estimate the lifetime of the adsorption
bed and its process efficiency. There have been several mathematical models
developed in the past based on different assumption justifying the simplicity in
the calculations.

2.4.1 Thomas Model (Thomas 1944)

Thomas solution is the most general and widely used equation for modeling
performance of fixed-bed adsorption. The Thomas model assumes second-order
reversible Langmuir kinetics of the adsorption-desorption process. Ideally the
model is suitable for situations where the external and internal diffusion resistances
are small. This is particularly true for adsorption scenarios in most liquid systems
and therefore is most relevant for adsorption in aqueous environment. The expres-
sion describing the output concentration C,/Cy is given by
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Fig. 2.8a Adsorption of
Astrazone blue dye on silica

Fig. 2.8b Effect of initial
adsorbate concentration.
Solid lines are the model
predictions and symbols are
the experimental data

Fig. 2.8¢c Effect of the
mass of adsorbent on
concentration decay. Solid
lines are the model
predictions and symbols are
the experimental data
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Fig. 2.8d Effect of silica
particle size on
concentration decay. Solid
lines are the model
predictions and symbols are
the experimental data
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€ 14exp (kThqu/ o)

where kry, is the model parameter obtained from nonlinear regression of the output
concentration with time. The parameter ¢, is the maximum adsorption capacity of
the adsorbent.

2.4.2 Adams-Bohart Model (Bohart and Adams 1920)

The Adams-Bohart model considers that the adsorption rate is proportional to both
the adsorbent leftover capacity and the concentration of the adsorbate species in the
solution. The Adams-Bohart model is originally applied for prediction of adsorp-
tion behavior in gas-solid systems, but later on extended to liquid streams. It
assumes that the adsorption rate is proportional to the residual capacity of the
adsorbent and adsorbate concentration. Since the external mass transfer is not
taken into account, it is particularly not suitable for describing the system at high
flow rate and concentration. Theoretically, the model is applicable for predictions at
early times, when C/Cy << 1. The mathematical equation describing the output
concentration is represented by Eq. (2.25):

Ct Z
— =exp| kapcot — k — 2.25
0 P( ABCO AquQ> ( )

where kap is the model parameter obtained from nonlinear regression of the
experimental data.
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2.4.3 Yoon-Nelson Model (Yoon and Nelson 1984)

The Yoon-Nelson model is based on the assumption that the probability of adsorp-
tion for each molecule decreases proportionately on the probabilities of the adsor-
bate adsorption and breakthrough. One of the features of the model is that the
product of the parameters Ky,zynis constant for a particular adsorbent-adsorbate
combination and independent on the operating conditions. This is a fairly simple
model which does not require any knowledge of the adsorption capacity or type of
the adsorbent:

Ct

= exp(kYNt — TkYN) (226)
Co — Ct

where 7 and kyy are the model parameters obtained from nonlinear regression of the
experimental data.

2.4.4 Clark Model (Clark 1987)

This model is based on the application of the mass transfer concept in combination
with Freundlich equilibrium isotherm. The adsorption equilibrium isotherm satis-
fying Freundlich relationship can only be used for predicting the breakthrough
profile of the adsorption column. The semiempirical relationship is presented in
Eq. (2.27):

¢ 1 1/(n—1) -
e 27
o (1 —I—Aexp(—rt)) (227)

where A and r are the model constants obtained from nonlinear regression analysis.
The constant 1/n is obtained from the Freundlich isotherm equation.

2.4.5 Bed Depth/Service Time (BDST) Model
(Goel et al. 2005)

The BDST model is the linearized form of the Adams-Bohart model. The main
consideration here is the assumption that the intraparticle diffusion and external
mass transfer resistance is negligible and the adsorption kinetics is controlled by the
surface chemical reaction between the adsorbate and adsorbent, which is generally
uncommon in real systems. The popularity of the BDST is due to its simplicity in
predicting breakthrough behavior owing to its rapid analysis. The expression
predicting the breakthrough profile (C/Cy) is given by
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Z
€0 — 1 + Kgpsrexp (q“— - Cot> (2.28)
Ct 0

where Kppst is the model parameter determined by the nonlinear regression
analysis of the experimental data. Although the BDST model provides a simple
and comprehensive approach for evaluating sorption column test, its validity is
limited and does not involve any sound understanding of the implicit transport
mechanism (Bohart and Adams 1920; Poots et al. 1976a; Faust and Aly 1987). One
of the major limitations of this model is the symmetry of the logistic function
(S-shaped curve) around its midpoint t = NoZ/CoUy and C = Cy/2, which is not true
for most breakthrough profiles. Therefore, a more detailed adsorption bed modeling
based on the physical transport laws of pore diffusion is necessary for accuracy of
the model prediction and scaling up of the process.

2.4.6 Pore Diffusion-Adsorption Model

The 1D single species convective-diffusive equation (Kunii and Levenspiel 1991)
is described by Eq. (2.29):

C_p,TE 20 () (1o

dp &

I Dy P >pS(C - Ce) (2.29)
where the generation term accounted is dependent on the solid-fluid mass transfer
rate and is linearly proportional to the concentration difference and C. is the
adsorbate concentration at the adsorbent-bulk interface. The solution of
Eq. (2.29) provides information of the transient solute concentration at various
bed depths. In deriving Eq. (2.29), by the material balance analysis, it is inherently
assumed that all the interparticle void space in the bed is saturated and the fluid
velocity is uniform and unhindered throughout. The initial and boundary conditions
of Eq. (2.29) are

att=0,C=Cy forz=0andC=0for 0<z<L (2.30a)
ocC
atz=0, Do +V(Co—C)=0 (2.30b)
oC
andatz =1L, =, = 0 (2.30c)
z

The intra-pellet adsorption is described by the pore diffusion transport model.
Intraparticle mass transport is characterized by the pore diffusion coefficient D,,.
The mass balance equation for the liquid phase (pore) in a spherical particle can be
written as
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ocC 0 2°c, 20C
e, + (1 —ep)psa—‘szp(W;+;a—rp> (2.31)

where C,, is the contaminant concentration inside the particle and &pis particle

porosity. Assuming instantaneous equilibrium % = % aaTq. Modifying Eq. (2.31),
P

we get (Singha et al. 2012),

% — 1 & ach + %% (2.32)
ot [1 + (1 - gp)Px ﬂ} &p orr r or .

3Gy

The initial condition (r = 0) is given by C, = 0 for 0 < r < a,,

The symmetry condition at the particle center (+ = 0) and continuity of the
concentration on the external surface of the adsorbent bed are simultaneously
expressed as

at r=0, % =0 (2.33a)
oC,

and at r = ap, k¢ (Cp — Ce) = Dyep—=-+

(2.33b)

2.5 Various Types of Adsorbents Used for Dye Adsorption

A summary of the various low-cost adsorbents for dye removal as studied by
several researchers in the past is presented in Tables 2.7, 2.8 and 2.9. Natural
materials or the wastes/by-products of industries or synthetically prepared mate-
rials, which cost less and can be used as such or after some minor treatment as
adsorbents, are generally called low-cost adsorbents. Generally, the low-cost adsor-
bents are usually branded as substitutes for activated carbons because of their
similar wide usage; however, in a clear sense, they are essentially substitutes for
all available expensive adsorbents. These alternative low-cost adsorbents (Gupta
et al. 2009) may be categorized in two ways (1) based on their availability, for, e.g.,
natural materials such as coal, wood, lignite, peat, etc., or agricultural/industrial/
domestic wastes; or by-products such as sludge, slag, red mud, fly ash, etc., or
synthesized products; and (2) depending on their nature, for, e.g., organic or
inorganic. The adsorbents listed in Table 2.7, 2.8, and 2.9 provide useful informa-
tion about the type and capacity of alternative adsorbents without going into too
much detail of the preparation process.
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Table 2.7 Adsorption capacities of commercial activated carbon and other alternative adsorbents
for removal of acid dyes

Adsorption
Surface capacity Concentration
Adsorbent Adsorbate | area (m?/g) | (mg/g) range (mg/L) | Source
GAC Filtrasorb Acid blue 1100 57.5 mg/g 25-200 Ozacar and
400 40 Sengil (2002)
Filtrasorb F 400 | Acid blue 1200 1123 mg/g |- Choy et al.
80 (2000)
Filtrasorb F 400 | Acid red 1200 103.5 mg/g |- Choy et al.
114 (2000)
Filtrasorb F 400 | Acid red - 109 mg/g - Venkata
88 Mohan et al.
(1999)
Filtrasorb F 400 | Acid yel- 1200 155.8 mg/g |- Choy et al.
low 117 (2000)
GAC Filtrasorb Acid yel- 1100 133.3 25-200 Ozacar and
400 low 17 Sengil (2002)
PAC Acid 1026 22 30-250 Martin et al.
brown 283 (2003)
AC-charcoal Acid blue |- 100.9 10-25 Choy et al.
Acid 128.8 (1999)
yellow
Acid red 101
114
AC rice husk Acid blue  |352 50 1-50 Mohamed
(2004)
Blast furnace Acid blue |28 2.1 - Jain et al.
sludge 113 (2003¢)
Bentonite Acid blue 767 740.5 - Ozcan et al.
193 (2004)
Wood sawdust Acid blue |- 5.92 - Ho and
(raw) 25 McKay
(1998a)
Treated cotton Acid blue |- 589 - Bouzaida and
25 Rammah
(2002)
Chitosan Acid blue - 77.4 - Martel et al.
25 (2001)
Hazelnut shell Acid blue |- 60.2 50-500 Ferrero (2007)
25
Sawdust-walnut | Acid blue |- 37 50-500 Ferrero (2007)
25
Sawdust-cherry Acid blue |- 32 50-500 Ferrero (2007)
25

(continued)
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Table 2.7 (continued)

75

Adsorption
Surface capacity Concentration
Adsorbent Adsorbate | area (m*/g) | (mg/g) range (mg/L) | Source
Sawdust-oak Acid blue - 27.8 50-500 Ferrero (2007)
25
Sawdust-pitch Acid blue - 26.2 50-500 Ferrero (2007)
pine 25
AC-corncob Acid blue 943 1060 - Juang et al.
25 (2002)
AC-bagasse Acid blue | 607 674 - Juang et al.
25 (2002)
AC-plum kernel | Acid blue 1162 904 — Juang et al.
25 (2002)
Cane pith Acid blue | 606.8 673.6 - Juang et al.
25 (2001)
Bagasse pith Acid blue |- 17.5 10-1000 Chen et al.
25 (2001)
Wood Acid blue |3.8-6.4 7-11.6 - Poots et al.
25 (1976b)
Maize cob Acid blue - 41.4 0.05 El-Geundi and
25 Aly (1992)
Acid red 47.7
114
Pine sawdust Acid blue |- 280.3 - Ozacar and
256 Sengil (2005)
AC-pinewood Acid blue | 902 1176 - Tseng et al.
264 (2003)
Dead fungus Acid blue |- 1.44-13.8 50 Fu and
Aspergillus niger |29 Viraraghavan
(2001)
Living biomass Acid blue |- 6.63 50 Fu and
Aspergillus niger |29 Viraraghavan
(2001)
Modified fungal | Acid blue |- 17.6 46 Fu and
biomass — Asper- |29 Viraraghavan
gillus niger (2002b)
Calcined alunite | Acid blue | 42.8 212.8 25-200 Ozacar and
40 Sengil (2002)
Activated sewage | Acid blue | 390 60.0 100-1000 Otero et al.
sludge 74 (2003b)
Pyrolyzed sew- Acid blue 80 30.8 100-1000 Otero et al.
age sludge 74 (2003b)
AC-bagasse Acid blue 1433 391 20-1050 Valix et al.
80 (2004)

(continued)
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Table 2.7 (continued)

2 Adsorption of Dyes

Adsorption
Surface capacity Concentration
Adsorbent Adsorbate | area (m*/g) | (mg/g) range (mg/L) | Source
Activated clay Acid blue |- 57.8 - Ho et al.
9 (2001)
Soy meal hull Acid blue | 0.76 114.9 50-150 Arami et al.
92 (2006)
Banana pith Acid bril- |- 44 - Namasivayam
liant blue et al. (1998)
Coir pith Acid bril- |- 16.7 - Namasivayam
liant blue et al. (2001)
Leather industry | Acid - 2.84-6.24 50-125 Sekaran et al.
waste brown (1995)
Chitosan Acid green |- 645.1 - Wong et al.
25 (2004)
Acid 922.9
orange 10
Banana peel Acid 20.6-23.5 |21 10-120 Annadurai
orange 52 et al. (2002)
Orange peel Acid 20.6-23.5 |20.5 10-120 Annadurai
orange 52 et al. (2002)
Sewage sludge Acidred 1 |- 35-73 10-1000 Seredych and
Bandosz
(2007)
Bagasse pith Acid red - 20 10-1000 Chen et al.
(raw) 114 (2001)
AC from gingelly | Acid red 229.6 102 - Thinakaran
seed shell 114 et al. (2008)
AC from cotton- | Acid red 124.3 153.8 - Thinakaran
seed shell 114 et al. (2008)
AC from pongam | Acid red 324.8 204.1 - Thinakaran
seed shell 114 et al. (2008)
Soy meal hull Acid red 0.76 109.9 50-150 Arami et al.
14 (2006)
Hen feathers Acid red - 129.1 8.79-52.7 Gupta et al.
51 (2006)
Charfines (raw) Acid red - 333 — Venkata
88 Mohan et al.
(1999)
Lignite coal Acid red - 30.9 - Venkata
(raw) 88 Mohan et al.
(1999)
Bituminous coal | Acid red - 26.1 - Venkata
88 Mohan et al.
(1999)

(continued)
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Table 2.7 (continued)
Adsorption
Surface capacity Concentration
Adsorbent Adsorbate | area (m*/g) | (mg/g) range (mg/L) | Source
Coir pith (raw) Acid violet |- 1.65 - Namasivayam
et al. (2001)
Orange peel Acid violet | 19.9 - - Sivaraj et al.
(raw) 17 (2001)
Pine sawdust Acid - 398.8 - Ozacar
(raw) yellow 132 and Sengil
(2005)
Calcined alunite | Acid 42.8 151.5 25-200 Ozacar
yellow 17 and Sengil
(2005)
Sawdust carbon Acid 516.3 183.8 — Malik (2003)
yellow 36
Rice husk carbon | Acid 272.5 86.9 — Malik (2003)
yellow 36
Blast furnace Acid 28 14 - Jain et al.
sludge yellow 36 (2003c)
Treated cotton Acid - 448 - Bouzaida and
yellow 99 Rammah
(2002)
Blast furnace Ethyl 28 1.3 - Jain et al.
sludge orange (2003c)
Fly ash Metomega |— 0.743 10 Gupta
chrome and Shukla
orange (1996)
Wollastonite Metomega | — 0.7 10 Gupta and
chrome Shukla (1996)
orange
Kaolinite Metomega | — 0.65 10 Gupta and
chrome Shukla
orange (1996)
Coal Metomega |— 0.77 10 Gupta and
chrome Shukla
orange (1996)
Activated Sella fast - 360.5 - Espantaleon
bentonite brown H et al. (2003)

Reproduced from Gupta and Suhas (2009). With permission from Elsevier
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