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Preface

Chapters in this volume discuss several aspects of the physical properties of
biological membranes and how these properties influence their functioning. The
reviews emphasize the mechanisms that result in these changes in membrane
properties and function.

One of the rapidly developing areas in membrane biophysics in recent years has
been the role of transbilayer lipid asymmetry. It is known that the lipid composition
of the bilayer of a biological membrane is very different for the two monolayers that
compose this bilayer. Most studies of model membranes have employed membranes
with identical composition for the two monolayers. There are technical difficulties
in making model membranes with transbilayer asymmetry. Chapter 1 describes
the methods that are being developed to facilitate the preparation of asymmetric
model membranes and how the presence of this transbilayer lipid asymmetry affects
the physical properties of the membrane. The maintenance of transbilayer lipid
asymmetry is intimately connected with the rates of lipid flip-flop, i.e. the movement
of lipid from one face of the bilayer to the opposite side. In model membranes
devoid of protein, flip-flop rates of polar lipids are generally very slow. However,
in biological membranes these rates can be accelerated by specific proteins, in
some cases using an active transport mechanism, as well as through non-specific
disordering of membrane packing compared with a pure lipid membrane. Chapter
2 discusses how the flipping rate is dependent on both the chemical structure of the
lipid as well as on the physical state of the membrane. Results of studies of flip-flop
rates obtained both from experiments as well as computer simulations are presented.

The two principle components of biological membranes are proteins and lipids.
The function of membrane proteins is modulated by lipids, both by binding to
specific lipid binding sites on the protein as well as by modulating the general
biophysical properties of the membrane. Some of these properties, including the
formation of supercritical fluids as well as long range interactions involving
curvature stress, curvature elasticity and hydrophobicity play key roles in the
coupling of lipids and proteins. The mechanisms of this modulation of membrane
protein function through coupling with the physical properties of the membrane
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are reviewed in Chap. 3. Chapter 4 describes how mechano-sensitive channels
can be gated by stretching of the bilayer(forces-from-lipids principle)and/or by the
forces conveyed to the channel from the cytoskeleton/extracellular matrix(force-
from filament). The final two Chapters deal with larger scale systems. Chapter 5
discusses mechanisms of changes in cell shape. The factors involved can include
the cytoskeleton, membrane-bending proteins and membrane biophysical properties
including a role for lipid domains in cell membranes. The final Chapter considers the
liposome as a minimal cellular model that can be used to simulate diverse processes
from the origin-of-life to a reconstituted biochemical pathway. The possibility of
applying such systems for future biotechnological applications is also considered.

This volume thus summarizes, from diverse points of view, the nature of
membrane biophysical properties and how these properties impinge on the various
functions of a biological membrane.

Hamilton, ON, USA Richard M. Epand
Bruxelles, Belgium Jean-Marie Ruysschaert

http://dx.doi.org/10.1007/978-981-10-6244-5_3
http://dx.doi.org/10.1007/978-981-10-6244-5_4
http://dx.doi.org/10.1007/978-981-10-6244-5_5


Contents

1 Preparation and Physical Properties of Asymmetric Model
Membrane Vesicles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Johnna R. St. Clair, Qing Wang, Guangtao Li, and Erwin London

2 Spontaneous Lipid Flip-Flop in Membranes: A Still Unsettled
Picture from Experiments and Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Maria Maddalena Sperotto and Alberta Ferrarini

3 Membrane Lipid-Protein Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Michael F. Brown, Udeep Chawla, and Suchithranga M.D.C. Perera

4 Principles of Mechanosensing at the Membrane Interface . . . . . . . . . . . . . . 85
Navid Bavi, Yury A. Nikolaev, Omid Bavi, Pietro Ridone,
Adam D. Martinac, Yoshitaka Nakayama, Charles D. Cox,
and Boris Martinac

5 Lipid Domains and Membrane (Re)Shaping: From Biophysics
to Biology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Catherine Léonard, David Alsteens, Andra C. Dumitru,
Marie-Paule Mingeot-Leclercq, and Donatienne Tyteca

6 Minimal Cellular Models for Origins-of-Life Studies and
Biotechnology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Pasquale Stano

vii



Chapter 1
Preparation and Physical Properties
of Asymmetric Model Membrane Vesicles

Johnna R. St. Clair, Qing Wang, Guangtao Li, and Erwin London

Abstract Model biomembrane vesicles composed of lipids have been widely used
to investigate the principles of membrane assembly and organization. A limitation of
these vesicles has been that they do not mimic the transbilayer lipid asymmetry seen
in many natural membranes, most notably the asymmetry in the plasma membrane
of eukaryotic cells. Recently, a number of approaches have been developed to
prepare asymmetric membranes and study their properties. This review describes
methods to prepare asymmetric model membranes, and the physical properties
of asymmetric lipid vesicles. Emphasis is placed on the vesicles prepared by
cyclodextrin-catalyzed exchange, which has proven to be a versatile and powerful
tool, including for studies manipulating lipid asymmetry in living cells.

Keywords Membrane domains • Liquid ordered state • Sphingolipids •
Phospholipids • Cyclodextrins

1.1 Lipid Asymmetry: Definition and Origin

When studying biological membrane organization and function, one important
aspect to consider is lipid asymmetry. Lipid asymmetry refers to the difference in
lipid composition in the outer (exoplasmic, exofacial) leaflet vs. the inner (cytoplas-
mic, cytofacial) leaflet of a membrane. Many cell membranes possess lipid asym-
metry. In mammalian cells, the outer leaflet of the plasma membrane is enriched
in sphingomyelin (SM), glycosphingolipids (GSL) and phosphatidylcholine (PC),
while the inner leaflet is composed mainly of phosphatidylethanolamine (PE),
and anionic lipids such as phosphatidylserine (PS) and phosphatidylinositol (PI)
(Fig. 1.1) [1]. Cholesterol is present in both leaflets, but its distribution is still in
dispute [2, 3].
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2 J.R.St. Clair et al.

Fig. 1.1 Representation of lipid asymmetry in natural biomembranes. In mammalian cells the
outer, or exofacial, leaflet is enriched in saturated acyl-chain sphingomyelin and in phosphatidyl-
choline, while the inner, or cytofacial, leaflet is composed primarily of phosphatidylethanolamine
and phosphatidylserine. Cholesterol, shown in gray is present in both leaflets

In cells, lipid asymmetry is maintained by flippases and floppases, enzymes that
control the movement of lipids across the bilayer, and by enzymes that synthesize
and degrade lipids in one or the other leaflet [4]. Lipid flip-flop, or the transverse
diffusion of lipids from one leaflet to another, counteracts asymmetry. The rate of
spontaneous phospholipid flip-flop in the absence of proteins is generally slow,
and can take days [5–9]. In contrast, cholesterol with its small and weakly polar
headgroup, can cross the lipid bilayer in a minute or less [10].

1.2 Biological Function of Asymmetry

The full significance of lipid asymmetry remains elusive, but is known to be
important in several biological processes. For example, the loss of PS asymmetry
and the resulting display of PS in the outer leaflet of cell membranes is a signal
which leads to the consumption of apoptotic cells by phagocytes [11], and is also
a signal indicating that the membrane has been damaged, promoting blood clotting
[12]. Some viruses even display PS in their outer leaflet to encourage engulfment
by macrophages and achieve host infection [13, 14].

Asymmetry may also affect lipid-protein interaction. Transmembrane (TM)
proteins typically have a higher positive charge at the cytofacial end of their
TM helices relative to their exofacial end. This is known as the positive-inside
rule [15]. Lipid charge asymmetry, with a higher negative surface charge at the
inner leaflet/cytofacial surface, may help determine TM protein orientation, as
well as influence the conformation of positively charged cytofacial juxtamembrane
sequences [16]. Importantly, it has recently been observed that plasma membrane
TM segments also have an orientational preference as judged from their abundance
in natural sequences. The segments of TM helices having amino acids with smaller
side chains exhibit a preference to be located in the outer leaflet relative to the inner
leaflet [17].
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1.3 The Physical State of Membranes: Membrane Domains
and How They Might Be Influenced by Asymmetry

Another important aspect of membranes that is likely to be affected by asymmetry
is lipid physical state. In a lipid bilayer composed of only phospholipids or
sphingolipids there are two common physical states: the gel state and the liquid
disordered state (Ld). As the name implies, lipids in the Ld state are disordered
and loosely packed. Lipids in the gel state are tightly packed and solid-like, with
much less lateral mobility/diffusion than Ld state lipids. In a pure lipid bilayer each
individual lipid has its own characteristic melting, or transition temperature (Tm),
at which the gel state will reversibly melt to form the Ld state. In lipid bilayers with
mixtures of both high Tm lipids and low Tm lipids, gel and Ld states can co-exist
in the same bilayer. The addition of cholesterol to gel state lipids generally changes
the bilayer’s physical state to what is known as the liquid ordered (Lo) state [18,
19]. Since sphingolipids and other lipids with saturated acyl chains have high Tm
values, they readily form the Lo state. The Lo state has lipids that are tightly packed
and ordered, as in the gel state, but with fast lateral diffusion, as in the Ld state.
By light microscopy it is possible to observe co-existing Lo and Ld lipid phases in
giant unilamellar vesicles (GUVs) composed of mixtures of high Tm lipids, low Tm
lipids and cholesterol, for example, sphingolipids, unsaturated phospholipids and
cholesterol [20, 21], and in giant plasma membrane vesicles (GPMV) derived from
eukaryotic plasma membranes, which are rich in sphingolipids and cholesterol [22].

The lipid raft model posits that sphingolipid and cholesterol-rich Lo domains
(lipid rafts) co-exist with Ld domains in living cells [18]. Lipid rafts may be
an important feature of lipid organization in natural membranes. They have been
proposed to play an important role in many cellular processes such as amyloid
formation, protein and lipid sorting, cell signal transduction, and pathogen invasion
[23–30].

If lipid rafts are an integral component of the machinery for transmitting
information through the bilayer from the outside of the cell to the inside, then an
interesting question arises: since the inner leaflet of the bilayer contains little to
no raft-forming sphingolipids, then how can Lo domains form in the inner leaflet?
The answer to this may be that outer leaflet lipids influence the physical properties
of the inner leaflet: the physical properties of the two leaflets could be ‘coupled’
[31, 32]. This coupling could transfer information across membranes via the lipids
themselves. For example, it is possible that domains are induced in the inner leaflet
and these domains could then concentrate cytosolic-anchored proteins which have a
high affinity for ordered domains, such as proteins anchored by saturated acyl chains
[33, 34]. This could then lead to formation of specific protein-protein interactions
(Fig. 1.2). Hints that interleaflet coupling may occur come from studies by the
Mayor group which have shown that transmembrane interactions between outer
leaflet long acyl-chain lipids and inner leaflet phosphatidylserine are crucial in
generating actin dependent clustering of cytofacial lipid-anchored proteins [35]. It
should be noted that this would represent a very different mechanism for signal
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Fig. 1.2 Schematic illustration of interleaflet coupling giving rise to lipid-mediated signal trans-
duction across membranes. Lo forming outer leaflet lipids are shown inducing Lo domains in the
inner leaflet. This in turn may cause protein clustering in inner leaflet Lo domains which regulates
signal transduction

transduction across membranes than that mediated by transmembrane proteins, and
might provide a new target for biomedical applications.

1.4 Symmetric Model Membrane Vesicles

Techniques employing artificial membrane vesicles for the exploration of the princi-
ples governing natural membrane structure and function have been well-established.
The most commonly used vesicles have lipid symmetry, i.e. the lipid composition
in both leaflets is identical, or near-identical. Symmetric model membrane vesicles
can be made from a variety of phospholipids and sphingolipids, with or without
sterols, and in a variety of sizes. Multi-lamellar vesicles (MLV) can be prepared by
adding buffer to a dried lipid film and then agitating. As the name implies MLV are
many-layered, and they can be highly variable in size, with 8–15 concentric bilayers
enclosed in a vesicle ranging from 0.5 to several microns in diameter [36]. Small
unilamellar vesicles (SUV) are a single bilayer and are generally less than 50 nm in
diameter. SUVs can be made by the sonication of dried lipids in an aqueous medium,
or by dilution from ethanol [37, 38]. Generating SUVs with ethanol injection allows
control over the size of SUVs by adjusting the concentration of lipid in ethanol
before dilution [37]. Due to their small size, a feature of SUVs is a high level of
curvature stress on the lipids and this has been shown to impact lipid packing [39].
Large unilamellar vesicles (LUV), commonly with a diameter of 100–200 nm, are
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relatively free from the curvature stress of SUVs. They can often be prepared by
subjecting MLVs to multiple cycles of freeze-thaw followed by extrusion through
membrane filters with pores of desired size, to obtain vesicles with a carefully
controlled diameter [40]. Giant unilamellar vesicles (GUV) can approximate the
size of living eukaryotic cells, ranging from 10,000 to 50,000 nm in diameter. GUV
can be generated by electroformation [41], gentle hydration [42], and a number of
oil-in-water techniques [43–51]. They are particularly useful for light microscopy
studies.

Using NMR, interleaflet coupling was investigated in sonicated, symmetric SM
SUV in one early pioneering study [52]. It was found that ion-induced changes
in transition (melting) temperatures in outer leaflet could be partly transmitted to
inner leaflet, indicating some level of interleaflet coupling, and it was proposed that
interleaflet coupling could be a mechanism to transmit information across bilayers.
Furthermore, it was found that the SM chain length influenced coupling, which was
detected when SM acyl chain length was long. This could reflect some effect of acyl
chain interdigitation.

1.5 Asymmetric Model Membranes: Planar Bilayers

Several different methods have been developed for the construction of asymmet-
ric planar supported bilayers. The Langmuir/Blodgett (LB) [53] and Langmuir–
Schaeffer (LS) [54] methods involve first depositing a monolayer of lipids onto
a silicon substrate, and then adding a second monolayer by dipping the substrate
again through an aqueous phase containing second leaflet lipids. Watanabe et al.
recently modified supported planar bilayer techniques to develop a system with
a capacity for simultaneously generating over 10,000 asymmetric supported lipid
bilayers [55].

Fluorescence Interference Contrast Microscopy (FLIC) was used to compare
the stability of asymmetry in planar supported bilayers constructed with several
techniques [56]. Lipid asymmetry was measured in bilayers with and without
cholesterol in Lo and Ld phases. Lipid asymmetry remained stable at 80% for up
to 6 h, as judged by fluorescent probe partitioning in supported bilayers generated
using the Langmuir-Blodgett/vesicle fusion (LB/VF) method.

Sum frequency vibrational spectroscopy also was used to examine the kinetics
and thermodynamics of lipid asymmetry. In cholesterol-free supported planar
LB/LS bilayers, asymmetry stability was limited to several hours and was variably
dependent on headgroup structure [57], acyl chain length, lateral surface pressure
[58], and acyl chain saturation [59]. Later work in LB/LS supported bilayers inves-
tigated the effects of sterol structural variation on flip-flop rates [60]. Vibrational
spectroscopy revealed that in distearoyl PC (DSPC) bilayers the stability of lipid
asymmetry varied considerably with sterol concentration and structure. The lack of
stability seen in these studies may be due to the presence of bilayer defects specific
to supported membranes [5].
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Other efforts have concentrated on preparation of unsupported or cushioned
planar bilayers in order to avoid the influence of a supporting substrate upon lipid
behavior. Unsupported asymmetric planar bilayers can be made via the Montal-
Mueller method [61]. This entails forming two separate lipid monolayers on each
side of a moveable Teflon partition containing a small hole. Carefully moving the
Teflon partition allows the formation of a bilayer at the hole in the partition where
the monolayers make contact. Using asymmetric unsupported bilayers, the Keller
group observed that in mixtures of diphytanoyl PC, dipalmitoylPC (DPPC) and
cholesterol, Lo domains can form in one leaflet independently of the other and that
by adjusting the lipid composition of one leaflet, domain formation in the opposing
leaflet could be suppressed [62]. However, the use of hexadecane to prepare the
monolayers raises the issue of residual solvent, which if present between the lipid
leaflets could influence interleaflet coupling.

Avoiding issues of solvent and support effects by adapting the LB and LS
methods, the Tamm and Naumann groups have used asymmetric bilayers cushioned
by polymer tethered to lipids. The Tamm group generated a tethered double
bilayer system and used single particle tracking to compare the mobility of the
transmembrane protein syntaxin-1A in tethered vs. supported bilayers. The work
demonstrated that there was no significant difference in syntaxin-1A mobility in
tethered vs. supported bilayers [63]. Using the same approach the Naumann group
examined the influence of lipid asymmetry on the sequestering and oligomerization
behavior of integrins ’v“3 and ’5“1 in bilayers [64]. The behavior of these
TM proteins in asymmetric bilayers differed significantly from that in symmetric
bilayers.

1.6 Asymmetric Lipid Vesicles

Lipid vesicles closely resemble natural biological membranes in that they are
unsupported, fully hydrated and the bilayer is unbounded. Because of this, the
results of work using lipid vesicles may be most informative for comparison to
biological systems. Even more closely resembling natural biomembranes, would
be asymmetric vesicles that reflected both the lipid diversity and asymmetry found
in the membranes of living cells.

Early work in the development of asymmetric lipid vesicles examined sponta-
neous fluorescent lipid analog exchange between vesicle populations [65]. It was
demonstrated that NBD-PC fluorescent lipid analogs could spontaneously transfer
from the outer leaflet of ‘donor’ lipid vesicles to outer leaflet of ‘acceptor’ lipid
vesicles. This would result in asymmetric vesicles in the sense that the fluorescent
lipid would be restricted to a single leaflet after exchange. In some cases, as much
as 50% of fluorescent donor lipids could be transferred to the acceptor vesicles.
However, the method was limited in that it required use of fluorescent lipids in
which one acyl chain was modified with a somewhat polar group.
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1.7 Making Asymmetric Vesicles with Phospholipid
Carrier Proteins

In other early work, the Zilversmit group used phospholipid exchange protein
isolated from beef heart cytosol to exchange lipids between erythrocyte ghosts
and PC/cholesterol liposomes [66]. In doing so they explored the natural lipid
asymmetry in red blood cells and confirmed that lipid asymmetry is stable with
sphingomyelin (SM) and PC largely limited to the outer leaflet. In studies using
phospholipid exchange protein isolated from beef liver, the asymmetric transbilayer
distribution of SM, PE, and PC was assessed [67]. The transfer of radiolabeled
phospholipids from intact rat erythrocytes to unilamellar vesicles was measured as
a function of time. It was found that all of the SM and more than half of the PC were
located in the outer leaflet of the erythrocytes. Since nearly no PE was transferred,
it appeared to be largely confined to the inner leaflet.

Also using lipid-exchange proteins, the Holloway group prepared asymmetric
membranes to examine the depth of insertion of transmembrane protein cytochrome
b5 in membranes. They generated model membranes in which only one leaflet
contained phospholipids with brominated acyl chains, which quench tryptophan
fluorescence. They found that cytochrome b5 orients in the bilayer with the
tryptophan in its hydrophobic tail 7 nm from outer leaflet surface [68].

Lipids bound to bovine serum albumin (BSA) were used to generate asymmetry
in rat liver endoplasmic reticulum vesicles for the study of lipid flip-flop rates [69].
A series of spin-labeled phospholipids were introduced into the outer leaflets of
rat liver ER vesicles by binding them to BSA. To determine lipid flip-flop rates,
ESR spectroscopy and kinetics assays were performed. Results showed that in
all observed cases, phospholipid flip-flop was fast, with a half time of 20 min at
37 ıC, and not dependent on lipid head group type. However, the spin-labelled
phospholipids lacked long acyl chains, so the effects of acyl chain length on flip-
flop rates could not be gauged.

Holzer et al. used pro-sterol carrier protein (pro-SCP2) to generate vesicles that
were asymmetric with regard to negatively charged egg phosphatidylglycerol (PG)
[70]. The degree of asymmetry in the vesicles was then measured using free-flow
electrophoresis. Membrane curvature was found to be important for lipid transfer
efficiency by pro-SCP2. By using both small donor and small acceptor lipid vesicles
(50 nm diameter) exchange efficiency was increased by 55% over that achieved with
larger vesicles.

1.8 Using pH Gradients to Make Vesicles with Anionic Lipid
Asymmetry

The Cullis group induced asymmetry in vesicles containing negatively charged
lipids by inducing a pH gradient across the bilayer. Following acidification of
the exterior of PG-containing vesicles relative to the luminal cavity, 50% of PG
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(5% of total outer leaflet lipids) moved to the inner leaflet in within 50 min [71].
Increased acyl chain saturation, chain length and inclusion of cholesterol signifi-
cantly decreased this effect by decreasing membrane permeability and therefore the
ability of PG to move across the bilayer. It was also shown that it was possible
to reversibly manipulate the distribution of the negatively charged egg PG and
egg phosphatidic acid (PA) in the bilayer [72]. EggPG and eggPA, but not the
zwitterionic lipid dioleoylPE (DOPE) could be driven to the inner or outer leaflet,
depending on the direction of the proton gradient. Cryoelectron microscopy was
used to examine morphological changes in the bilayers of dioleoyl PG (DOPG)-
containing LUVs with pH gradient-induced DOPG asymmetry. Flipping of DOPG
from the outer to inner to leaflet or vice versa generated inversions and tubular
protrusions [73]. This approach is limited to the movement of anionic lipids,
and by the small percentages of anionic lipid that could be used (10% of total).
Furthermore, the pH gradient necessary to induce movement of anionic lipids would
not often be suitable for use in studies of protein conformation or function in
asymmetric vesicles.

1.9 Making Asymmetric Vesicles with Water-in-Oil
Techniques: Centrifugation Method

The Weitz group developed an oil-in-water technique to generate asymmetric giant
unilamellar vesicles (GUV) [74]. In the method, an emulsion of dodecane, inner
leaflet lipids and water was first prepared. This was layered over an intermediate
phase consisting of dodecane and outer leaflet lipids, which was directly supported
on an aqueous phase. As the droplets, which would have inner leaflet lipids
in an inverted micelle type of structure, passed via centrifugation through the
dodecane/outer leaflet layer into the aqueous phase, a monolayer of outer leaflet
lipids was deposited on the outside of the inner leaflet monolayer vesicles, forming
asymmetric bilayers. Using this technique, a controllable, high level (95%) of lipid
asymmetry was reported.

Studies using vesicles prepared by oil-in-water methods to examine the effect of
lipid asymmetry on the mechanical properties of bilayers showed that asymmetry
significantly increases membrane rigidity. Two types of fluorescently-labelled
asymmetric GUVs: dioleoyl PC (DOPC)in/1-palmitoyl-2-oleoyl PC (POPC)out and
POPCin/DOPCout (in D inner leaflet lipid, out D outer leaflet lipid) were generated.
Membrane rigidity was calculated by thermal fluctuation analysis of phase contrast
micrographs. Results revealed that both types of asymmetric membranes exhibited a
significantly higher bending rigidity compared to symmetric membranes consisting
of either DOPC, POPC, or 1:1 DOPC:POPC [75].

The Takagi group has developed a method to control the size of water-in-oil
asymmetric GUV. By adjusting the density of luminal contents with water-soluble
molecules such as sucrose and glucose, the rate of transfer and therefore the size
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of vesicles could be controlled. Fluorescently labelled lipids were incorporated
into the cholesterol-containing asymmetric GUVs and facilitated the observance of
microdomain formation and confirmed lipid asymmetry [48].

1.10 Making Asymmetric Vesicles with Water-in-Oil
Techniques: Droplet Interface Bilayers

Hwang and colleagues examined the effect of lipid asymmetry on the behavior of
membrane proteins in droplet interface bilayers (DIB) [51]. In this method two types
of aqueous droplets surrounded by inverted lipid monolayers with different lipids
are deposited in an oil mixture. As the droplets meet, and monolayers come into
contact, and an asymmetric bilayer forms at their junction. Employing monolayer
droplets with differences in lipid charge, bilayers possessing a charge gradient were
constructed and used to measure charge gradient-induced changes in the insertion
and gating behavior of the outer membrane protein G (OmpG) from Escherichia
coli. This method is limited to use with lipids that are soluble in oil, but allows fine
control over mixtures of lipids for each monolayer.

1.11 Making Asymmetric Vesicles with Water-in-Oil
Techniques: Microfluidic Approaches

The introduction of microfluidic techniques to the production of asymmetric
lipid vesicles has enabled methods for the generation of water-in-oil GUV with
controllable size, lipid asymmetry, and lumenal content. The Malmstadt group used
a microfluidic flow-based layer-by-layer approach to produce asymmetric vesicles
with biologically-relevant PS limited to a single leaflet [46]. First sucrose-loaded
aqueous droplets were introduced to an oil stream containing dissolved inner leaflet
lipids to develop a lipid monolayer. The droplets were then released into a second
oil phase containing dissolved outer leaflet lipids floating over an aqueous phase.
Following centrifugation, the droplets passed through the aqueous phase and were
collected. Lipid asymmetry was confirmed via differential fluorescence quenching
and selective labeling with biotinylated lipids. The vesicles were size-selectable
because vesicles larger than 120 �m do not survive the centrifugation step and those
smaller than 10 �m don’t transfer through the second step. Lipid asymmetry was
confirmed with about 85% asymmetry. It was necessary to identify and select oil-
free vesicles visually.

The generation of asymmetric vesicles for drug delivery is a promising area
of research. In a study of drug cytotoxicity, microfluidics were employed to
generate GUVs with a cross-linked, chemically stable inner leaflet composed of
trichloro(1H,1H,2H,2H–perfluorooctyl)silane (TPS) and an outer leaflet containing
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DOPC. When loaded with the cancer therapeutic 5-fluorouacil, the asymmetric
vesicles exhibited a pH-dependent threefold higher cytotoxicity relative to the free
drug [76].

A high-throughput microfluidic process for generating water-in-oil GUV was
recently developed [47, 77]. In the method, water, oil and inner leaflet emulsions
were first formed. Outer leaflet lipids were then introduced via replacement of inner
leaflet lipid solution with a second solution. Water-in-oil double emulsions were
then formed and followed by the extraction of excess oil. Asymmetry and unil-
amellarity were confirmed with fluorescence quenching assays and transmembrane
protein insertion assays. In a second report using this same fabrication strategy,
the effects of lipid asymmetry on the mechanical properties of asymmetric bilayers
vs. symmetric bilayers were examined. In cholesterol-free symmetric vesicles
composed of dimyristoyl PC (DMPC), DOPC a 1:1 mixture of DMPC:DOPC, or
asymmetric vesicles with a DMPCin/DOPCout or DOPCin/DMPCout composition
results showed that the bending moduli and expansion moduli of asymmetric
bilayers are different that those of symmetric bilayers.

1.12 Minimizing Residual Oil Contamination

A complication resulting from oil-in-water techniques used to generate asymmetric
GUV is residual oil contamination. This residual oil likely impacts the physical
properties and behavior of the bilayer. To circumvent this, methods to minimize oil
contamination have been developed.

A microfluidics approach in which lipid monolayers were brought together in
a fashion similar to that in droplet interface bilayers was employed to generate
asymmetric GUV likely to have only minimal oil and then used to examine the
effects of lipid composition and asymmetry on lipid vesicle fusion mediated by
SNARE-family transmembrane proteins [45].

In another study, a high-throughput microfluidics method was developed to
form asymmetric GUV with minimal oil contamination. In the study, cholesterol-
rich asymmetric GUVs with ‘ultrathin shell’ (residual oil) were generated for the
observation of lipid microdomain formation. Lipid asymmetry and the presence
of lipid domains were observed with the use of fluorescently labelled lipids and
fluorescent microscopy [44]. In another attempt to address the issues of solvent
contamination, an asymmetric planar lipid bilayer was formed into lipid tubules
which were then broken up by applying a microfluidic jet flow of aqueous
buffer. Unilamellarity and residual solvent content was evaluated using confocal
Raman scattering microscopy [78]. Although these methods may greatly reduce oil
contamination, it is not clear whether the residual oil that remains would not perturb
lipid behavior to a significant degree.
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1.13 Early Studies Using Cyclodextrin Exchange to Alter
Lipid Composition

A different strategy that is becoming more widely used is to prepare asymmetric
lipid vesicles with cyclodextrins (CDs). CDs are water-soluble cyclic oligosac-
charides composed of glucose monomers linked together by ’-(1, 4) glycosidic
bonds, and are typically composed of 6(’), 7(“), or 8(”) units. They assume a
conical barrel shape with a non-polar cavity and hydrophilic exterior. Hydrophobic
guest molecules can complex with CDs. A wide range of functional groups can
be conjugated to hydroxyl groups at the edges of CDs to modify their binding
specificity [79, 80] (see Fig. 1.3). Changes the number of monomers comprising
a CD alters the volume of the hydrophobic cavity, which can be varied to exclude
or include larger or smaller guest molecules. For example, the hydrophobic cavity
of ’CDs is smaller than that of “CDs and therefore binds well to phospholipid acyl
chains, but binds cholesterol either not at all or very poorly [80–83].

Cyclodextrins have long been used to remove sterols from cells, introduce new
sterols into cells, or exchange one sterol in cells for another [84–88]. Similarly, CDs
have been used to exchange sterols between model membrane vesicles [10, 89].

Early work exploring the properties of CDs as lipid carriers involved interactions
of ”-CDs and fluorescent lipids. Carboxyethyl-”-CD accelerated fluorescent lipid
transfer from lipid vesicles to cells in culture [90]. Another study reported that
the large hydrophobic cavity of ”-CD could bind more than one lipid acyl chain
simultaneously [91]. In addition, stoichiometric measurements using fluorescent
binding assays showed that the association constants of pyrene-labeled PC/� -CD
complexes decreased strongly with increasing acyl chain length [91].

Fig. 1.3 ’-cyclodextrin
chemical structure. The 6-unit
1–4 linked
’-D-glucopyranoside ring
forms a barrel shape, with a
hydrophobic interior cavity
and a hydrophilic exterior
surface. Functional groups
can be conjugated to
hydroxyl groups to modify
their binding specificity.
RD OH or modified OH
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Other studies demonstrated that M“CD, among other cyclodextrins, could
exchange phospholipids between artificial lipid vesicles, and at high concentrations
even dissolve phospholipid vesicles [10, 92].

It was also shown that cyclodextrins can also cause the dissociation of small
amounts of phospholipids from cells [86, 93].

1.14 Preparation and Properties of Asymmetric Vesicles
Produced by M“CD-Catalyzed Exchange

The first study making use of CD to prepare highly asymmetric vesicles (AUV)
employed M“CD to exchange lipids between the outer leaflets of two distinct
vesicle populations [94]. The mixing of ‘donor lipid’-loaded M“CD solutions (with
excess donor lipid vesicles) and symmetric ‘acceptor’ SUV composed solely of the
desired inner leaflet lipids was the key feature of the technique (Fig. 1.4). Two
lipid exchanges were carried out: The first exchange catalyzed the installation of
‘outer leaflet’ lipids into acceptor SUV – effecting phospholipid asymmetry. Using
this approach asymmetric SUV were prepared containing 75–100% SM in their
outer leaflet, and DOPC, POPC, 1-palmitoyl-2-oleoyl PS (POPS) or a mixture
of 1-palmitoyl-2-oleoyl PE (POPE) and POPS in their inner leaflet. A second,

Fig. 1.4 A Scheme for Cyclodextrin-mediated Asymmetric Vesicle Preparation. Outer leaflet
donor lipids in complex with cyclodextrin in solution (and some excess donor lipid vesicles) are
incubated with sucrose-loaded inner-leaflet acceptor vesicles. The mixture is layered over sucrose
at a lower concentration than that inside of the vesicles and ultracentrifuged. The asymmetric
vesicle pellets and can be isolated from the other exchange reaction components. Notice that the
resulting asymmetric vesicles will have an osmotic imbalance across the bilayer unless the osmotic
strength of the external solution is adjusted after the vesicles have been isolated
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optional exchange installed cholesterol to a final overall cholesterol concentration
of approximately 25 mol%. The resulting asymmetric vesicles were purified from
donor lipid mixtures by size chromatography. Fluorescence assays measured outer
leaflet anisotropy and outer leaflet lipid charge and confirmed lipid asymmetry.

The thermal stability of ordered state SM domains in the outer leaflet of
resulting AUV was found to be much higher than that in symmetric vesicles with
the same overall composition, with a Tm approaching that of pure SM vesicles.
This suggested that at the Tm of the outer leaflet, coupling to the inner leaflet
composed of unsaturated phospholipids had broken down. Analogous properties
were observed in asymmetric SUV with cholesterol (vs. corresponding symmetric
SUV with the same lipid composition), except that the addition of cholesterol
further thermally stabilized ordered domains in both symmetric and asymmetric
vesicles. Experiments monitoring the orientation of hydrophobic helices suggested
that membrane asymmetry could enhance formation of a transmembrane orientation
within the bilayer.

A subsequent study developed a modified method to prepare plasma membrane-
mimicking asymmetric LUV [95]. The lesser bilayer curvature of LUVs relieves the
lipid packing stresses that exist in SUV. To do this, acceptor LUV were prepared
with entrapped sucrose, and then isolated from donor lipids and M“CD after
exchange by centrifugation. As with asymmetric SUV, nearly complete replacement
of the outer leaflet lipid was achieved. Anisotropy assays revealed that the SM
rich outer leaflet of asymmetric LUV melted at about the same temperature as
symmetric LUV composed of pure SM, and at a much higher Tm than that of
symmetric vesicles with the same overall lipid composition. This indicated that the
weak interleaflet coupling at the temperature of outer leaflet melting seen in the
prior study was not a result of the high membrane curvature in SUV.

M“CD was next used to prepare asymmetric GUVs for studies of interleaflet
coupling with fluorescence correlation spectroscopy (FCS) [96]. In order to prevent
the possibility that donor vesicles would stick to the GUV, residual donor vesicles
were removed before mixing the donor lipid-M“CD mixture with acceptor GUV.
This resulted in a lower, but still substantial, level of lipid exchange in the outer
leaflet. Controls with fluorescent lipids demonstrated that stable lipid asymmetry
was achieved in osmotically balanced vesicles. Osmotic balance across the bilayer
is crucial because even a small imbalance has been shown to induce transient pore
formation in GUV, which could potentially lead to a loss of asymmetry [97].

The introduction of SM into the outer leaflet of cholesterol-free DOPC GUV
decreased lateral diffusion in the outer leaflet. Interleaflet coupling at room temper-
ature was evaluated from the extent to which it also decreased lateral diffusion in
the inner leaflet and was found to be stronger with inner leaflet brain PC (brain PC)
than with DOPC.

In a follow-up study, the effect of varying acyl chain length on lateral lipid diffu-
sion and membrane order in asymmetric GUVs and SUVs was further investigated
[98]. As previously shown, M“CD-generated asymmetric GUV containing outer
leaflet bSM and inner leaflet DOPC showed reduced lateral diffusion in the bSM
outer leaflet, and little reduction in diffusion in the DOPC inner leaflet. However,
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when POPC or 1-oleoyl 2-myristoyl PC (OMPC) (both of which have one saturated
and one unsaturated acyl chain) were used in place of DOPC, there was reduced
lateral diffusion in both leaflets, with a similar level of reduction of diffusion in
both leaflets, indicative of strong interleaflet coupling. Strong interleaflet coupling
was further observed with the introduction of longer acyl chain milk SM or synthetic
C24:0 SM into the outer leaflet opposing inner leaflet DOPC. This suggested that
acyl chain length plays a role in interleaflet coupling. Interestingly, assays measuring
inner leaflet lipid order in asymmetric SUV and GUV did not detect an increase in
inner leaflet order when SM was introduced into the outer leaflet. For the SUV
experiments, a recently developed method to selectively label inner lipids was used
[99]. In this method inner leaflets are selectively labelled with fluorescent probes
using low levels of M“CD and gel-filtration to remove outer leaflet fluorescent
probes.

The difference in coupling with regard to diffusion and order is somewhat
puzzling. One possible explanation is that order measurements are the average for
an entire leaflet. It is possible that upon introduction of SM into the outer leaflet, an
increase in order in inner leaflet ordered domains coupled to outer leaflet ordered
domains rich in SM is “cancelled out” by a decrease in order in the remainder of the
inner leaflet, which would be in contact with outer leaflet disordered domains rich
in DOPC.

1.15 Studies of Lipid Flip-Flop in Asymmetric Vesicles

Next, a systematic study using M“CD exchange was undertaken to examine the
effect of acyl chain structure upon the stability of asymmetry in SMout/PCin SUV in
which the type of PC used was varied [9]. The level of outer leaflet exchange was
quantified by comparing outer leaflet membrane order (assessed via fluorescence
anisotropy of TMADPH added to the outer leaflet, TMADPH does not rapidly
flip across the lipid bilayer) to that for a standard curve composed of symmetric
bSM/PC vesicles with various % SM. Thin layer chromatography was used to
measure overall lipid composition. Combining these two methods, the % of inner
leaflet bSM, and thus the level of asymmetry, was calculated. In all cases exchange
levels indicated, at a minimum, complete replacement of the outer leaflet PC
with SM. For AUV containing PC with one saturated and one unsaturated acyl
chain, asymmetry was virtually complete if the unsaturated chain had one or two
double bonds. However, a small loss of loss of asymmetry was detected when the
unsaturated acyl chain in the PC had four double bonds. AUV containing PCs with
two monounsaturated acyl chains maintained full asymmetry for all except those
with the shortest acyl chain studied (14 carbons), which again showed a small loss
of asymmetry. In contrast, exchange-produced vesicles containing PCs with two
polyunsaturated chains lost most (with two double bonds per chain) or all (with
three or more double bonds per chain) of any asymmetry by the time asymmetry
measurements were made, several hours after lipid exchange.
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Measurement of transverse diffusion (flip-flop) rates for NBD-lipids in symmet-
ric PC and SM/PC vesicles confirmed that the loss of asymmetry was associated
with increased lipid flip-flop, and gave flip-flop values consistent with the literature
for the effect of PC acyl chain structure upon lipid flip [100]. Acyl chain polyun-
saturation may promote lipid flip-flop due to its effect of decreasing how tightly
lipids are packed, and/or due to the increased polarity of the core of the bilayer, as
C-C double bonds have increased polarity relative to single bonds [101]. Increased
polarity would increase the solubility of lipid polar headgroups within the bilayer
core.

A systematic study was also undertaken of the effects of phospholipid polar
head group structure on the stability of bilayer asymmetry [8]. M“CD was used
to generate asymmetric SUV with outer leaflet bSM and inner leaflet 1-palmitoyl-
2-oleoyl-PG (POPG), DOPG, soy PI, tetraoleoylcardiolipin (tetraoleoyl CL), or
POPS, in all cases alone or in combination with POPE. Inner leaflet dioleoyl PA
(DOPA) was studied in a mixture with POPC. Proton NMR spectroscopy and
observed changes in the thermal stability of SM-rich ordered domains helped detect
an asymmetric distribution of SM and its decay over time. AUV containing a
mixture of PE and anionic lipids maintained nearly full asymmetry that was stable
for more than 1 day. However, most exchange vesicles containing anionic lipids
without PE only showed partial asymmetry (which was assayed within hours after
they were prepared) that decayed further after 1 day of storage. Asymmetry also
decayed in 1 day for the vesicles containing PA. Interestingly, exchange vesicles
with PS showed almost full asymmetry that was stable over 1 day even in when PE
was not present in the inner leaflet. It is possible that lipids with a single charged
anionic group undergo transverse diffusion across membranes more easily than
lipids combined with multiple charge groups, such as PC, SM, PE and PS.

In a study using a modification of the lipid-exchange method to prepare
asymmetric LUV without trapped sucrose (see below), 1H NMR was used to
measure the flip-flop rates as a function of temperature using asymmetric vesicles
in which chain-perdeuterated dipalmitoyl PC (DPPC-dC) was introduced into the
outer leaflet of acceptor LUVs initially composed of headgroup-deuterated acceptor
lipid (DPPC-dH) [5]. Flip-flop in gel phase bilayers was undetectable, while in
the Ld state, from 50–65 ıC, flip-flop half-time rates ranged between days to
weeks. Intriguingly, flip-flop in asymmetric vesicles incubated at the main transition
temperature (40 ıC) for DPPC, was twice as rapid as in fully melted DPPC at 50 ıC,
indicative of defect-accelerated flip-flop in vesicles when gel and Ld phases co-exist.

1.16 Use of HP’CD to Prepare Asymmetric Vesicles
Mimicking Plasma Membranes

Because M“CD binds well to cholesterol, it is difficult to control the levels of
cholesterol in AUV during M“CD-mediated phospholipid exchange. To circumvent
this, hydroxypropyl-’-cyclodextrin (HP’CD) was used instead. The hydrophobic
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cavity of the six glucose unit ring of HP’CD is too small to bind cholesterol, but
can bind to the acyl chains of phospholipids. In a study comparing M“CD, HP’CD
and HP“CD [81], it was found that while only M“CD could dissolve lipid vesicles,
all three cyclodextrins could catalyze lipid exchange between vesicles.

HP’CD was used to construct plasma membrane-mimicking asymmetric LUVs
with SM and/or POPC in the outer leaflet, POPE and POPS in the inner leaflet,
and a wide range of cholesterol concentrations [82]. Efficient exchange (as high as
80–100% replacement of the outer leaflet as judged by thin layer chromatography)
could be achieved, especially at high levels of cholesterol. Exchange of POPC donor
lipid was somewhat more efficient than that of SM. Asymmetry was confirmed by
chemical labelling of externally exposed POPE with TNBS, and by using a cationic
peptide binding assay to measure the amount of externally-exposed anionic lipid.
Asymmetry was stable for days.

1.17 Domain Formation in Asymmetric GUV Containing
Cholesterol

HP’CD-catalyzed lipid exchange was used to prepare and investigate domain
forming properties of asymmetric GUV in a following study [102]. Cholesterol-
containing GUV with a mixture of SM and DOPC in their outer leaflets and DOPC
in their inner leaflet were studied. Surprisingly, SM (and presumably cholesterol)-
rich liquid ordered domains in the outer leaflet induced ordered domains in
corresponding region of the inner leaflet, despite the strong tendency of DOPC,
which has two unsaturated oleoyl chains, to remain in a relatively disordered
state, even when mixed with cholesterol [103]. It was proposed that a lateral
rearrangement of the inner leaflet was occurring, in which the regions of the
inner leaflet in contact with the outer leaflet became enriched in cholesterol and
depleted in DOPC. Supporting this, the NBD-DOPE used to probe inner leaflet
domain formation, which like DOPC has two unsaturated oleoyl chains, was also
depleted in the inner leaflet ordered domains in contact with outer leaflet ordered
domains.

The contribution of SM acyl chain interdigitation to interleaflet coupling in the
asymmetric GUV was investigated by comparing coupling when the outer leaflet
contained egg SM, (predominately having C 16:0 acyl chains) vs. milk SM, which
is rich in C 22–24 acyl chains that can interdigitate into the inner leaflet. With
both types of SM, inner leaflet ordered domains formed. However, only when
milk SM was used did inner leaflet ordered domains show probe partitioning
properties similar to those in the outer leaflet, indicating stronger interleaflet
coupling. This is consistent with the above-noted coupling seen in GUV lacking
cholesterol.
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1.18 Studies Using Cyclodextrin-Catalyzed Lipid Exchange
to Study the Effect of Phospholipid Composition
and Asymmetry Upon Membrane Protein Behavior

Transmembrane protein behavior can be influenced by lipid asymmetry in SUV.
An asymmetric distribution of anionic lipids favored formation of a transmembrane
configuration relative to a non-transmembrane (but membrane bound) state in which
the peptide inserted only shallowly within the lipid bilayer [94].

The conformational behavior of the pore-forming toxin protein perfringolysin
(PFO) was studied in AUV prepared using HP’CD to determine if lipid asymmetry
could influence the conformation of this full length protein when it is membrane-
inserted [21]. In a cholesterol concentration-dependent manner, PFO forms a
large, homo-oligomeric “-barrel pore complex that spans the membrane bilayer of
mammalian cells. PFO behavior was evaluated in asymmetric LUVs with a POPC
outer leaflet, POPE-POPS inner leaflet and varying concentrations of cholesterol.
Results were compared to those for PFO mixed with a variety of symmetric vesicles.
This included symmetric vesicles with an overall lipid composition identical to that
in the AUV, those containing only outer leaflet AUV lipids, and those composed of
only the inner leaflet AUV lipids.

PFO binding and insertion were assessed by monitoring intrinsic Trp emission
and the fluorescence intensity of an acrylodan-labeled residue. PFO oligomerization
was measured with FRET and with SDS-agarose gel electrophoresis, as PFO
oligomers do not unfold in SDS once the beta-barrel has formed. Pore-forming
capacity was assayed by measuring the increase in externally-added BODIPY
fluorescence emission intensity when BODIPY-labeled streptavidin was added to
AUV with trapped biocytin that is released upon pore formation.

These assays demonstrated that the dependence of PFO conformation as a
function of cholesterol concentration in AUV was different from that in symmetric
vesicles of the same overall composition, and also different from that in symmetric
vesicles that mimicked the outer or inner leaflets of the AUV. Interestingly, in the
AUV a non-pore-forming, but transmembrane embedded, oligomeric conformation
of PFO was observed at intermediate cholesterol concentrations. This may represent
an intermediate stage in the PFO pore assembly process.

Cyclodextrin-mediated lipid exchange has also been used to investigate the effect
of in situ changes in lipid composition upon the topography of lactose permease
(LacY) reconstituted into model membrane vesicles. Following M“CD-induced
enrichment of outer leaflet PE in proteoliposomes containing LacY in a partly
inverted transmembrane conformation, LacY very quickly flipped to its native
transmembrane conformation. Conversely, M“CD-mediated exchange introducing
PG or CL into PE vesicles induced the flipping of LacY to form the partly inverted
transmembrane orientation. The asymmetry of the lipids after the lipid exchange
steps was not investigated [104, 105].
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Membrane domain localization studies of nicotinic acetylcholine receptor
(AChR) reconstituted in proteoliposomes found that localization of AChR within
ordered lipid domains can depend upon lipid asymmetry [106]. Using both symmet-
ric and asymmetric model systems containing cholesterol and different SM species,
localization of AChR was assessed by FRET and by quantification of the distribution
of AChR in detergent resistant and detergent soluble membrane fractions. AChR
was reconstituted in symmetric vesicles composed of 1:1 POPC:Chol, or 1:1:1
POPC:Chol:SM. To prepare asymmetric vesicles, SM was exchanged into the outer
leaflet of proteoliposomes containing AChR and POPC and cholesterol. In the case
of 16:0 SM or 18:0 SM-containing symmetric vesicles, AChR was found to localize
in Lo domains. No such Lo preference was found in symmetric vesicles containing
bSM or 24:1 SM. However, in asymmetric models with bSM enrichment in the
outer leaflet, AChR showed a strong preference for Lo domains.

1.19 Use of M’CD to Prepare Asymmetric Lipid Vesicles

Preparation of asymmetric LUV using M’CD was achieved very recently [as a
portion of a study achieving lipid exchange in cells using M’CD, see below] [107].
Since M’CD does not interact well with cholesterol, this again allowed exchange
of phospholipids without disturbing cholesterol levels in the acceptor vesicles from
which the asymmetric LUV were prepared. M’CD was able to solubilize lipids at
an even lower concentration than M“CD, indicating a strong interaction with lipids.
In addition, like M“CD, M’CD had a relatively low specificity for lipid structure
as judged by the concentration of M’CD needed to solubilize vesicles composed
of various lipids. This made it possible to carry out exchange with various lipids
at relatively low M’CD concentrations. Efficient exchange was obtained, but in
contrast with HP’CD exchange was a bit more efficient for SM than POPC. Most
importantly, the combination of strong phospholipid and sphingolipid interactions,
coupled with negligible interactions with cholesterol, enabled applications of
M’CD-induced lipid exchange to living cells, as described below.

1.20 Studies Using Cyclodextrin-Catalyzed Lipid Exchange
to Prepare Asymmetric Planar Bilayers

Cyclodextrin-mediated exchange has also been extended to preparation of asym-
metric planar lipid bilayers [108]. Fluorescence correlation spectroscopy was
used to measure lipid mobility in each leaflet independently in asymmetric sup-
ported bilayers (aSLB). The method was compatible with protein reconstitution.
DOPC/GPI-anchored placental alkaline phosphatase (PLAP) proteoliposomes were
fluorescently-labelled and applied via a vesicle fusion method to a mica sup-
port. Leaflet-specific labeling of the supported leaflet was achieved by destroy-
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ing NBD-DOPE fluorescence in the solution-exposed outer leaflet using sodium
dithionite. Lipid asymmetry was induced using successive incubations with M“CD-
loaded bSM. Cholesterol was introduced in additional exchange steps. Asymmetry
was stable for several hours. Interestingly, no large scale lipid phase separation
was observed in the aSLBs until asymmetry began to break down and bSM was
present in both leaflets. Any domains present in the fully asymmetric aSLB were
submicroscopic.

1.21 Modifying Cyclodextrin-Catalyzed Lipid Exchange for
Study of Lipid Packing Using Small Angle Neutron
Scattering

M“CD-catalyzed exchange has also been adapted for small-angle neutron scattering
(SANS) studies [109]. This required modifying the protocol for M“CD-mediated
exchange for LUV, in which trapping sucrose within the lumen of the vesicle aids
AUV isolation, as the trapped sucrose interferes with SANS measurements. To avoid
this, sucrose-loaded donor lipid vesicles preincubated with M“CD were mixed with
sucrose-free acceptor vesicles. Following lipid exchange, the sucrose-laden donor
vesicles were removed from the sucrose-free asymmetric LUV by centrifugation.
Cyclodextrin with any bound lipid was then removed by filtration and washing. This
allowed generation of asymmetric LUV in which one leaflet contained isotopically
(deuterated)-labelled lipids (including fully labeled, or labeling the only the polar
headgroup or acyl chains). Unlabeled POPC or DPPC were introduced into the outer
leaflet of LUV containing partly or fully deuterated POPC. Similarly, deuterated
POPC could be introduced into the outer leaflet of unlabeled POPC LUV. Lipid
exchange levels and the degree of lipid asymmetry were assessed with 1H NMR
and gas chromatography. Changes in bilayer thickness were assessed with SANS. It
was found that DPPC-rich ordered (presumably gel) domains directly opposing the
POPC leaflet exhibited reduced lipid packing density compared to typical gel phase
lipids, indicating that an inner leaflet composed of Ld favoring lipids can partially
fluidize outer leaflet ordered domains. This is indicative of a significant degree of
interleaflet coupling.

1.22 Tuning Lipid Asymmetry to Control Phagocytosis
of Model Membrane Vesicles

Liposomes can be easily generated that mimic apoptotic cells by containing PS in
their outer leaflet. However, their utility in drug delivery is limited due to the speed
at which they are detected by macrophages and phagocytosed. It would be useful
to generate liposomes with encapsulated therapeutic agents that are protected from
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detection by the immune system until they have been able to bind their targets. In
a recent study aiming to achieve this, engineered antibody-decorated asymmetric
liposomes were developed to target pathogens to the immune system and to contain
a built in time-delay switch dependent upon the flip-flop rates of PS [110].

Symmetric LUVs containing 1:1 DOPE:POPS and were incubated with M“CD
pre-loaded with 1:2 bSM:DOPE (both donor and acceptor lipids contained a small
amount of streptavidin-capped PE). Following outer leaflet lipid exchange, the
resulting asymmetric vesicles were incubated with polyclonal anti-HIV-1 gp120 that
was biotin-conjugated. These vesicles were then capable of binding HIV-1 virus-
like particles. The slow flipping of PS to the outer leaflet of the vesicles over a
period of 24–48 h then allowed the vesicles to then be targeted for destruction
by macrophages. Varying the amount of bSM controlled the time delay before
phagocytosis, with the highest outer-leaflet bSM content behaving similarly to
LUVs without PS.

1.23 Extending Cyclodextrin-Induced Phospholipid
Exchange to Mammalian Cells

Our understanding of the function of lipids in cellular membranes has fallen far
behind that of other cellular molecules such as proteins or nucleic acids. This is
largely due to the difficulty of manipulating lipid composition in living cells. It
has been shown that membrane fatty acid composition, phospholipid composition,
and cholesterol content can be modified in many different kinds of cultured
mammalian cells by adding exogenous lipids in the form of liposomes or using
lipids bound to carrier proteins. This topic has been comprehensively reviewed
[111]. Although these methods alter membrane lipid composition, they only can
make limited changes, and generally add lipids to cells, rather than substitute
endogenous with exogenous lipids. Manipulating lipid composition using synthesis
inhibitors can replace the original lipid composition of a cell with an altered one.
However, inhibitor molecules act slowly. Furthermore, it is only possible to inhibit
the synthesis of a subset of membrane lipids, most commonly sphingolipids or
sterols [112, 113]. Mutations can be used to alter sterol structure [114, 115] and
using a combination of mutations and introduction of new enzymes for wholesale
metabolically re-engineering of lipid content can alter phospholipid composition
drastically, but is difficult. To date phospholipid reengineering has been carried out
successfully in E. coli [116, 117].

An alternative strategy is to use cyclodextrins to manipulate cell lipids in vivo.
As noted above, M“CD has been widely used to manipulate plasma membrane
sterol content in cultured cells. This can involve extracting cholesterol using empty
M“CD, or loading cells with cholesterol by incubating them with M“CD/cholesterol
complexes, or using M“CD/sterol complexes to substitute cholesterol in cells with
another sterol [84, 85].
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Use of cyclodextrins to alter other cellular lipids has been much less studied.
Early studies concentrating upon fluorescently labeled lipids were noted above. In
more recent work, a variety of unlabeled phospholipids was introduced into cells
using M“CD [118]. One limitation of the approach was that the level of exogenous
lipid introduced into cells was dependent upon acyl chain structure. Phospholipids
with short 14 carbon acyl chains were mostly highly transferred into cells. It was
unclear whether the introduction of lipids involved lipid exchange, because there
was a net increase in cellular phospholipid in the transfer process. It was also found
that additional cholesterol could to be introduced to compensate for M“CD-induced
cholesterol depletion in cells. Interestingly, introduction of exogenous PE and PS
with unnatural acyl chains to BHK21 hamster kidney cells led to rapid acyl chain
remodeling, with substantial remodeling within 1 h, but remodeling was much more
limited and slow when acyl chains matched or were close to those in endogenous
lipids [119].

Recently, our group developed a method using M’CD to efficiently replace
the plasma membrane outer leaflet phospholipids and sphingolipids in cells with
exogenous phospholipids and sphingolipids, including unnatural lipids [107]. One
advantage of M’CD relative to M“CD, is its small cavity, which is too small to
interact with sterols. As a result, M’CD will not significantly alter cholesterol levels
during phospholipid/sphingolipid exchange. To carry out exchange, donor lipids
(SM or PC or a mixture of the two) in the form of multilamellar vesicles were
incubated with a concentration of M’CD high enough to dissolve at least most
of the vesicles at the lipid concentrations used (40 mM M’CD was sufficient for
use with 1.5–3 mM lipid in most experiments). The mixture was then incubated
with cultured human cells, generally at 37 ıC for 1 h. This protocol extracted
70–80% of endogenous SM but only very low (10–15%) amounts of PC and PE
from the cultured cells. There was minimal PS, PI, or cholesterol extracted from
the cells. Similar results were obtained when an exchange was carried out with
an unnatural C17:0 SM as the donor lipid, and the lipid composition in the cells
before and after exchange was evaluated by mass spectrometry. Exchange was
rapid; under the experimental conditions half-time at 37 ıC was 15–20 min both
for the removal of endogenous SM and introduction of exogenous fluorescently
labeled lipid. The maximal SM exchange level was not affected when M’CD
concentration, exogenous lipid concentrations, exogenous lipid compositions or cell
types were varied. Given these observations and the fact that it has been reported that
a significant fraction of SM is not localized in the plasma membrane [119] suggests
almost complete replacement of plasma membrane outer leaflet sphingolipids was
achieved. Efficient replacement of outer leaflet lipids was also consistent with the
observation that up to 90% of cholera toxin B binding to cells was abolished after
M“CD-induced lipid exchange, indicative of removal of the cholera toxin receptor
glycosphingolipid GM1 from the plasma membrane outer leaflet upon exchange. In
addition, carrying out exchange between model membrane vesicles, it was found
that M’CD catalyzed exchange of different phospholipid or sphingolipids was
relatively non-specific. Thus, it would be expected that all of the outer leaflet lipids
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(other than cholesterol) would be replaced upon exchange. This was confirmed by
lipid analysis of the radiolabeled lipid removed from the cells upon exchange, which
had a composition (SM � PC > PE, and little or no PS C PI) closely matching that
previously reported for the outer leaflet of human red blood cells [1].

Mass spectrometry analysis of the difference in lipid composition before and
after lipid exchange indicated that plasma membrane outer leaflet was enriched in a
subset of PC species that are not highly unsaturated. It also showed that shorter acyl
chain SM species were enriched in the plasma membrane outer leaflet, in agreement
with prior studies [120].

All these results demonstrate that M’CD could be a useful tool to manipulate
cell membrane lipid composition in an efficient manner. This may have many
applications in addition to studies of lipid asymmetry. For example, the effect of
altering plasma membrane outer leaflet lipid composition upon membrane protein
function could be studied with this approach. In addition, the ability to introduce
large amounts of unnatural phospholipids and/or sphingolipids into cells could aid
analysis of lipid structure/function relationships.
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Chapter 2
Spontaneous Lipid Flip-Flop in Membranes:
A Still Unsettled Picture from Experiments
and Simulations

Maria Maddalena Sperotto and Alberta Ferrarini

Abstract Biomembrane asymmetry, whose regulation is important for function, is
maintained by the movement of lipids from one bilayer leaflet to the other (flip-
flop). During the last decades a number of studies have been done to characterize
this process, and it was found that it can be spontaneous or assisted by protein
transporters. It can be accelerated or inhibited by various factors, e.g., it can
be induced by mechanical stresses. It was also found that flip-flop rate and
mechanism strongly depend on the molecular structure of the flipping lipid and on
the composition and physical state of the membrane. Yet, large discrepancies exist
among the data available in the literature, and a quantitative and comprehensive
understanding of this process is still missing. This chapter reviews our current
knowledge of the molecular aspects of spontaneous (or passive) flip-flop. An
overview of experimental studies is presented, together with a summary of the
state of the art of computer simulation studies, which enable a direct insight
at the molecular level. The achievements and limitations of experimental and
computational approaches are pointed out, as well as the challenges that remain
to be addressed.
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Abbreviations

1D mono-dimensional
2D two-dimensional
AA all-atom
AFM atomic force spectroscopy
BSA bovine serum albumin
C8PC 1-myristoyl-2-[9-(1-pyrenyl)nonanoyl]-phosphatidylcholine
C10PC 1-palmitoyl-2-[9-(1-pyrenyl)nonanoyl]-phosphatidylcholine
C12PC 1-lauroyl-2-[9-(1-pyrenyl)nonanoyl]-phosphatidylcholine
C8PE 1-myristoyl-2-[9-(1-pyrenyl)nonanoyl]-phosphatidylethanolamine
C12PC 1-lauroyl-2-[9-(1-pyrenyl)nonanoyl]-phosphatidylethanolamine
C8PG 1-myristoyl-2-[9-(1-pyrenyl)nonanoyl]-phosphatidylglycerol
C12PC 1-lauroyl-2-[9-(1-pyrenyl)nonanoyl]-phosphatidylglycerol
C8PA 1-myristoyl-2-[9-(1-pyrenyl)nonanoyl]-phosphatidic acid
C12PA 1-lauroyl-2-[9-(1-pyrenyl)nonanoyl]-phosphatidic acid
CG coarse-grain
CL cardiolipin
CM hydrodynamic center of mobility
DAG diacylglycerol
diC18�2PC dilinoleyl-phosphatidylcholine
DMPC dimyristoyl-phosphatidylcholine
DOPE dioleoyl-phosphatidylethanolamine
DOPG dioleoyl-phosphatidylglycerol
DOPC dioleoyl-phosphatidylethanolamine
DOPS dioleoyl-phosphatidylserine
DPPC dipalmitoyl-phosphatidylcholine
DPPS dipalmitoyl-phosphatidylserine
DSPC distearoyl-phosphatidylcholine
DSPS distearoyl-phosphatidylserine
EPC egg phosphatidylcholine
EPR electron paramagnetic resonance
ER endoplasmatic reticulum
GPI glycosyl-phosphatidylinositol
GUV giant unilamellar vesicles
HRC human red cell (erythrocytes)
LB Langmuir- Blodgett
LS Langmuir-Schäfer
LUV large unilamellar vesicles
MBCD methyl-ˇ- cyclodextrin
MD molecular dynamics
NBD nitrobenzoxadiazole
NMR nuclear magnetic resonance
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NR neutron reflectometry
PA phosphatidic acid
PC phosphatidylcholine
PE phosphatidylethanolamine
PG phosphatidylglycerol
PI phosphatidylinositol
PMF potential of mean force
POPC palmitoyl-oleoyl-phosphatidylcholine
PS phosphatidylserine
SLB planar supported lipid bilayer
SAPC stearoyl-arachidonyl-phosphatidylcholine
SANS small-angle neutron scattering
SFVS sum-frequency vibrational spectroscopy
SM sphingomyelin
SOPC stearoyl-oleoyl-phosphatidylcholine
SUV small unilamellar vesicles
TEMPO-DPPC 1,2-dipalmitoyl-sn-glycero-3-phospho(tempo)choline

2.1 Introduction

A biomembrane is a thin (around 5 nm) soft sheet, which is composed of a lipid
bilayer matrix in which proteins are embedded or attached. At the macroscopic level,
biomembranes are flexible, deformable, with a curvature energy comparable to kBT
at room temperature, and fluid, i.e., the lipid-protein bilayer does not exhibit shear
restoring forces. At the microscopic level membranes are a dynamic environment:
lipids undergo a variety of motions over a broad range of time scales [43, 139],
which include rotations around their longitudinal axis and intramolecolar motions
(rotations around chain bonds), as well as lateral (within the plane of the membrane)
and transversal (from one leaflet to the other) displacements. The characteristic rates
depend on the kind of lipid and on the physical state of the membrane. The fastest
are bond rotations, which occur on the picosecond scale, whereas typical times for
lipid reorientations are of the order of a nanosecond in the liquid crystal phase.
Lateral displacements are characterized by diffusion coefficients in the range of 0.1–
1 �m2 s�1. The transbilayer movement, called flip-flop [72], can be much slower,
ranging from seconds to hours and even days, strongly dependent upon the nature
of the lipid, the composition and the physical state of the membrane. There are also
reports of shorter characteristic times, on the millisecond scale, for lipids with small
head groups, such as cholesterol and diacyglycerols.

From the physical and chemical point of view, biomembranes are complex
mixtures. A variety of tools, from spectroscopy to bioinformatics, have been used
to prove that they contain a myriad of lipid species (see Fig. 2.1) [44], whose impor-
tance for the structure and function of the cell is still a matter of debate [143, 144].
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Fig. 2.1 Examples of lipid
structures: dipalmitoyl-
phosphatidylcholine (DPPC),
1-stearoyl-2-palmitoyl-sn-
glycerol, C16-ceramide,
cholesterol (from left to right)

The plasma membrane of eukarotic and prokaryotic cells and the membranes of
inner organelles of eukaryotes are both laterally heterogeneous and asymmetric
with respect to composition of the leaflets [37, 39, 153]. During the last 15 years,
the occurrence of in-plane heterogeneous structures has been widely investigated
[24, 100, 129]. Regarding the transversal asymmetry, since the early ‘70s [20]
it has been known that the human erythrocyte membrane (HRC) is enriched in
phosphatidylcholine (PC) and sphingomyelin (SM) in the outer (exoplasmatic or
exofacial) leaflet, and in phosphatidylserine (PS), phosphatidylethanolamine (PE)
and phosphateidylinositol (PI) in the inner (cytoplasmic) leaflet. The asymmetry is
lower in biogenic membranes, i.e., the Golgi and the endoplasmic reticulum (ER),
and this is likely related to their role at the beginning of the secretory pathway
and their retention of a very low concentration of sterols, which would enable the
formation of transient defects, so allowing small molecules to diffuse across them
[21, 144]. The function, differentiation, and growth of cells depend on the regulation
of lipid asymmetry [34, 156], whose alterations are reported to be associated with
diseases, such as cancer, Alzheimer [25], and increased risk of atherosclerosis [154],
with chronic ethanol consumption [152], and with apoptosis [135]. An example
where the transversal asymmetry plays a role in the synaptic membrane. In the
human brain, cholesterol constitutes approximately 25% of the total amount present
in the body, and the cytofacial leaflet of synaptic plasma membranes contains
approximately five- to six-fold more cholesterol than the exofacial one. Changes in
cholesterol asymmetry may affect the formation and functioning of synaptic plasma
membranes, with serious health implications [153].

Multiple mechanisms contribute to the onset and maintenance of asymmetry in
biomembranes and flip-flop has a crucial role. Passive transbilayer diffusion is a
spontaneous process, which tends to re-establish a uniform molecular distribution
between the two leaflets. Thus, the existence of lipid asymmetry implies that
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flip-flop is somewhat hindered, or that there are mechanisms to maintain it.
Experiments on reconstituted membranes by Kornberg and McConnell [72], who
called flip-flop the spontaneous, i.e., thermally induced transbilayer motion of
phospholipids, indicated that this process takes several hours. Later on Cullis and
de Kruijff [33] deduced that in biomembranes the time scale was much shorter
(less than microseconds) and attributed this to the formation of transient non-
bilayer structures. It is now accepted that the maintenance of lipid asymmetry in
biomembranes depends on the interplay of spontaneous flip-flop and the action of
protein transporters, originally called flippases. Numerous experiments have been
done to understand what triggers or facilitate flip-flop, characterize its time scales
and determine how this process is affected by composition and physical state of
the bilayer [22, 30, 36, 38, 65, 122, 126]. There is now general agreement on the
importance of the lipid head group for the rate and the mechanism of spontaneous
flip-flop. In particular, the process is orders of magnitude faster for species with
small and/or neutral head groups, such as cholesterol and fatty acids. It is also
recognized that flip-flop is strongly affected by the physical state of the bilayer
and can be dramatically influenced by modifications in the chemical structure
of the flipping lipid. However, the data available in the literature show striking
discrepancies: for the same system, flip-flop rates ranging from the sub-second scale
to days are reported. This is due to the intrinsic difficulty to detect the molecular
process and to standardize the experimental procedures [38, 55, 85, 124, 132, 157].
Another reason is the sensitivity of flip-flop to chemical and physical changes; on the
other hand, this sensitivity is likely crucial for the role of flip-flop in biomembranes.

This chapter presents a summary of our present knowledge of the molecular
aspects of passive or spontaneous flip-flop, which occurs without the direct action
of proteins. Protein-mediated flip-flop has been addressed by previous reviews
[18, 93, 122, 126], and a recent one [111] offers an overview of the different types
of transporters and mechanisms. A comprehensive a comprehensive account of the
transmembrane dynamics of lipids and their biological implications is presented in
Ref. [38]. In the next Section, our present knowledge of protein-assisted flip-flop
is summarized. This is followed, in the third Section, by an overview of the experi-
mental methods used to study flip-flop, where the main advantages and drawbacks of
the different techniques are highlighted. This is useful for understanding the reasons
behind the discrepancies among the results available in the literature. In the fourth
Section, we summarize the state of the art of computational studies, which constitute
a valuable complement to experimental investigations. Computer simulations can
provide direct insight into the molecular aspects of flip-flop, with a resolution hardly
accessible to measurements, and under conditions that may be difficult to achieve
in experiments. A recent review addressed more technical aspects of computational
studies of passive flip-flop [109] and a previous one focused on simulation studies of
defect-mediated flip-flop [54]. In the present chapter, the achievements, potentiality
and limitations of computational methods are pointed out, paying attention to their
capability to provide useful kinetic and mechanistic insights on flip-flop, rather than
on methodological aspects.
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2.2 Spontaneous Versus Protein-Assisted Flip-Flop

In most experiments the rate of flip-flop is determined from the disappearance
of a signal related to the unbalance of population between the two leaflets of a
bilayer. So, it is customary to characterize the time scale of flip-flop by the half-
time t1=2, defined as the time required for the 50% decrease of the signal. If flip-flop
is described as the unimolecular process:

T
kB T
���*)���
kT B

B (2.1)

where T (top) and B (bottom) indicate the position of the flipping lipid and kB T ,
kT B are the rate constants for the translocation processes in the two opposite
directions, the population unbalance between the two leaflets decays in time with
the rate constant kff D kB T C kT B. This is related to the flip-flop half-time as
t1=2 D ln 2=.kff /. In most cases kB T D kT B D kf , thus t1=2 D ln 2=.2kf /.

Lipids with small head groups, such as cholesterol, fatty acids, diacylglycerols
(DAGs) and ceramides, can spontaneously flip-flop at a relatively high rate. In
contrast, the spontaneous flip-flop of phospholipids with charged/polar heads is very
slow (the time scale may range from hours to days), because moving the heads from
the water-membrane interface to the hydrophobic interior is energetically highly
unfavorable. Tables 2.1 and 2.2 report half-times of spontaneous flip-flop (t1=2) for
various lipids, as obtained by different experiments.

In 1972, just a year after Kornberg and McConnell [72] had found that
spontaneous phospholipid flip-flop is a very slow process, Bretscher [20] postulated
the existence of transmembrane lipid-transporter proteins, which would accelerate
the flip-flop rate to a biologically relevant scale. He proposed that the asymmetrical
organization of phospholipids in HRC membranes was due to specific lipid
enzymes, which he called phospholipid flippases. However, to start to acknowledge
the ingenious idea by Bretscher it took a while longer. It was in 1984 that Seigneuret
and Devaux [125] demonstrated for the first time the existence of phospholipid
flippases in HRC membranes, using spin-labeled lipids. Their discovery was then
confirmed in 1985 by Daleke and Huestis [35] who used non-labelled lipids,
and in 1987 the existence of an erythrocite aminophospholipid transporter was
demonstrated by Connor and Schroit [29] using fluorescent lipid analogues. It is now
recognized that various transporters, called flippases, floppases and scramblases,
contribute to maintain transmembrane asymmetry [111]. Flippases mediate the
transbilayer diffusion against a concentration gradient from the exoplasmic to the
cytosolic face, at the expense of ATP hydrolysis; the ATP-driven movement in the
opposite direction is instead facilitated by floppases, whereas scramblases mediate
the ATP-independent bidirectional transport. Due to these proteins, the flip-flop
rate ranges from 100 s�1, in the case of ATP-driven transporter [27], to more
than 10,000 s�1 for scramblases [50]. Regarding ATP-driven lipid transporters,
these belong to the family of P4-ATPases or ABC transporters. Among the latter
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ones, there is a P-glycoprotein, called P-glycoprotein, called MDR1 [142], that is
responsible for multidrug resistence, hence constitutes a serious issue for cancer
therapy. Both cells apoptosis and activation of blood platelets involve exposure of PS
lipids on the outer monolayer of the plasma membrane, controlled by scramblases,
which are constitutively active or are regulated, e.g., by Ca2C [134–136].

Table 2.1 Half-times of spontaneous flip-flop (t1=2) measured for various lipids. Different meth-
ods were used: Fluorescence with labeled lipids (Fluo), Excimer Fluorescence (EF), Electron
Paramagnetic Resonance (EPR), Nuclear Magnetic Resonance (NMR), Shape Change (SC)
analysis, Small-Angle Neutron Scattering (SANS), Sum-Frequency Vibrational Spectroscopy
(SFVS). The amount of cholesterol in mixed bilayers is expressed in mol %

Lipid Host T (ıC) t1=2 Technique Preparation Ref.

TEMPO-DPPCa EPC 30 6.5 h EPR SUV [72]

40 46–178 min

C8PC POPC 37b 87 h EF SUV [58]

C10PC 173 h

C12PC 347 h

C8PE 6 h

C12PE 10 h

C8PG 69 h

C12PG 69 h

C8PA 29 h

C12PA 30 h

C5-DMB-Cerc POPC 22 1:3 � 103 s Fluo LUV [10]

C5-DMB-DAGd 70 ms

C5-DMB-SMe 1:2 � 104 s

C5-DMB-PCf 2:4 � 104 s

C6-NBD-PCg DPPC 41 9˙ 2 min Fluo SUV [65]

50 50˙ 20 min SUV

DMPC 23 1.6˙ 0.2 min SUV

1.9˙ 0.7 min LUV

C6Cerh EPC 20 0.6˙ 0.3 mini SC GUV [83]

C10Cerh 0.8˙ 0.4 mini

C12Cerh 1.2˙ 0.5 mini

DMPC DMPC 37 350 min SANS LUV [98]

DMPC, 20%C 1300 min

DMPC, 40%C >7000 min

POPA POPA 450 min

POPC POPC >1000 h

DPPC DPPC 20 >4555 h NMR LUV [87]

40 75˙ 6 h

50 147˙ 9 h

(continued)
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Table 2.1 (continued)

Lipid Host T (ıC) t1=2 Technique Preparation Ref.

DMPC DMPC 4.2 226˙ 5 min SFVS SLB [81]

20.4 1.30˙ 0.003 min

DPPC DPPC 27.7 146˙ 1 min

36.6 9.20˙ 0.07 min

DSPC DSPC 41.7 312˙ 2 min

51.3 25.9˙ 1 min
a1,2-dipalmitoyl-sn-glycero-3-phospho(tempo)choline
bEstrapolated from data at various temperatures
cN-[5-(5,7-dimethyl BODIPY)-1-pentanoyl]-D-erythro-sphingosine
d1,2 (palmitoyl-5,7-dimethyl BODIPY-1-pentanoyl)-diacylglycerol (10 mol %)
eN-[5-(5,7-dimethyl BODIPY)-1-pentanoyl]-sphingosylphosphorylcholine (D-erythro-isomer)
f1,2 (palmitoyl-5,7-dimethyl BODIPY-1-pentanoyl)-phosphatidylcholine
g1-acyl-2-(6-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)hexanoyl-sn-glycero-3-phosphocholine
hCn-ceramide
iThis is one half of the t1=2 value reported in Ref. [83]

Table 2.2 Half-times of spontaneous flip-flop (t1=2) measured for cholesterol (C) in different
hosts. Different techniques were used, among which Nuclear Magnetic Resonance (NMR), Small-
Angle Neutron Scattering (SANS), Sum-Frequency Vibrational Spectroscopy (SFVS)

Host %C T (ıC) t1=2 Technique Preparation Ref.

DPPC 47 37 �6 days [3H]sterol exchange SUV [113]

DMPC 48.5 37 3.25 h [3H]sterol exchange SUV [114]

DPPC 3 h

DSPC 2.5 h

DOPC 1.5 h

EPC 50 37 <1.5 h [3H]sterol exchange SUV [9]

EPC 41 �1 m Cholesterol oxidase

EPC 37 4.5–19 ha [3H]sterol exchange LUV [120]

SOPC 37 <1–2 min [3H]sterol exchangeb LUV [79]

HRC 37 <1 s [3H]sterol exchangeb [133]

POPC, POPA (1:1) 37 �10 ms NMR LUV [23]

POPC 35 50 200 min SANS SUV [47]

DSPC 15 23 <10 min SFVS SLB [82]

30 5 <10 min
aThis is one half of the t1=2 value reported in Ref. [120]
bUsing methyl-ˇ-cyclodextrin (MBCD)

Spontaneous flip-flop rates vary depending on the head group structure and acyl
chain length [58, 130, 131], on the composition and on the physical state of the
membrane. A look at the values in Table 2.1 shows that, in the case of pure lipid
systems, the measured rates are considerably lower below the gel to liquid crystal
phase transition temperature (Tm), i.e., in the gel phase, than above it, i.e., in the
liquid crystalline phase. A dramatic increase of the flip-flop rate was observed close
to the phase transition [36, 65]. This can be explained considering that around the
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phase transition strong density fluctuations occur, which cause a drastic increase
of the gel to liquid crystal interfaces. These may facilitate not only spontaneous
flip-flop, but also the permeability of small molecules [32], as well as the action
of interfacially active enzymes such as phospholipases A2 [96]. An increase of
the translocation rate by up two orders of magnitude was observed also under the
action of mechanical forces [117, 137, 158], which would be consistent with the
hypothesis that flip-flop occurs via the formation of defects, i.e., temporary localized
disordering of the lipid bilayer structure [118, 151].

There are factors that accelerate flip-flop, and among these the presence of
oxidized phospholipids, as was observed already in the beginning of the ‘80s
[127]. The reason for this acceleration was first attributed to the formation of non-
bilayer structures [11] and, later on, to altered conformational dynamics of the
oxidatively modified acyl chains [147]. Also, it was shown that spontaneous flip-
flop of phospholipids is influenced by external agents, used as detergents [104] or
carriers for incorporating hydrophobic molecules into cell membranes [141].

It was found that also membrane spanning peptides may accelerate lipid flip-
flop [76], but the presence of cholesterol may inhibit this effect [70]. Keeping in
mind that, relative to the plasma membrane, the early secretory pathway membrane
of the ER is highly depleted of cholesterol – hence less thick and rigid, and
more permeable than the plasma membrane – Kol et al. [70] suggested that rapid
phospholipid translocation in biogenic membranes is “mediated via membrane-
spanning segments of a subset of proteins, characterized by a small number of
transmembrane helices”. This implies that spontaneous flip-flop in the plasma
membrane of eukaryotes is irrelevant for maintaining lipid asymmetry, and also that
in the ER flip-flop does not require dedicated flippases. That any transmembrane
proteins should accelerate flip-flop was also hypothesized for the cytoplasmic
membranes of prokaryotes [69].

Cholesterol is ubiquitous in the membranes of eukaryotes [144] and may have
a synergic effect on flip-flop. Remarkably, just 1 mol % cholesterol is sufficient to
inhibit the flipping activity, toward newly synthesized phospholipids, of the biogenic
membrane flippase in reconstituted proteoliposomes [51, 115]. Also, it was found
that the addition of 30 mol % cholesterol to DMPC or DPPC liposomes suppresses
phospholipid flip-flop [65]. This may be attributed to the increase in conformational
order of the acyl chains, as it is known that, at that concentration, cholesterol induces
the formation of the liquid-ordered phase [62].

2.3 Experimental Methods

Transbilayer diffusion of lipids cannot be directly monitored, therefore indirect
detection methods have to be devised. Different assays have been proposed to this
purpose, which have to fulfill specific criteria [38]. In general a non-equilibrium
asymmetric distribution of lipids is generated, and then its evolution towards a
uniform distribution is monitored.
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Experimental studies have been done using model membranes and biomem-
branes. In the former case, flip-flop is investigated under controlled conditions,
without the presence of the active processes that occur in natural biosystems.
Model systems are prepared in the form of liposomes or planar supported lipid
bilayers (SLB). Liposomes are generally distinguished according to their size: small
unilamellar vesicles (SUV), ranging in size from 20 to 100 nm, large unilamellar
vesicles (LUV) with a diameter of hundreds of nanometers and giant unilamellar
vesicles (GUV), whose diameter can reach several tens of micrometers. SUVs are
suitable to investigate the effects of curvature, whereas GUVs are often used to
measure mechanical and rheological properties, because their changes in shape can
be directly visualized under the microscope. SLBs offer the advantage that they can
be studied by surface-sensitive techniques.

2.3.1 Labeled Lipid Analogues

The first insights on the transbilayer dynamics of lipids were obtained using com-
pounds labeled with specific probes, either attached to the head group or to an acyl
chain, which could be detected by a suitable technique. In the pioneering experiment
by Kornberg and McConnell [72], egg phosphatidylcholine (EPC) vesicles doped
with a paramagnetic analogue of phosphatydilcholine were investigated by electron
paramagnetic resonance (EPR) spectroscopy. The analogue carried a 6-member
nitroxide ring on the phospholipid head group, in place of one of the methyls of the
quaternary ammonium (TEMPO-PC, see Fig. 2.2). The flip-flop rate was inferred
from the time needed to recover the original spectrum after a reducing agent,

Fig. 2.2 Spin- and fluorescently labeled lipids (Adapted from Ref. [74])
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which could access only the external leaflet, was added to solutions containing
the vesicles. Likewise, spin-labeled aminophospholipids were employed to measure
the translocation rate in HRC membranes [95, 125]. Besides head group labeled
phospholipids, also analogues bearing a nitroxide radical attached to an acyl chain
were employed. In this case, the so called back-exchange assay was used to monitor
the translocation process: lipid analogues having a long sn-1 chain and a short
sn-2 chain were removed from the external leaflet of the membrane, either by
liposomes or by fatty acid free bovine serum albumin (BSA), and their amount
was then determined by EPR. It is worth remarking that the observation of the
fast redistribution of analogues of aminophospholipids (PE, PS) in HRCs was
the first indication of the existence of an energy-dependent transport of specific
phospholipids in the plasma membrane [125].

Also fluorescent probes, bearing a bulky fluorophore like NBD, fluorescein,
pyrene and rhodamine (see Fig. 2.2), have been used to determine flip-flop rates. The
methods to determine the transbilayer distribution of fluorophores are analogous
to those used for spin-labeled lipids. One is extraction from the outer leaflet
(back-exchange) of the analogues, whose amount is then measured by fluorescence
spectroscopy. Alternatively, in the case of fluorescent probes that remain exposed
to solvent, a water soluble, non-penetrating reducing agent, such as ascorbate or
dithionite, can be used. This destroys the probes located in the outer leaflet, so
that only the fluorophores that have flipped into the inner monolayer contribute
to the fluorescence spectrum. A different methodology is based on the use of
pyrene labels, whose fluorescence spectrum is characterized by two signals, one
arising from excited monomers and the other from excited dimers (excimers), with
a relative intensity that depends on the fluorophore concentration. Phospholipid
analogues bearing a pyrene moiety in the sn-2 chain are incorporated into vesicles
(donors), which are mixed with analogous undoped vesicles (acceptors). Then,
the redistribution of fluorophores between the outer and the inner monolayer
of the acceptor is followed by monitoring the change of fluorescence emission
ratio. In Ref. [58] this method was used to study the transmembrane dynamics
of pyrene labeled phospholipids with different head groups and acyl chains, in
POPC LUVs. A strong dependence on the head group was found, with rates
increasing in the order phosphatidylcholine .PC/ < phosphatidylglycerol .PG/ <

phosphatidic acid .PA/ < phosphatidylethanolamine .PE/. These groups differ in
size and charge: PA and PG have a net negative charge, whereas both PC and PE
are neutral, but the former is bulkier than the latter. The translocation rates for PE
lipids were found to be at least 10 times greater than those for the homologous PC
derivatives. A weaker dependence of rates on acyl chain length was observed, with
approximately two-fold decrease of the rate upon addition of two methylene groups.

Recently, optical techniques like fluorescence interference contrast (FLIC)
microscopy [31] and fluorescence correlation spectroscopy [146], were used to
monitor the evolution of the transversal asymmetry in fluorophore distribution in
SLBs. Asymmetric bilayers with a desired composition of leaflets were produced
using vesicle fusion or monolayer deposition, in the two variants Langmuir-Blodgett
(LB) and Langmuir-Blodgett/Schäfer (LB-LS). Interestingly, it was found that a
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given bilayer can retain full lipid asymmetry if prepared by the former method, but
loses part of its asymmetry during deposition of the distal monolayer if the latter
method is used. This illustrates the strong influence of experimental conditions on
flip-flop, and thus the importance of precisely defining and controlling them.

A main issue in the use of synthetic lipid probes concerns possible specific
effects of the label and perturbations (packing, polarity) that they may induce in the
bilayer, which raises the question whether their behavior can be representative of
that of natural lipids. This has been largely debated in the literature, see for instance
Refs. [40] and [1] for recent reviews.

2.3.2 Isotopically Substituted and Native Lipids

The problem of bulky labels can be circumvented using isotopic substitution, which
has a much less perturbing effect. In most assays donor and acceptor vesicles,
which contain isotopically labeled and natural lipids, respectively, are mixed. Then,
the transfer of labeled molecules from donors to acceptors is monitored using a
suitable technique. The transfer includes both inter-vesicle exchange and flip-flop,
and the kinetic parameters of the latter are extracted from modeling of the whole
process.

In earlier studies, radioisotopes were used and the two types of vesicles (donors
and acceptors) were separated according to their charge [150] or size [151]. More
recently, the use of time-resolved small-angle neutron scattering (SANS) [47, 97, 98]
was proposed, which exploits the difference in scattering length between deuterated
and undeuterated lipids. From experiments with LUVs, flip-flop rates of DMPC
comparable with those determined using radioisotopes [150] were obtained, with
half-times ranging from 9 h, around room temperature, to 1 h at higher temperature.
No transbilayer diffusion was observed for POPC, which has longer acyl chains than
DMPC, one of which is unsaturated [97, 98]. Using the same technique, a flip-flop
half-time of a few hours was determined for cholesterol in POPC SUVs [47]; this
is much longer than the estimates from previous experiments, which ranged from
milliseconds to seconds [23, 55, 65, 79].

A variant of SANS, neutron reflectometry (NR) [48], was applied to isotopically
asymmetric bilayers prepared by the LB-LS technique, with one leaflet containing
only deuterated and the other one only undeuterated lipids. The recorded reflectivity
contains a clear signature of the bilayer asymmetry, which is lost in the course
of an experiment, as the composition becomes uniform because of transbilayer
movements. In NR experiments on DMPC:DSPC bilayers, no flip-flop was detected
in the gel phase, whereas in the liquid crystal phase translocation was found to
occur on a time-scale of 1–2 s, which is orders of magnitude shorter than the value
inferred from SANS experiments [48]. This fast rate was confirmed by further NR
measurements on supported bilayers of DMPC, in which an asymmetric population
was generated by exposition to a solution of isotopically labeled vesicles [49].
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SLBs were also investigated by sum-frequency vibrational spectroscopy (SFVS).
This is a coherent, nonlinear vibrational spectroscopy that is sensitive to the
symmetry of the system. The decrease in asymmetry of the bilayer is determined
by recording the intensity of specific vibrational modes, which allow to distinguish
between natural and deuterated lipids. This technique was first applied to DSPC
bilayers in the gel phase and the flip-flop rate was found to increase with temperature
up to the melting transition; above this, the process became too fast to be measured
[80]. Analogous results were obtained for DMPC and DPPC bilayers [81]. The
translocation rate was found to decrease with the acyl chain length, with half-times
equal to 3 min for DMPC, 14 min for DPPC and 38 min for DSPC, at �5 ıC below
the main phase transition. During the last decade SVFS has been applied to a variety
of systems and detailed insight into the temperature dependence of phospholipid
flip-flop in the gel phase has been reached. Beside the role of the acyl chain length,
also that of the head group was investigated, and for instance it was found that the
flip-flop rate in DSPE bilayers is nearly two orders of magnitude higher than in
DSPC bilayers at the same temperature [4]. Moreover, SVFS studies showed that
that the flip-flop rate increases in the presence of peptides [3, 5] and in the presence
of cholesterol, with a dependence on the membrane phase in the latter case [2, 82].

In a very recent study the translocation of chain- and head-deuterated phospho-
lipids between the leaflets of DPPC LUVs, with an initial asymmetric distribution,
was monitored by isotope sensitive 1H-NMR spectroscopy in the presence of a
paramagnetic reagent, which shifts the resonances for lipids in the outer leaflet
[87]. Flip-flop half-times of the order of days to weeks were determined in the
liquid crystal phase, whereas no appreciable flip-flop was detected in the gel phase
over 250 h. This is in stark contrast to the results of SFVS [1, 80, 81] and NR
[48] measurements on SLBs, and confirms the difference between flip-flop in
vesicles and in supported bilayers, already pointed out in Ref. [49]. To explain
this difference, a defect-mediated acceleration of flip-flop in SLBs was proposed,
due to the presence of long-lived, submicron-sized holes, resulting from incomplete
surface coverage, which would be the sites of fast lipid translocation.

Most methods for the detection of the change in symmetry in the composition
of lipid bilayers make use of spectroscopic techniques; an interesting alternative
approach exploits the changes in the shape of vesicles, which are controlled by the
bilayer elasticity. In a pioneering work, HRCs were found to exhibit morphological
changes upon incorporation of amphiphatic drugs differently distributed in the two
leaflets [128]. Likewise, in the early studies of transbilayer motion by EPR it was
observed that, immediately after addition of spin-labeled lipid analogues, the HRCs
became crenated and the original shape was subsequently recovered, with a kinetics
similar to that of transverse diffusion [125]. In Ref. [35] the morphological changes
were used to monitor the incorporation and translocation of phosphatidylserines
in HRCs. The same method was applied to investigate the transbilayer dynamics of
exogenous lipids in EPC GUVs [83, 105]. The shape of GUVs is very sensitive to the
area asymmetry, defined as the ratio of the area difference between the monolayers
to the area of the bilayer mid-surface; an asymmetry of the order of 0.1% was found
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Fig. 2.3 Shape recovery after injection of C6-ceramide into an EPC GUV at T = 20 ıC. Images
taken at different times after injection. The scale bar corresponds to 10 �m (Adapted from
Ref. [83])

Fig. 2.4 Activation free energy of flip-flop, determined for native lipids in the gel phase by SFVS
(dark to light blue) [5, 6, 81], and for labeled lipids using different techniques: fluorescence for
pyrene-labeled PCs in liquid crystalline POPC (dark to light green) [58]; EPR for TEMPO-DPPC
in EPC (red) [72]; SFVS for TEMPO-DPPC in gel phase DSPC (orange) [1] (From Ref. [1])

to be sufficient to induce a change in shape. The effect is evident in Fig. 2.3, which
shows the evolution in time of the shape of a GUV after injection of C6-ceramide.

To close this Section, a comment can be made with the help of Fig. 2.4, which
collects data taken from different experiments. Here �G� is the free energy barrier
for the translocation process, and was determined from the temperature dependence
of the rate constant kf (see text under Eq. 2.1), according to kf / exp.��G�=RT/,
where R is the gas constant [81]. All data refer to zwitterionic lipids, yet they
show appreciable differences not only in the magnitude of �G�, but also in its



2 Spontaneous Lipid Flip-Flop 43

temperature dependence. It can be inferred from the figure that the flip-flop rate
decreases with increasing length, and this occurs for both PC lipids and pyrene
labeled PC probes. We can also see that the �G� values for pyrene labeled analogues
are higher than for native lipids. However, it is not obvious that this difference can
be ascribed to the probe, as the data refer to different systems and conditions: SUV
of liquid crystalline POPC for the labeled species, SLBs of pure PC lipids in the
gel phase for the unlabeled. Indeed, flip-flop is sensitive to a variety of factors,
and this makes it difficult to draw conclusions from the comparison of different
experiments. Likewise, it is not obvious that kinetic or mechanistic insights obtained
from experiments performed under specific conditions can be directly transferred to
biological systems.

2.4 Theoretical and Computational Insights

Theoretical and computational studies aim at providing a molecular description of
the energetics and kinetics of flip-flop. During the last 20 years, classical Molecular
Dynamics (MD) has been widely employed for this purpose and has given new
microscopic insights. Here, before presenting an overview of this method and of
its main achievements, the features of flip-flop, described as a roto-translational
diffusion process, are outlined.

2.4.1 Flip-Flop as a 2D Diffusion Process

Important features of the molecular mechanism of flip-flop can be captured in
the framework of low-dimensional diffusion models, of which there are many
successful applications in biophysics [17, 149, 159]. In view of the polarity (in
shape and charge distribution) of lipids and of the symmetry of bilayers, flip-flop
necessarily involves molecular translation and rotation. Moreover, other degrees of
freedom, whether molecular, like conformational angles, or collective, like elastic
deformation variables of the bilayer, may play a role in this process. If these
additional degrees of freedom are faster or do not give a major contribution,
flip-flop can be described as diffusion on a free energy surface defined by the
orientational and rotational variables. This assumption could be reasonable for
the case of cholesterol, which is relatively rigid, thus conformational variables
are not expected to significantly affect its transbilayer movement. Figure 2.5b
shows the free energy surface reported in Ref. [107] for cholesterol in a DPPC
bilayer, in the liquid crystalline phase at T = 323 K. Here the variables are the
position of the origin (CM) of the molecular frame along the bilayer normal N
(Z coordinate) and the tilt angle (ˇ) of the long molecular axis (z) with respect
to N. CM coincides with the hydrodynamic center of mobility [67] and z is
parallel to the C17 ! C3 direction (see Fig. 2.5a). The free energy surface was
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Fig. 2.5 (a) Structure of cholesterol and reference frame used to define the molecular position and
orientation in the lipid bilayer. The origin of the molecular frame is located in the hydrodynamic
center of mobility (CM). (b, c) Free energy surface calculated for cholesterol in a DPPC bilayer
at 323 K, as a function of the CM position (Z) along the bilayer normal (N), and of the angle (ˇ)
between N and the long molecular axis z. At the bilayer mid-plane Z = 0. In (b), the molecular
structures superimposed to the free energy surface show the position and orientation of cholesterol
in the minima and in the maximum; also DPPC molecules are shown as a reference In (c) the labels
1–4 indicate the position of the free energy minima, whereas A–D indicate the position of saddle
points. The arrows indicate transitions between the free energy minima across the saddle points.
(d) Free energy profile calculated as the Boltzmann projection of the 2D free energy surface onto
the Z coordinate (Adapted from Refs. [107] and [108])

calculated using a model that combines an atomistic description of cholesterol with
an implicit representation of the water/membrane environment, whose anisotropy
and longitudinal non-uniformity are taken into account through the gradients of
density, dielectric permittivity, lateral pressure and acyl chain order parameters
[106]. Appropriate values for pure DPPC at 323 K were used to calculate the free
energy surface in Fig. 2.5b. The free energy surface exhibits two absolute minima
(1 and 4), which are equivalent and correspond the canonical upright orientations
of cholesterol, on either side of the bilayer. In such positions the molecule has
its z axis slightly tilted from N, with the hydrophobic backbone in the region of
highest lipid density and the hydroxyl group at the level of the polar heads. The
free energy surface exhibits two additional equivalent relative minima (2 and 3),
which differ from the stable states because cholesterol has reversed its orientation
and points its tail towards water, whereas the hydroxyl group is buried deep in the
hydrophobic region. These minima are much higher in energy than the stable states
(1, 4), owing to the high cost for moving the polar head away from the interface.
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The free energy surface has a maximum in the central region, for configurations in
which cholesterol lies in the middle of the bilayer, approximately perpendicular to
N. The upright position of cholesterol is in agreement with the results of neutron
scattering experiments in liquid crystalline DMPC [77]. However the distribution
of this molecule was found to change considerably with the lipid composition [86],
and in polyunsaturated membranes cholesterol was found to preferentially lie flat in
the middle of the bilayer [56, 57].

With reference to the free energy landscape shown in Fig. 2.5b, flip-flop is the
process in which cholesterol moves from one of the stable states (1, 4) to the other.
This can occur through different pathways, which imply different combinations
of rotations and translations [7, 109]. Direct transfer from 1 to 4, through the
free energy maximum, is very unlikely, since this requires crossing of the high
energy barrier in the middle of the free energy surface. More likely paths involve
the passage through the saddle points between the minima, which are labeled by
A; B; C; D in Fig. 2.5c. Transitions through A and D mainly involve the upside-down
reorientation of cholesterol, whereas those through B and C involve translation
of the molecule from one leaflet to the other without significantly changing its
orientation. Thus, two pathways can be identified, in which reorientation takes
place before and after crossing the bilayer midplane, respectively. The process was
described using a four-step kinetic model, obtained by reducing the Smoluchowski
equation for time evolution of the positional-orientational probability density
function to a Master equation for transitions between the free energy minima. This
reduction is based on the multidimensional extension of Kramers theory [73, 75, 94],
which is justified when the barrier between the minima is sufficiently high. Within
this framework, transition rates between the minima are expressed in terms of
energetic and frictional parameters: height of the free energy barriers, curvatures
of the free energy surface in the minima and in the saddle points, and molecular
roto-translational friction tensor. From the time required to reach the equilibrium
distribution, starting from one of the absolute free energy minima, a flip-flop rate
constant kff D 2 � 104 s�1 was determined for cholesterol in liquid crystalline DPPC
at T D 323.

A simpler description of flip-flop is obtained by taking the Z-position as the
single reaction coordinate. Figure 2.5d shows the mono-dimensional (1D) free
energy profile calculated as the Boltzmann projection of the free energy surface
on the positional coordinate. Each point of the curve is obtained by averaging over
all molecular orientations, with a proper orientational distribution function. In this
way the roto-translational coupling along the flip-flop pathway is neglected, which
may be reasonable only if rotations are much faster than translational displacements
[28]. Using the 1D description and the potential shown in Fig. 2.5d, a rate constant
kff D 5:8�104 s�1 was determined for cholesterol, which is almost three times higher
than the value obtained using the 2D model.

A 2D description of flip-flop, with a kinetic analysis of the process according
to the multidimensional extension of Kramers theory, was reported also for oleic
acid in liquid crystalline POPC at T = 303 K [148]. In this case the free energy
surface was calculated using umbrella sampling simulations (see Sect. 2.4.2). The
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flip-flop rate evaluated by a two-dimensional diffusion model was found to be in
good agreement with that obtained directly from counting the translocation events in
MD simulations, and both were three/five-fold lower than the rate calculated using
a 1D description of the process.

The features of the free energy landscape, which determine the flip-flop pathway
and its rate, may considerably change with the composition and physical state of the
bilayer. Also the concentration of cholesterol is very important, since this has well
known ordering and condensing effect [59, 63]. Table 2.3 reports the rate constant
kff , derived from various MD simulations studies (see the next subsection for details
on the method). Some of such studies report the number of translocation events
(nf ) observed during the simulation time (� ), from which the rate constant can be
evaluated as kff D 2nf =NC� , where NC is the number of cholesterol molecules in
the sample. Other studies report the rate constant for cholesterol transfer from one
bilayer leaflet to the other, kf D kB T D kT B D kff =2 (see Eq. 2.1). In these
studies kf is usually determined from the 1D free energy profile of cholesterol as a
function of its position across the lipid bilayer, according to the method proposed
in Ref. [12]. We can see that the rate constants reported Table 2.3 cover a wide
range. On one side the discrepancies between data have a physical origin, since
different systems and conditions were examined by simulations. On the other side,
also merely computational aspects have to be considered, in particular regarding the
form of the interaction potential used in simulations. Indeed, significant differences
have been evidenced between the results obtained using some of the most common
empirical potentials, both in the distribution of cholesterol and in its translocation
rate [86].

Comparison of the kff values in Table 2.3 with the half-times reported in
Table 2.2 shows that the calculated flip-flop rates are generally faster than the
measured values. Actually, in some cases the experimental half-times are upper
limits, since the process was too fast to be detected with the methodology employed.
Another aspect to be considered is that computer simulations necessarily refer
to ideal conditions, which can be well different from those of real systems: the
simulated samples are in general pure, symmetric bilayers, whereas biomembranes
are asymmetric and contain a variety of components, including proteins. Moreover,
mechanism and rate of flip-flop are affected by deformations, curvature and defects,
which are often present in experimental systems.

2.4.2 Molecular Dynamics Simulations

Within the classical MD framework a system is represented as a set of particles,
which may either correspond to atoms (all-atom, AA) or to groups of atoms
(coarse-grain, CG), whose time evolution is determined by numerical integration
of Newton’s equations of motion. The forces acting on particles are computed from
a potential energy function, accounting for inter- and intra-molecular interactions
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Table 2.3 Flip-flop rate constants, kff , of cholesterol (C), from different MD studies. See text for
the definition of kff and its relation with the flip-flop half-time

Host Components T (K) kff (s�1) Model Ref.

POPC 38 POPC, 4 C 300 (0.44˙ 0.30)�106 a CG [90]

SAPC 38 SAPC, 4 C (4˙ 2.4)�106 a

DAPC 38 DAPC, 4 C (20˙ 5)�106 a

DTPC 38 DTPC, 4 C (6.7˙ 2.2)�106 a

DAPC 152 DAPC, 2 C 323 4:6 � 107 � 3:2 � 108 b CG [12]

SAPC 152 SAPC, 2 C 6:6 � 106 � 3:4 � 107 b

POPC 152 POPC, 2 C 6:0 � 105 � 9:4 � 106 b

DPPC 152 DPPC, 2 C 2:4 � 105 � 3:2 � 106 b

DPPC,C 152 DPPC, 104 C 14:4 � 103 � 5:0 � 104 b

DAPC 64 DAPC, 2 C .15:0˙ 0:4/ � 107 a

SAPC 64 SAPC, 2 C .13:4˙ 1:0/ � 106 a

POPC 64 POPC, 2 C .3:0˙ 0:6/ � 106 a

DPPC 64 DPPC, 2 C .14:8˙ 4:2/ � 105 a

DPPC,C 38 DPPC, 26 C >2.8�104 a

DAPC 72 DAPC, 2 C 10:4 � 105 � 7:4 � 106 b AA

DPPC 64 DPPC, 2 C 2:4 � 104 � 13:2 � 105 b

DPPC,C 52 DPPC, 12 C 2:4 � 104 � 16:2 � 103 b

DPPC,C 38 DPPC, 26 C 18:8� 10:0 � 102 b

DPPC 98 DPPC, 2 C 323.15 2:4 � 103 � 3:2 � 104 b AA [64]

POPC 98 POPC, 2 C 303.15 9:6 � 102 � 8:0 � 103 b

DAPC 98 DAPC, 2 C 12:0 � 105 � 16:0 � 106 b

DAPC 38 lipids, 4 C 300 2:54 � 107 a CG [103]

SAPC 6:64 � 106 a

POPC 0:856 � 106 a

DMPC 100 DMPC, 1 C 303 13:6 � 106 b AA [86]

DLPC 100 DLPC, 1 C 5:0 � 107 b

POPC 64 POPC, 1 C 323 9:0 � 104 b AA [14]

Raft 22 POPC, 22PSM, 23 C 8:8 � 10�4 b

DPPC 360 DPPC, 152 C 323 6 � 104 a AA [26]

POPC,PSM,Cb 64 POPC, 32 PSM, 32 C 310 8:0 � 102 � 6 � 104 b AA [102]

POPC 127 POPC, 1 C 1:2 � 104 � 9:2 � 105 b

DOPC,DOPS 504 DOPC, 504 DOPS, 196 C 320 (5.75˙ 2.73)�106 a CG [155]

DSPC,DSPS 504 DSPC, 504 DSPS, 196 C (1.27˙ 0.65)�106 a

DOPC,DSPC 504 DOPC, 504 DSPS, 196 C (3.10˙ 1.00)�106 a

DOPS,DSPS 504 DOPS, 504 DSPS, 196 C (1.00˙ 0.53)�106 a

Plasma 20,000 lipids (60 kinds) 310 (13.1˙ 0.02)�106 a CG [61]

Raft 828 DPPC, 540 diC18�2PC,
576 C

295 1.0 �107 a;c CG [119]

aFrom counting of translocation events
bFrom 1D free energy profile
cIn liquid crystalline environment; no flip-flop detected in liquid-ordered environment
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that are described by an empirical model (force field). The knowledge that can
be obtained from a simulation depends crucially on the force field. Major issues
related to the application of MD techniques to the study of flip-flop in membranes
concern the time scale and the size of the simulated systems. The general scheme
for integrating Newton’s equations makes use of a finite difference algorithm,
based on the partitioning of the trajectory into small steps (time steps). Thus, the
computational cost increases with the length of the trajectory, i.e., the number of
time steps, and with the size of the sample, i.e., the number of interaction sites,
since at each time step the evaluation of forces requires the calculation of the
interaction potential between particles. Flip-flop may have characteristic times of
the order of several hours; it may occur as a collective process, involving large-
scale changes in the membrane, and also be connected with other non equilibrium
processes in the system. Recent advances in hardware, software, and algorithms
have lead to an impressive increase in the accessible time scales, which can reach the
millisecond regime, whereas the size of samples can be as large as several thousands
of lipids. This is still far below what would be required for a reasonable sampling
of translocation events under realistic conditions. However, suitable methodologies
have been developed that, combined with appropriate choices of systems and
conditions, make it possible to shed light into molecular aspects of the inter-leaflet
translocation of lipids.

2.4.2.1 Minimalist Models

Minimalist models can provide general insights into the physical behavior of
lipid bilayers. An example, which can be useful to illustrate their capability and
limitations, is provided by the study that is probably the first attempt to use MD to
investigate flip-flop [60]. Each lipid was represented as a flexible chain of beads,
water was modeled as a single bead, and a combination of Lennard-Jones and soft
repulsive potentials was assumed to mimic hydrophobic and hydrophilic interac-
tions between the beads. It was found that flip-flop is an activated process, with
a barrier which is mainly determined by the translocation of the hydrophilic head
through the hydrophobic region. Thus, the flip-flop rate was shown to increase with
the chain length, which is in agreement with experimental findings [58, 65, 130].
On the other hand, the translocation rate was found to decrease with increasing
chain stiffness, in apparent contrast to the rapid flip-flop observed in phospholipids
bearing polyunsaturated chains [8, 130]. Indeed, the comparison with simulations
cannot be taken too strictly, because mapping of a generic model into a real system is
not that straightforward. A model similar to that used in Ref. [60] was adopted also
in a subsequent study where, exploiting an enhanced sampling technique, several
translocation events could be monitored [91]. This work confirmed that flip-flop is
an activated process and showed that the lipid translocation is accompanied by some
rearrangement of the surroundings. However, the size of the system (76 lipid) could
be inadequate for mechanistic insights.
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A much bigger system (3321 lipids) was investigated in Ref. [7]. In this case,
a millisecond time scale could be reached using Dissipative Particle Dynamics
(DPD), with particles interacting via soft potentials, chosen so as to reproduce the
hydrodynamic behavior of a fluid [145]. Also in this case lipids were modeled as
chains of hydrophilic beads with a hydrophilic head, and it was found that the rate
of translocation decreases with increasing chain length. Taking advantage of the
smooth free energy landscape, several translocation events could be sampled, and it
was shown that flip-flop has the features of a Poisson process. It was also possible to
distinguish three different pathways by which, combining rotation and translation,
lipids move from one monolayer to the other: “push-in”, in which the molecule
translates towards the center of the bilayer, then rotates and finally translates towards
the equilibrium position in the opposite leaflet; “sliding”, where the process occurs
via simultaneous rotation and translation; “rotation”, where first the molecule rotates
and then translates.

An analogous model, within the DPD scheme, was used to mimic active flip-
flop [116]. It was found that a finite difference in the lipid number density between
the two leaflets, caused by asymmetric flip-flop (i.e., a different average number
of up-down and down-up translocations), induces morphological changes in the
membrane, in the form of buds or blisters, depending on the flip-flop rate. This
is in agreement with theoretical predictions [92] and experimental findings (see
Sect. 2.3.2).

In a very recent MD study, an implicit solvent coarse-grain model [112] was used
to investigate SLBs. It was found that pore-like structures induced by the density
difference between the two monolayers can mediate flip-flop. This could explain the
discrepancies between the flip-flop rates measured in vesicles and in SLBs [49, 87].

2.4.2.2 Specific Models for Lipids

Experiments have shown that the rate and the mechanism of flip-flop can strongly
depend on the chemical structure of lipids. Therefore it is important to implement
chemical details into computational models. This has motivated the development
of accurate force fields, which typically are parameterized on the basis of quantum
mechanical calculations and experimental data. Indeed, the derivation of a force
field able to provide a reliable description of the behavior of lipids in their
environment may be difficult, because this is controlled by a subtle balance of
entropic and enthalpic effects. Several force fields have been proposed, but further
refinement is needed (see [84, 110] for very recent reviews). Beside all-atom models
for lipids, also CG versions have been proposed, and among the latter Martini
[88, 89] has become very popular.

Specific models for lipids are in principle able to provide detailed molecular
insight into the mechanism of flip-flop. However, despite the increase in com-
putational power and the advantages offered by ad hoc CG parameterizations,
statistically significant sampling of transbilayer movements by brute force MD
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simulations remains out of reach, especially in the case of phospholipids. Therefore,
also other approaches have been adopted (see [109] for a recent review). For
instance, restrained simulations are used to calculate the free energy surface in
which the flipping particle is moving, and the kinetic parameters of the process are
subsequently determined from the features of this surface. Flip-flop is a process that
in principle involves several degrees of freedom, both of the flopping lipid and of its
environment, and a kinetic description encompasses the reduction to the (few) slow
variables (reaction coordinates) that characterize the evolution of the system on the
time scale of the process. Other degrees of freedom, fluctuating on much shorter
time scales, can be averaged out without losing relevant information on flip-flop.
However the identification of the reaction coordinates is not straightforward and
statistical sampling of the free energy surface, beside having a high computational
cost, may be affected by significant errors, due to the presence of the so-called
hidden barriers, which cause slow relaxation of the degrees of freedom orthogonal
to the reaction coordinates [28, 71, 99]. In most studies of lipid flip-flop the strategy
proposed in Ref. [138] has been adopted, which envisages the determination of the
free energy profile, or potential of mean force (PMF) experienced by a flipping lipid
as a function of its position along the bilayer normal. This is generally calculated
using the technique known as umbrella sampling.

In AA simulations of phospholipids with charged head groups, few isolated
translocation events could be detected under conditions promoting the formation of
transient water pores, which facilitated the translocation of ionic moieties across
the membrane in a solvated state. This was first evidenced in a self-assembling
DPPC vesicle [41], and then translocating lipids were also observed in the presence
of perturbing agents like buthanol (DPPC) [42], dimitylsulfoxide (DPPC, DMPC
or POPC) [53], antimicrobial peptides [78] and ions (POPC) [66], (DMPC) [53].
To enhance the process, simulations of a double DMPC bilayer in the presence
of a significant transmembrane imbalance of cations were performed, and 50
translocation events could be detected in long simulations [52]. As a result of this
study, it was proposed that the formation of a hydrophilic pore spanning the entire
membrane would be the rate-determining step, followed by fast diffusion of the
phospholipid through the pore (on the nanosecond scale). This mechanism is in
line with an early observation of similar activation energies (about 80 kJ mol�1) for
spontaneous chloride permeation [140] and for flip-flop [72].

The formation of water pores, with the same structure as in the presence of
perturbing agents, was also observed in AA umbrella sampling MD simulations,
in which the zwitterionic head of a lipid was constrained in the center of the bilayer
[138]. This kind of behavior was found for different PC bilayers (DLPC, DPPC,
DMPC, POPC, DOPC) [15, 123]. In agreement with experiments [58, 65, 130]
and MD simulations with generic models [7, 60], the flip-flop rate was found to
increase with decreasing chain length, because of the lower cost to form a pore
and the higher stability of large pores in thinner bilayers [15]. This is illustrated
in Fig. 2.6, which reports free energy profiles calculated for DLPC and DPPC in
pure bilayers [13], showing a typical shape with a barrier in the mid-plane, mainly
due to the cost for rearranging neighboring lipids and water to form a pore. The
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Fig. 2.6 PMFs for
phospholipid flip-flop as a
function of the distance of the
lipid head-group from the
bilayer mid-plane. (a) DPPC
in a DPPC bilayer. (b) DLPC
in a DLPC bilayer. The
different profiles were
obtained by umbrella
sampling MD simulations,
using different force fields
(Adapted from Ref. [13])

height of this barrier was found to increase in the presence of cholesterol; actually,
in this case the translocation mechanism itself was modified since cholesterol was
found to prevent the formation of water pores by increasing the acyl chain order
and decreasing the bilayer fluidity [12]. Likewise, no pores were detected in the
case of unsaturated lipid bilayers, where flip-flop was found to be much slower
than in saturated systems. This result is in line with the slowing down of flip-flop
with increasing chain stiffness, which was predicted in Ref. [60] using a minimalist
lipid model, but is the opposite of the experimental trend [8, 130]. This discrepancy
was ascribed to a poor parametrization for double bonds in the force field used in
the simulations [123]. Actually, thorough MD investigations have shown that the
formation of pores in lipid bilayers is extremely sensitive to the force field used;
therefore very accurate tuning of the parameters is needed to achieve predictive
power level [16]. The definition of the force field is particularly delicate in the case
of CG models, where a possible issue could be related to the reduced entropy of
water [13].

Even though there remain critical aspects, MD simulations have been very useful
to provide a detailed molecular picture of various aspects of flip-flop; the main
results can be summarized as follows.

(i) Flip-flop of cholesterol and its analogues. Several simulation studies have
shown that the transbilayer dynamics of sterol is orders of magnitude faster
than that of charged or zwitterionic phospholipids. This is in general agreement
with the experimental findings, even though there are discrepancies between
the results of different experiments (see Table 2.2) as well as between the
results of different simulations (see Table 2.3). The flip-flop rate was found
to depend on the sterol structure, with polar substituents playing a special role;
for instance, replacement of the hydroxyl group of cholesterol by a carbonyl
was found to increase the translocation rate [102, 121], in agreement with the
prediction of the 2D diffusion model [107].
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(ii) Importance of the size and especially of the charges of the head group. At both
the AA [14] and the CG level [61, 103], DAGs and ceramides, which have a
neutral and relatively small head group, were reported to undergo relatively fast
flip-flop, without the mediation of defects and pores, as for cholesterol. Under
the same simulation conditions, the flip-flop rate for DAGs was found to be
similar to that of cholesterol, and appreciably higher than that of ceramides.
This is in agreement with experiment [10, 46].

(iii) Presence of synthetic and natural peptides. As experiments [3, 4, 68], also
simulations indicate that the incorporation of synthetic and natural peptides
causes an increase of the flip-flop rate. In particular, it was observed in AA
simulations that the synthetic peptides WALP23 and KALP23 cause a decrease
of the free energy barrier in DOPE and DOPG bilayers, whereas they do not
appreciably affect the free energy barrier in DOPC bilayers [123].

(iv) Physical state of the bilayer. The flip-flop rate was found to depend on the
physical state of the bilayer; for instance, slowing down of the process, on
moving from a liquid crystalline to a liquid-ordered environment, was reported
for cholesterol, DAGs and ceramides [14, 119].

2.5 Conclusions

Nowadays it is well recognized that cell membranes are not simply elastic
envelopes, but take an active part in biological processes, e.g., in the transmission
of signals. The molecular composition and asymmetry represent important tools
to control the mechanical properties of membranes and the fluxes across them.
Here flip-flop plays a crucial role, and a clear insight into the molecular aspects
of this process is needed to reach a detailed mechanistic understanding of intra-
and inter-cellular exchanges. Despite the fact that since the beginning of the ‘70s
flip-flop has been the subject of several investigations, a clear and consistent picture
is still missing, and there is an impressive lack of quantitative understanding. This
is partly due to the experimental difficulty to monitor the time evolution of the
bilayer asymmetry. There are also problems related to the preparation of samples
and to the standardization of measurements. Some experiments make use of bulky
probes whose capability to reproduce the behavior of native lipids is still debated.
Other assays have an intrinsic flaw, due the fact that flip-flop is measured together
with other processes, and the separation of the different contributions may be
non-straightforward. Then, there may be issues related to the time resolution of
experiments, especially in the case of fast translocation. Further difficulty derives
from the strong dependence of flip-flop on the molecular composition and physical
state of the bilayer, which can affect the rate and probably also the mechanism of
the process. So, the information obtained from a given measurement may be limited
to specific experimental conditions.
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To answer biologically relevant questions and in view of medical applications
[101], a deep microscopic insight is needed, because even relatively small changes
in the molecular structure of the flipping lipid may be crucial. Just to give an
example, it is known that an extra hydroxyl group near the end of its side chain
enables 24S-hydroxycholesterol to overcome the blood brain barrier and be excreted
from the brain [19], which is essential for the maintenance of cholesterol steady
state in the brain. At the present stage we are far from this detailed understanding.
However we can imagine that in the next years new knowledge on molecular
aspects will be provided by studies on model systems, using techniques that allow
to monitor the time evolution of bilayer asymmetry without exogenous probes.
Valuable insight will be provided also by large scale computer simulations based
on accurate force fields.

It must be said, however, that detailed knowledge on model systems will not
necessarily be sufficient to elucidate the role of flip-flop in biological processes.
Transmembrane movement is just a step within a network of interconnected
processes, which include lipid metabolism and membrane deformations, and occur
under non-equilibrium conditions [45]. The capability to perform detailed exam-
ination of lipid distribution and leaflet asymmetry in such complex systems is a
challenge for experimental techniques. From the point of theory and simulations,
a challenge is represented by the integration of microscopic models into a general
framework that can account for the coupling between the various processes.
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Chapter 3
Membrane Lipid-Protein Interactions

Michael F. Brown, Udeep Chawla, and Suchithranga M.D.C. Perera

Abstract In this review we describe how the properties of cellular membranes
govern protein structure and activity. Lipids can modulate protein functional states
through general bilayer properties, or by specific binding and acting as allosteric
regulators. Hydrophobic matching by solvation of the protein surface entails
short-range interactions of the lipids, and cellular water affects bilayer structure
through hydrating the lipid polar head groups and protein hydrophilic domains.
Biomembranes have important analogies to supercritical fluids leading to raft-like
nanostructures with cholesterol. Additional long-range interactions of the lipids
and proteins involve the curvature stress field, where a flexible surface model
(FSM) describes how collective properties of the lipids affect the conformational
energetics of membrane proteins. Curvature elasticity and hydrophobicity of native
lipid mixtures play key roles in functional proteolipid couplings and give insights
into protein activation mechanisms in cellular membranes.

Keywords Cholesterol • Critical fluids • Flexible surface model • Fluid-mosaic
model • G-protein–coupled receptor • Hydrophobic matching • Lipid bilayer •
Membrane curvature • Rafts • Rhodopsin • Spontaneous curvature

3.1 Introduction

Understanding how membrane lipids interact with proteins can markedly impact our
knowledge of cellular function at the intersection of biology and physics [14, 33,
51, 56, 79, 87]. The amphiphilic nature of membrane proteins clearly distinguishes
them from the globular and fibrous proteins. Examples increasingly show how the
activities of G-protein–coupled receptors (GPCRs) [12, 29, 70, 89], ion channels

M.F. Brown (�)
Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, USA

Department of Physics, University of Arizona, Tucson, AZ, 85721, USA
e-mail: mfbrown@u.arizona.edu

U. Chawla • S.M.D.C. Perera
Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, USA

© Springer Nature Singapore Pte Ltd. 2017
R.M. Epand, J.-M. Ruysschaert (eds.), The Biophysics of Cell Membranes,
Springer Series in Biophysics 19, DOI 10.1007/978-981-10-6244-5_3

61

mailto:mfbrown@u.arizona.edu


62 M.F. Brown et al.

[3, 77, 79], and transporters [8] are regulated by their interactions with water and
membrane lipids [15, 23, 34]. Although X-ray crystal structures capture functional
states of membrane proteins [32, 38], they mainly provide a static depiction, and
do not fully account for reactions that involve the lipid and water components of
liquid-crystalline bilayers.

Molecular spectroscopy, on the other hand, provides both structural and dynam-
ical information and is not restricted to crystalline solids. Because they are
components of supramolecular assemblies, studies of proteins in lipid bilayers
require approaches that are highly synergistic with both X-ray crystallography and
cryoelectron microscopy. The aim of this review is to highlight experimental and
theoretical avenues for investigating how the membrane lipids influence proteins to
produce the characteristic functions of life itself. Our goal is to build on previous
accounts of lipid-protein interactions [13, 15, 56, 57, 79, 99] by emphasizing
how material properties of the lipids correspond to the forces acting on proteins.
Curvature elasticity, critical fluctuations, and hydrophobic matching are discussed
in relation to proteolipid membrane couplings and cellular function.

3.2 Lipid-Protein Interactions in Biomembrane Function

Various lines of thinking apply to understanding biomembrane function. For
example, the standard fluid mosaic model (FMM) [87] states that membranes are
two-dimensional solutions of amphiphilic proteins dissolved within a fluid lipid
bilayer. The lipids act as the solvent for membrane proteins, giving the flexibility
needed for conformational changes to occur. In this view, the lipid bilayer acts
as a permeability barrier to ions and polar molecules, allowing for membrane
fluidity, and presenting different faces to the extracellular medium and the cytoplasm
(Fig. 3.1). The alternative is that the membrane lipids are more actively implicated
with protein-linked functions [8, 14, 64, 79, 85, 99]. Specific influences of lipids on
membrane protein functions are summarized by several excellent reviews [56, 57].
How chemically nonspecific bilayer properties modulate the functions of membrane
proteins [14, 15] is where the current thinking departs from previous approaches.

The new biophysics involves considering whether the lipids exert their influences
through material properties of the bilayer, or by molecularly specific interactions
[16, 51, 57, 64]. E.g., specific lipids could directly bind to integral membrane
proteins, and act as allosteric modulators of GPCRs, ion channels, pumps, or
transporters [23, 29]. Biophysical properties of the membrane lipid bilayer [14,
53, 79] can likewise be implicated. Recently, attention has been focused by the
new structures being solved for various integral membrane proteins [32, 38].
The structural knowledge enhances our understanding of how lipids interact with
membrane proteins and influence their functions [57]. Even so, the X-ray or cryo-
electron microscopy structural snapshots need to be combined with spectroscopic
and functional studies to yield a full understanding of cellular reaction mechanisms
occurring at the membrane level.
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Fig. 3.1 Membrane proteins
are solvated by hydrophobic
matching to the lipids and
entail curvature deformation
of the bilayer. Solid-like
objects denote proteins
embedded within the bilayer;
lipid head groups are
indicated as circles; and
noodle-like strings depict the
acyl chains. The hydrophobic
thickness at the proteolipid
interface (dP) can be (a)
smaller than, (b) the same, or
(c) larger than the average
bilayer thickness (dL). Elastic
bilayer distortion includes
bending plus compression or
stretching (expansion) of the
hydrocarbon chains (Figure
adapted with permission from
Ref. [17])

3.3 Short- and Long-Range Proteolipid Couplings
in Biomembranes

Increasingly, experimental results are uncovering the influences of the membrane
lipid bilayer on the activities of integral membrane proteins [56, 57]. Properties due
to the tightly regulated lipid compositions are known to affect protein function in
various cellular membranes [7, 40, 49, 50, 56, 59, 68, 74, 97, 99]. E.g., a balance
of lamellar- and nonlamellar forming lipids in A. laidlawii [59] and E. Coli [71]
is important for cellular growth, suggesting the spontaneous (intrinsic) curvature
is a key factor in membrane function. For rhodopsin, a direct effect of membrane
lipids on the conformational energetics of an integral membrane protein was
discovered for the first time [7, 14, 97]. The pH-dependent equilibrium between the
metarhodopsin states upon light activation is clearly modulated by the membrane
lipid composition (Fig. 3.2a,b). The native head groups and acyl chains enable
native-like activation of rhodopsin to occur by absorption of light; yet neither alone
is sufficient (Fig. 3.2b) [61]. These results suggest that the standard FMM is due for
revision.

With rhodopsin as an example, lipid substitution (replacement) experiments have
led to the following conclusions. (1) The membrane lipid composition can perturb
the formation of active rhodopsin. (2) The metarhodopsin equilibrium is reversible,
and can be shifted forward or backward, depending on the thermodynamic state
variables (T, P, osmotic stress). (3) Altering the lipid head groups can compensate
for changes in the acyl chains, where various acyl chain substitutions are possible.
(4) Proximity to a lamellar–nonlamellar lipid phase boundary favors rhodopsin
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Fig. 3.2 Membrane lipids affect light activation of rhodopsin due to general bilayer-mediated
properties. (a) Active rhodopsin (MII state, fraction � ) in equilibrium with inactive rhodopsin
(MI state) versus pH. Note the alkaline endpoint does not reach zero at higher temperatures
showing an ensemble of states. Inset: UV–visible difference spectra (light minus dark) show
temperature dependence of MI–MII equilibrium. (b) Postflash absorbance change (� D 478 nm)
(active MII) graphed against pH at T D 28 ıC. The apparent pKA and alkaline endpoint depend
on the phospholipid head groups and acyl chain composition (shown in figure). Shifting the
metarhodopsin equilibrium is connected with the average lipid shape or alternatively the intrinsic
(spontaneous) curvature of the lipids (Figure modified with permission from Ref. [15])

activation, implying that membrane curvature forces are involved. (5) Lastly, the
metarhodopsin equilibrium depends on the lipid to rhodopsin ratio. Chemically
nonspecific bilayer properties are causal factors that affect rhodopsin function
[12]. Lipid head groups can replace acyl chains, and there is an influence of the
lipid/protein molar ratio on activation.

3.3.1 Short-Range Boundary Lipid-Protein Interactions

Significant possibilities of functional protein-lipid interactions can exist for mem-
brane lipid bilayers (Fig. 3.1). Uncovering how short-range solvation of integral
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membrane proteins occurs due to a single shell of annular or boundary lipids has
benefited from spin-label EPR spectroscopy [42, 64]. Attention has been recently
focused on lipid structural specificity [56, 57] by the X-ray crystal structures of
integral membrane proteins. Membrane proteins often contain shallow protrusions
or surface grooves that can be occupied by the fatty acyl groups of the boundary
lipids, allowing them to be densely packed within the membrane. Resolved lipid
molecules in the X-ray crystal structures of membrane proteins tend to be localized
between the transmembrane (TM) helices, or found in a partial band about the
protein hydrophobic surface [57]. Further insights into lipid-protein associations
have recently come from native mass spectrometry [65]. Taken together, the X-ray,
spin-label EPR, and native mass spectrometry results affirm how the flexible lipids
can act as a solvent for membrane proteins.

3.3.2 Solvation of the Hydrophobic Protein Surface
by Membrane Lipids

For amphiphilic membrane proteins, it is of great interest to understand how the
polar and nonpolar regions are solvated by lipids and water (Fig. 3.1). One should
recall that the hydrophobic effect is short range, and mainly involves the molecularly
thin interface between hydrocarbon and water [16]. In X-ray crystal structures, the
perturbation of water is found to involve mainly the first hydration shell, and not
to reach beyond the second shell of water. Likewise, according to spin-label EPR
spectroscopy [42, 64], perturbation of the lipids extends mainly to the first solvation
shell. Lipids next to the protein are deformed by protrusions or clefts between the
TM helices, and exchange rapidly with bulk lipids by lateral diffusion. There is low
selectivity for the head group composition, and the composition of the boundary
(annular) lipids resembles the main bilayer [56]. E.g. rhodopsin has low selectivity
for polar head groups, and other proteins show a marginal selectivity for anionic
phospholipids [64].

3.3.3 Long-Range Collective Lipid-Protein Interactions
in Cellular Membranes

As a rule, the influences of the protein solvation by the lipids and by water are
greatest for the shell of molecules surrounding the protein [42, 64]. Even so, an
arresting counterexample [11] entails the influence of the lipid/protein molar ratio
on light activation of rhodopsin. Increasing the number of lipids (mole fraction)
yields greater stabilization of the active state [12]. Set against the molecular size,
the distance scale of the forces is large—a fundamental caveat of elasticity theory.
In terms of the material properties of the lipid bilayer, the work of deforming
the protein shape within the membrane comes into play [14, 15]. Both short and



66 M.F. Brown et al.

longer-range proteolipid interactions are evidently important. Below, we consider
the various models put forth to describe the lipid-protein interactions at the atomistic
and the mesoscopic level, falling between the molecular dimensions and the bulk
lipid bilayer.

3.4 Solvation of Membrane Proteins: Hydrophobic Matching
to Lipids

The most obvious property to account for nonspecific lipid-protein interactions
entails their hydrophobic matching at the intramembranous proteolipid boundary.
According to existing models [3, 35, 51, 57, 64, 72], the physical constraints
imposed upon an integral membrane protein involve a coupling to the bilayer
hydrocarbon thickness (Fig. 3.1). Typically it is considered that the lipid chains
adapt to the protein intramembranous surface, which acts like a rigid body [51].
Alternatively, a fluid mechanical (two-way) coupling of lipid and protein defor-
mations might occur. Examples (Fig. 3.1) include a protein whose hydrophobic
thickness is less than the bilayer (dP < dL), is equal to the lipid thickness (dP D dL),
or exceeds the bilayer thickness (dP > dL). The free energy cost goes as jdP � dLj2

in a harmonic approximation, where dP denotes the intramembranous protein
hydrophobic thickness, and dL is the lipid hydrophobic thickness [72] (see Fig. 3.1).
Stretching or compressing the lipid chains shrinks or expands the cross-sectional
area per lipid molecule at the aqueous interface. The area per lipid next to the
protein is less than for the bulk lipids if the protein hydrophobic thickness exceeds
the unperturbed bilayer. By contrast, the hydrophobic matching of a protein to a
thick membrane compresses the fatty acyl chains of lipids, yielding a greater area
per lipid at the aqueous interface.

3.4.1 Short-Range Solvation Versus Collective Proteolipid
Couplings

Despite that hydrophobic matching is simple and intuitively appealing, it focuses
mainly on short-range interactions. It may overlook longer-range collective inter-
actions among the lipids [19] and proteins [12, 16]. Among the basic differences
between membrane proteins and globular proteins is that the forces are more
isotropic for the latter. By contrast, the forces acting on membrane proteins are
anisotropic; they exist in the stress field of the lipid bilayer. Because the forces
are not averaged to zero over the protein surface, long-range elastic interactions
come into play [14]. As first shown [11, 12], experimentally it is found that
increasing the lipid to protein molar ratio yields a greater population of light-
activated rhodopsin (MII state) [12, 75, 88], The influence of the lipid/protein



3 Membrane Lipid-Protein Interactions 67

ratio implies a persistence length for the perturbation extending away from the
proteolipid boundary, suggesting a role of curvature forces in the elastic membrane
deformation [45].

3.5 Lipid Miscibility and Raft-Like Mixtures
in Biomembranes

However, first let us turn to the subject of lipid rafts in mammalian cellular
membranes. The topic has been thoroughly discussed [30, 85, 93], and here only
a brief synopsis will be given. Cellular membranes are very diverse in their lipid
and protein compositions, and raft-like microdomains are proposed to exist in the
10–100 nm size range due to collective intermolecular interactions [1]. In the plasma
membranes of mammalian cells, rafts are associated with cholesterol and high-
melting lipids like sphingomyelin, which can separate from lower-melting lipids in
the bilayer [41, 95]. They may be involved with protein segregation and signaling,
membrane trafficking, budding of viruses, and other key cellular processes.

3.5.1 Miscibility of Cholesterol in Mammalian Cellular Plasma
Membranes

Models for raft formation often rely on lipid mixtures with cholesterol that segregate
into liquid-ordered (lo) and liquid-disordered (ld) regions [95]. When cholesterol
and high-melting lipids like sphingomyelin or PE occur together with lower-
melting lipids like PC, nanoscale heterogeneities or phase separations of lo regions
from ld regions can result [1, 41, 60]. For raft-like (lo) nano- or microstructures,
evidently the lipid-protein interactions are comparable to the lipid-lipid interactions
[85]. Because of nonideal mixing with cholesterol, the effects of proteins on
raft-like lipid mixtures can differ from their effects on the lipid solid-ordered to
liquid-disordered (so–ld) phase transition. The lipid-protein coupling resembles
interactions among the lipids themselves, either in the ld state, in lipid rafts, or when
liquid-liquid immiscibility is present. Broadening of the order–disorder transition
due to cholesterol can facilitate interactions of lo or ld regions with proteins, and
thereby modulate their activities [1, 85].

3.5.2 Lamellar to Nonlamellar Phase Transitions
and Cholesterol in Lipid Mixtures

In mammalian cells, cholesterol is predominantly located in the plasma membrane,
and moreover lipids are present with a tendency to form nonlamellar phases. The
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major influence of cholesterol is a condensation of the bilayer plus an umbrella
effect, whereby it is located beneath the polar head groups, acting as a spacer
between the lipid molecules [20]. Furthermore, cholesterol affects the membrane
curvature free energy, because the local membrane thickening correlates with an
increased bilayer bending modulus, accompanied by a weakly negative spontaneous
curvature (see below). Cholesterol strongly favors the planar bilayer state, and
because like dissolves like [69], it will segregate from lipids with a more negative
spontaneous curvature. Such membrane curvature-driven interactions have been
previously discussed for proteins within regard to general bilayer-mediated lipid
influences on function.

Accordingly, the order-disorder phase transitions or the presence of lipid rafts are
moderately affected by the proteolipid coupling, consistent with the standard FMM.
Evidently that is not the case for the lamellar to nonlamellar phase transition of
lipids with fluid, liquid-crystalline chains (see below). The lamellar to nonlamellar
phase transition can be more strongly perturbed by cholesterol or proteins [31]. The
strong proteolipid coupling is a marked shift away from the FMM [87], and might
account for separations of nanosocale raft-like heterogeneities in cellular plasma
membranes. For example, membrane curvature forces might stabilize raft-like lipid
clusters, where greater local bilayer thickness due to cholesterol is compensated
by curvature of the surrounding membrane. Strong out-of-plane curvature forces
giving rise to the lamellar to nonlamellar phase transition might be connected to
protein stability in nansocale raft-like heterogeneities with cholesterol. Another
possibility is that the physical state of the lipids might resemble critical fluids,
involving a proximity to a miscibility critical point in the temperature-composition
phase diagram [46], as considered below.

3.6 Critical Behavior in Cellular Membranes

The possible influences of lateral phase separation and/or critical behavior have
long been discussed with regard to collective lipid-lipid and lipid-protein inter-
actions. For lipid rafts [1, 85], these concepts have been recast by supposing the
membrane lipid composition is near a miscibility critical point [46]. For example,
large susceptibilities are exhibited by supercritical systems, meaning that small
inputs can produce sudden or large changes. Shifts can occur from one state to
another with more sensitivity than would otherwise be possible. In analogy with
supercritical solvents, compositional fluctuations could explain lipid influences on
protein function in mammalian cellular membranes.

3.6.1 Miscibility Critical Points of Lipid Mixtures
and Biomembranes

Previously, it has been suggested that the cellular lipid composition is regulated so
the order-disorder phase transition is optimized versus the growth temperature [26].
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For biomembranes, the collective interactions can involve clusters of the protein and
lipid molecules due to nonideal mixing. Local regions of the proteolipid assembly
can differ in the bilayer thickness or area per lipid molecule [54, 78]. What is more,
the lipid compositions of plasma membranes of living cells may be controlled to
be near a critical point at the growth conditions, e.g., as shown by fluorescence
microscopy [46, 94]. In the region of a critical point, nanoscale collective inter-
actions among the lipid and protein components could affect membrane function.
Homoeostasis of criticality could apply to cellular plasma membranes with high
levels of cholesterol, whereby living cells adjust their proximity to a miscibility
critical point due changes in growth temperature or nutrient conditions. Large-scale
fluctuations of the system may be enhanced, in which small perturbations yield a
transition from one functional state to another [94, 95].

3.6.2 Lipid Bilayers and Biomembranes Treated as Critical
Fluids

For model lipid mixtures with cholesterol, collective fluctuations are detected by
fluorescence microscopy and by NMR spectroscopy at nearly critical temperatures
[95], with correlation lengths in the 10-nm to �m range. Ternary lipid mixtures with
a critical composition may traverse a miscibility critical point with changing tem-
perature, where the correlation length for the compositional fluctuations diverges.
Besides model ternary lipid mixtures, such critical behavior has been proposed
to occur for the plasma membranes of living cells [94]. Upon cooling, plasma
membrane vesicles are observed to phase separate into coexisting liquid-like phases
[94] (Fig. 3.3). The correlation length depends on the proximity to the critical point
in the temperature-composition phase diagram, meaning that a large range of cluster
sizes can occur (10-nm to �m range) (Fig. 3.3).

In living cells, such critical behavior is associated with the presence of functional
raft-like lipid domains. For example, mammalian cellular plasma membranes may
be tuned to criticality, and might exploit properties of the supercritical solvent
to detect and respond to environmental stimuli. Moreover critical Casimir forces
could affect or mediate long-range interactions among the protein molecules over
5–10 nm length scales and beyond, potentially involving raft-like heterogeneity
in cellular membranes. Yet, there are counterexamples of membranes low in
cholesterol or sphingomyelin [15, 59], where appreciable influences of lipid-protein
interactions exist. Because cholesterol is mainly found in mammalian cellular
plasma membranes, the universality of raft-like phenomena or supercritical behavior
might be somewhat overstated.
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Fig. 3.3 Critical fluctuations are proposed to occur in giant plasma membrane vesicles derived
from living rat leukemia (mast) cells [94]. (a) Percentage of lipids from mammalian cells
in coexisting liquid phases versus temperature. (b)–(d) Fluorescent micrographs for individual
giant membrane vesicles. Domain-boundary fluctuations occur at lower temperatures and lateral
compositional fluctuations at higher temperatures. (e) Bottom row shows control lipid mixture
(Figure adapted with permission from Ref. [94]. Copyright (2008) American Chemical Society)

3.7 Lipid Membranes as Generators of Curvature Stress

An alternative to considering hydrophobic mismatch or lipid criticality is to treat
a continuous membrane lipid film [3, 13, 14, 21, 79]. Both plant and animal
membranes contain lipids with a tendency to form nonlamellar phases [31, 59, 97].
For membrane shape deformations or fluctuations due to proteolipid couplings,
applying the differential geometry of curves and surfaces [47] leads to the flexible
surface model (FSM) [10, 14]. In this approach, the free energy of elastic curvature
deformation of the membrane lipid bilayer affects the stability and appearance of
protein functional states that modulate key biological functions, such as transport,
ion conduction, and signaling.

3.7.1 Bilayer Force Field and Profile of Lateral Pressures

For the lipids (Fig. 3.4), within the head group region, attractive and repulsive
interactions at the polar–nonpolar interface affect the area per molecule [62, 73,
78]. The lateral pressure profile has three main contributions (Fig. 3.4a, b) [22, 63,
84]. (1) The attractive pressure (FL/W ) (negative) corresponds to the surface tension
(�L/W ) of the hydrophobic acyl groups with water [84]. The lipid/water interfacial
tension �L/W manifests the hydrophobic effect, and minimizes the interfacial area.



3 Membrane Lipid-Protein Interactions 71

Fig. 3.4 Phospholipid self-assembly entails a balance of forces due to the polar head groups and
nonpolar hydrocarbon chains. (a) Schematic plot of lateral pressure along the bilayer normal
versus bilayer depth. (b) The attractive force (pressure) at the lipid/water interface (FL/W ) from
the hydrophobic effect balances the repulsive force (pressure) of the head groups (Fhead) and acyl
chains (Fchain). (c) Molecular packing parameter for lipids with different head groups and acyl
chains (shown within their geometrical shapes). (d) The spontaneous (intrinsic) curvature of a
lipid monolayer due to the lateral force imbalance: positive (towards hydrocarbon), zero (planar),
or negative (towards water) (Figure adapted with permission from Ref. [16]. Copyright (2012)
American Chemical Society)

Additional attractive interactions include head group dipole and hydrogen-bonding
forces, that act together with the long-range van der Waals force involving the
acyl chains of the two monolayers [78]. (2) In the head group region, the lateral
pressure (Fhead) arises from steric, hydration, and electrostatic effects; though
typically repulsive, it is can include an attractive part from hydrogen-bonding
interactions. (3) Within the chain region, the repulsive lateral pressure (Fchain) is
due to thermal bond rotational isomerizations. Together, the repulsive head group
pressure and the acyl chain pressure compensate the attractive lipid/water interfacial
tension, so the resultant lateral pressure is zero at equilibrium. For a particular head
group size, the area per lipid restricts the acyl packing [78], yielding the observed
microstructures. Competition of attractive and repulsive forces governs the self-
assembly and polymorphism of the lipids, including their interactions with proteins
and peptides.

The molecular packing parameter is due to the balance of opposing forces
acting upon the lipid polar head groups and the nonpolar acyl chains [48, 84, 91].
Amphiphiles with a greater head group size versus the chains, such as lysophos-
pholipids, single-chain detergents, or gangliosides, favor packing into a conical
molecular shape on average (Fig. 3.4c, top). They form micelles or normal
hexagonal HI phases, and are analogous to an oil-in-water dispersion [84]. Lipids
with intermediate size head groups, for instance PC whose head group is methylated
versus PE, pack on average with a cylindrical molecular shape, and form a planar
lipid bilayer (Fig. 3.4c, middle). Finally, lipids with small head groups as opposed
the chains, such as PE, pack into an inverted conical molecular shape on average
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(Fig. 3.4c, bottom). They form the reverse hexagonal HII phase, which corresponds
to a water-in-oil dispersion [84, 91]. Optimum packing of the lipids thus depends
on the lateral pressure profile (Fig. 3.4a), and corresponds directly to the curvature
energy [59, 76].

3.7.2 Intrinsic (Spontaneous) Curvature of a Lipid Monolayer

The reader should appreciate that the lateral pressure profile is invisible; it cannot
be measured experimentally. By contrast, the spontaneous curvature H0 of an
individual lipid monolayer is accessible for nonlamellar phases of membrane lipids
exposed to dual solvent stress [81]. The difference of the optimum cross-sectional
areas of the lipid head groups versus the chains gives a bending moment for the lipid
monolayer. The spontaneous (intrinsic) monolayer curvature (H0) can be positive
(towards hydrocarbon), zero, or negative (towards water) (Fig. 3.4d). It becomes
more negative as temperature rises, or hydration is less, giving a sequence of
nanostructures in the phase diagram [16]. Additional phases with curvature include
microemulsions and bicontinuous cubic phases. The gyroid (G), Schwartz diamond
(D), and primitive (P) minimal surfaces (where the mean curvature is everywhere
zero) are connected via the Bonnet transformation [47]. Here the lipid or surfactant
film is wrapped or draped onto an infinite periodic minimal surface, yielding a
labyrinth of aqueous channels (so-called plumber’s nightmare).

Now when the optimum head group separation exceeds the chains, there is
a tendency to curl towards hydrocarbon (Fig. 3.4d, top). The head groups have
their greatest aqueous exposure, as in the case of single-chain surfactants (e.g.,
lysolipids), glycolipids, and gangliosides. The positive spontaneous (intrinsic)
curvature (H0) is expressed by formation of small micelles or the type-1 hexagonal
(HI) phase (or wormlike micelles), with the head groups outside and the chains
inside the aggregate. By contrast, lipids with smaller head groups or larger chains,
as for double-chain phospholipids, involve less exposure to water. Hence they favor
a more condensed membrane surface, with a smaller interfacial area per lipid. If the
optimal head group separation matches the chains, there is just a minor tendency
of a monolayer to curl, as in the case of PCs. The spontaneous curvature H0 is
approximately zero and the planar lipid bilayer is stabilized, as in the fluid-mosaic
model (Fig. 3.4d, middle). Lastly, the lipids with smaller head groups are even
more dehydrated. Because the optimum polar head group separation is less than
the chains, the lipid monolayer bends towards water (Fig. 3.4d, bottom), e.g., as
in unsaturated and polyunsaturated PEs with a negative spontaneous curvature. As
a result, the type-2 hexagonal (HII) (or cubic) phases are formed, where the head
groups are inside and the chains outside the lipid nanostructure.
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3.7.3 Curvature in Lipid-Protein Interactions

At this point the reader should note that the above curvatures are not implicit. They
correspond to bending of a pivotal (neutral) plane, a mathematical surface located
beneath the monolayer aqueous interface, where the lateral area is constant [81].
What is striking is not so much the topology of the nanostructures, but rather the
monolayer interfacial curvature (Fig. 3.4d). Lipids that adopt nonlamellar phases,
such as the HII phase, have a negative spontaneous curvature H0 (toward water). In a
planar bilayer, there is a deviation of the geometric mean curvature H (which is zero)
from the H0 spontaneous curvature. The two monolayers are held together by the
hydrophobic effect and packing forces. For an individual monolayer, the curvature
mismatch is due to the chain packing interactions with the other monolayer. Despite
the fact that a bilayer is flat on average, the two monolayers can still have an intrinsic
tendency to curl [14, 43, 84].

3.8 Lipid-Protein Interactions and Curvature Forces

The implication of curvature elastic stress in membrane protein conformational
changes was initially proposed based on experimental studies of rhodopsin [39,
97]. Lipid substitution experiments plus monitoring of protein transitions provides
a connection of lipid properties to functional states [17]. The lipid effects are
chemically nonspecific, indicating that biophysical properties are involved, although
chemically specific interactions may also be significant [56, 57]. Experimental tests
of the validity of the biophysical concepts have been carried out using UV-visible
and FTIR spectroscopy [12, 88–90].

3.8.1 Elastic Curvature Stress of Proteolipid Membranes

One possibility is to conduct numerical membrane simulations [21], or alternatively
a simpler continuum approximation can be implemented [55, 66]. As an illustration,
let us return to the lateral pressure profile [22, 51, 63, 92]. Its influence on lipid-
protein interactions amounts to investigating the curvature elastic force field of the
membrane [14, 63]. So-called frustration of the spontaneous curvature (H0) by the
chain packing energy of the bilayer yields elastic deformation of the monolayer
leaflets [14]. Because the bilayer thickness is much smaller than its area, the Helfrich
approach of introducing differential geometry and curvature elasticity is applicable
at the cellular membrane level [21, 45, 79]. Still, the extension to the mesoscopic
regime of lipid-protein interactions—intermediate between the molecular size and
the macroscopic dimensions—needs some additional development.
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Fig. 3.5 Application of differential geometry explains lipid influences on membrane protein
function. (a) Membrane distortion is described by two principal curvatures (given by the
intersection of normal planes with the surface). The principal curvatures can be the same or
opposite in sign as depicted. (Figure courtesy of J. Kinnun.) (b) Flexible surface model (FSM)
for membrane lipid-protein interactions. Top: hydrophobic thickness of protein is less than lipid
bilayer giving compression of the acyl groups. Bottom: protein hydrophobic thickness exceeds the
bilayer yielding stretching (expansion) of lipid chains. Competition of monolayer bending with the
proteolipid solvation energy governs the functional protein states (Figure modified with permission
from Ref. [17])

3.8.2 Bending Free Energy of a Flexible Surface

Now in a flexible surface model (FSM), curvature deformation at the prote-
olipid boundary competes with hydrophobic solvation of the protein by the lipids
(Fig. 3.5). Following Helfrich & Servuss [45], the curvature free energy for
deforming a soft (flexible) surface is given by,
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Here r1 and r2 are the two principal radii of curvature for a particular topology
(geometrical shape) (Fig. 3.5a). The mean-curvature bending modulus is denoted
by 	 and 	 is the modulus of Gaussian curvature [47]. Starting from Eq. (3.1), the
free energy density can be expanded in c1 D 1/r1 and c2 D 1/r2, which are the two
principal curvatures (Fig. 3.5a). By expressing the free energy in terms of the mean
curvature H D (1/2)(1/r1 C 1/r2), and introducing H0 as the spontaneous curvature
(where the bending energy is minimized), one can separate out a Gaussian curvature
term K D 1/r1r2 yielding further simplification. The resulting free energy density per
unit area depends explicitly on the curvatures and the corresponding elastic moduli.
For an individual monolayer of a lipid bilayer, it reads [45]

gc D 	.H � H0/2 C 	K; (3.2)
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where the curvature free energy is obtained by integrating over the surface. Eq. (3.2)
states that the displacement of the mean curvature from its spontaneous curvature
together with the Gaussian curvature is related to the curvature energy. When the
curvature free energy is not at a minimum, the system is considered as frustrated.

3.8.3 Competition of Curvature and Hydrophobic Forces

For membrane systems, additional free energy terms must counterbalance the
curvature free energy, e.g., due to the proteolipid solvation energy [7, 10]. Let us
next consider two states of a membrane protein (designated 1 and 2) in a mixture
of two lipid types (designated i and j). The hydrophobic thickness is related to the
protein hydrophobic surface with areas A1 and A2 and with lipid mean curvatures
H1 and H2 in the two states (Fig. 3.5b). The spontaneous curvature is then given
by H0 D Hi

0Xi C Hj
0Xj where in the mixture Xi and Xj are the mole fractions of

the two lipids. For simplicity, we assume that lipid i favors the planar bilayer (zero
H0), and lipid j favors the nonlamellar (reverse hexagonal) state (H0 < 0), yielding
H0 � Hj

0Xj for the spontaneous curvature. The standard free energy change �Go

per protein molecule is then,

�Go=NA D �	
�

ALH2Hj
0

�
NLXj C ��A; (3.3)

D �	 .ALH2NL/ H0 C ��A; (3.4)

where H1 � 0 and to linear order H2 << 1. The spontaneous curvature Hj
0 is

due to the nonlamellar-favoring lipids, and 
A � A2 � A1 is the change in protein
hydrophobic surface area. In addition ” is the proteolipid surface tension, which
is approximately the same for both lipid types; AL is the cross-sectional area per
lipid [78], NL is the number of lipids per protein, and all other symbols have their
standard meanings. For simplicity, neither the Gaussian (saddle splay) curvature nor
the protein free energy is included explicitly. Note the value of H0 is approximately
the inverse radius of curvature (RW) of the HII-phase nanotubes for nonlamellar
lipids under dual solvent stress [81].

In Eqs. (3.3) and (3.4) the first term is negative, yielding a driving force for the
conformational change. The curvature frustration is counterbalanced by the second
positive term, due to the work of expanding the proteolipid hydrophobic surface
area (volume). According to the FSM, the free energy change is linear in the mole
fraction (Xj) of the nonlamellar-forming lipid in the mixture. In addition, the free
energy change depends on the lipid/protein molar ratio (NL), as first shown for
rhodopsin [12]. The equilibrium constant K for the protein transition thus depends
on both the spontaneous curvature and proteolipid interfacial tension, as given by
Eq. (3.4), where K D exp(�
Go/RT). The FSM is a simple robust theory with very
little mathematical detail that can obscure the biophysical significance.
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3.8.4 Magnitude of the Curvature Free Energy

To summarize at this point, the power of the curvature forces in membrane
deformation is illustrated by considering the free energy density given by Eq. (3.2).
For a lipid bilayer, we can adopt representative values of 2	 D 4 � 10�19 J with
a mean monolayer curvature of 1/(40 Å) [37, 44], an area per lipid of 70 Å2 [78],
and 100 lipids/protein molecule. Applying Eq. (3.2) to a planar membrane then
gives an appreciable curvature free energy of � 0.5 MJ/mol protein. What is more,
only �10 kJ/mol protein is needed to shift the equilibrium mainly from reactants
to products. Sufficient free energy is thus contained within the bilayer stress field to
drive the membrane protein conformational changes.

3.9 Curvature Elastic Stress in Membrane Protein Function

The flexible surface model (FSM) has been proposed as an option to the standard
fluid-mosaic model that includes the strong proteolipid couplings [10, 12, 14, 39].
It remains under active discussion to explain functional lipid-protein interactions
[16]. Here a material science picture is introduced at the mesoscopic length scale, in
between the macroscopic membrane and the molecular size. For integral membrane
proteins, the long-range elastic bilayer deformation energy and the short-range
proteolipid solvation energy influence the general bilayer-mediated interactions.
The absence of molecular specifics is both a strength and weakness of the simple
continuum theory, which can be refined once the underlying bilayer forces are
identified.

3.9.1 Flexible Surface Model for Membrane Lipid-Protein
Interactions

Experimentally, the effects of nonlamellar-forming lipids on membrane protein
function [6, 15, 27, 31, 34, 49, 50, 74, 82, 96, 98] point to an influence of curvature
elastic forces [5, 10, 12, 14, 28, 40, 55, 66, 97]. There are two relevant surfaces in
a continuum view: the lipid/water interface and the lipid/protein interface [40]. A
key prediction of the FSM (Fig. 3.5b) is that nonlamellar-forming lipids modulate
the energetics of integral membrane proteins, as experimentally first shown for
rhodopsin [14, 97], and subsequently for other proteins such as mechanosensitive
ion channels [77]. Lipid interactions with the intramembranous protein surface
(solvation energy) and with water (hydrophobic effect) yield small differences in
large opposing forces that affect the lipid-protein interactions [12].

According to the FSM, the functional lipid–protein interactions are explained by
elastic deformation of the individual monolayers of the membrane film [12, 14].
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If the protein shape is altered (Fig. 3.5b), then the free energy of the system
of interacting protein, lipids, and water is modified [10]. In Eqs. (3.3) and (3.4)
changing the monolayer curvature H away from its spontaneous (intrinsic) curvature
H0 gives a contribution to the free energy that is frustrated (balanced) by the
lipid-protein solvation energy. If the spontaneous (intrinsic) curvature of a lipid
monolayer differs from the curvature at the proteolipid boundary, then a lipid-
mediated force exists that affects the energetics of the membrane protein shape
(conformational) changes. The spontaneous curvature (H0) amounts to bending
a neutral (pivotal) plane, where the lipid cross-sectional area remains constant
(Fig. 3.5b). Hydrophobic coupling entails the local expansion or compression of
the bilayer next to the proteolipid interface (dP � thickness adjacent to proteolipid
interface; dL � thickness of unperturbed bilayer).

For sake of illustration, let us assume a membrane protein with an equilibrium
between two states, differing in its protrusion from the lipid bilayer (e.g., the
inactive MI and active MII states of rhodopsin) [83]. Then work is done in the
conformational change, and decreasing the curvature frustration due to lipids with
a negative spontaneous (intrinsic) curvature (like PE) (Fig. 3.5b) can stabilize the
more protruded (thicker) state of the protein. With rhodopsin as an example, lipids
with approximately zero spontaneous curvature H0 shift the activation equilibrium
toward the inactive MI state; while lipids with negative H0 adjust it toward the
active MII state [40, 97]. Additional molecular support for the FSM [14] comes
from X-ray crystallography [25] and site-directed spin labeling studies [2], which
show an extension of TM helix H5 plus a change in tilt of helix H6 upon rhodopsin
activation.

3.9.2 Free Energy Landscape and Functional States
of Membrane Proteins

Coming back to rhodopsin as a sensor of curvature stress [31, 97], according
to Eq. (3.3) the lipid/protein ratio affects the formation of the active MII state
[12, 75, 88], as first shown by Botelho et al. [11]. We now consider the second
FSM prediction: in addition Eqs. (3.3) and (3.4) imply the free energy change is
linear in the mole fraction (Xj) of the nonlamellar-forming lipids in the mixture
[10, 39]. Here we recall that unsaturated PEs have negative H0 (curvature toward
water) whereas H0 � 0 for PCs (low tendency to curve) [91]. For rhodopsin plots of
lnK for the MI–MII equilibrium (Fig. 3.6a) in a series of DOPE/DOPC recombinant
membranes versus the effective spontaneous curvature show an approximately
linear dependence [10], where K D exp(�
Go/RT). Further support comes from
studies of recombinants of rhodopsin with head-group methylated PEs and polyun-
saturated SDPE lipids [89] (Fig. 3.6b). Once again, an approximately linear
dependence is obtained when lnK is plotted against the radius of spontaneous
curvature (R0 � 1/H0). For all the PE-containing membranes, a positive linear
slope is found, consistent with a negative curvature (H2) (towards water) at the
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Fig. 3.6 Phosphoethanolamine (PE) lipids govern rhodopsin light activation in membranes due
to curvature elastic deformation. (a) Plot of lnK (at T D 28 ıC) for rhodopsin in DOPE/DOPC
membranes against spontaneous curvature (Eq. 3.4) given by inverse water-core radius (RW) of
HII-phase cylinders. Inset: corresponding plots versus mole fraction (XDOPE) of DOPE lipids. (b)
Graph of lnK (at T D 37 ıC) for rhodopsin against spontaneous curvature defined by inverse
radius (H0 � 1/R0) of HII-phase nanotubes for head-group methylated PEs. Inset: plots versus
mole fraction of methylated PE lipids and polyunsaturated SDPE lipids. The results collapse to a
universal relation as a function of spontaneous curvature (H0) of the lipid mixtures (Rhodopsin data
are from Refs. [10, 89] and lipid data are from Refs. [37, 44, 52]. Figure modified with permission
from Ref. [18])

proteolipid boundary [10, 14, 39]. What is more, the above inferences are supported
by plasmon-waveguide resonance (PWR) studies [83], and by the latest X-ray
structures of active rhodopsin [25, 32]. Similar treatments of mechanosensitive
channels [77, 79] also involve coupling of the protein shape and conformation to
mechanical curvature forces.
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3.10 Soft Matter and the Role of Membrane Water

Although X-ray crystallography, cryoelectron microscopy, and NMR spectroscopy
are widely used for investigating membrane proteins, elucidating the role of water
plus membrane lipids (soft matter) needs complementary strategies. For rhodopsin,
molecular dynamics (MD) simulations show that bulk water molecules flood the
protein interior during light activation [58]. Recent experimental osmotic stress
studies have uncovered how changes in its hydrated volume within the lipid bilayer
are coupled to signaling [24]. In proteolipid membranes, osmotic stress involves the
effects of water on both the proteins and the lipids. For the lipid effect, osmotic stress
(dehydration) increases the (absolute) monolayer spontaneous membrane curvature
[16], which stabilizes the active MII state [15]. Dehydration of the lipid bilayer
also increases its thickness [62], and likewise favors the active MII formation [15].
The osmotic lipid effect is opposite to the protein effect: experimental studies
show that osmotically stressing rhodopsin (dehydration) stabilizes the preactive
MI state upon light absorption. Using thermodynamic relations approximately 60–
80 water molecules flood the protein core. Because of the large influx of bulk
water [58], the protein effect is dominant. The balance can be tipped from one
state to another, depending on the level of hydration of rhodopsin within the lipid
membrane.

The flexible surface model (FSM) includes the soft matter of the membrane,
explaining the influences of both the lipids and water. For rhodopsin, water does
not just passively enter the binding pocket upon opening of the protein. It directly
couples to the metarhodopsin equilibrium that occurs upon light illumination. Most
surprising, the apparent number of water molecules can have a positive value,
due to a water influx upon rhodopsin activation, or a negative value, involving
displacement (efflux) of water by transducin-derived peptides. In this way wet-
dry cycling of the binding cleft of rhodopsin for its cognate G-protein transducin
explains the high fidelity, rapid visual signaling by an sponge-like alternating
mechanism [24]. Properties of the soft membrane matter (lipids and water) play
an important role, whereby the energetic balance modulates the activity in visual
signaling.

3.11 Membrane Proteins as Inducers and Sensors
of Curvature Stress

According to the flexible surface model, curvature elasticity involves long-range
proteolipid interactions (extending over > 1 molecular diameter), and is fun-
damental to membrane structure, assembly, and function. Collective lipid and
protein interactions can extend across multiple length scales, and emerge from the
atomistic-level forces. The coupling of the lipids and proteins provides various ways
that cells or organelles can change their shape, e.g., as in the case of endocytotic
vesicles or caveolae, or budding of membrane-encapsulated viruses like HIV or
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influenza. The different means whereby proteins can interact with membrane lipids
to produce curvature stress are highly active topics of biophysical investigations at
present [4, 86].

3.11.1 Proteins That Induce and Sense Membrane Curvature

Increasingly it is becoming understood how curvature-inducing or curvature-
sensing proteins can dramatically affect lipid structural changes, enabling them to
partake in trafficking, membrane fusion or fission, or/and cell division. Recently,
cellular shape transformations have led to a focus on proteins known as BAR
(Bin/amphiphysin/Rvs) domains (Fig. 3.7a) [36, 67, 86]. The BAR domain super-
family includes amphiphysin and endophilin, which may participate in clathrin-
mediated endocytosis. Transitions in membrane shape or topology and remodeling
of lipid microstructures [4, 67, 86] entail an important role for multiscale lipid-
protein interactions. Because the size of the membrane is much greater than the
thickness, a continuum approach [47] that is founded on differential geometry is
applicable. Here we have further elaborated with regard to nanoscale lipid-protein
interactions how such a continuum view is complementary to molecular approaches.

Fig. 3.7 Membrane remodeling in cellular biology entails lipid-protein interactions. (a) Depiction
of how BAR (Bin/amphiphysin/Rvs) domains bind to lipid membranes as dimers through their
concave surface [67]. The amphiphysin BAR domain interacts either with low-curvature (above)
or high-curvature (below) lipid membranes. (b) Multiscale coarse-grain simulation of vesicle
remodeling by N-BAR domains [86]. (c)–(e) The N-BAR proteins organize into string-like
meshworks leading to buds, tubules, or vesicles (Figure modified with permission from Refs. [67
and 86])



3 Membrane Lipid-Protein Interactions 81

3.11.2 Bilayer Remodeling and Membrane Shape Transitions

At the protein level, the insertion of amphipathic helices into bilayers takes on added
importance by providing molecular insights into membrane bending. Amphiphysin
and endophilin are among the proteins of the BAR domain superfamily that are
involved in eliciting the membrane curvature [36]. The BAR domains include an N-
terminal amphipathic ’-helix (N-BAR domains) that acts as a wedge, causing local
buckling of the bilayer polar-apolar interface (Fig. 3.7a). In addition the F-BAR
proteins are involved with membrane curvature induction, and the I-BAR proteins
(inverse-BAR) stabilize tubulations [36]. Cryoelectron microscopic reconstructions
have uncovered how the BAR proteins are organized on membrane tubules. Notably,
coarse-grain molecular dynamics (MD) models of N-BAR domains interacting with
flat membranes and vesicles yield further structural insights (Fig. 3.7b) [86]. These
findings show that binding of N-BAR domain proteins to lipid membranes entails
their linear association or polymerization into webs or networks (Fig. 3.7c–e). Cur-
vature stress imposed by N-BAR proteins yields endocytotic vesicular deformations,
in which proteins assemble at the base of the emerging membrane buds [86]. An
increasing number of diseases connected with BAR protein dysfunction suggests
new therapeutic strategies in molecular and translational medicine [36].

3.12 Summary

The viewpoint of lipids as liquid-crystalline soft matter occupies an important place
in cellular membrane biophysics. Identifying how dysfunction and dysregulation
happen at the cellular membrane level can contribute to our understanding of
diseases such as cancer, cardiovascular disease, and visual disorders like retinitis
pigmentosa. Elastic remodeling within the membrane is related to conformational
transitions of proteins [14, 16] that affect folding, stability, and organelle or cellular
shape changes. The spontaneous (intrinsic) curvature H0 is a material property that
accounts not only for the membrane lipid nanostructures, but also the functions of
lipid-embedded proteins such as GPCRs, ion channels, pumps, and transporters.
Cellular processes that occur within the stress field of the membrane [14] include
budding of viruses like influenza, dengue, or HIV; membrane biogenesis and
trafficking; and membrane protein folding mechanisms [9, 80]. Understanding
how membrane lipids control protein states within the bilayer motivates the new
biophysics at the crossroads of structure, function, and mechanism.
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Chapter 4
Principles of Mechanosensing at the Membrane
Interface

Navid Bavi, Yury A. Nikolaev, Omid Bavi, Pietro Ridone, Adam D. Martinac,
Yoshitaka Nakayama, Charles D. Cox, and Boris Martinac

Abstract Mechanotransduction is a general term for all physiological processes
through which living cells sense and respond to external and/or internal mechanical
stimuli. These stimuli are converted into electrochemical intracellular signals via
various mechanosensory transducers eliciting specific cellular responses. Among
the many molecular mechanosensors found in living cells, mechanosensitive (MS)
ion channels form a group of the fastest signaling molecules essential for cellular
mechanotransduction. In this chapter, we discuss the basic principles of ion channel
mechanosensitivity and highlight the importance of the surrounding lipid bilayer,
cytoskeleton and extracellular matrix. We also discuss how these facets of channel
mechanosensitivity may be reduced to changes of the transbilayer pressure profile
and MS channel conformations that mutually affect each other according to the
‘force-from-lipids’ paradigm.
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4.1 Mechanotransduction

Mechanotransduction refers to the physiological processes through which living
cells sense and respond to mechanical stimuli by converting them into electrochem-
ical signals that in turn elicit specific cellular responses [1]. In bacteria and plants,
mechanotransduction processes are involved in osmoregulation, and gravitropism.
In mammals, they include cell migration, anoikis and differentiation as well as
whole array of sensory systems [1–11].

4.2 Mechanical Force Pathways in Cellular Signaling

In order for an efficient mechanotransduction process to occur, the living organisms
possess cellular structures able to detect mechanical stimuli called mechanosensors.
Thus, mechanosensors are molecular reporters within cellular structures that link
external mechanical stimuli at the cell surface to intracellular signalling events and
downstream effectors through mechanosensory proteins (Fig. 4.1). There are three
main known mechanosensors in eukaryotes: (i) those formed by the wrinkling and
invagination of plasma membrane (e.g., caveolae, microvilli, and possibly cilia), (ii)
intra- or extracellular elements such as the actin cytoskeleton, glycocalyx, a cadherin
rich cell-cell junction and (iii) mechanosensitive (MS) ion channels. A combination
of the above elements can also be involved in a mechanotransduction process such

Fig. 4.1 Diagram of mechanical stimulation on vascular endothelial cells. Various types of force
transmission pathways in endothelial cells including membrane deformation, extracellular matrix
(ECM) and cytoskeletal elements, cell-cell junctions, cell-surface interaction and MS channels
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Fig. 4.2 Pathways linking mechanical force at the cell surface to intracellular signalling and
downstream effectors. Left: Examples of processes and proteins involved in each step. Right:
External force is sensed by mechanosensors in the plasma membrane, which is linked to extra- and
intracellular adaptors that transmit mechanical signals to targets inside the cell. These pathways
may exhibit positive/negative feedback regulation to all these steps. These mechanotransduction
processes result in modulations of protein expression and cellular functions, including cell
migration, proliferation and differentiation (The diagram has been modified from Pruitt et al. [14])

as dynamic coupling of the inner ear stereociliary (hair) bundle and MS channel
complex which underlies hearing [12, 13].

Cells are exposed to various types of mechanical stimuli, which can be cat-
egorised as (i) extracellular: such as shear forces stemming from fluid flow,
tensile/traction forces from osmotic forces or through the extracellular matrix
(ECM) complex, (ii) intercellular: through cell-cell junctions or mechanosensi-
tive ion channels, (iii) intracellular: contractile forces generated by cytoskeleton
(actomyosin contraction, microtubule etc). Mechanosensor-driven pathways often
involve positive/negative feedback regulation in response to different cell-type
specific stimuli (Fig. 4.2) [14]. Cells can exhibit different behaviors such as stress
stiffening (reinforcement), fluidization and rejuvenation through cytoskeletal re-
organization in response to different mechanical stimuli (both magnitude and type)
and thus transmission/amplification or dissipation of mechanical forces [15]. This
could be a mechanism for several cellular processes such as cell migration or
structural remodeling in arteries in response to high blood pressure [16, 17]. Note
that the basic flowchart shown in Fig. 4.2 does not show some of the auxiliary
and secondary mechanosensing elements and features such as protein-protein
interactions or membrane polarization.

Among the aforementioned mechanosensors, MS ion channels are the fastest in
living cells by responding to mechanical stimuli on a less than millisecond time
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scale [5, 18]. They can transduce the mechanical force directly into electrochemical
signals coupling the cellular machinery within a signaling pathway. For example,
Ca2C influx through MS channel activation may be coupled to gene regulation
through a calcium/calmodulin-dependent pathway [19]. Whereas mechanotransduc-
tion through other cellular mechanotransducers occur over longer time scales (e.g.,
�1 s), such as Src activation in response to localized mechanical stress [20]. That
is why as the fastest mechanotransducers, MS channels are ubiquitously present in
rapid mechanotransduction loci such as in somatosensory neurons.

4.3 Mechanosensitive (MS) Ion Channels

MS ion channels are pore-forming membrane proteins that gate in response to
mechanical force and allow ions to flow across the cell membrane. Over the last
three decades, interest in MS channels has progressed from being seen as an artifact
of patch-clamp recording [21] to becoming a central player in our understanding
of a number of physiological processes. These channels have been shown to play
a key role in osmoregulation (in plants and bacteria), hearing, touch sensation,
proprioception, information processing in the human brain as well as cell volume
and blood flow regulation in mammals [5, 6, 22–25].

Given the ubiquity of mechanical force acting at the cell membrane interface, the
function of many integral membrane proteins can be modulated by the application
of mechanical force [26–28], not just MS channels. For example, membrane tension
has also been known to modulate various voltage-, ligand-, or Ca2C-gated channels
[29, 30]. To demonstrate the degree of sensitivity to mechanical force, a continuum
landscape can be assumed on which all channels reside from highly sensitive (e.g.,
TREK-1) to almost completely insensitive (TWIK-1) (Fig. 4.3) [5, 31].

MS channels can be gated in different ways by mechanical stimuli, which
can be divided into three physically different stress types, stretch-compression,
shear and bending [35, 36]. For example, one channel may be more sensitive to
membrane stretch compared to curvature and vice versa, this is the case for E.
coli (Ec)MscL versus M. tuberculosis (Mt)MscL [37]. Consequently, what is the
definition of a mechanosensitive channel? The presently used criteria for defining
channel mechanosensitivity are as follows [9, 38]:

(i) Localization: The channel must be broadly expressed in the relevant special-
ized mechanosensory cells and localized at the correct position within the cell
(e.g., Piezo2 in Merkel cells).

(ii) Function: The channel must be the primary mechanosensor that elicits the
initial electrical response of the sensory cell. It is best to be able to modu-
late channel function (e.g., activation and inhibition) by introducing genetic
mutations.

(iii) ‘Mimicry’: When the putative MS channel is expressed in heterologous expres-
sion systems, in culture or reconstituted in lipid bilayers, the channel current
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Fig. 4.3 Ion channels sensitivity to mechanical force probed by the patch-clamp technique [32].
All ion channels can be placed on a mechanical continuum from highly sensitive (e.g., Piezo1)
to those that are almost insensitive to mechanical force (e.g., TWIK-1). They cover a broad
conductance spectrum ranging from tens of pS (e.g., ENaC) to 3 nS (e.g., MscL). Note that several
factors such as presence or absence of extracellular or intracellular network and experimental
paradigm (i.e., stimulus type) may shift channels along the spectrum (see [32–34]; modified from
Cox et al. 2016 [32])

should largely recapitulate the properties of the native channel current. Such
properties include conductance, kinetics, activation by agonists, inhibition
by antagonists, and in particular ion selectivity. It is possible that some of
the channel characteristics such as activation threshold are modulated by the
change in the physico-chemical properties of the cell membrane.

(iv) Mechanosensitivity: mechanical force (alone) should activate the channel
under the similar conditions used to determine ‘mimicry’.

Note that very few channels fulfil all these criteria.
To date, a large number of MS channels from organisms of diverse phylogenetic

origins have been identified [39]. In prokaryotes, there are two main families,
MscL-like and MscS-like channels. The mechanosensitive ion channel of large
conductance MscL and mechanosensitive ion channel of small conductance MscS
of E. coli are the prototypes of two very large and diverse families of MS
channels. MscL-like channels are mostly found in bacterial and archaeal cells,
although representatives have been identified in the genomes of some fungi (e.g.,
Neurospora), fungus-like organisms (Phytophthora) and Mycoplasma [40]. The
MscS-like family members are found in cell-walled eukaryotes such as fungi, algae,
and plants [5]. In E. coli there are seven MS channels (one MscL-like and six MscS-
like channels) which can be distinguished based on their conductance, selectivity
and sensitivity to membrane tension. The three main conductances encountered are
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MscM (M for mini), MscS (S for small), and MscL (L for large) [1, 41]. MscM
(a member of MscS-like family) has a conductance of �200–370 pS and is cation
selective [1, 41–43]; MscS conductance is �1 nS and weakly anion selective; MscL
conductance is �3 nS and nonselective. MscS-like channels are activated by lower
membrane tensions than MscL channels (Fig. 4.3).

To date, four major membrane protein families of MS channels have been
identified in animals. These are transient receptor potential (TRP), 2 pore domain
KC (K2P), the epithelial NaC (DEG/ENaC) and Piezo channels [5, 9, 32, 44–49].
In mammals, MS channels are involved in touch and sound sensations as well as
blood pressure regulation. Hence, defects in MS channels are associated with several
pathologies including both hereditary (e.g., skeletal dysplasia and stomatocytosis)
and multifactorial human diseases (e.g. cardiac hypertrophy and arrhythmias)
[50–53].

The structures of MS channels are very diverse and there is little to no structural
identity among different families of MS channels hence they differentially interact
with their surrounding (i.e. lipids, extracellular matrix and cytoskeleton). Among
all known MS channels, structural information regarding the molecular architecture
is available for M. tuberculosis MscL (PDB: 2OAR), E. coli MscS (2OAU),
TRAAK (3UM7), TREK-2 (4XDJ) and Piezo1 (3JAC) which have been resolved
by either X-ray crystallography or cryo-electron microscopy (cryo-EM). It is noted
that structures of several MscL and MscS homologs have been resolved. MscL
forms a homopentameric channel, while MscS and TRAAK form homoheptameric
and homodimeric channels, respectively. In addition, an increasing number of
studies have suggested that TRPV1 (2PNN) and TRPV2 (5AN8) are involved in
osmosensation [46, 54, 55].

4.4 Gating Paradigms of Mechanosensitive Channels

Despite knowing the structure and function of many MS channels, the exact details
of their gating mechanism(s) are unknown. However, it is widely assumed that MS
channels obey one or both of two main gating paradigms: (i) force-from-lipids and/or
(ii) force-from-filament.

4.4.1 Force-from-Lipids

The force-from-lipid principle was established about three decades ago from the
early studies of the MS channels from E. coli [56–58]. The force-from-lipids
concept (bilayer model) [1, 29, 56, 59, 60] purports that force is directly transferred
through the lipid bilayer onto the embedded MS channel (Fig. 4.4a) [56, 61, 62].
Prokaryotic channels MscL and MscS reconstituted into lipid bilayers retained their
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Fig. 4.4 Gating mechanisms of MS channels. (a) force-from lipids (bilayer) paradigm. (b) force-
from-filament (tether or swing) mechanism [32] (black arrows indicate force direction)

mechanosensitivity similar to their activity in the native bacterial membrane [61,
63]. This is the key proof for the force-from-lipids being sufficient for activation
and modulation of MS channels.

Since prokaryotic cells largely lack an animal-cell-like cytoskeleton [58], it is
not surprising that all prokaryotic MS channels are believed to obey the force-from-
lipids principle. This however, does not preclude the possibility of interaction of
bacterial MS channels with their cytoplasmic components, such as interaction of
MscS with cell division protein FtsZ [64]. Moreover, eukaryotic MS channels may
not follow this paradigm just because they have cytoskeletal and/or extracellular
components [38]. In fact inspired by the pioneering studies on prokaryotic MS
channels [63, 65, 66], this paradigm has been rigorously extended to some eukary-
otic MS ion channels, most notably TREK-1, TRAAK [31, 67–69] and Piezo1 [70,
71]. Through reconstitution of purified channel proteins into lipid bilayers, it has
been shown that like bacterial MS channels, Piezo1 and MS members of the K2P

channel family are also inherently mechanosensitive (i.e., gated by mechanical force
according to the force-from-lipids principle). Significantly, this implies evolutionary
conservation of the basic physical principles of mechanotransduction in living cells
from bacteria to humans.

This is particularly important given that Piezo channels have been linked to
a number of physiological processes. Piezo1 plays a central role in vascular
development [73, 74] and remodeling [75], erythrocyte volume homeostasis [76],
endothelial ‘quorum sensing’ [77, 78], urothelium signaling [79], blood pressure
control [80], lymphatic vessel development [81], neural stem cell differentiation
[82] and axonal pathfinding [83]. Central to these functions is the ability of the
MS channel to transduce mechanical force into cellular signals. How the channel
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Fig. 4.5 Mammalian mechanosensitive Piezo1 architecture and a putative membrane-mediated
gating mechanism. (a) Schematic of the side view of Piezo1 structure. (b) Top view of Cryo-EM
structure of mouse Piezo1 as shown in shaded grey surface (PDB: 3JAC) [72]. (c) View from the top
of the human Piezo1 (homology model based on mouse Piezo1) shows the interlocked arrangement
of its 3 subunits at the level of the hydrophobic core of the lipid bilayer. An increase in lateral
bilayer tension is thought to result in a clockwise or counter-clockwise deflection of the ‘Blade’
domains around the ‘Anchor’ and outer helix (OH) domains. This movement ultimately results in
the displacement of the inner helices (IH) away from the center of the pore to allow ion conduction,
as shown in the diagram. This hypothesis aims to explain the intrinsic mechanosensitivity of the
channel different from the Blade-deflection model proposed by Ge et al. (2015) [72]

does this at the molecular level is an open question. In the recently published
medium resolution cryo-EM structure of the mouse Piezo1 homolog [72], the
authors speculated that the large blade domains must play a major role in the
gating cycle of the channel (Fig. 4.5). These large structures are suggested to bend
towards the plasma membrane in response to shear flow and trigger the cascade of
conformational changes necessary for pore opening. Recent work by Syeda et al.
in reconstituted droplet interface bilayers [70] and experiments on membrane blebs
[71] demonstrated how membrane tension alone is sufficient to open the channel.
Whether shear stress and membrane tension instigate different conformational
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pathways to channel activation is unknown. However, it seems likely that there is
a concerted lateral deflection of the transmembrane helices around the central pore
in an iris-like fashion, similar to the bacterial channel MscL. Indeed, regions in
this area are likely to come into close proximity with lipids (Fig. 4.5c), including
the anchor domain which cross-links with cholesterol [84], a known modulator of
Piezo1 function [85].

Piezo1 is one of the most sensitive eukaryotic mechanotransducers identified
and can be activated by tensions much less than 1 mN/m in a variety of cellular
systems (Fig. 4.3). The channel is also characterized by fast inactivation, which
might involve the downward movement of the CED domain to block the pore, in a
mechanism reminiscent of the classical ball and chain model of N-type inactivation
[86, 87]. The loss of inactivation in cell-attached patches means there may also
be a component linked to force propagation and cell mechanics. Alterations in the
inactivation rate of the channel underlie the pathology of many hereditary Piezo-
linked diseases.

Despite the fact that lipids are sufficient to gate MS channels such as TREK-
1, TRAAK and Piezo1, their sensitivity is largely influenced by the cytoskeleton
and extracellular matrix [88, 89]. This can take the form of shielding the channel
from the applied stress (‘mechanoprotection’ [75, 90]) or sensitizing the channel by
focusing the force directly to the channel’s locality. In studies of cell mechanics, it
is assumed that the membrane shares a tiny fraction of any applied mechanical load
and that the cytoskeleton dissipates the resulting stress. Defining what component
is transmitted to the membrane is not a trivial task but is essential if we are to
understand whether membrane tension is a physiologically relevant gating stimulus.

It is indeed obvious ‘that one size does not fit all’ in mechanobiology. For exam-
ple, while Piezo1 can be robustly activated in cell-attached patches by membrane
tension this is not the case for Piezo2, which perhaps intimates a larger reliance
on tethers. Despite these differences both Piezo1 and Piezo2 are physiologically
essential with global knockouts resulting in lethality in mice. In addition, a number
of conditional knockouts are also lethal (Piezo1 in vascular endothelium [74],
Piezo2 in sensory neurons that innervate the lung [91]).

The interaction between the membrane and structural scaffold proteins indicates
that it is not a straight forward task to examine the gating mechanism of MS chan-
nels. A case in point is TRPV4, which is involved in a number of mechanosensory
processes such as volume regulation, osmosensing and possibly nociception [5, 50,
92–94]. Despite being definitively linked to mechanotransduction, how mechanical
force activates this channel is still unclear. Although recordings of TRPV4 currents
from oocytes indicate a direct link with the lipid bilayer [45, 95], other work
suggests more reliance on tethers [96].

None of the above exclusively precludes the possibility of these MS channels
being activated by tether-like molecules it simply shows the evolutionary conser-
vation of this gating modality (force-from-lipids) from prokaryotes to eukaryotes.
It is likely that MS channels adopt more than one gating mechanism depending
on their physiological role. Furthermore, energetic calculations of the gating free
energy shows that the two mechanisms are not mutually exclusive [97], albeit
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one mechanism may be more efficient than another in particular circumstances,
depending on the channel type and their specific physiological roles.

4.4.2 Force-from-Filament

The second gating paradigm is the force-from-filament (also called tethered model or
gating by spring model), whereby force is transmitted to a channel via an auxiliary
structural element (tether) from the intra- or extracellular environment (Fig. 4.4b)
[1, 9, 38].

The archetypal example is the MS channel complex responsible for auditory
transduction, which is believed to follow the force-from-filament principle [98–
102]. Cadherin 23 and protocadherin 15 are the main components of the “tip-links”
which connect the stereocilia, and they couple hair bundle movement to MS channel
activation during hearing or head position [12, 103]. However, despite increasing
efforts, the precise pore-forming subunit of the channel complex remains unknown
[32–34, 104]. For more information on hearing mechanotransduction and their
relevance to force-from-filament principle, readers are referred to the following
articles [13, 33, 103, 105, 106].

So far only NompC, a member of the TRPN channel family, which is involved
in various mechanosensitive responses in Drosophila including gentle touch in
larvae [107, 108], has been shown to follow the force-from-filament gating model.
NompC is present at the dendritic tips of mechanosensory neurons in the Drosophila
(halteres), where it converts forces transmitted through the deformation of the
overlying cuticle into neuronal depolarization. This channel possesses 29 ankyrin
repeats in its N-terminus, which directly associate with microtubules. It has been
shown that this channel can be activated by mechanical force pulling (imitation of
gentle touch) on the ankyrin repeats acting as a tether [47]. Although pulling force
is directly transmitted from the tether to the protein, it does not necessarily exclude
the potential role of membrane lipids in NompC gating.

Similar to TRPN, it has been shown that the activation of TRPV1 channel occurs
largely according to the force-from-filament principle via its ankyrin repeats directly
interacting with the microtubules [44]. However, recently a cryo-EM structure of
TRPV1 has been revealed in a native bilayer using lipid nanodiscs [109]. Using
a toxin activator from the Chinese bird spider, it has been shown that the toxin
dislodges a lipid from a protein pocket enabling a structural transition to the open
state. They speculated that entropy driven removal of lipids from this region by heat
may also underlie TRPV1 heat induced gating. This highlights the role of the lipid
environment in modulating the gating of some “filament-gated” TRPs.

Furthermore, members of the DEG/ENaC family (i.e., MEC-4/MEC-10), which
convey gentle touch in C. elegans and regulatory volume increases in brain cells
[9, 110–113], are believed to be activated by force-from-filament mechanism [39].
Nevertheless, it has been clearly shown that the presence of cholesterol is relevant
for the function of these channels, indicating the importance of the lipid bilayer in
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force transmission to these channels [39, 114]. Similarly, the role of the bilayer has
been investigated for TRPA1, another putative “filament-gated” channel expressed
in peripheral sensory neurons [115]. Gating of TRPA1 can be robustly modulated
by asymmetric insertion of amphipathic molecules into bilayer leaflets (similar to
studies on bacterial MS channels [56, 116]). Consequently, the role of the lipid
bilayer even in mechanosensing by “tethered channels” cannot be ignored.

4.5 Mechanical Force Alters MS Channels Conformational
Equilibrium

MS channels exist in a conformational equilibrium where different states are
populated according to their relative energies. For a system in equilibrium in a
canonical ensemble, the probability of the system being in state with energy G is
proportional to exp. (�G/kBT) [117]. Consider a channel in equilibrium between,
for example, closed A and open B conformations, named nA and nB respectively.
Then,

nB

nA
D exp

�
�

�G
kBT

�
(4.1)


G is the free energy difference between the states, where kB is Boltzmann’s
constant and T is absolute temperature. External mechanical force shifts the
equilibrium among pre-existing states by the amount of work done on the system
W. This leads to a new equilibrium state,
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�
��G C W
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Numerous forms of forces may act on MS channels with their specific membrane
environments and their structure dictating their sensitivity to these forces [32]. The
mechanical work W can be transferred to a channel by the lipid bilayer, intra- or
extra cellular structures or a combination of both. The mechanical stimuli can result
in three distinct types of stress, which are tension/compression, shear and bending
(Fig. 4.6).

In thermodynamics, the free energy of a system, or work done on a system,
is expressed in terms of pairs of conjugate variables such as membrane tension
and areal expansion (Eq. 4.3) or force and displacement (Eq. 4.4). In fact, all
thermodynamic potentials are expressed in terms of conjugate pairs. If the bilayer is
stretched uniformly, then

W D ���AA!B (4.3)

https://en.wikipedia.org/wiki/Canonical_ensemble
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Fig. 4.6 Active physical forces on a membrane patch. Stress is defined as force per unit area and
has three basic forms of tension (stretch) � , shear � s, and bending M, respectively. These quantities
allow characterization of the mechanical response of materials. Channels may deform differently
under tensile/compressive, shear and bending forces

Fig. 4.7 Mechanical force affects channel conformational equilibrium [14]. Schematic illustrating
MS channel gating due to the external work done by (a) force-from-lipids or (b) force-from-
filament [120, 121]. (c) External work (done by membrane tension) overcomes the energy barrier
between the closed and open state of the channel, thus increasing the channel’s open probability

with � being the membrane tension and �AA!B being area change of the protein
in response to membrane tension (Fig. 4.7a). How specific membrane deformations
are linked to MS channel activity is described in Sect. 4.7.

If the force f is directly conveyed from an intra or extra cellular structure to the
MS channel, and causes a conformational distance ı (Fig. 4.7b) then,

W D �fıA!B (4.4)
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The latter model is called the ‘swing model’, ‘force-from-filament’ or ‘gating by
linear force’. External force in form of a moment or shear force may also activate
the channel. In this case, the external work for a linear bending moment is:

W D �M�A!B (4.5)

where M is bending moment and � could be, for example, the degree of out-of-
bilayer plane rotation of a structurally crucial transmembrane helix (e.g., pore lining
helix). Finally, when the stress is caused by a pure linear shear (torsional) force S,
then

W D �S'A!B (4.6)

where ® is the degree of rotation of a structurally crucial transmembrane helix within
the bilayer plane and S is the shear force.

Based on Eq. 4.2, the likelihood of seeing channel activity increases if mechan-
ical force applied (i.e. work is done on the system,W) is sufficient to overcome a
certain energy threshold (i.e. gating energy barrier) (Fig. 4.7c). Examples of gating
energy barriers for MS channels are; TREK-1 is �5 kBT [118] and MscL is �20 kBT
[1, 119]. Given that one kBT is equal to �4.2 pN�nm at physiological temperature,
this means pN forces acting over nm distances are sufficient to meaningfully shift
the equilibrium between closed and open conformations of an MS channel.

4.6 Importance of Cell Membrane Mechanics

Cell membranes have been experiencing mechanical force throughout evolution
[122]. Thus, they have been reinforced by a cell wall (e.g. in bacteria, fungi, algae
and plants) or by a cytoskeleton and extracellular matrix (in animal and human cells)
to better withstand and cope with environmental stresses [123].

Studying the mechanics of the cell membrane is necessary for understanding:
(i) how cells are protected by their membrane, (ii) how cells interact with each
other and/or move (cell migration), and (iii) how membrane and proteins (e.g. MS
channels) interact in various biological processes.

In addition, assessing cellular elasticity and viscosity provides useful information
for comparative characterization between different membrane-mediated processes
[15]. This is given that genetic mutations and pathogens that disrupt the cytoskeletal
architecture can result in changes in cell mechanical properties such as elasticity,
adhesiveness, and viscosity [15, 124].

The choice of experimental and computational tools to measure cell and bilayer
mechanical properties requires consideration of the length scale, timescale and the
magnitude of forces (or intrinsic mechanical properties of the system) [125]. It
has been indicated that some of the cellular rheological behaviors (stress-strain
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distribution) are empirically similar to the rheology of soft materials such as
foams, emulsions, pastes, and slurries [15, 126]. Given the central role of lipids in
mechanosensation [32, 127, 128] a detailed understanding of lipid bilayer rheometry
is essential [129]. The key question here is how do mechanical stimuli tune the
biochemical and biophysical properties of lipids and protein molecules or vice
versa? This question is of critical importance due to the increasing evidence of the
role that MS channels play in health and disease [5, 122].

4.7 Mechanical Coupling Between the Cell Membrane
and MS Channel

The function of MS channels can be modulated by a host of mechanical properties
of lipids [29]. This modulation may depend on specific chemical interactions
between proteins and individual molecules in the bilayer (at the lipid-protein
interface). This includes affinity and/or avidity of certain lipid molecules to the
lipid-protein interface which has direct influence on the structure and function of
the membrane proteins [130]. Different proteins, however, demonstrate different
degrees of selectivity in their binding to lipids. This has recently been studied using
an elegant approach called ion mobility mass-spectrometry [130]. In that study,
the lipid binding selectivity and strength to MscL channel, aquaporin Z (AqpZ),
and the ammonia transporter (AmtB) have been investigated. They showed that
the degree of selectivity for specific lipid types for these proteins followed the
order AmtB > AqpZ > MscL. MscL binds lipids non-selectively, without strong
affinity for a particular headgroup or chain length, but binding of any lipid imparts
considerable stability. Although the E. coli MscL responds almost non-selectively to
lipid composition, its homolog MtMscL has been shown to have a slight preference
for phosphatidylinositol (PI) binding and a remarkably lower activation threshold
in the presence of PI [130, 131]. Given that all the MS channels are embedded in
the lipid medium, it is possible that this difference in their local lipid environment
is among the reasons for the existing difference between their activation thresholds
[37, 131]. AqpZ and AmtB on the other hand have been shown to be highly selective
for cardiolipin and phosphatidylglycerol, respectively [130].

Furthermore, the lipid bilayer affects MS channels via its macroscopic biophysi-
cal properties such as area and bending elastic moduli, intrinsic monolayer curvature
and thickness. From this perspective, variation in acyl chain length, degree and
position of chain unsaturation, head group repulsion, incorporation of amphipathic
molecules and interactions of co-surfactants all result in a redistribution of the lateral
pressure profile of the lipid bilayer [132–135]. Therefore, specific lipids may affect
both nano- and macroscopic rheological factors that likely modulate MS channel
function, as it has already been shown for MscL and MscS co-reconstituted in
liposomes of different lipid composition [136].



4 Biophysical Principles of Mechanosensing 99

4.7.1 Transbilayer Pressure Profile, Surface Tension,
Membrane Tension

Lipid bilayers, as a unique medium for membrane proteins, contain water molecules
which strongly influence their structural and functional properties, as well as the
embedded membrane proteins. Due to the “hydrophobic effect”, the amphipathic
nature of the lipids drives membrane self-assembly by minimizing the surface
exposure of the tails to water. This feature of the lipid bilayer comes with a set
of properties including its strong anisotropic internal stress, called “transbilayer
pressure profile”, which is susceptible to physical and chemical stimuli [132]. The
pressure profile may be simplified into three zones: i) a region with positive lateral
pressure caused by the repulsion among the hydrophilic headgroups, ii) a surface
tension area (negative pressure) at the level of the glycerol backbone, which prevents
water exposure of the hydrophobic tails and iii) an area characterized by positive
pressure due to the entropic (steric) repulsion between the lipid tails (Fig. 4.8a). In
the bilayer, the chain fluctuations are strongly suppressed by the neighboring chains
with respect to a free lipid molecule. The amplitude of chain fluctuations in the
bilayer under natural conditions (Fig. 4.8a) is attenuated by one order of magnitude
with respect to a free chain [137, 138]. Suppression of chain fluctuations leads to
a decrease of conformational entropy and, in turn, results in the enhancement of
pressure.

Fig. 4.8 The transbilayer pressure profile. The transbilayer pressure profile is largely inhomo-
geneous across the bilayer thickness. This stress heterogeneity in bilayers originates from the
amphipathic nature of the lipid molecules and the presence of water without MscL. (a) An idealized
symmetrical transbilayer pressure profile showing characteristic negative peaks at the water-lipid
interface and repulsive positive peaks in the headgroup and tail region. z indicates the bilayer
thickness direction. (b) Transbilayer pressure profiles from molecular dynamics simulation of a
POPE bilayer in presence of E. coli MscL (black dashed line is the lateral pressure profile at
rest, and red is in the presence of applied tension). Note how in the presence of the protein the
pressure profile in a symmetrical lipid bilayer has become noticeably asymmetric. Peak a and peak
b represent the rise in the pressure profile at lipid solvent interface (for more details see Bavi, N.
et al. [141]; modified from Cox et al. [32])
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To avoid water entry into the hydrophobic tail area, an acute lateral “surface
tension” develops at the water-lipid interior interface. A typical surface tension in
each monolayer at rest is estimated to be 50 mN/m [139]. This way, a balance
is established between the tension generated at the water-lipid interface and the
repelling pressure between the tails in “free bilayers”. A typical value for the peak
pressure inside the lipid bilayer is about 300 atm whereas around the head groups
it can be up to 1000 atm [139, 140]. This stress heterogeneity along the bilayer
thickness alters the conformation of membrane proteins [28]. External membrane
stretch can alter force vectors on embedded proteins and cause their conformation
to change [26, 139, 141, 142].

Membrane proteins and MS channels in particular can reciprocally redistribute
the transbilayer pressure profile [133, 140, 143]. The information on the MS
channel-lipid interactions has largely been acquired using MD simulations [139,
141, 144, 145]. Figure 4.8b illustrates the changes in the pressure profile of a 1-
palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) lipid bilayer in the
presence of E. coli MscL, with and without increase in surface tension [141]. Due
to presence of MscL in the bilayer, there is a noticeable asymmetry in the lateral
pressure profile and a reduction of the pressure peaks in the tails. As shown in Fig.
4.8b, when the bilayer is stressed (surface tension D 75 mN/m), the pressure profile
of the lipid in the presence of MscL shows most change at the lipid-water interface
(Peak A and Peak B). A comparison between a stressed and a non-stressed bilayer
(surface tensionŠ50 mN/m) in conjunction with the area under the pressure profile,
one can estimate the equivalent “membrane tension” of �22 mN/m required for the
activation of MscL, for example [141].

Overall, stress/pressure distributions within the bilayer are difficult to measure
experimentally, though they have been estimated for different lipid compositions
using a variety of computational approaches [133, 139]. In addition, some estimates
have been achieved using NMR and X-ray crystallography [146, 147]. The mainstay
of pressure profile characterization has however, been the use of computational
approaches such as Monte Carlo, mean-field theory (MFT) [132, 134, 148–150] and
molecular dynamics (MD) simulations [139, 151, 152]. This has allowed researchers
to probe the effect of lipid composition on MS channel function using both atomistic
[139, 153, 154], and continuum approaches [27, 129, 155–160]. Nevertheless, one
should be careful about the common methodological problems in pressure profile
calculations for lipid bilayers using these methods [135, 161].

4.8 Methods to Study Mechanosensitive Ion Channels

Over the past three decades, various theoretical and experimental approaches have
been employed to study structure and function of ion channels. The main theoretical
(MD and continuum approaches) and new experimental techniques developed for
MS channel characterization are discussed in 4.8.1 and 4.8.2.
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4.8.1 Computational Approaches

MD simulations are computer based estimations of interactions between molecules.
These interactions are calculated by solving the Newtonian equations of motion. The
interacting forces and masses are defined in a force field and used to calculate the
new acceleration vector of a molecule or atom, typically for intervals of 2 picosec-
onds. This often requires simplifications to be imposed on the models; nevertheless
results from MD simulations are often in good agreement with experimental data.
For more information about the equations used and the approximations made, the
NAMD or GROMACS manuals provide the essential background information [162–
164]. Furthermore, several recent review articles provide excellent instructions on
how to setup and run MD simulations of membrane protein systems [165–168].

Most computational studies have been focused on examining the membrane
protein, leaving the membrane as an addendum [169]. As such, with MD simulations
of bacterial and mammalian MS channels, it is common to use a membrane model
consisting of only 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) or
POPE [139, 141, 154, 165, 166, 170] and in some cases in combination with
1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) lipids [37, 127]. How-
ever, it is important to note that the composition of plasma membranes varies not
only among cell types but also both spatially (e.g., leaflet asymmetry and lipid
rafts) and temporally (e.g., metabolic state and growth phase) within a single
cell. Therefore, it is likely that membrane proteins, in particular MS channels,
may respond differently in various lipid environments as discussed in previous
sections. Hence, it is essential to develop an accurate representation of the plasma
membrane, e.g. an E. coli membrane for use in further simulation studies of ion
channels. Complex membranes consisting of a more diverse lipid population have
been developed to model Chlamydia, yeast, E. coli membranes and mammalian
membranes [169, 171–173]. These systems provide the opportunity to perform more
accurate simulations which can further our understanding of the role of lipid-protein
interactions during the gating cycle of MS channels.

Continuum and hybrid (MD-continuum) approaches are usually adopted in
mechanobiology for two main reasons: i) they are not usually computationally
expensive, and ii) it is more straight forward to describe and interpret the parametric
dependence of a quantity (e.g., free energy) on its possible variable(s) (e.g.,
membrane thickness). However, this is usually done at the expense of atomistic
detail, which may be overlooked in modeling by using only continuum approaches.
Nevertheless, there are several applications of continuum mechanics approaches to
the study of MS channels [156, 157, 174, 175]. In hybrid techniques, atomistic
calculations of energy and/or force (e.g., obtained from MD simulation) can be
implemented to mesoscopic (e.g., bead-spring) and continuum models (e.g., finite
element models [176, 177]) of channels to increase the accuracy of their prediction
[174]. Most of these models used MscL as a prototypical channel because of the
relative wealth of experimental data available on the structure and function of MscL
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compared to other MS channels [155, 157, 177, 178]. This combined computational
approach promises to have a greater predictive value for future experimental work
compared to currently used individual approaches.

4.8.2 Experimental Approaches

To detect ionic currents from MS channels in response to mechanical force, several
experimental methods have been developed that apply various mechanical stimuli
to cells. All these methods are either coupled with patch-clamp electrophysiology
techniques or calcium (Ca2C) imaging assays. Patch-clamp electrophysiology is
the most versatile approach and “gold standard” technique for functional studies
of ion channels, as it provides quantitative information on the relationship between
membrane tension and channel open probability [179, 180]. Calcium imaging assays
are widely utilized to optically probe intracellular calcium flux in vivo and ex vivo
by using various Ca2C-sensitive indicators.

In a usual patch-clamp experiment, the traditional approach is to generate force
on a membrane patch through a syringe or via a computer-controlled high-speed
pressure clamp. After the formation of a tight seal (“giga-seal”) between the
membrane and the micropipette [1, 181, 182], the membrane patch can be stretched
by generating a pressure difference across the patch (Fig. 4.9a). This membrane
manipulation technique was essential for the discovery of mechanosensitive (MS)
channels [183–185]. The key equation to calculate mechanical force in patch-clamp
electrophysiology experiments is the Young-Laplace equation.

� D pr=2 (4.7)

where � is membrane tension; p is pressure difference (negative or positive); r
is radius of patch curvature [1]. In this setup, cells can be patched in different
configurations such as cell-attached, whole-cell and excised patch modes. The
rheometry of membrane patches in different configurations are not similar and care
should be taken when comparing between configurations [129]. The choice of patch
configuration usually depends on the number of channels (i.e., single channel or
cohort current) [185, 186] and on the accessibility to either side of a patch (intra- or
extracellular).

Alternatively, in whole-cell recordings, osmotic pressure gradients can be applied
across the cell membrane (Fig. 4.9b) by changing the osmolarity of the extracellular
medium. Under hypoosmotic conditions, the osmotic difference causes cell swelling
due to net influx of water, which in turn leads to membrane (and/or cytoskeletal
network) stretch and MS channel activation [44, 187–192]. Osmotic pressure ˘ can
be estimated using the Van’t Hoff equation as follows;

… D cRT (4.8)
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Fig. 4.9 Experimental techniques for the study of mechanosensitive ion channels. Schematics of
(a) High speed pressure clamp (HSPC) experiment (stretch), (b) hypo-osmotic shock assay, (c)
microindentation by a rounded glass or by an AFM tip, (d) AFM patch-clamp electrophysiology,
(e) optical/magnetic tweezers, (f) pillar (deflection) arrays, (g) normal and shear flow, (h) uniaxial
(left) and isotropic stretcher (right)

where c is the molar concentration of solutes; R is the gas constant; and T is absolute
temperature. Interested readers should refer to Jiang and Sun [193] for detailed
equations linking the open probability of MS channels to the magnitude of osmotic
pressure on the cell.

Whole-cell patches can also be ‘poked’ by an indenter to provoke MS channel
current (Fig. 4.9c). A microindenter can either be an AFM tip or a rounded glass tip
that is usually controlled by a piezoelectric device. Ideally, the relationship between
the applied force F and the indentation depth ı is:

F D
4

3

E
1 � �2

R0:5ı1:5 (4.9)

where � is the Poisson’s ratio; E is the cell Young’s modulus; and R the radius of
the spherical indenter. In addition to cell indentation, AFM tips can also be used
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to apply pulling/stretching force on the cell (tether assay) [194–196]. Furthermore,
the AFM tip has been converted into a piezo-controlled nanopipette which can be
used to detect current from specific locations in the cell (Fig. 4.9d). Feedback from
the AFM force control allows for a stable contact between the AFM tip and the
cell membrane enabling patch clamping and nanoinjection without compromising
the cell’s integrity [197]. Although some initial successes in utilizing this method
have been reported [197], the technique is still in its infancy and requires further
improvements for rigorous application in studies of MS channels.

Alternatively, the local pulling force on the cell membrane can be generated by
using optical tweezers (traps) (Fig. 4.9e). The use of optical methods to deform
cells is already well-established in mechanobiology specifically in the context of cell
mechanics [15, 198–201]. Optical tweezers can either be used to perturb a portion of
a cell or to stretch a whole cell [15, 202]. In this method, a dielectric microspherical
bead is stably trapped by a focused laser beam. Optical forces here are linearly
related to P, the laser power [203], as follows:

F D CP (4.10)

where C is a coefficient which is a linear function of light speed and refraction index
of the suspending medium.

By pulling the membrane-bound bead away from the cell, the MS channels in
the proximity of the bead can be activated [204, 205]. The applied force can be
estimated by changes in the displacement of the particle from the center of the
optical trap. Thus, a force-distance curve for the pulled membrane can be related to
the MS channel open probability. This method has already been utilized for studying
the role of actin filaments in conveying the mechanical force to MS channels in
plants [204].

Magnetic tweezers offer a similar scenario whereby a magnetic particle attached
to the cell (e.g., integrins with fibronectin coated beads) is pulled by changing the
magnetic field (Fig. 4.9e) [206].

F D drB (4.11)

where rB is the magnetic field gradient and d is the magnetic moment. Relevant
forces can be applied by adjusting the magnetic field and distance.

It is also possible to apply torsional stress by rotating the magnet [207]
demonstrating the usefulness of applying magnetic fields in studies of biological
cells [208, 209]. Despite its common usage in cell mechanics assays, this method
has not yet been employed to examine any MS channel function. Nevertheless,
magnetically sensitive actuator “Magneto” has already been designed to genetically
control the nervous system. In this elegant study, TRPV4 channels were fused to
the paramagnetic protein Ferritin. The channels could be activated by applying
magnetic force while simultaneously monitoring the experiment using in vitro
calcium imaging assays and electrophysiological recordings in brain slices [210].
Similarly, a high-frequency magnetic field was used to heat the iron core of GFP-
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tagged Ferritin, leading to a local temperature increase sufficient to open the
TRPV1 channels. This presents the first example of “temporally regulated neural
modulation” [211]. Also, Wu et al. (2016) [86] attached magnetic nanoparticles
directly to different parts of Piezo1 channel, and in combination with pressure-
clamp electrophysiology, it was shown that applying magnetic field can modulate
Piezo1 function. Similar experiments were previously carried out with MscL
channels [208].

Amongst new experimental approaches the so-called “deflection-mediated”
assays, such as pillar arrays, have been designed to stretch on specific locations of
cells (Fig. 4.9f). This method was initially developed for cell mechanics assays (i.e.,
cell-surface interactions) [212] which was later optimised for electrophysiological
purposes by Poole et al. (2014) [89]. Pillars can be deflected by a piezoelectric
indenter to control the displacement with nanometric precision. Local force F
can subsequently be measured based on the pillar displacement d and elastomeric
mechanical properties k.

F D kd (4.12)

Using this system, distinct populations of MS channel currents in dorsal root
ganglia neurons were recorded by substrate deflection at both the level of the soma
and the neurite [89]. More recently, the same group has used pillar arrays and high
speed pressure clamp to measure TRPV4 and Piezo1 current in primary murine
chondrocytes [36].

Given the wide-reaching implications of shear flow and stress in biology, there is
a growing demand for a tool that can be used to interrogate MS channel activity
under physiological shear stress. To generate stress from fluid flow in vitro, a
perfusion tube with a small opening at the tip is placed near the cell and bath
solution is ejected onto the cell membrane [6], alternatively, a larger fluid flow can be
generated through a microfluidic chamber (Fig. 4.9g) [213]. Shear flow instruments
are better suited for studying and recapitulating hair cell mechanotransduction [12,
105, 214]. In the first configuration, the stimulus is not significantly different from
generating a positive hydrostatic pressure or poking as the flow mainly generates
a perpendicular stress on the cell membrane. However, the latter is more suitable
to induce physiologically relevant shear stress. The shear stress � s caused by a
Newtonian flow with viscosity of � and strain rate of P� is:

�s D � P� (4.13)

Many studies have indicated the sensitivity of Piezo1, TRPV4 and PKD channels
to shear stress in red blood cells, vascular endothelial cells as well as renal epithelial
and bladder urothelial cells [74, 214–218].

Another challenge in mechanobiology is to stretch different cell types (e.g.,
cardiomyocytes) in an isotropic manner, reproducing their physiological contact
forces. The most commonly used stretch devices apply longitudinal uniaxial stretch
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to adherent cell types [219] (Fig. 4.9h). More physiologically appropriate devices,
so called “iso-stretchers”, have recently been developed to apply isotropic stretch to
various primary cell types [220, 221]. These set ups are often coupled with calcium
imaging, both of which were used to produce ionic currents from a population of
somatosensory neurons [220, 221].

Although all of the aforementioned experimental approaches apply different
mechanical stimuli, it should be noted that the type of mechanical stress that
is eventually sensed by MS channels could be similar or even identical. This
is because there are only three distinct types of mechanical stress in nature: (i)
tension-compression, (ii) shear/torsion and (3) bending (Fig. 4.6). Moreover, as
previously mentioned, MS channels are either gated by force-from-lipids or force-
from-filament paradigm. Both attributes beg the question: why do we need all these
various paradigms? The answer is that these tools are designed to generate tunable
mechanical stress that mimics the physiological stress in terms of type, amplitude,
duration, localization and frequency. Moreover, each technique has certain advan-
tages in terms of spatial and optical resolution, applicable force range, as well as
ease of experimental procedure and data analysis. Hence, the suitability of each
technique varies depending on its specific application. With these limits in mind, it
is expected that many more experimental tools will be developed in the future that
are particularly useful for advancing our fundamental biophysical understanding
of MS channels and their role in development, physiology, and disease. All the
examples above are tools that can generate different types of mechanical stimuli,
yet they fail to precisely report on the extent of the applied forces. It will be
important to design devices that can boost the accuracy of the molecular force/stress
measurements (stress quantification) to avoid the simplifications due to limited
theoretical models. Several groups have focused on genetically encoded force
sensors for measuring mechanical forces in cytoskeletal scaffold proteins [222–
226]. There is also a long-standing need for a molecular probe that can accurately
measure the membrane tension upon different stimuli, synchronous with recording
current from MS channel(s).

4.9 MscL Structure and Function: A Prototypical MS
Channel

Interactions with the lipid bilayer are particularly important for bacterial MS
channel function because they are gated by bilayer tension without the involvement
of extra- or intracellular structural elements [32]. This is the case despite the fact
that the bacterial cell-wall in cells exposed to hypo-osmotic shock serves as a
powerful attenuator of the exerted physical force [227]. As previously established
[228, 229], the bacterial MscL and MscS play crucial roles in the protection of
bacterial cells against hypo-osmotic shock. The functional characteristics of MscL
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have been extensively studied using liposomal reconstitution [1, 61, 63, 230–
233]. This channel displays no selectivity for molecules smaller than 6.5 kDa as
a consequence of its very large unitary conductance of �3 nS (Fig. 4.3). MscL
has a C-terminal domain, which aligns co-axially with the transmembrane pore
and an N-terminal amphipathic helix aligned parallel to the membrane bilayer. The
cytoplasmic C-terminal domain functions as a “cytoplasmic sieve” to prevent large
molecules from passing during the gating and to avoid losing vital components
inside the cell, as well as acting as a stabilizer of the oligomeric structure of
the channel [234, 235]. A number of studies indicate that the N-terminal helix
of MscL, linked to the TM1 transmembrane pore helix, resides at the lipid-
solvent interface [141, 236, 237]. The N-terminus serves as a force-conveying
element that upon bilayer expansion drags the TM1 pore helix resulting in channel
gating [141].

4.9.1 Lessons from MscL Applied to MS Channels
of Eukaryotes

While 3D structures of five MS channels have been resolved to date, the
key structural element that links mechanical stress from the membrane to
MS channel dynamics remains a mystery [141]. By utilizing MscL as a
prototypical MS channel, it has been previously shown that short amphipathic
N-terminus is a crucial structural element during tension-induced gating.
Despite its structural simplicity, MscL has continued to provide novel structural
insight into basic principles of mechanotransduction [116, 128]. From recently
resolved structures lipid binding domains, similar to the MscL N-terminus, were
identified in different families of MS ion channels, including the MscS like
channels, members of the human K2P family of channels (TREK/TRAAK),
TRPV4 and most recently PIEZO ion channels (Fig. 4.10) [238–240]. More
specifically, the horizontal force coupling helices, which are juxtaposed to the
pore-lining helices via a flexible linker, have recently been proposed to be
the hallmark of mechanosensitivity in other MS channel families [128, 141].
Although speculative at this point, providing an architectural blueprint for MS
channel mechanosensitivity (e.g., conserved amphipathic anchor domain), aids in
identifying and classifying genes which encode MS channel proteins based on their
primary structure.
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Fig. 4.10 Schematic of MS ion channels with their putative conserved mechanosensing domain
shown in red. MscL, MscS, TREK-1/2 (K2P members), TRP and Piezo1 channels are shown from
left to right and top to bottom, respectively

4.10 Conclusions

In this chapter, the basic principles of mechanosensitivity and significance of
mechanotransduction processes at the cell membrane interface are discussed.
Among all the mechanotransducers found in living systems, MS channels are the
fastest signaling molecules acting at the source of different signaling pathways in
the physiology of cell mechanotransduction. MS channels can be gated by stretching
the membrane bilayer (force-from-lipids principle) and/or by the force conveyed to
the channels from the cytoskeleton/extracellular matrix (force-from-filament).

There is strong evidence from numerous studies that the mechanical properties
of the lipid bilayer affect and modulate a large variety of membrane proteins, in
particular MS channels. A simple case of a bilayer property affecting MS channels
is bilayer thickness, which, for example, affects MscL to a much greater extent
than MscS. Membrane lipid composition also alters the transbilayer pressure profile
and hence, the line tension, surface tension, membrane spontaneous curvature, area
compressibility modulus, bending stiffness and first and second moments of the
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pressure profile. Determining which of these parameters has a greater impact on a
particular channel function depends on the type and structure of the MS channel.

Most of the present and potential theoretical and experimental paradigms for the
study of MS channels have been covered in this chapter. Although great advances
have been made in study of MS channels, there is still need for more techniques to
accurately address central questions relevant to basic science as well as to human
physiology and pathology.

Finally, by using bacterial MscL as a prototypical MS channel, determination
of structurally common features underlying channel mechanosensitivity became
possible. Importantly, a specific feature became apparent in the form of a horizontal
force-conveying helix among all bilayer activated MS channels that has been
preserved throughout evolution [128, 141]. Given the involvement of MS ion
channels in numerous physiological processes and major human diseases, basic and
translational research in this area of mechanobiology promises to pave the way for
discovering novel therapies contributing to the betterment of human health.
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Chapter 5
Lipid Domains and Membrane (Re)Shaping:
From Biophysics to Biology
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Abstract The surface of living cells provides an interface that not only separates
the outer and inner environments but also contributes to several functions, including
regulation of solute influx and efflux, signal transduction, lipid metabolism and
trafficking. To fulfill these roles, the cell surface must be tough and plastic at the
same time. This could explain why cell membranes exhibit such a large number of
different lipid species and why some lipids form membrane domains. Besides the
transient nanometric lipid rafts, morphogical evidence for stable submicrometric
domains, well-accepted for artificial and highly specialized biological membranes,
has been recently reported for a variety of living cells. Such complexity in
lipid distribution could play a role in cell physiology, including in cell shaping
and reshaping upon deformation and vesiculation. However, this remains to be
clearly demonstrated. In this chapter, we highlight the main actors involved in cell
(re)shaping, including the cytoskeleton, membrane-bending proteins and membrane
biophysical properties. Based on integration of theoretical work and data obtained
on model membranes, highly specialized cells and living cells (from prokaryotes
to yeast and mammalian cells), we then discuss recent evidences supporting the
existence of submicrometric lipid domains and documented mechanisms involved
in their control. We also provide key recent advances supporting the role of lipid
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domains in cell (re)shaping. We believe that the surface of living cells is made of a
variety of lipid domains that are differentially controlled and remodelled upon cell
(re)shaping.

Keywords Biological membranes • Membrane lateral structure • Lipid
domains • Model membranes • Living cells • Imaging • Lipid probes •
Membrane shaping • Cell deformation • Atomic force microscopy • Micropipette
• Microfluidics • Cytoskeleton • Curvature • Fluidity • Asymmetry •
Membrane dipole • Calcium

Abbreviations

AFM atomic force microscopy
BODIPY 4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene
Ca2C calcium ion
Chol cholesterol
CTxB cholera toxin B subunit
ER endoplasmic reticulum
ERM ezrin, radixin, moesin
FCS fluorescence correlation spectroscopy
FRAP fluorescence recovery after photobleaching
FRET fluorescence resonance energy transfer
GPI glycosylphosphatidylinositol
GPMV giant plasma membrane vesicle
GSL glycosphingolipid
GUV giant unilamellar vesicle
Ld liquid-disordered
Lo liquid-ordered
m“CD methyl-“-cyclodextrin
MV microvesicle
PC phosphatidylcholine
PE phosphatidylethanolamine
PI phosphatidylinositol
PIP2 PI(4,5)P2, phosphatidylinositol-4,5-bisphosphate
PIPs phosphoinositides
PM plasma membrane
PS phosphatidylserine
RBC red blood cell
SDS sodium dodecyl sulfate
SIM structured illumination microscopy
SIMS secondary ion mass spectrometry
SM sphingomyelin
SMase sphingomyelinase
STED stimulated emission depletion microscopy
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TCR T cell receptor
Tm melting temperature

5.1 Introduction

The surface of living cells is a complex assembly of a variety of molecules
that provides an interface separating the outer and the inner environments. It
is also responsible for a number of important functions, including regulation of
solute influx and efflux, signal transduction, lipid metabolism and trafficking, and
represents the target of infectious agents such as bacteria and their associated toxins,
viruses and parasites, a.o. To fulfill these functions, the cell surface must be tough
and plastic at the same time. This could explain why cell membranes exhibit a so
large number of different lipid species that are heterogeneously distributed, both
transversally and laterally.

Glycerophospholipids, sphingolipids and sterols are the main lipids found in
biological membranes. Glycerophospholipids include phosphatidylcholine (PC),
phosphatidylethanolamine (PE), phosphatidylserine (PS), phosphatidic acid (PA)
and phosphatidylinositol (PI) and its phosphorylated derivatives (PIP, PIP2 and PIP3;
collectively PIPs). Sphingolipids are derived from ceramide, which is decorated
with a phosphocholine headgroup in the case of sphingomyelin (SM) or with
saccharides in the case of glycosphingolipids (GSLs). Sterols are constituted by
an inflexible core formed by four fused rings, with cholesterol predominating in
mammals. Several features indicate remarkable membrane lipid diversity. Thus,
even within the same lipid class, lipids can differ regarding headgroup structures
and length and degree of unsaturation of the hydrophobic chains, creating thousands
of combinations. Whether each lipid species has a defined biological function or
whether cell function is modulated by structural organization of membrane lipids
remain to be elucidated. In favour of the second hypothesis, lipid diversity could
guarantee a much more stable, robust membrane that can withstand changes in the
surrounding pH, temperature and osmolarity [1]. In this context, diversity could be
intrinsically related to the different functions assumed by cell membranes including
ligand binding, endocytosis, intracellular transport, cell migration or squeezing e.g.,
Whatever the hypothesis, the lipid diversity allows for different non-covalent forces,
i.e. van der Waals, electrostatic, solvation (hydration, hydrophobic), steric, entropic,
e.g., which are critical for membrane structure, organization and functions through
modulation of biophysical membrane properties including lipid packing, membrane
curvature and asymmetry [2–4].

Current views on structural and dynamical aspects of biological membranes
have been strongly influenced by the homogenous fluid mosaic model of Singer
and Nicolson in 1972 [5]. Today, this basic model remains relevant [6], although
it is widely accepted that it cannot explain the role of mosaic, aggregate and
domain structures in membranes as well as the lateral mobility restriction of
many membrane proteins [7]. In the 90’s, Simons and coll. proposed the lipid raft
hypothesis [8], where GSLs form detergent-resistant membranes (DRMs) enriched
in cholesterol and glycosylphosphatidylinositol (GPI)-anchored proteins in cold
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non-ionic detergents. In 2006, lipid rafts were redefined as: “small (20–100 nm),
heterogeneous, highly dynamic, sterol- and sphingolipid-enriched domains that
compartmentalize cellular processes. Small rafts can sometimes be stabilized to
form larger platforms through protein-protein and protein-lipid interactions” [9].
However, the raft hypothesis is still up for debate [10, 11]. This could arise from its
original definition experiments using the controversial detergent extraction method
in combination with cholesterol and/or sphingolipid depletion. It should be never-
theless noticed that recent progress in microscopy, such as combined fluorescence
correlation spectroscopy (FCS) with stimulated emission depletion microscopy
(STED) [12] or super-resolution microscopy [13], provides strong evidence for the
existence of transient, nanoscale, cholesterol- and sphingolipid-enriched membrane
clusters, giving new insight in the raft hypothesis. Controversial opinions regarding
the raft hypothesis could also arise from its restricted definition as compared to the
high diversity of lipid composition among cellular membranes and the wide amount
of factors regulating lipid clustering. Yet, the original definition of rafts is often
revisited. In 2010, lipid rafts were redefined as “fluctuating nanoscale assemblies of
sphingolipids, cholesterol and proteins that can be stabilized to coalesce, forming
platforms that function in membrane signaling and trafficking” [14], taking into
account the dynamical aspect of membranes.

In addition to rafts, other nanoscale domains, i.e. < 100 nm in diameter, have
been described at the plasma membrane (PM) of eukaryotes: caveolae [15] and
tetraspanin-rich domains [16], a.o. Moreover, morphological evidence for stable
(min vs sec) submicrometric (> 200 nm vs < 100 nm) lipid domains was reported in
artificial [17–19] and highly specialized biological membranes [18, 20]. In the past
decades, owing to the development of new probes and imaging methods, several
groups have presented evidence for submicrometric domains in a variety of cells
from prokaryotes to yeast and mammalian cells [21–27].

Such complexity in lipid distribution could play a role in cell physiology, includ-
ing in cell shaping and reshaping processes. However, whereas the traction by the
cytoskeleton, the action of membrane-bending proteins and membrane transversal
asymmetry have been shown to contribute to cell reshaping [28–30], the importance
of membrane lateral heterogeneity remains to be clearly determined. In this chapter,
we highlight the physiopathological importance of membrane (re)shaping (Sect.
5.2), describe some methods to measure it (Sect. 5.3) and summarize the main actors
involved in its regulation (Sect. 5.4). We then provide evidence for lipid domains in
living cells (Sect. 5.5) and a summary of their regulation mechanisms (Sect. 5.6). We
then integrate the importance of lipid lateral heterogeneity in membrane (re)shaping
(Sect. 5.7).

5.2 Membrane Shaping & Reshaping – Role
in Physiopathology

Membranes are at the centre of cell shaping and reshaping processes. For examples,
red blood cell (RBC) exhibits a biconcave shape needed for its optimal deformation
and function (see Sect. 5.4), while bacteria can be cocci, rods and spirochetes
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Fig. 5.1 Physiological importance of cell (re)shaping. A. Shape of (a) a biconcave RBC; (b–d)
cocci, rods and spirochetes; (e) enterocyte brush border of mouse intestinal explant; (f) growing
neuron branches into dendrite (Adapted from: (a) our unpublished data; (b–d) [31]; (e) [32]; (f)
[33]). B. Reshaping upon (a) RBC crossing from the splenic cord to sinus; (b) platelet activation;
(c) cleavage furrow initiation in Xenopus; (d) yeast S. cerevisiae budding; (e) formation of
the immunological synapse (arrow); (f) RBC vesiculation upon senescence (arrow); (g) vesicle
endocytosis (arrow) in mouse intestinal explants during fat absorption (Adapted from: (a) [34]; (c)
[35]; (d) [36]; (e) [37]; (f) our unpublished data; (g) [32])

(Fig. 5.1Aa–d). Epithelial cells and neurons are other examples of cells showing
‘special’ shapes needed for their functions (Fig. 5.1Ae,f). In their environment, cells
face a variety of stimuli and stresses, either chemical/biochemical (e.g. hormones,
ligands, toxins, ions) or physico-mechanical (e.g. temperature, pH, pressure, shear
stress, stretching). Examples include squeezing of RBCs in the narrow pores of
spleen sinusoids, pressure exerted by tumors on surrounding cells, shear stress by
the blood stream on endothelial cells, stretching of muscle cells during contraction,
gathering of blood platelets to stop bleeding, cell division and formation of the
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immunological synapse (Fig. 5.1Ba-e). As opposed to global cell deformability,
local budding and vesicle formation can also occur from the PM, allowing for
endocytosis (Fig. 5.1Bg) or microvesicle (MV) formation. While considered for
a long time as inert cellular fragments, MVs are nowadays recognized to play
crucial roles in both physiological and pathological processes, such as intercellular
communication [38], coagulation [39], inflammation [40], tumorigenesis [41] and
migration [42], a.o. MVs are also released from RBCs upon normal senescence (Fig.
5.1Bf), a process accelerated in RBC membrane fragility diseases, leading to loss
of biconcavity and deformability. It is thus important to decipher molecular details
of membrane structure and mechanisms involved in cell (re)shaping. In Sect. 5.7,
we focus on the potential implication of lipid domains in cell shaping, squeezing,
vesiculation and division.

5.3 Membrane Shaping & Reshaping – Measurement

Cell mechanical properties involved in deformation can be studied by several
biophysical methods. These can be classified into two categories, based on measure-
ments on individual or multiple cells. Biophysical techniques devoted to individual
cells include micropipette aspiration, atomic force microscopy (AFM), optical
tweezers or microfluidics, a.o. Measurement on multiple cells can be performed
by cell separation (by filtration through polycarbonate membrane or a mixture of
microbeads) or microfluidics. Based on their ability to image lipid domains in
relation to cell deformation, we decided to focus in this Section on the micropipette
aspiration, AFM and microfluidics. For optical tweezers, we recommend [47];
for cell separation by filtration through polycarbonate membrane or a mixture of
microbeads, see [34, 48].

Micropipette aspiration was initially developed to measure the RBC elastic
properties [49]. Briefly, a micropipette is manipulated towards a cell, usually in
suspension, and a small suction pressure is applied, partially aspirating the cell
inside the micropipette. Upon increasing the suction pressure, the cell deforms,
flows into the micropipette and increases the length of projection of the aspirated
portion (Fig. 5.2Aa). This deformation is then analyzed to determine the cell elastic
property, i.e. the Young’s modulus. The technique can be used to apply forces over
a range of 10 pN to 1 nN [50]. It has been applied to various cells including red cell
membranes [51] and cancer cells [52, 53]. In the context of lipid domains, it can be
used to test whether these exhibit a gradient along the deformation projection (Fig.
5.2Aa,b).

AFM was invented 30 years ago to image non-conductive samples at high-
resolution. Key developments now allow AFM to investigate biological sample, i.e.
imaging in buffer solution and maintaining the native state of the biological system
[54]. Briefly the principle of AFM is to scan a tip over the sample while using an
optical detection system to measure with high-sensitivity the force applied on the
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Fig. 5.2 Principles of some methods used to evaluate lipid domain organization upon deformation.
A. Micropipette aspiration. (a) Experimental apparatus for GUV aspiration and tube pulling. Pi,
Po & Pp pressures inside vesicle, outside vesicle & in the micropipette, Rt, Rv & Rp radius of tube,
vesicle & pipette, Lt & Lp length of tube and vesicle projection in pipette, f pulling force, Inorm

normalized intensity [43]. (b) Confocal equatorial section showing the partitioning of fluorescent
lipids in membrane nanotubes of different radii (yellow box in a) pulled out from a GUV [44].
B. AFM. (a) The AFM consists in an AFM tip positioned at the end of a flexible cantilever and
brought in contact with the sample. During scanning, the applied force is maintained constant
thanks to an optical system based on a laser focused at the end of the cantilever and reflected
into a photodetector. The tip contours the surface and its movement results in a height image. (b)
Three-dimensional AFM images of phase-separated membranes of differential composition and
domain height mismatch [45]. C. Microfluidics. (a) Side view of a microfluidic device composed
of a pressure layer with integrated microstamps situated above a fluidic layer containing a GUV.
(b) Induced tension by the microfluidic device causes lipid lateral sorting in GUVs: 0 min, one
Ld and two Lo phases (left); after 45 min, lipid sorting into one Lo patch to reduce the tension
(right) [46]

sample [55]. This detection system is based on a laser focused at the end of the
cantilever and deflected into a photodiode. This electric signal is then converted
into a force using calibrated parameters. By maintaining the applied force constant,
the height of the tip is adjusted and its movement results in the height image that
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resembles the sample topography with the resolution depending on the radius of
the tip, the applied force, the physical properties of the sample, and how precisely
the feedback system acts (Fig. 5.2B). AFM rapidly evolved from an imaging tool
to a multifunctional tool that, simultaneously to the topography, is also capable
to probe biophysical properties [56]. By recording force-distance curves, i.e. by
monitoring the variation of the force while approaching the AFM tip and retracting it
away from the biological sample, various properties can be quantified either during
the approach curve or during the retraction curve. The approach curve allows the
extraction of properties including mechanical deformation of the sample, elastic
modulus and energy dissipation. The dissipation is the area of the hysteresis between
the approach and the retract curve. The retraction curve can quantify adhesion
forces established between the tip and the sample. Modern AFM instruments can
acquire several hundreds of thousands of force-distance curves while imaging the
biological sample, allowing mapping physical properties and interactions to the
sample topography. Force-distance based AFM (or multiparametric imaging) opens
the door to image complex biological systems and simultaneously quantify and map
their properties. Nowadays, multiparametric imaging allows investigating native
biosystems with a resolution approaching 1 nm on purified membrane proteins
and simultaneously mapping their mechanical properties [57]. Force-distance based
AFM was also used to map the mechanical properties of heterogeneous membranes
[58], RBCs [59], human keratinocytes [60] or bacteria [61]. Besides mechanical
properties, force-distance based AFM also enables to map specific receptors. Using
functionalized AFM tips with specific chemical groups or ligands, the adhesion and
mechanical strength of specific bonds can be measured. Furthermore recording these
forces while imaging the biological systems allows detecting and localizing specific
interaction of biological samples ranging from antibodies to living cells [62–64].
Biospecific AFM mapping has proven useful to map receptor sites on animal cells
[62, 65, 66].

Microfluidic technologies can also be used to investigate cell mechanical prop-
erties upon deformation (Fig. 5.2Ca). These can be classified according to the
mechanical stimuli used to deform the cell (for review [67]): constriction chan-
nel, shear stress, voltage shock, optical stretcher, electric field or micropipette
aspiration. Microfluidics have been used to measure the deformability of RBCs
[68], leukocytes [69], human cancer cell lines [70] and patient oral squamous
cells [71]. Furthermore, their development in pathological contexts gives promising
perspectives for labelled-free clinical diagnostic. For example, breast cancer cells
were distinguished from non-malignant cells [72], malignant cells were identified in
human pleural fluid sample [73] and RBCs with deficiencies of cytoskeletal protein
network were detected [74]. While cost-effective, microfluidics is biocompatible,
requires small sample volume and gives fast responses. In addition, its “tune-ability”
makes it adaptable to any cell type, permits to recreate specific environmental
deformation conditions and to record electrical or biochemical properties besides
mechanical parameters. Furthermore, as microfluidics can be coupled to fluores-
cence microscopy, it has been used to evaluate reorganization of lipid domains under
stretching of model membranes (Fig. 5.2Cb) [46, 75].
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5.4 Membrane Shaping & Reshaping – Regulation

In this Section we provide an integrated view on documented mechanisms that
govern cell (re)shaping, first focusing on the simplest, best characterized and highly
deformable RBCs (Sect. 5.4.1). We will then deepen three key determinants for cell
(re)shaping, i.e. the cytoskeleton (Sect. 5.4.2), membrane shaping proteins (Sect.
5.4.3) and intrinsic membrane properties (Sect. 5.4.4).

5.4.1 Main Determinants of Cell (Re)Shaping – A Focus
on RBCs

The unique ability of RBC to deform is allowed by (i) its particular constitutive
biconcave geometry, (ii) a finely controlled cytoplasmic viscosity, and (iii) commu-
nication with its environment.

RBC exhibits a particular geometry characterized by a high membrane surface-
to-volume ratio. Indeed, by comparison to a sphere of the same volume, RBC
presents a membrane surface excess of �40%, explaining its biconcave shape.
Three factors allow to maintain and adapt this shape. First, the RBC membrane
is supported by a particularly dense and stable spectrin network. Second, this
cytoskeleton is strongly linked to the RBC PM, thus preventing membrane area
loss by vesiculation [28] (see Sect. 5.4.2). Third, the RBC cellular volume is tightly
regulated by several ionic transports. The NaC/KC-ATPase and the Ca2C-ATPase
(also called PMCA) set up the major cation gradients across the RBC PM [76,
77]. In addition, the RBC is endowed with a large variety of ion channels that are
nowadays proposed to play a dynamic role (reviewed in [78]). Thus, upon shear
stress in the circulation, a reversible increase in Ca2C permeability occurs. Piezo1,
a mechanosensitive non-selective cation channel, has been recently identified as the
link between mechanical forces, Ca2C influx and RBC volume homeostasis. This
study clearly indicates a role for mechanotransduction in cell volume regulation
via Ca2C influx through Piezo1 and subsequent RBC dehydration via downstream
activation of the Gardos channel [79], a Ca2C-dependent KC efflux channel [77].

RBC cytoplasmic viscosity, determined by hemoglobin concentration, is finely
regulated and comprised between 30–35 g/dL [80]. This characteristic allows RBCs
to rapidly adapt their shape upon shear stress. Aged and sickle RBCs exhibit
a hemoglobin concentration > 37 g/dL, resulting into cell rigidity and reduced
deformability [80].

RBCs are now known to communicate with their local environment, serving
as both recipients and producers of extracellular stimuli. Among the various RBC
molecules that contribute to such signaling is ATP, a regulatory molecule for both
intracellular and extracellular functions. Intracellular ATP represents an energy
source needed for NaC/KC- and Ca2C-ATPases, ATP-dependent glucose trans-
porters and flippases a.o. and for modulation of the compliance of the membrane
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with the cytoskeleton [81–84] (see Sect. 5.4.2). The release of ATP from RBCs
to the extracellular space, which occurs in response to small changes in osmotic
pressure, O2 concentration and pH, is proposed to be triggered by the retraction
of the spectrin-actin network [85]. Released ATP then induces the release of the
potent vasodilator nitric oxide from endothelial cells into the surrounding smooth
muscle cells. Among the most important signaling molecules able to regulate RBC
properties is O2. It has been recently demonstrated that the RBC oxygenation state
regulates membrane mechanical stability, glucose metabolism and ATP release via
the reversible association of deoxyhemoglobin with the anion transport protein Band
3 that acts as an O2-triggered molecular switch to regulate RBC properties [86].

Whether RBC membrane intrinsic properties, in particular lateral membrane
heterogeneity, contribute along with the above factors to deform the RBC remains
poorly understood. Arguments in favor of this hypothesis are discussed at Sects.
5.7.2 and 5.7.3.

5.4.2 Cytoskeleton

As highlighted above, the RBC cytoskeleton strengthens the lipid bilayer and
endows the membrane with durability and flexibility to survive in the circulation
[28]. It is made of a pseudohexagonal meshwork of spectrin, actin, protein 4.1R,
ankyrin and actin-associated proteins, attached to the membrane via multiprotein
complexes, centered on ankyrin and protein 4.1R. For readers interested in the
anatomy of the red cell membrane skeleton, an excellent recent review is recom-
mended [28].

It is well established that the RBC membrane is not static and ATP allows
maintaining the RBC biconcave shape and dynamic characteristics. For instance,
intracellular ATP increases the compliance of the membrane, as revealed by AFM
upon small compression of subcellular components [81] and through fluctuation
analysis [82, 83]. Mechanical measurements using optical tweezers has however
led to the opposite conclusion [84]. Thus, while it is clear that phosphorylation
directly modulates the mechanical stability of the RBC membrane, the response is
complex due to the fact that many cytoskeleton components are phosphoproteins.
Among those, phosphorylation of the 4.1R by PKC triggers the relaxation of the
RBC membrane through loosening the link between membrane and spectrin [87]
whereas phosphorylation of “-spectrin through the membrane-bound casein kinase
I [88] could enhance the maintenance of stable network interaction by increasing
the spectrin-ankyrin affinity [81]. Besides phosphoproteins, PIPs are alternative
candidates. While PIP2 enhances the binding of 4.1R to glycophorin C, it inhibits
the binding to Band 3 in vitro [89].

In nucleated mammalian cells, the cytoskeletal network scaffolding the PM
at the macroscopic level is a heterogeneous system consisting of actin fibers,
intermediate filaments and microtubules. This elaborate protein organization medi-
ates and controls membrane shaping and organization through the continuous
dynamic interplay between the PM and the cortical network underlying it. Adhesion
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between the cytoskeleton and the lipid bilayer maintains membrane tension, while
membrane shape and cytoskeletal assembly/disassembly processes are also strongly
intertwined. The cytoskeleton is known to regulate several essential cell processes
as follows: cortical actin supports the macroscopic curvature of the membrane
during mitosis, membrane ruffling is involved in phagocytosis, while actin dynamics
(treadmilling, branching and bundling) provides the mechanical force needed for
endocytosis, migration (formation of filopodia and lamellopodia) and morphogen-
esis. Additionally, molecular motors such as kinesins, dynein and myosin support
some organelle morphologies and promote the reorganization of the membrane [30].

Cortical actin is tightly bound to the PM via actin binding proteins, such as ’-
actinin domain, the ERM (Ezrin/Radixin/Moesin) domain [90, 91], the calponin
homology (CH) domain [92] and the Wiskott-Aldrich syndrome (WASP) homol-
ogy domain-2 (WH2) [93]. More commonly, linker proteins act as crosslinkers
between the actin architecture and membrane proteins by means of protein-
protein interactions motifs such as PDZ or ankyrin. PIPs are major regulatory
factors of actin-membrane interactions [94, 95], playing several roles in actin
dynamics regulation by controlling the localization and activity of actin-binding
proteins, a.o. Interactions between proteins and PIPs are mainly mediated by
pleckstrin homology (PH) domains [96–99]. In addition, many actin binding
and actin modulating proteins get activated through the interaction with PIP2-
containing membranes (e.g. ’-actinin, vinculin, talin or ezrin). Moreover, PIP2

stimulates actin polymerization activators (e.g. WASP, WAVE), while it inhibits
proteins that break and depolymerize actin (e.g. gelsolin, cofilin, villin, profilin)
[100]. Some studies also proposed the connection between actin cytoskeleton
and PS to induce nanoclustering of GPI-anchored proteins via transbilayer lipid
interactions [101].

5.4.3 Membrane Shaping Proteins

Remodeling of cell shape is accomplished by recruiting specialized proteins,
which contain motifs able to generate, sense or stabilize membrane curvature.
The synergistic actions of membrane shaping proteins along with changes in the
lipid bilayer and the cytoskeleton enable numerous cellular processes like division,
migration and intracellular trafficking.

Three key mechanisms underlying membrane shaping are currently known. The
first mechanism acts at the nanoscopic level and is a result of protein crowding
and partitioning of transmembrane domains. Molecular crowding by protein-protein
interactions has been recently pinpointed as a mechanism for altering the effective
bending modulus and the curvature of the membrane [102]. Transmembrane
proteins with a conical or inverted-conical shape can also mold their associated
membranes around their shapes, as in voltage-dependent KC channels [103] or
the nicotinic acetylcholine receptor [104]. Additionally, transmembrane receptor
clustering, such as transferrin or low-density lipoprotein, results in endocytic
clathrin-coated pit formation [105].
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The second mechanism involves the direct insertion of small hydrophobic
protein motifs between the lipid headgroups. The hydrophobic surface insertion
into the membrane hemilayer enlarges the surface of the inner leaflet, thus causing
membrane curvature. Numerous proteins playing key roles in membrane shaping
are known to present amphiphatic helices (endophilin, amphipysin, epsin, Bin2 a.o
[106]), but the most well-known classes leading to this type of electrostatic inter-
actions are the endosomal sorting complexes required for transport (ESCRT) and
Bin/Amphiphysin/Rvs (BAR) domain containing proteins. The electrostatic inter-
actions between ESCRT proteins are involved in membrane budding during virus
infection, membrane scission in the multivesicular body pathway and cytokinesis
[107, 108]. The BAR domain protein superfamily includes dimeric banana shaped
structures, which bind electrostatically to the membrane through their concave
face. Binding is thought to be mediated by the interaction between positively-
enriched areas of the BAR module (membrane contact site) and negatively-charged
lipids like PIPs [109, 110]. BAR proteins can also target negative PIPs through
pleckstrin homology (PH) or PhoX (PX) domains. The fact that BAR domains
interact preferentially with curved membranes makes them a sensor of high positive
curvature [111, 112]. The F-BAR (FCH-BAR) domains recognize shallow positive
curvature, while I-BAR (Inverse-BAR) domains interact with shallow negatively
curved membranes. BAR domain proteins have been implicated in many cellular
functions involving sensing or induction of membrane curvature, such as endocyto-
sis and membrane trafficking, podosome and filopodia formation, or mitochondria
and autophagosome shape (reviewed in [113]). BAR domain proteins can be seen as
a signaling ‘hub’ connecting membrane geometry and/or lipid composition to actin
cytoskeleton regulation and to different signaling pathways [114, 115].

The last mechanism of membrane deformation is the scaffold mechanism by
peripheral proteins at the nanoscopic level and their oligomeric assemblies at the
microscopic level. Clathrin, COPI and COPII are coat proteins recruited from
the cytosol during vesicle budding. They have the capacity to bend membranes
by relying on adaptor proteins. After the spherical coated vesicle pinches off,
these proteins are released back into the cytosol and can be recycled [116, 117].
Oligomerization of caveolin is linked to the formation of caveolae [15], while
reticulons and flotilins stabilize the ER curvature [118].

5.4.4 Intrinsic Membrane Properties

Several intrinsic membrane properties contribute to cell (re)shaping. We here
provide information on their regulation and physiological implication, with specific
focus on the molecular level. Membrane properties and regulation at the larger scale
of lipid domains and resulting from collective lipid behaviour will be discussed in
more details in Sect. 5.6.

The cellular membrane exhibits transbilayer asymmetry, first hypothesized in
the 70’s by Bretscher [119]. This asymmetry contributes to PM complexity and
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diversity by the differential repartition between the two leaflets of lipid (i) order
and packing (Sect. 5.4.4.1), (ii) charge and dipole (Sect. 5.4.4.2) and (iii) molecular
shape (Sect. 5.4.4.3), thereby leading to optimal physiological output. The inner
monolayer contains most of PS and PE whereas PC and SM are mostly located
within the outer leaflet. Whereas lipid PM asymmetry has been largely reported
including in human RBCs [120] and platelets [121], it is cell type-dependent [122,
123]. The asymmetric distribution of phospholipids is accompanied by asymmetry
of fatty acid chains. For example, in human RBCs, the double bond index is 1.54
for the inner face vs 0.78 for the outer face [124]. In contrast to phospholipids,
transbilayer distribution of cholesterol is highly debated [125]. Recently, choles-
terol has been shown to inhibit phospholipid scrambling [126], an unsuspected
function that could be critical for cell deformation. Membrane proteins (with their
preferred orientation) and communication with the exterior and interior aqueous
compartments (which contain different concentrations of ions, small molecules,
and/or proteins) also contribute to the bilayer asymmetry. Rapid exchanges between
leaflets are presumed to be prohibited by the large enthalpic barrier associated with
translocating hydrophilic materials, such as a charged lipid headgroup, through the
hydrophobic membrane core. The mechanism underlying transbilayer asymmetry
involves specific flippase (inward moving), floppase (outward moving) and scram-
blase (bidirectional) enzymes that assist in the movement of lipids between the
two leaflets of cellular membranes [127]. The transbilayer coupling may be also
an intrinsic property of the lipid themselves [128] via interdigitation through long
acyl chain (C22-C24) [101, 129].

5.4.4.1 Lipid Order and Packing

Lipid packing depends on the ratio between small and large polar heads and the
ratio between unsaturated and saturated acyl chains. The usual cis-unsaturated oleyl
chain (C18:1) occupies a larger volume than the palmitoyl chain (C16:0) because
the double bond induces a “kink” in the middle of the chain which lowers the
packing density of the acyl chains, thereby increasing membrane fluidity [130].
Owing to its acyl chain composition, SM forms a taller, narrower cylinder than
PC, increasing its packing density in the membrane. Consequently, at physiological
temperature, a SM bilayer exists in a solid gel phase with tightly packed, immobile
acyl chains [131, 132]. By interfering with acyl chain packing, sterols inhibit the
transition of the membrane to the solid gel state. At the same time, sterols rigidify
fluid membranes by reducing the flexibility of neighbouring unsaturated acyl chains,
thereby increasing membrane thickness and impermeability to solutes (the so-called
condensing effect of sterols) [133].

Based on membrane packing criteria, membrane can be viewed as a patchwork
with areas characterized by differences in membrane fluidity. The areas of low
fluidity are named the solid phase (L“) (or solid-ordered (So) phase). In these
areas the lipid acyl chains are tightly packed and there is a low rate of lateral
diffusion. In contrast, the more fluid areas are named the liquid crystalline (L’)
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phase [134] (more commonly called the liquid-disordered (Ld) state) which exhibits
both low packing and high lateral diffusion. In addition, at the proper concentration,
cholesterol may facilitate lateral segregation of lipids into cholesterol-depleted and
-enriched regions, such as liquid-ordered (Lo) lipid domains, which expose high
packing and high lateral diffusion. Lipid phase behavior is temperature-dependent
and the L“ phase transition into Ld phase occurs when temperature increases. The
temperature at which this transition occurs is known as the gel-to-liquid transition
temperature (Tm) and depends on lipid acyl chains. Lipids with long saturated fatty
acyl chains (e.g. most sphingolipids) have high Tm, whereas lipids with fatty acids
having cis double bonds (e.g. most phospholipids) have low Tm.

Membrane fluidity is critical to warrant proper protein sorting and membrane
trafficking required during adaptive responses. For example, organelles of the
secretory pathway differ in lipid composition, resulting into gradual increase of
molecular packing density and membrane rigidity from the ER toward the PM
[131, 135]. Thus, modulation of lipid composition and fluidity seems critical for
adaptive responses even though cytosolic proteins and integral membrane sensors
also contribute to regulate fluidity [2, 136, 137]. As a consequence of membrane
transbilayer asymmetry, membrane physical properties are also asymmetrical, the
outer monolayer being more packed and rigid than the inner one [124]. How
differential order of lipid domains in one leaflet can affect the order of the opposite
leaflet is highlighted in Sect. 5.6.2.

5.4.4.2 Lipid Dipole Potential

Most of the phospholipids and sphingolipids are zwitterionic and exhibit a signif-
icant permanent electric dipole moment [138]. Cell membrane transversal asym-
metry thus creates a permanent dipole potential, leading to a significant difference
in electric potential across the membrane that can vary from 100 to 400 mV and
is positive in the membrane interior [139]. The dipole potential arises from the
water dipole of the hydrated lipid bilayer [138, 140], the fatty acid carbonyl groups
[138, 141] and the lipid headgroup [142]. Cholesterol increases the membrane
dipole potential by impacting the orientation, strength and packing density of the
molecular dipoles at the membrane surface [143, 144] and via its own dipole
moment, which depends on its membrane orientation and membrane packing [145,
146]. How membrane and domain dipole potential can affect lipid domain size
and topography and how electrostatic interactions modulate and reorganize lipid
domains are developed in Sects. 5.6.2 and 5.6.3.

5.4.4.3 Lipid Molecular Shape

Moving to lipid molecular shape, i.e. ratio of head-to-tail area, some lipids like
PC show comparable lateral areas in the head and tail regions with an overall
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cylindrical molecular geometry, forming a planar bilayer. In contrast, PE have a
small headgroup relative to the cross-sectional area of the hydrocarbon tails (conical
shape) whereas lysophospholipids are characterized by tail regions of bigger lateral
cross-section than the headgroups (inverted conical shape). The cylindrical, conical
and inverted-conical lipids have zero, negative and positive spontaneous curvatures,
respectively.

Generation of membrane shape by lipids is generally attributed to intrinsic
lipid molecular shapes (lipid morphism [147]) and lipid membrane transversal
asymmetry (bilayer couple hypothesis [148]) and this specific molecular lipid
sorting is usually associated to a substantial and persistent energy input mediated
by proteins [31]. The asymmetry between the inner and outer leaflets results in
spontaneous bending of originally flat membrane. This can be ascribed by an elastic
parameter, named the spontaneous curvature which corresponds to the curvature
that an unconstrained monolayer would adopt. It can be positive (if the membrane
prefers to bulge toward the exterior compartment) or negative (the opposite). When
a system is forced to adopt a curvature different from the spontaneous curvature,
the curvature elastic stress is considered. Examples include cellular processes that
require membrane bending like endocytosis, budding or cell deformation. Since
these processes are highly sensitive to changes in lipid composition and to the
presence of specific lipids [149, 150], subtle modifications in lipid composition
may have major implications for lipid and protein sorting under a curvature-based
membrane-sorting model [30, 151, 152]. How membrane curvature can affect lipid
domain sorting and topography is discussed in Sect. 5.6.2, and how lipid domains
could be involved in the generation of membrane shape is discussed in Sect. 5.7.1.

5.5 Lipid Domains – Evidence

The concept of lipid rafts is used to describe unstable nanoscale assemblies (20–
100 nm) enriched in sphingolipids, cholesterol and GPI-anchored proteins [8, 14].
Besides rafts, there are various types of membrane domains that are characterized
by their enrichment in specific proteins, such as caveolae and tetraspanin-enriched
domains [15, 16]. Rafts can sometimes be stabilized to form larger platforms
through protein:protein and protein:lipid interactions [9]. Morphological evidence
for stable (min vs sec for rafts) submicrometric domains (> 200 nm in diameter
vs < 100 nm) has been reported in artificial [17–19] (Sect. 5.5.1) and highly
specialized biological membranes [18, 20] (Sect. 5.5.2).

However, there is an intensified debate on the real existence of stable submi-
crometric lipid domains in cells. This can result from three main features. First,
whereas some groups have provided evidences for stable submicrometric lipid
domains in physiological conditions (Sects. 5.5.3 and 5.5.4 for examples), there are
cases in which they have not been detected. For example, whereas submicrometric
domains enriched in sphingolipids have been demonstrated by secondary ion mass
spectrometry (SIMS) at the fibroblast PM, cholesterol is uniformly distributed
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throughout [153, 154]. Likewise, using protein micropatterning combined with
single-molecule tracking, Schutz and coll. have shown that GPI-anchored proteins
do not reside in ordered domains at the PM of living cells [155]. Differences
between studies can be explained by several reasons. For instance, analysis of lipid
lateral heterogeneity suffers from technical issues such as lipid unresponsiveness
to chemical fixation, fast translational movement, small molecular size and high
packing density. As a consequence, it is a big challenge to design small specific
fluorescent tools that can be used to analyze lipid organization by microscopic
methods with resolution approaching the nanometer-scale under poor lipid fixation.
Moreover, imaging artefacts could arise from non-resolved membrane projections
and domain abundance strongly varies with temperature, another possible cause of
non-reproducibility. Despite these limitations, which are also discussed elsewhere
[156, 157], novel specific probes have recently been developed and validated
(reviewed in [156, 158–160]). Membrane composition and biophysical properties
also strongly influence lipid lateral distribution. Finally, living cells are far from
equilibrium and are instead constantly reorganized by energy-driven processes,
including motor-driven constriction of the cytoskeleton, membrane trafficking,
lipid metabolism and exchanges of ions and molecules with the environment. A
second reason alimenting the debate is that submicrometric lipid domains have
sometimes been reported under non-physiological conditions: (i) in RBCs after
alteration of membrane ceramide or cholesterol contents upon treatment with a
toxin from Pseudomonas aeruginosa [161] or methyl-“-cyclodextrin (m“CD) [162],
respectively; and (ii) in CHO cells upon cholesterol depletion [163]. Third, lipid
domains could be not stably present but transiently generated by the hydrolysis of
specific lipids. One can cite the ceramide-rich domains with diameters of �200 nm
up to several micrometers that can be formed upon SM degradation by acid SMase
in response to stress [164, 165].

Therefore, one major challenge will be to evaluate whether submicrometric lipid
domains can be generalized or if they are restricted to cells exhibiting particular
membrane lipid composition, biophysical properties and membrane:cytoskeleton
anchorage. The rest of this book chapter is dedicated to this crucial question.

5.5.1 Membrane Models

Different types of model membranes have been developed to study phase separation,
including planar supported bilayers [170] and giant unilamellar vesicles (GUVs)
[171] made from lipid mixtures as well as giant PM vesicles (GPMVs) isolated from
cellular PMs after chemical treatment [172]. All these models are useful to perform
systematic analysis of the impact of lipid composition on phase separation, like in
model membranes mimicking the composition of the PM outer leaflet (Fig. 5.3a,b).
They show liquid-liquid phase separations, with domains of variable sizes depend-
ing on lipid composition and temperature (Fig. 5.3c,d). Planar supported bilayers
are useful for methods requiring rigid planar surfaces like AFM and ToF-SIMS.
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Fig. 5.3 Visualization of phase coexistence in model membranes. (a) GUV (DOPC/DPPC/Chol)
labelled with BODIPY-PC and DiIC18 showing Lo and Ld phases. (b) GUV (DOPC/stearyl-
SM/Chol) labelled with Rhodamine-DOPE (Ld phase) or Laurdan (fluidity). (c) GUVs of
DOPG/egg SM/Chol in different ratios labeled with the Ld phase marker DiIC18. (d) GUV
produced from native pulmonary surfactant labelled with BODIPY-PC and DiIC18 and examined
at 40 ıC and 25 ıC. (e) GPMV from NIH 3 T3 cells labeled with Rhodamine-DOPE, showing
fluid/fluid phase coexistence. (f) GUV (DOPC/DOPG/SM/Chol/GM1) labelled with Rhodamine-
LAT peptides examined before and after addition of CTxB (dark areas, Lo phase) (Adapted from:
(a) [18]; (b) [166]; (c) [167]; (d) [168]; (e); [17]; (f) [169])

With a size of 15–30 �m, GUVs are more suitable to approach the PM morphology.
However, even if proteins can be incorporated [173], GUV composition remains
far from the complex PM composition. GPMVs also exhibit phase separation
(Fig. 5.3e). However, whereas they contain both PM lipids and proteins, several
factors known to modulate phase separation are still missing, including cytoskeleton
anchorage, active cellular processes and cross-binding proteins (Fig. 5.3f). These
differences, which must be considered when studying phase separation, are reflected
in the differential Tm in living cells and isolated GPMVs [174].
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5.5.2 Highly-Specialized Biological Membranes

The question is whether and how lipid organization in model membranes can be
extrapolated to PMs. Indeed, in contrast to model membranes, PMs (i) are complex
in lipid composition and intrinsic membrane properties, (ii) exhibit a high diversity
of membrane proteins and a more or less anchored cytoskeleton, and (iii) are out
of thermodynamic equilibrium. It is thus interesting to first describe lipid lateral
distribution in membranes in which local equilibrium conditions are prone to occur,
i.e. the pulmonary surfactant and the skin stratum corneum membranes, due to
a relatively slow molecular turnover [18, 20]. Pulmonary surfactant membranes
contain an important quantity of DPPC, cholesterol and unsaturated lipids and
a low fraction of membrane proteins. These membranes show the coexistence
of two liquid domains at physiological temperature that was linked with their
spreading capacity at the air-water interface [18, 168]. Whereas extraction of the
surfactant proteins does not alter phase coexistence, partial cholesterol depletion
leads to elongated irregular domains, typical of gel/fluid phase coexistence. Domain
organization is also strongly affected by temperature [18]. In the skin stratum
corneum membrane, the lipid composition is also unique with mainly unusually
long chain ceramides and free fatty acids as well as cholesterol [175, 176]. Using
GUVs composed of lipid mixtures extracted from human skin stratum corneum,
Plasencia et al. have shown a pH- and temperature-dependent membrane lateral
organization. At pH 5, membranes exhibit a Ld phase at temperature > 70 ıC, a
Ld/gel phase coexistence between 40 and 70 ıC and a gel/gel-like phase coexistence
at temperature < 40 ıC (relevant since skin physiological temperature is �30 ıC). At
pH 7, the coexistence of these two distinct micrometric gel-like domains disappears
and has been linked to the permeability properties of the skin stratum corneum [20].

Thus, these two specialized membranes highlight three important features
regarding membrane lateral distribution. First, they represent alternative models
besides model membranes in which equilibrium thermodynamic lipid phases have
been evidenced. Second, lipid domains could be favored by the exceptional lipid
composition of these membranes. It is thus crucial to consider this parameter
when discussing the existence of lipid domains. Third, domains seem to be
physiologically relevant.

5.5.3 Prokaryotes & Yeast

In contrast to mammalian cells, membrane domains are understudied in bacteria.
This could be explained by three main reasons. First, the presence of lipid domains
in cell membranes was for a long time thought to be a step during the course
of evolution of cellular complexity. Second, the formation of lipid rafts requires
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sterols, which are missing from the membrane of most bacteria. Third, taking
into account the small size of bacteria and the resolution limits of conventional
confocal microscopy, exploring lipid domains in bacteria is particularly difficult.
Fluorescence resonance energy transfer (FRET) and fluorescence anisotropy have
nevertheless provided a significant amount of information.

Cardiolipin-enriched domains have been evidenced in bacteria with the fluo-
rescent dye 10-N-nonylacridine orange (NAO). This probe, which was initially
developed to visualize cardiolipin-rich mitochondria in eukaryotic cells, was also
used to localize cardiolipin at the polar and septal poles of E. coli and B. subtilis
[177, 178]. More recently, it has been shown that bacteria have the capacity to
organize protein transport, secretion and signal transduction cascade in functional
membrane microdomains (FMMs) [179]. Whereas FMMs have been suggested to
be equivalent to eukaryotic lipid rafts [180], they exhibit differential composition.
Indeed, bacterial membranes are enriched in phospholipids, lipopolysaccharides
and various lipoproteins [181, 182] but most of them do not have sphingolipids
[183] and only a few contain sterols [184, 185]. It should be stressed that some
bacteria synthesize hopanoids, which have a chemical structure similar to that of
cholesterol [186] and which could form nanometric domains by self-aggregation
[180]. A nanoSIMS technique was employed to probe the existence of hopanoid
lipid domains in cyanobacterium Nostoc punctiforme [187]. Bacterial flotillin FloT
and FloA proteins along with squalene biosynthesis were found to play key roles in
the formation of lipid domains. Heterogeneous distribution of flotillin-like proteins
in B. subtilis was directly visualized by fluorescence microscopy upon labelling with
the translational fusion FloT-GFP [188, 189]. The question of lipid composition of
the flotillin-enriched structures still remains.

In contrast to bacteria, yeast represents a powerful system to explore lipid
domain organization based on genetic approaches. In addition, like plants, yeast
exhibits membranes which appear highly heterogeneous and can be imaged with
conventional methods [190]. As indirect evidence for lipid domains in yeast, a
Lo/Ld phase coexistence has been shown on model membranes either prepared
from yeast total lipid extracts or with defined composition including ergosterol
and inositolphosphoceramide [191]. Then, sterol-enriched submicrometric com-
partments containing the eisosome protein Sur7 and proton symporters Can1,
Fur4, Tat2 and HUP1 have been evidenced thanks to filipin labelling [192]. More
recently, major redistribution of PIP2 into membrane clusters has been evidenced
upon osmotic stress in both fission and budding yeast cells [193, 194]. Such
PIP2 clusters are spatially organized by eisosomes, protein-based structures of the
yeast PM. After perturbation of sphingolipids, sterol, PS or PIP2 levels, patchwork
protein distribution is modified, suggesting a relation between proteins and lipids
at the yeast PM domains. Besides PM, the yeast vacuole membrane proteins also
segregate in two large stable membrane domains exhibiting differential ordering
properties in response to nutrient deprivation, changes in pH of the medium and
other stresses [195].
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5.5.4 Animal Cells

In the past decades, submicrometric lipid domains have been documented at the
outer and/or inner PM leaflet of various cell types, using several tools and methods.
A substantial, albeit non-exhaustive, list of examples is presented in [156]. We will
here select some cells based on their need to reshape during essential physiopatho-
logical processes, i.e. RBC (squeezing in narrow pores), platelet (spreading during
coagulation), neutrophil (chemotaxis), neuron and glial cell (shape adaptation),
epithelial cell (polarization) and cancer cell (squeezing to invade tissues). Images
are provided in Figs. 5.4 and 5.5.

Human RBCs are the simplest and best characterized eukaryotic cell system both
at lipid and protein levels [196, 197]. Hence, they are biconcave and are submitted
to strong deformability during their 120-days lifetime. Moreover, for practical
purposes, RBCs are a model of choice to explore PM lipid lateral heterogeneity
because they (i) are easily available and robust, (ii) exhibit high homogeneity in
size and shape due to rapid clearance of damaged RBCs by the spleen, (iii) present
a flat surface without membrane projections or protrusions, avoiding confusion
between domains and lipid enrichment in membrane ruffles, and (iv) do not make
endocytosis, avoiding any confusion between domains and endosomes. We first
revealed submicrometric domains by vital confocal imaging of spread RBCs upon
trace insertion in the outer PM leaflet of fluorescent lipid analogs (e.g. BODIPY-
SM) [25, 198]. Similar domains have then been observed upon direct labeling
of endogenous SM and cholesterol using specific fluorescent toxin derivatives,
Lysenin and Theta [21, 24] (Fig. 5.4). Double labeling of RBCs with the SM-
specific Lysenin, then with BODIPY-SM, reveals perfect colocalization, suggesting
the relevance of BODIPY-SM to study its native counterpart [21]. In contrast,

Fig. 5.4 Evidence for submicrometric lipid domains in RBCs. RBCs labelled by Lysenin*
(a; endogenous SM) or Theta* (b; endogenous cholesterol), then by exogenous BODIPY-SM.
Whereas Lysenin* and BODIPY-SM perfectly co-localize (a), two types of cholesterol domains,
enriched in either both cholesterol and SM (yellow arrowheads, b) or cholesterol (chol) mainly
(red arrowheads, b), coexist [21, 24]
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Fig. 5.5 Evidence for submicrometric lipid domains in nucleated mammalian cells. (a) Human
neutrophil stained for phosphatidylglucoside (PtdGlc) and lactosylceramide (LacCer) and exam-
ined by STED microscopy. (b) Human neutrophil analyzed for SM at the inner face by
SDS-digested freeze-fracture replica labelling with a Lysenin fragment. (c) LLC-PK1 cell labeled
for SM (Equinatoxin) and SM clusters (Lysenin) and analyzed at its apical surface by structured
illumination microscopy (SIM). (d) LLC-PK1 cell expressing Dronpa-PH (PIP2), stained with
Lysenin (SM) and analyzed by PALM/dSTORM. (e) HeLa cell labeled for cholesterol (Theta
toxin fragment) and analyzed by PALM. (f) Jurkat cell labeled with a Lysenin fragment (SM) and
biotinylated CTxB (GM1). (g) Fibroblast labeled with 15N–sphingolipid precursors and examined
by SIMS combined with TIRF. (h) Human skin fibroblast labeled and imaged as in (b) (Adapted
from (a) [199]; (b) [122]; (c) [200]; (d) [201]; (e) [202]; (f) [203]; (g) [154]; (h) [122])
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Fig. 5.6 Regulation of submicrometric lipid domains in RBCs. Illustration for cholesterol (chol)-
and SM-enriched domains (respectively labelled by Theta* & Lysenin*). (a) Control (ctl) RBCs
at 20 ıC. (b–d) Similar regulation: (b) increased temperature (42 ıC), (c) specific lipid depletion
(�SM or -Chol), (d) acute uncoupling of membrane:cytoskeleton anchorage at 4.1R complexes
(PKC activation). (e,f) Differential regulation: (e) increased tension (increased spreading on
coverslip), (f) increased Ca2C efflux (Ca2C-free medium containing EGTA) (Adapted from [21,
24, 204])

double labeling with BODIPY-SM and the cholesterol-specific probe Theta leads
to partial dissociation, indicating the coexistence of two types of domains at the
RBC surface (see below). Submicrometric lipid domains have been confirmed on
RBCs suspended in a 3D–gel, thus without artificial stretching, suggesting a genuine
feature of RBCs in vivo. Mechanistically, lipid domains of RBCs are governed by
temperature, lipid content, membrane:cytoskeleton anchorage, membrane tension
and Ca2C exchanges [21, 24, 204] (see Fig. 5.6.). In agreement with our confocal
imaging data, Scheuring and coll. revealed by AFM the structural and mechanical
heterogeneity of the RBC membrane [81]. These studies contrast with the random
distribution of SM clusters observed by Kobayashi and coll. using SDS-digested
freeze-fracture replica labelling [122, 123]. Whether this discrepancy reflects
differences in methodology (imaging approach, fixation, labelling efficiency) or in
parameters that are known to regulate domains (temperature, membrane tension,
bending) remains to be determined.

Human platelets are central to hemostasis. Using 4-dimensional live-cell imaging
and electron microscopy, Agbani et al. have recently shown that platelets adherent
to collagen are transformed into PS-exposing balloon-like structures with expansive
macro/microvesiculate contact surfaces, by a process called procoagulant spreading
[205]. Whereas platelet activation is known to critically depend on PS surface
exposure [206], the importance of lipid lateral distribution is less understood.
On one hand, using the artificial lipid probe DiIC18, Gousset et al. have shown
submicrometric domains in platelets upon activation, suggesting regulated raft
coalescence into larger domains under appropriate conditions [207, 208]. On the
other hand, random distribution of SM clusters has been revealed by SDS-digested
freeze-fracture replica labelling in both non-stimulated and stimulated platelets
[122, 123].
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Upon recruitment to sites of inflammation via chemotaxis, neutrophils rapidly
change their morphology, from roughly spherical resting to migratory cells with
distinct leading and trailing edges. Maxfield and coll. have proposed that mem-
brane lipid organization is critical for human neutrophil, through the formation
of submicrometric domains that help in amplifying the chemoattractant gradient
and maintaining cell polarization [209]. However, this suggestion was mainly
based on disruption of lipid organization using m“CD and morphological evidence
for lipid domains was not provided. Recently, STED has revealed that the two
main neutrophil glycolipids, phosphatidylglucoside and lactosylceramide, form
distinct domains in their outer PM (Fig. 5.5a). Moreover, lactosylceramide domains
associate with the Src family kinase Lyn and could thereby participate in chemotaxis
[199, 210]. Evidence for domains in the inner leaflet of neutrophil PM has also been
provided, with diameter > 200 nm and enrichment in SM [122] (Fig. 5.5b).

Neurons can also adopt a variety of shapes to adapt to the region and function in
the nervous system. By characterizing the elastic properties of specific membrane
domains in living hippocampal neurons by AFM, it was demonstrated that GPI-
anchored proteins reside within domains of �70 nm size that are stiffer than
the surrounding membrane. Upon inhibition of actin filament formation, the size
of the GPI-enriched domains increases without change in stiffness [66]. During
the development of the central nervous system, the reciprocal communication
between neurons and oligodendrocytes is essential for the generation of myelin.
Oligodendrocytes exhibit a differential relative abundance of specific lipids during
differentiation [211] and a high global lipid content [212]. Several reports have
shown that some of these lipids cluster into domains. First, galactosylceramide
and sulfatides form submicrometric domains [213], mutually interacting at the
apposed membranes of wrapped myelin [214], regulating PM organization and
myelin protein lateral diffusion [215]. Second, GM1-enriched domains are essential
for oligodendrocyte precursor survival by providing signaling platforms for growth
factor-mediated integrin activation [216].

Lipid domains could also play a role in epithelial cell polarization. By FRAP of
several membrane proteins, Meder and coll. revelead the coexistence of at least two
different lipid phases in the apical PM of epithelial cells, but not in fibroblasts [217].
In differentiated MDCK cells, SM-enriched domains have been evidenced at the
basolateral membrane [200]. In contrast, the SM-specific probe Lysenin selectively
stains the apical PM of Eph4 cells, a cell line derived from mouse mammary gland
epithelial cells [218], and SIM evidences SM clusters in the apical PM of LLC-
PK1 cells [200] (Fig. 5.5c). Such differences in lipid lateral distribution should be
discussed in light of epithelial cell biochemical and morphological characteristics,
as proposed in [219, 220].

Lipid domains are also relevant to cancer cells. First, imaging by AFM of
membranes purified by ultracentrifugation from human breast cancer cells (MDA-
MB-231) has revealed the presence of submicrometric domains [221]. Second,
super-resolution fluorescence microscopy of HeLa cells labeled with fluorescent
Lysenin and Theta has demonstrated two types of lipid domains of �250 nm
in diameter and differentially enriched in cholesterol and SM [202] (Fig. 5.5e).
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Third, electron microscopy of Jurkat T-cells (an immortalized line of human T
lymphocyte cells) double labeled with Lysenin and CTxB indicates the coexistence
of SM- and GM1-enriched domains [203] (Fig. 5.5f). Upon labeling of the same
cells with Laurdan, Dinic and coll. have shown the association of TCR with small
ordered actin-dependent PM domains in resting T cells that can aggregate upon
TCR engagement [222]. Acquisition of a motile phenotype in T lymphocytes results
in the redistribution of ganglioside GM3- and GM1-enriched raft domains to the
leading edge and to the uropod, respectively, in a cholesterol- and actin-dependent
process. It was suggested that segregation of membrane proteins between distinct
lipid domains allows mediating redistribution of specialized molecules needed for
T cell migration [223].

Lipid domains have also been observed in other cells such as fibroblasts and
myoblasts. At the PM of fixed mouse embryo fibroblasts labeled with Lysenin,
SM clusters that appear to be membrane lipid trafficking-dependent have been
observed [224]. In contrast to cholesterol which is uniformly distributed throughout,
evidence for submicrometric sphingolipid-enriched domains has been provided at
the NIH3T3 mouse embryo fibroblast PM using SIMS (Fig. 5.5g). These domains
are only reduced in abundance upon cholesterol depletion but fully eliminated upon
cytoskeleton disruption, suggesting they are not lipid rafts [153, 154]. SM domains
[122] (Fig. 5.5h) and restriction of PIP2 diffusion have also been shown in the
inner leaflet of fibroblasts [225]. At the lateral PM of living C2C12 myoblasts,
which exhibit a high level of cholesterol [226] and a strong membrane:cytoskeleton
anchorage, we revealed heterogeneous distribution of cholesterol upon decoration
by Theta [24].

Thus, stable lipid domains can be evidenced in a large diversity of living cells
but the concept is still difficult to generalize. As recently proposed by Kobayashi
and coll. for asymmetric lipid distribution across the PM, we suggest that the lateral
distribution of lipids is highly regulated and cell-dependent. It is thus crucial to
integrate PM lipid composition and membrane properties, cytoskeleton:membrane
coupling as well as membrane trafficking and lipid turnover while discussing lipid
domains (see Sect. 5.6).

Another important challenge is to evaluate lipid domain diversity, both at the
inner and the outer leaflets, and to establish whether there is a correspondence
between lipid domains in the two leaflets. Several studies based on multiple labeling
using validated probes, combined or not with specific lipid depletion, report for
the coexistence of distinct lipid domains in the PM. First, sterol- and sphingolipid-
enriched domains only partially overlap in several PMs. For instance, by double
labeling experiments in RBCs, we showed the coexistence of two types of domains,
one enriched in SM and cholesterol vs another mainly enriched in cholesterol
[24]. SIMS in mouse fibroblasts revealed that partial cholesterol depletion does
not eliminate the sphingolipid domains but reduces their abundance [154]. The
structure and abundance of sphingolipid domains at the yeast PM seem independent
of ergosterol [227]. Second, one (class of) lipid can even be distributed in several
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different pools. Thus, the dissociation of SM- and GM1-rich domains in the
outer PM leaflet of Jurkat T-cells has been shown by electron microscopy [203]
(Fig. 5.5f). GM1 and GM3 clusters at the fibroblast PM largely dissociate and are
redistributed upon actin cytoskeleton disruption, indicating that their distribution
not only depends on phase separation but also on cytoskeleton [228]. By confocal
vital imaging of the RBC PM, we evidenced two types of cholesterol-enriched
domains [24]. Using a toxin that binds to cholesterol-rich membranes, Das et al.
have shown that the human fibroblast PM contains three types of cholesterol pools,
i.e. a pool accessible to the toxin, a SM-sequestered pool that binds to the toxin
only when SM is abrogated and a residual pool that does not bind the toxin even
after SM abrogation [229]. Whether these pools represent real domains remains
to be determined. Likewise, in S. cerevisiae, two ergosterol pools, one enriched in
sphingolipids and the other not, are involved in two different aspects of yeast mating,
pheromone signaling and PM fusion, respectively [230].

Regarding lipid domain transbilayer distribution, a superposition of SM clusters
in the outer PM leaflet and PIP2 in the inner leaflet has been shown by super-
resolution microscopy of LLC-PK1 cells [201] (Fig. 5.5d). By delivering fluorescent
PIP2 and F-actin specific probes using synthetic vesicles and real time live cell
imaging, Chierico and coll. have shown that PIP2 domain formation during the
early stage of cell adhesion correlates with rafts [231]. Mayor and co-workers
provided experimental and simulation data showing that nanoclustering of GPI-
anchored proteins at the outer PM leaflet by dynamic cortical actin is made by the
interdigitation and transbilayer coupling of long saturated acyl chains [101].

5.6 Lipid Domains – Control

Biological membranes possess two characteristic, yet opposing, features. They
present a fluid-like nature allowing for free movement of their constituents,
while providing area for a variety of biological functions suggesting non-uniform
distribution and formation of lipid/protein domains. A large variety of mechanisms,
including energetic considerations (Sect. 5.6.1), intrinsic membrane properties
(Sect. 5.6.2) and extrinsic factors (Sect. 5.6.3), could contribute to control domains.
We believe that these mechanisms can differentially impact distinct lipid domains,
as illustrated for RBCs at Fig. 5.6, resulting in a wide diversity of domains in cells
(see Sects. 5.5.3 and 5.5.4).

5.6.1 Energetic Considerations

Phase transition temperature (Sect. 5.6.1.1) and line tension at phase boundary
(Sect. 5.6.1.2) are potential energetic sources for cell control of domain size.
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5.6.1.1 Phase Transition Temperature

Lipid immiscibility and Lo-Ld liquid phase separation, well-characterized on
ternary mixture of polar lipids and cholesterol [232], are proposed to drive
lipid domain biogenesis, according to the lipid raft hypothesis. However, recent
experiments on GPMVs expose liquid-phase separation at lower temperature (�15–
25 ıC) than 37 ıC [17, 174]. Since in the one-phase region micrometer-scale
composition fluctuations occur and become increasingly large and long-lived as
temperature is decreased to the transition, Veatch and coll. proposed that lipid rafts
are the manifestation of transient compositional fluctuations and suggested that
cells may exploit the low energy cost associated with (re)organizing components
in membranes with critical composition [174]. By using the relatively long-range
fluctuation-driven forces between membrane inclusions (called Casimir forces),
Machta et al. proposed that cells may also take advantage of being close to the
critical point to (re)organize the lateral segregation of membrane proteins [233].

In living cells, although no evidence of miscibility transition over a temperature
range of 14–37 ıC was observed, GPMVs derived from these cells do instead exhibit
such a transition, pointing out that phase transition is not driven in living cells by
temperature in a range of 14–37 ıC. Groves and coll. therefore suggested that living
cells maintain either the T > Tm or T < Tm through the wide temperature range and
highlighted the robustness of the cellular membrane to temperature change [234],
an opposite view from the models of Veatch and Machta.

The discrepancy between Veatch/Machta and Groves and coll. models could
arise from the fact that GPMVs, as compared to the mother-cell PM, have lost
cytoskeleton anchorage and transmembrane asymmetry [17] and are no longer
connected with cross-linking components or lipid recycling, all known to modulate
liquid phase separation (see Sects. 5.6.2 and 5.6.3). Indeed, Groves and coll. have
shown differential tension between living cell PMs and derived GPMVs, suggesting
that cell membranes may be maintained in a different region of the phase diagram
avoiding a temperature-driven phase transition [234]. It is possible that interactions
with cytoskeletal/membrane proteins or active cellular process dominate or even
obliterate lipid miscibility effects.

Bagatolli and coworkers discussed the biological existence and significance
of equilibrium thermodynamic phase and equilibrium critical points in biological
membranes, which normally are in non-equilibrium conditions [10, 11]. They
suggest that critical point phenomena are unlikely to be a major factor regulating
biological phenomena since, for example, small mistuning near critical point could
lead to drastic change in membrane structure and cell function. Another point of
view is that biological system could exhibit a non-equilibrium critical behavior or
a self-organized critical behavior [235]. The self-organized critical system exposes
a critical state which is robust to perturbations and needs no tuning as it evolves
itself towards the critical state thought self-organization [236]. This idea is appealing
for biological system regarding its robustness as compared to system near critical
points.
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5.6.1.2 Line Tension at Phase Boundary

The line tension, i.e. the energy at domain boundary, results from the different phase
properties of the lipid domains and its surrounding, leading to thickness mismatch at
domain boundary and unfavorable exposure of lipid hydrocarbon regions to water.
Theoretical work exposed the central role of line tension for lipid domain lateral
sorting [237]. Different observations on model membranes also support this view.
First, lipid domains are circular and rapidly return to a circular shape after external
perturbation [238] to minimize the boundary length, supporting the importance of
line tension at the phase interface. Second, degrading cholesterol (a key regulator of
differential order and thickness between lipid domains and surrounding membrane)
with cholesterol oxidase in one monolayer induces irregular domain boundary
followed by domain disappearance [238]. Third, domain size increases with the
extent of acyl chain unsaturation [237], another regulator of differential order and
thickness between lipid domains and surrounding membrane. Fourth, domain size
and the mismatch in bilayer thickness at phase boundary are directly correlated
[237]. Fifth, with increasing temperature, GPMVs exhibit in their two-phase region
a linear decrease of the line tension which approaches zero at the Tm [174].
Experiments on living RBCs have confirmed some of these observations: (i) lipid
domains are all circular [21, 24]; (ii) cholesterol or SM depletion induce irregular
domain boundary (our unpublished data); and (iii) domain abundance and size are
differently modulated by line-active agents [239].

The energy cost of the line tension depends on the size of the height mismatch
and the length of the boundary. Mechanisms minimizing hydrophobic exposure
at domain boundary by reducing both factors were suggested to take place in the
membrane. The first one involves elastic lipid deformation to decrease the step-like
change in thickness at domain boundary [240] while the second one favors domain
coalescence to reduce domain boundary perimeter [241]. But, if the line tension
at domain boundary was the only relevant energy consideration, any system with
coexisting liquid domains would achieve equilibrium at one round domain. In fact,
this is not the case since a stable distribution of lipid domain size can be observed
in both model membranes and living cells. This suggests that other energy factors
compete with the line tension, such as the entropic penalty for domain merge [241].
In addition, in living cells, the lipid composition is far more complex than in model
membranes. Taking this in account, the step-like nature of lipid domain boundary
found in a ternary mixture could be compensated in living cells by accumulation at
domain boundary of (i) lipids of intermediate length, decreasing the abruptness of
the boundary and the strength of the line tension [242], and (ii) proteins playing the
role of line-active agents by accumulating at the interface [243].

5.6.2 Intrinsic Membrane Properties

Intrinsic membrane properties are also critical for controling lipid domains. These
include membrane lipid:lipid interactions (Sect. 5.6.2.1), curvature (Sect. 5.6.2.2),



148 C. Léonard et al.

transversal asymmetry (Sect. 5.6.2.3), dipole potential (Sect. 5.6.2.4) and pro-
tein:lipid interactions (Sect. 5.6.2.5).

5.6.2.1 Membrane Lipid:Lipid Interactions

The favorable cholesterol and SM interaction observed in biomimetic model
membranes and leading to the coexistence of cholesterol/SM-enriched phase (“raft-
like”) with cholesterol/SM-poor phase (“non raft-like”) is proposed in the seminal
lipid raft definition to drive lipid domain biogenesis. Accordingly, cholesterol-
enriched domains partially colocalize with SM-enriched domains at the living RBC
PM and both lipid domains exhibit reciprocal dependence, as revealed by specific
cholesterol or SM membrane depletion [21, 24]. However, several other studies
indicate the opposite. First, depletion of homogenously distributed cholesterol in
mouse fibroblast PM does not influence the morphology of sphingolipid-enriched
domains [154]. Second, in yeast, sphingolipids do not accumulate in ergosterol-
enriched domains [27] and sphingolipid-enriched domain structure and abundance
do not depend on ergosterol metabolism [227]. Accordingly, stability of the proton-
ATPase Pma1 at the yeast PM specifically requires sphingolipids but not sterols
[27]. All these observations suggest that sterol-sphingolipid interactions are not
sufficient to explain the formation of lipid domains in cellular membranes. Besides
SM/cholesterol, GSLs and ceramides, which present very particular physico-
chemical properties, have been proposed to contribute to generate and/or maintain
lipid domains [199, 210, 244, 245] (see also Sects. 5.5.2 and 5.5.4).

5.6.2.2 Membrane Curvature

Using simulation of complex asymmetric PM model containing seven lipid species
including GM3 and PIP2, Koldso and coll. have shown that the concave regions
of the bilayer surface are enriched in GM3 [246]. Likewise the increase in GM1
concentration in POPC bilayers induces tighter lipid packing, driven mainly by
inter-GM1 carbohydrate-carbohydrate interactions, leading to a greater preference
for the positive curvature of GM1-containing membranes and larger cluster sizes
of ordered-lipid clusters [247]. These two studies suggest a relation between
membrane curvature and lipid lateral sorting.

One step further, the observation of specific lipid sorting in vesicle and tubule
budding from organelles involved in endocytosis [248, 249] has suggested that
membrane curvature could provide a mechanism for the spatial sorting of lipids.
This hypothesis has been tested by experiments pulling membrane tubes out of
GUVs, confirming a curvature-driven lipid sorting [44, 250]. Mechanistically, it has
been proposed that individual lipids are not effectively curvature-sorted according
to their individual shape by membrane curvature differences of magnitudes found
in intracellular membranes, but that cooperativity of lipid domains is needed
to enable efficient curvature sorting in function of domain intrinsic curvature
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and bending stiffness [43, 251]. Besides domain bending stiffness and intrinsic
curvature, a competition between domain bending rigidity and line tension at phase
boundary is also proposed as driving force for lipid domain association to membrane
curvature [252].

Thus, membrane curvature seems to provide a mechanism for lipid spatial
sorting. It should be stressed that domain size and topography also imply on domain
dimensionality that can switch from a flat to “dimpled” shape. This switch depends
on the competition between (i) the 3D surface tension/mass ratio that favors small
surface and then flat domain, and (ii) the 2D phase boundary line tension/mass ratio
that prefers any domain morphology that reduces the boundary length [243, 253].
Ursell and coworkers used theoretical and experimental work to show that, when this
competition results in a transition from a flat to dimpled domain shape, it leads to
two dimpled domains that are able of repulsive elastic interaction, slowing domain
merge and thus regulating domain size and topography [253].

5.6.2.3 Membrane Transversal Asymmetry

As explained in Sect. 5.4.4, PM exhibits transversal asymmetry. Lipid mixtures that
are typically found in the outer leaflet tend to phase-separate in Lo and Ld liquid
phases when reconstituted in model membranes [254]. In contrast, lipid mixtures
that represent the inner leaflet do not undergo macroscopic phase separation and
are in Ld state [255]. In cells, whereas lipid domains have been more documented
on the outer PM leaflet, they have nevertheless been identified at the inner leaflet
of various cell types [201, 256, 257], asking for a potential interleaflet coupling
resulting in domain formation.

Theoretical works addressed physical mechanisms leading to fluid domain
coupling across membranes. May and coll. focused on electrostatic coupling,
cholesterol flip-flop and dynamic chain interdigitation as underlying mechanisms
of interleaflet coupling, and argued that the latter likely provides the main contri-
bution [258]. Other potential mechanisms are the van der Waals interactions and
composition curvature coupling [259]. May also discussed the importance of a fine
balance between interleaflet line tension at the bilayer midplane and intraleaflet line
tension at domain interface within each leaflet as crucial energetic considerations
for interleaflet coupling [258]. As a first line of evidence for interleaflet coupling
in lipid bilayers, Sackmann and coworkers imaged the deposition of a DMPC
(dimyristoy-PC) monolayer doped with green NBD-DMPE (dimyristoyl-PE) (Ld
state) on a supported DMPE monolayer doped with Texas-Red DMPE (So state).
They evidenced the formation in the DMPC monolayer of crystalline domains which
appear to be in perfect register with the So domains of the DMPE monolayer [260].

Since asymmetric model membranes have long been difficult to obtain, exper-
iments studying if and how one leaflet affects the structure and thermodynamic
phase behavior of the apposed leaflet have generated controversial results. Recent
preparation of asymmetric GUVs yielded significant insight and suggested that a
Lo domain in one leaflet can induce a Lo domain in the apposed leaflet [255, 261].
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However, phase-state across leaflets of asymmetric bilayers appears to be highly
sensitive to lipid composition in one leaflet [261]. A recent elegant study, using
fast Laurdan general polarization imaging on active planar supported bilayers and
showing the formation of lipid domains upon lipase action, provides an example for
the biological relevance of interleaflet coupling at non-equilibrium conditions [262].

Three lines of evidence on living cells support the reciprocal interaction between
inner and outer leaflet domains: (i) the superposition of outer SM and inner
PIP2 clusters [201]; (ii) the colocalization of inner and outer leaflet proteins
during signaling events [263]; and (iii) the colocalization of inner leaflet-associated
proteins with outer leaflet rafts [264, 265].

5.6.2.4 Membrane Dipole Potential

Based on theoretical and experimental investigations on lipid monolayers, it has
been shown that the size of domains results from balancing the line tension (which
favors the formation of a large single circular domain) against the electrostatic
cost of assembling the dipolar moments of the lipids (which prevents monolayers
from reaching complete phase separation) [266]. Calculations were then extended
to lipid bilayers. Hence, the work took in account ionic strength, showing that,
at high ionic strength, the effects of dipole are short-ranged and the system is
dominated by line tension, leading to domain size increase [267]. In biological
membranes, the transmembrane voltage has been shown to significantly increase
the phase transition temperature in squid axon membranes [268] and growing
pollen tubes [269] and abundance of SM-enriched domains is decreased in living
yeast following membrane depolarization [270]. Thus, it seems that depolarized
membrane is more homogeneous than polarized membrane, but the mechanism
underlying the induction of lipid domains by the transmembrane electric field is
not clear yet [271].

5.6.2.5 Membrane Protein:Lipid Interactions

Since lipids diffuse fast in the membranes, the local synthesis of a given species
is not sufficient to form lipid domains. Therefore, lipid diffusion must be confined
by proteins to allow for domain formation and stabilization [263, 272, 273]. Thus,
lipid domains can be captured and stabilized by lipid:protein interactions thanks
to lipid-anchored proteins, such as GPI-anchored proteins [274], or transmembrane
proteins. If the initial site for lipid:protein interaction is the boundary between the Lo
domain and the adjacent Ld membrane, then proteins could function as surfactants.
For example, confocal microscopy and AFM have revealed the preferential in
vitro localization of lipid-anchored N-Ras to Lo–Ld domain boundaries [275] and
the reorganization of phase-separated membranes into irregular domains by the
reduction of line tension at phase boundary due to the binding of a membrane-active
peptide derived from the apoptotic protein Bax at the domain interface [276].
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Integral membrane proteins can also organize lipids, as the intramembrane protein
needs to be solvated by the flexible disordered chains of phospholipids. Mouritsen’s
hydrophobic matching hypothesis proposes that integral membrane proteins perturb
surrounding lipids so that bilayer thickness matches the length of the transmembrane
domain [277]. Consistently, recent work indicates that proteins might be the most
important determinants of membrane thickness, at least in the exocytic pathway
[278]. Larger more stable lipid domains can be formed by protein:protein interac-
tions. As examples, one can cite the T cell receptor (TCR) and IgE receptor signaling
platforms [279, 280].

5.6.3 Extrinsic Factors

Besides membrane proteins (Sect. 5.6.2.5) are those that shape the membrane such
as cytoskeleton (Sect. 5.6.3.1) and cross-binding proteins (Sect. 5.6.3.2). Moreover,
lipid domains can be influenced by electrostatic interactions with cations (Sect.
5.6.3.3) and membrane/lipid turnover (Sect. 5.6.3.4).

5.6.3.1 Cytoskeleton

Proximity and direct interaction between the membrane and cytoskeleton via actin-
binding proteins or complexes makes the cytoskeleton one of the most important
extrinsic factor to influence PM lateral distribution. Kusumi and coll. suggested
that the PM is compartmentalized into large areas containing smaller regions,
resulting from an actin-based membrane cytoskeleton fence structure with anchored
transmembrane proteins acting as pickets [256, 281].

However, membrane scaffolds can have strongly differential effects on lipid
organization. Thus, Frisz and coll. demonstrated that actin depolymerization induces
a randomization of 15N–sphingolipids in fibroblasts, indicating that sphingolipid-
enriched domains strongly depend on the actin-based cytoskeleton [154]. Thanks
to a genetically encoded fluorescent PS biosensor (GFP–LactC2) and a fluores-
cent PS analog together with single-particle tracking and fluorescence correlation
spectroscopy, Grinstein and coll. revealed that a sizable fraction of PS with limited
mobility exists in the PM and that cortical actin contributes to this confinement
[282]. More recently, Mayor and co-workers provided experimental and simulation
data showing that nanoclustering of GPI-anchored proteins at the outer PM leaflet
by dynamic cortical actin is made by the interdigitation and transbilayer coupling
of long saturated acyl chains and that cholesterol can stabilize Lo domains over a
length scale that is larger than the size of the immobilized cluster [101]. In RBCs,
observations are more contrasting since acute membrane:cytoskeleton uncoupling
at 4.1R and ankyrin complexes differentially modulate the abundance of lipid sub-
micrometric domains [24]. Effect of cytoskeleton on lipid phase separation in model
membranes also led to contrasting results: (i) polymerization of dendritic actin
network on the membrane of GUVs induces phase separation [283]; (ii) actin fibers
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bound on supported lipid bilayer prevent lipid phase separation that occurs at low
temperature [284]; and (iii) the prokaryotic tubulin homolog FtsZ attached to GUVs
suppresses large-scale phase separation below the phase transition temperature but
preserves phase separation above this temperature [285].

Besides temperature (see Sect. 5.6.1), two explanations can be provided for such
differential effects. First, the properties of the anchoring type and pattern at the PM
considerably vary between cell types and even within a same cell. Three types of
membrane scaffold structures have been described so far and are well-summarized
in [286]. First, the picket-and-fence model proposed by Kusumi and coll. [287–
289] is based on actin fence formation and binding to transmembrane proteins and
lipids via adaptor proteins. This model describes the PM organization into three
domains of decreasing size and showing cooperative actions: (i) the membrane
compartment (40–300 nm in diameter), corresponding to the PM partitioning medi-
ated by the interactions with the actin-based membrane cytoskeleton (fence) and the
transmembrane proteins anchored to the membrane cytoskeleton fence (pickets); (ii)
the raft domains (2–20 nm) confined by the anchored transmembrane proteins; and
(iii) the dynamic protein complex domains (3–10 nm), including dimers/oligomers
and greater complexes of membrane-associated and integral membrane proteins.
Among the specialized soluble proteins that can bind membrane bilayers via lipid-
binding domains, allowing for interaction between inner leaflet lipids and cortical
actin and contributing to compartimentalize the PM, one can cite the ERM proteins
[290]. The second model is based on the active actin fiber polymerizing binding
to the membrane constituents that drives clustering through aster formation [291,
292]. It is proposed that the living cell membrane is well-organized and that
localization, clustering, transport and/or transformation of membrane molecules
are allowed through the local engagement of the cortical actin machinery and
need energy [291]. This model especially accounts for the transient clustering of
molecules such as GPI-anchored proteins. Coupling of these proteins with the
actin cytoskeleton involves long chain lipids which couple across the bilayer in the
presence of cholesterol [101]. Third, some cells such as RBCs and neurons exhibit
regular spectrin/actin/ankyrin-based membrane scaffolds that provide mechanical
robustness. For information on the RBC cytoskeleton, see Sect. 5.4.2 and [28].

Second, we have to keep in mind that the cytoskeleton does not provide a
satisfactory explanation for all membrane-associated phenomena and there is no
universal model of the PM lateral organization [293]. At least, cytoskeleton should
be integrated in a more global view including membrane curvature, as recently
proposed by [284]. Based on computer simulations, super-resolution optical STED
microscopy and FCS, it has been demonstrated that the actin fibers bound to the
membrane help to organize the distribution of lipids and proteins at physiological
temperatures (i.e. > Tm), while preventing lipid phase separation happening at low
temperature. In the presence of curvature coupling, these two effects are enhanced
[284]. The idea behind is an extension of the picket-fence model, by including a
coupling of the local membrane curvature to the membrane composition, in a way
that the actin fibers cause the membrane to curve reinforcing the influence of the
picket-fence [284].
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5.6.3.2 Cross-Binding Proteins

Several observations indicate that peripheral protein binding may represent an
additional regulator of lateral heterogeneity. First, cross-linking components like
upon CTxB (GM1 cross-linking) and Annexin V (PS binding) modulate phase
transition temperatures in membrane models [294]. Second, GSL clustering induced
by CTxB or Shiga toxin induce phase segregation in GUVs and GPMVs [295,
296]. Third, besides their recognized roles in generating membrane protrusions
or invaginations through the sculpting of PI-rich membranes, elegant studies have
shown a role for BAR domain proteins in generating stable PIP2 domains by limiting
their lateral diffusion, before inducing membrane curvature [297, 298]. These
domains could play a role in various physiological processes including endocytosis,
membrane protein trapping or storage of lipids in eisosomes [297].

5.6.3.3 Electrostatic Interactions of Charged Headgroups with Cations

The inner PM leaflet is the most negatively charged membrane of all cell bilayers,
attributed to its high PI and PS contents. Localized negative membrane charge
achieved by cations represents an alternative mechanism for domain formation
and/or stabilization. It is indeed well established that the lateral organization of PIP2

can be modulated by Ca2C, as shown in GUVs, lipid monolayers and bilayers [299–
301]. PIP2 heterogeneous distribution has been confirmed in the PM and depends
on the interaction between PIP2 and polybasic protein domains (such as MARCKS)
that can be modulated by Ca2C and calmodulin [302, 303]. Contrasting with the
PIP2 domain formation by cations, PS (which can also modulate membrane charge
locally) domains seem to preferentially rely on the association with protein com-
plexes immobilized by the cytoskeleton [282] than on anionic domains, suggesting
that the formation of Ca2C induced domains depend on the high charge density of
the lipid [299].

Such localized membrane charge can facilitate PM protein clustering to confined
regions. For example, Ca2C (but not Mg2C) has been shown to promote the
formation of syntaxin 1 (a SNARE protein) mesoscale domains through PIP2 in
PC12 cell sheets, indicating that this cation acts as a bridge that specifically and
reversibly connects multiple syntaxin 1/PIP2 complexes and suggesting a role for
Ca2C in PM reorganization during Ca2C-regulated secretion [304]. Alternatively,
localized membrane charge can induce conformational change of PM proteins
[305], as shown during the activation of T cell receptor (TCR) upon antigen
engagement. TCR interacts with acidic phospholipids through ionic interactions
in quiescent T cells, resulting into deep membrane insertion of the tyrosine side
chains. This renders TCR inaccessible to phosphorylation by the Src-kinase Lck.
After antigen engagement of TCR, local Ca2C concentration increases, leading to
disruption of the ionic protein:lipid interaction, dissociation of tyrosines from the
membrane and accessibility to Lck [305, 306].
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In cells, a way to create localized membrane domains that differ in charge
is through modification of local Ca2Cconcentration by localized transient Ca2C

influx from membrane channels. Among these channels one can cite transient
receptor potential ion channels that respond to mechanical stress induced by
tension and trigger Ca2C influx that interact with negatively-charged membrane
lipids [305]. For example, TRMP7 has been shown to drive the formation of
Ca2C domains during invadosome formation in neuroblastoma cells [307] and at
the leading edge of migrating cells [308]. It should be stressed that localized
electrostatic interaction of charged lipid headgroups with cations could be linked
to other mechanisms involved in membrane lipid lateral heterogeneity, such as actin
dynamics [309]. It remains to be determined if such localized membrane charge in
the inner PM can have consequences on the organization of the outer PM leaflet
(see Sect. 5.5.4).

5.6.3.4 Membrane Recycling and Enzymatic Activity

A key difference between biological and model membranes is that the former are not
at thermodynamic equilibrium but subjected to active processes such as membrane
recycling and lipid turnover. Lipid recycling can be due to permanent exchange of
lipids with the surrounding medium (membrane reservoir) where lipids are locally
inserted at a constant rate everywhere along the membrane and removed at a rate
proportional to their local concentration [310]. Lipid recycling can also occur via
vesicular lipid transport events that can either specifically target lipid domains or
random areas of the membrane [311]. For a review on this topic, please refer to
[312]. In all living cells except RBCs, there is an active lipid recycling to and from
the membrane that is proposed to limit lipid domain size [313]. Lipid domains
in mature RBCs are larger, more stable and more round than in other living cells
[21, 24], which could support the implication of active cellular processes in lipid
domain destabilization in nucleated mammalian cells. In addition to lipid recycling,
the molecular interactions that control phase behavior can also be dramatically
affected by the activity of membrane lipases or kinases that generate phase-changing
products [132]. A recent study on model membranes evidenced the formation of
lipid domains upon addition of sphingomyelinase D [262].

5.7 Lipid Domains – Role in Membrane Shaping &
Reshaping

The view of membrane organization into submicrometric domains could confer
the size and stability required for PMs to deform. We here highlight how domains
could contribute to cell shaping (Sect. 5.7.1), squeezing (Sect. 5.7.2), vesiculation
(Sect. 5.7.3) and division (Sect. 5.7.4).
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5.7.1 Cell Shaping

At short length scale, relationship between curvature and lipid molecular structure
and lipid transbilayer sorting are well known (see Sect. 5.4.4). At long length scales,
different mechanisms may participate but whether lipid domains play a role in this
process is still unresolved. We here propose two mechanisms.

The first mechanism is based on the importance of cardiolipin-enriched domains
in curvature maintenance in rod-shape bacteria. It was recently shown that car-
diolipin localizes to the polar and septal regions of the inner membrane of
Escherichia coli [177], Bacillus subtilis [178] and Pseudomonas putida [314].
Bacterial poles and septa are regions that have the largest curvature [315, 316].
As bacterial cardiolipin have a small ratio of head-to-tail surface areas [317], it
is thus tempting to invoke the negatively curved regions of the inner leaflet of
bacterial membrane poles relative to the cylindrical midcell to explain cardiolipin
localization. However, the relative affinity of a single nanometer-sized cardiolipin
molecule for the very slightly curved poles is likely insufficient for stable polar
localization in a micrometer-sized bacterium. An alternative explanation is that
cardiolipin localization is purely driven by lipid phase segregation. However, the
observed rapid repartitioning of cardiolipin to the division site [177, 178] would be
strongly disfavored if cardiolipin is segregated in a single, large cluster at one or both
poles. Instead, Wingreen and coll. proposed stable finite-sized cardiolipin clusters
which can spontaneously and independently target the two cell poles as well as the
nascent division site [318, 319]. Weibel and coll. found that a cardiolipin synthase
mutant of the rod-shaped Rhodobacter sphaeroides produces ellipsoid-shaped cells
in a reversible process, and that bacteria with impaired MreB expose the same
shape changes [320]. Huang and coll. recently demonstrated in E. coli that feedback
between cell geometry and MreB cytoskeleton localization at the regions of negative
curvature maintains rod-like shape by directing growth away from the poles and
actively straightening locally curved cell regions [321]. In addition, cardiolipin
has been shown to sense and transmit changes in inner membrane curvature to
the bacterial phage shock protein (Psp) system (a cell envelope stress response
system). Therefore, cardiolipin domains could be viewed as a membrane curvature
sensor (due to its curvature-sorting properties) and as an indicator for membrane
or cytoskeletal proteins that feedback on membrane curvature to maintain bacterial
shape (due to its potential raft-like ability to segregate proteins).

A second mechanism suggests the direct stabilization of membrane curvature
by lipid domains, as lipid lateral segregation into regions of preferential curvature
could relax stresses in the membrane. The recruitment of lipid domains in areas
of increased curvature would then result from a competition between the gains
in the membrane elastic energy and the segregation-induced loss of entropy.
This mechanism was proposed to stabilize the specific curvature of the Golgi
cisternae [322], but evidence for this phenomenon is not currently available. Using a
microfluidics to induce the deformation of GUVs with microstamps, Robinson and
coworkers evidenced Lo phase merge due to the tension induced by the deformation
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and proposed that lipid domain merge is needed to reduce the line tension following
the increase in membrane tension [46, 75]. Accordingly, theoretical work has shown
that lateral tension applied on a membrane increases the line tension [323]. Hence, at
a certain applied tension, the formation of a neck at Lo-Ld domains boundary allows
to reduce even more the line tension. Other experiments on GUVs with different
shapes also indicate the specific association of lipid domains with membrane
curvature areas driven by line tension [252]. In living RBCs, the specific recruitment
of cholesterol-enriched domains is observed in high curvature areas in RBC rim
upon stretching (Fig. 5.7b,b0; 204). Whether this recruitment is directly required for
membrane curvature stabilization, or indirectly via segregation of cytoskeleton or
proteins that stabilize curvature (as cardiolipin domains in bacteria), remains to be
investigated.

5.7.2 Cell Squeezing

RBCs are biconcave cells of �8 �m in diameter that are strongly deformable, as
tested upon crossing through small blood capillaries and splenic sinusoids, which
exhibit diameters smaller than 5 and 1 �m respectively [324]. As highlighted in
Sect. 5.4, RBC biconcavity, cytoskeleton strength and its PM anchorage are crucial
for RBC deformation. However, whether and how the cytoskeleton interacts with
specific membrane lipids and whether these interactions could have a regulatory
and/or a structural role in RBC deformation remain to be elucidated [28]. Our data
show that submicrometric lipid domains [21, 22, 24, 198] cluster upon membrane
bending (Fig. 5.7b,b0) and provide platforms for Ca2C exchanges needed for RBC
shape recovery after deformation (Fig. 5.7c,c0), suggesting their role in two steps
of RBC squeezing and highlighting the interplay between lipid domains, membrane
curvature and Ca2C in this process [204].

5.7.3 Cell Vesiculation

Upon senescence in vivo RBCs undergo multiple changes. These include the
decrease of activities of multiple enzymes, the gradual accumulation of oxidative
damage, the loss of membrane by vesiculation, the redistribution of ions and
alterations in cell volume, density and deformability. For comprehensive reviews on
aging mechanisms in healthy human RBCs, the reader is referred to [325, 326]. We
will here focus on the release of vesicles that are generally classified into two groups,
nanovesicles (�25 nm size) and microvesicles (MVs; �60–300 nm). In contrast to
nanovesicles, MVs seem influenced by partial membrane:cytoskeleton uncoupling.
Thus, upon senescence, cytoskeleton stiffness and density both increase, leading to
larger compressive forces on the cell membrane, that have been hypothesized to be
accommodated by increased membrane curvature and vesicle detachment from the
membrane [327–329]. MVs have been proposed to contribute to RBC senescence by
two opposite mechanisms. They may (i) prevent the elimination of the senescent but
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Fig. 5.7 Hypothetical model for the role of submicrometric lipid domains in RBC (re)shaping.
Organization of cholesterol-enriched domains (red) and SM-enriched domains (green) in bicon-
cave RBC in the circulation (a) and during reshaping upon either global deformation followed by
shape restoration (b,c) or vesiculation during senescence (d). (b0) Theta*-labelled (endogenous
cholesterol) RBC spread onto PDMS chamber and visualized by vital epifluorescence after
deformation: left, imaging; right, relation between cholesterol domains (red) and membrane
curvature (black). (c0) Lysenin*-labelled (endogenous SM) RBC upon Ca2C efflux during shape
restoration after deformation. (d’) Theta*-labelled RBC after extended storage at 4 ıC to accelerate
senescence (Adapted from [204])

yet functional RBCs, by elimination of Band 3 neoantigen, denatured hemoglobin
and oxidized proteins [330]; or instead (ii) promote removal of senescent RBCs
from the circulation, by elimination of CD47 [331], PS exposure to the outer PM
leaflet and increased intracellular Ca2C concentration [332].
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Whether RBC lipid domains represent specific sites for local budding and vesic-
ulation remains to be demonstrated. As direct evidences supporting this hypothesis,
Prohaska et al. have shown that Ca2C-induced vesicles are enriched in raft proteins
[333]. We provide direct evidence for the vesiculation of lipid domains at the living
RBC PM upon accelerated aging (Fig. 5.7d,d’) [204]. Convincing arguments are
also provided by simulation studies, membrane models and other cells. First, based
on a two-component coarse-grained molecular dynamics RBC membrane model, Li
and Lykotrafitis have revealed that the spontaneous curvature of the RBC membrane
domains can cause the formation of nanovesicles and that lateral compression
generates larger vesicles with heterogeneous composition, similar in size to the
cytoskeleton corral [334]. Second, using a combination of mechanical modeling
and GUV experiments, Phillips et al. showed that lipid domains can adopt a flat or
dimpled morphology, depending on spontaneous curvature, boundary line tension
of domains and domain size [253]. Third, Ld phases tend to spontaneously reside in
curved membrane regions of GUVs whereas Lo phases are preferentially localized
in flat regions [252]. Fourth, in living keratinocytes labeled by the Ld marker DiIC18
and the Lo GM1 marker CTxB, submicrometric lipid domain separation together
with spontaneous vesiculation of the Ld domains occur. Such vesiculation is still
increased by cholesterol depletion, which further enhances Lo/Ld domain separation
and detachment of the cortical cytoskeleton from the membrane [335]. Fifth, in
activated neutrophils, cholesterol-enriched vesicles are released [336], suggesting
that lipid domains might be the starting point of the vesiculation process. Sixth, rafts
are specifically selected and incorporated into the influenza virus envelope during
the budding of enveloped viruses from the PM [337]. Finally, specific lipid sorting
is observed in vesicle and tubule budding from organelles of the endocytic pathway
[248, 249].

5.7.4 Cell Division

Prokaryotic membrane domains contribute to division and morphogenesis. Besides
maintenance of membrane curvature and cell shape (see Sect. 5.7.1), cardiolipin is
also involved in curvature changes occurring during bacterial division. Based on
polar localization of chemotaxis receptors in E. coli [338] and septal localization of
the division proteins MinCD and DivIVA in B. subtilis [339, 340], it was proposed
that cardiolipin domains could play a role in sorting proteins. Renner and Weibel
developed a microtechnology-based technique to confirm the relationship between
bacteria curvature, cardiolipin domain localization at the poles and the positioning
of amphiphilic cytoplasmic proteins. Thus, in giant E. coli spheroplasts confined
in polymer microchambers, they demonstrated that cardiolipin domains localize to
regions of large negative curvature. By expressing YFP fused to the N-terminal
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domain of the cytoplasmic division protein MinD, they showed the dependence
of negative membrane curvature on MinD localization in spheroplasts and its
colocalization with cardiolipin domains [341].

Membrane domains also participate to cell division in fungi. Elevated concentra-
tions of sterols decorate developing membranes upon growth-induced elongation
of the fungal cells Candida albicans and Aspergillus nidulans [342, 343] and
septum or mating projection formation in the yeasts Saccharomyces pombe and
cerevisiae [344, 345]. In fact, two sterol pools are required for two important
aspects of mating in S. cerevisiae, pheromone signaling and PM fusion [230].
Regarding the implication of sphingolipid-enriched domains, it has been shown in
S. cerevisiae that: (i) the inhibition of sphingolipid synthesis induces the formation
of multinuclear cells due to a defect in cytokinesis [346]; and (ii) the organization
in ordered domains at the mating projection depends on sphingolipids, as evidenced
by microscopy with Laurdan [347]. Lipid gradients in the inner PM leaflet have
also been revealed: (i) PIP2 is densely distributed in the shmoo tip of S. cerevisiae
[348]; (ii) the localized synthesis together with the restricted diffusion of PIP2 in
C. albicans result into a gradient from the tip of membrane protrusions to the neck
[349]; and (iii) PE concentrates at polarized ends in budding yeast [350].

In mammalian cells, cholesterol-containing domains concentrate at the cleavage
furrow and possess a signaling pathway that contributes to cytokinesis [351]. More
recently, the transbilayer colocalization between the outer SM and the inner PIP2

domains has been evidenced around the cleavage furrow and the midbody of HeLa
cells by super-resolution fluorescence microscopy. This study highlights two key
features of lipid domains. First, it shows the importance of SM domains in the
regulation of cytokinesis, as revealed by PIP2 domain dispersion, inhibition of
the Rho GTPase RhoA recruitment to the cleavage furrow and regression of the
cleavage furrow upon SMase treatment [201]. Second, it indicates that PIP2 in the
inner leaflet also form and remain in domains. Several reasons can explain the
restricted localization of PIP2 around SM clusters: (i) SM, PIP5K“ and PIP2 interact,
restricting the diffusion of PIP2; (ii) the Rho GTPase positively regulates the activity
of PIP5K“, enhancing the formation of PIP2 domains at the inner leaflet; and (iii)
the mobility of PIP2 is restricted by protein fences [201]. Another possibility is
that BAR domain proteins, besides their recognized role in membrane bending and
curvature sensing, control the diffusion of PIP2 through electrostatic interactions,
thereby generating stable domains before inducing membrane deformation, as
reported in [297]. Alternatively, PIP2 domains could be stabilized by Ca2C from
the surrounding membrane. PIP2 accumulation in the cleavage furrow of dividing
cells has been confirmed by others [352, 353]. In contrast, PE, which is normally
restricted to the inner leaflet, is exposed to the outer leaflet of the cleavage furrow
during cytokinesis, contributing to regulation of contractile ring disassembly [352,
354].
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5.8 Integration of Models and Observations

Since the mosaic fluid model of Singer and Nicolson in the 70s and the hypothesis
of lipid rafts proposed by Simons and coll. in the 90s, numerous models trying
to associate the two concepts were proposed. Some focused on the dynamic
aggregation of small lipid rafts by proteins, others on the impact of immobile
membrane proteins acting as picket-and-fence or of lipid recycling events. However,
at the sight of the large list of intrinsic and extrinsic factors regulating lipid
domains and the wide variety of lipid domain size, composition, shape, life-time
and topological distribution observed in PMs, a new point of view rejecting these
universal theories is now emerging. As emphasized in several key reviews in the
membrane field, we need to accept that no simple and universal model can describe
the complexity of the membrane [11, 293, 355, 356]. Membrane should instead
be seen as a complex dynamic mosaic, where the composition, size, shape and
topography of different domains depend on several intrinsic and extrinsic factors
heterogeneously distributed along the membrane.

Such complex organization could be required for many cell reshaping processes
like cell deformation, division and vesiculation, as highlighted in this Chapter.
Three main, but still hypothetical, roles for lipid domains in cell reshaping can be
proposed: (i) platform for membrane and skeletal protein sorting and/or activation,
(ii) membrane bending modulator, and (iii) preferential fragility sites for membrane
vesiculation (see Fig. 5.7). These roles emerge from the four main examples
discussed in this Chapter. First, cardiolipin-enriched domains in rod-shape bacteria
are sorted and reorganized by curvature, suggesting they could act both as curvature
sensor and indicator platforms allowing for the cytoskeleton to maintain proper cell
shape upon bacterial growth. Second, cholesterol-enriched domains in RBCs gather
into areas of increased curvature upon deformation while SM-enriched domains
are involved in Ca2C exchanges needed for RBC shape recovery, suggesting the
respective implication of these domains in membrane curvature and in Ca2C

exchanges providing platforms for protein recruitment/activation. Third, the specific
vesiculation of lipid domains from the RBC PM could come from a change in the
balance between lateral tension, domain bending and line tension, that could it-self
result from modulations in cytoskeleton anchorage, protein organization or lipid
asymmetry. Fourth, the recruitment of PIP2/SM-enriched domains at the cleavage
furrow is required for the progression of division through the recruitment of specific
membrane proteins and cytoskeleton, suggesting again the role of lipid domains as
platforms for protein sorting.

Despite these recent progresses, there are still many open questions and concerns
regarding generalization, regulation and physiopathological importance of mem-
brane lipid lateral distribution. We propose four directions for the future. First, the
use of imaging methods with differential temporal and spatial resolutions, while
taking into account the fixation issue, in combination with (multiple) labelling pos-
sibility using validated non-toxic relevant lipid probes and the dynamic perspective
should help revealing lipid domains. Second, integrating theoretical predictions
with experiments on model membranes and complex living cells will contribute to
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explore whether lipid domains can be generalized or not. Indeed, whether transient
nanometric and stable submicrometric lipid domains evidenced on cells and those
observed on model membranes are governed by the same mechanisms is currently
unclear. This should be stressed by systematic study of lipid domain biophysical
properties in living cell membranes, as it was done for model membranes during the
past years. In addition, the development of active model membrane systems subject
to transport, signal and enzymatic processes could help gain insight in how lipid
domains are controlled by the non-equilibrium state of living cell membranes [11].
As a third issue, we need to explore whether and how lipid domains could modulate
and/or stabilize membrane shape without involving proteins. Finally, membrane
lipid domains can be of small size in resting state but become larger and more stable
upon reshaping. Given that not all cells are subjected to extensive deformation, this
represents a critical challenge that could be successfully approached using a cell
model exhibiting intrinsic curvature and deformation ability.
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Chapter 6
Minimal Cellular Models for Origins-of-Life
Studies and Biotechnology

Pasquale Stano

Abstract Minimal cellular models can be defined as those vesicle-based cell-like
constructs that are assembled with the aim of (1) clarifying/understanding unknown
aspects in origins-of-life research and hypotheses testing, (2) studying reconstituted
biochemical pathways in a simplified system, (3) being exploited for potential
biotechnological applications, and (4) developing novel concepts/technologies.
These ‘synthetic cells’ are created by the bottom-up approach and within the
synthetic/constructive paradigm. Here we shortly review the main ideas behind such
novel usage of vesicles, and comment the experimental data collected in the past
decades. An intriguing picture emerges, where technical progresses owing to the
convergence of liposome, cell-free (and microfluidic) technologies lead to a fecund
research area of great potential, which blends fundamental scientific question with
the most modern and challenging facets of synthetic biology.

Keywords Protocells • Minimal cells • Synthetic biology • PURE system •
Fatty acid vesicles • Synthetic cells • Bottom-up approach • Power law • Micro-
compartmentalized reactions • Autopoiesis

6.1 Introduction

Not many scientific questions are so fascinating as the origin of life on Earth. This
still unsolved conundrum permeated the history of science of all ages, but only in
the twentieth century it became a central question of modern chemical investigation
[1, 2], with the emergence of a chemical branch called prebiotic chemistry. Prebiotic
chemistry typically focuses on the question “how complex chemical molecules
originated from simple and primitively available building blocks?”. Several studies –
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among which the famous Urey-Miller experiment [3] – have shown plausible paths
for originating molecules as amino acids, sugars, nucleobases, and so on (for a
review, see [4]).

However, the origin of complex chemical molecules is not the origin of life. Life
does not reside in a particular molecule. Life is a system property, deriving from
a coherent, cooperative, out-of-equilibrium, and orchestrated dynamics of several
molecules which – as far as we know – are spatially and functionally organized as
cells.

Therefore, in addition to understanding the chemical origin of those molecules,
which later we will recognize as the biomolecules responsible for the emergence and
propagation of all biological organisms (from unicellular ones to the largest ones),
a key and unsolved question refers to the origin, the structure, and the functionality
of primitive cells, or similar cell-like systems, and their contributions to the onset of
life in our planet (Fig. 6.1).

Several cellular models have been proposed in order to mimic primitive cells.
Martin Hanczyc has reviewed these models [5], describing how, in the past
decades, scientists have focused on microcompartments of different nature for
modeling primitive cells, such as sulphobes, coacervates, autocells, jeewanu, and

Fig. 6.1 Conceptual map describing the chemical (pre-biotic) and biological evolution, for the
smallest molecules to modern biological cells and organisms. The research on primitive cells tries
to fill the gap between understandings generated by classical prebiotic chemistry and backward
evolutionary considerations ending to LUCA, the last universal common ancestor of all living
organisms. The origins of life, according to the vision expressed by the author, should be
investigated in the context of primitive cells origin, and not strictly related to the emergence of
a particular molecule (e.g., a self-reproducing RNA)
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microspheres. Although the interest in coacervates is still relevant, as witnessed by
several recent publications [6–8], most of researchers now focus on vesicles as main
cellular models.

Thus, from when in the 1960s Alec Bangham firstly reported on lipid vesicles
(liposomes) [9, 10], the research on these tiny compartments, formed by self-
assembly of lipids or other amphiphilic compounds in acqueous solutions, includes,
among its several branches, the use of vesicles as cellular models, and in par-
ticular as primitive cell models (or protocell models). In particular, such models
have been built from simple and primitive amphiphiles, such as fatty acids and
some derivatives, but also from phospholipids and other synthetic compounds.
The interest toward these models has increased a lot in the past years, till the
point that the application of the same principles and methodologies developed
for primitive cell models led to the novel perspective of assembling synthetic (or
artificial) cells from scratch. In other words, the synthetic – or ‘put-together’ –
approach which is so important in origins-of-life studies [11–13], has been extended
to modern biotechnology aiming at synthesizing cells with minimal complexity.
More specifically, the bottom-up construction of synthetic cells is one of the goal
of synthetic biology [14], and it will serve advancements for biosensoring, in
nanomedicine, for understanding cellular mechanisms in a simplified environment,
and to design and build novel bionanomaterials [15–20].

Liposome-based cellular models represent, therefore, a promising wide field
of inquiry, embracing origins-of-life and biotechnology. In many cases, the same
technologies are used, the same analytical methods, the same operational (and
sometimes conceptual) approaches. The goal of this chapter is to introduce the
readers into this topic, presenting the simplest cases and the most recent reports.
Although important steps have been recorded in the past two decades, the field is
most at its beginning, and future efforts will certainly lead to exciting discoveries,
useful knowledge, and new technological tools.

The chapter is organized in four parts. Firstly, there is a short survey on vesicles
types and basic properties with respect to their use as cellular models. Secondly, a
short epistemic remark to the “synthetic approach” is made, here intended not only
as a methodology but also as a self-standing concept. Next, the use of vesicles as
primitive cell model is presented. Finally, we will comment on the synthetic biology
operations based on vesicles as artificial cells.

6.2 Types of Vesicles and Their Preparation

Vesicles are microscopic compartments, generally spherical, composed by a closed
membrane. When the membrane consists of a lipid bilayer, vesicles are better called
‘lipid vesicles’ or liposomes. However, liposomes are not the only type of vesicles.
Vesicles have been generated by several types of amphiphilic molecules, like fatty
acids [21], terpenoids [22–25], block copolymers [26–29]. These compartments
share similar features, like their formation by molecular self-assembly, a typically
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Fig. 6.2 Typical vesicle morphologies. Small Unilamellar Vesicles (SUVs), Large Unilamellar
Vesicles (LUVs) and Giant Vesicles (GVs) (sometimes called Giant Unilamellar Vesicles, GUVs, if
unilamellar) of diameters 50 nm, 200 nm, and 5 �m are represented approximately to scale. On the
top, MultiLamellar Vesicles (MLVs) and Multi-Vesicular Vesicles (MVVs) (also called vesosomes)
are schematically represented. MLVs and MVVs do not refers specifically to a determined size,
rather to the vesicle morphology

semi-permeable membrane, or their reactivity dominated by surface forces (vesicles,
after all, are colloidal particles). However, the specific chemical nature of the build-
ing blocks constituting the vesicle membrane is the first aspect that strongly impacts
on other properties like stability, interaction with other vesicles or other molecules,
methods of preparations, and compatibility with encapsulated material. Vesicles
made of the above-mentioned chemicals (phospholipids, fatty acids, terpenoids, and
sometimes block-copolymers) have been used in several instances as protocells.

The second aspect to keep into account is vesicle morphology (Fig. 6.2 and
Table 6.1). In particular two vesicle types have been widely used, namely, large
unilamellar vesicles (LUVs) and giant vesicles (GVs). There are good reasons to
focus on these two vesicles types, which are equally important. LUVs (typical
diameters: 100–400 nm) are easily produced by well-known and standardized
methods. GVs (diameter 1–100 �m) are produced by a limited number of methods
[30], but have the great advantage of being visible by light microscopy so that their
behaviour can be directly assessed by visual inspection. A word of mention should
be spent for another vesicle type, which consists in a more complex architecture,
namely small vesicles inside a large vesicle. Technically, these vesicles are called
multi-vesicular vesicles (MVVs) or vesosomes. Their construction is interesting
because they somehow mimic eukaryotic cells with their intracellular organelles.
The issue of internal organelle-like vesicles is intriguing, as it is plausible that
sub-compartmentalization is a successful strategy for exploiting chemical gradients,
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Table 6.1 Types of vesicles (cf. Fig. 6.2)

Abbreviation Name Specificationsa

SUV Small unilamellar vesicles Whose diameter is typically < than 100 nm

LUV Large unilamellar vesicles Diameter in the�100–400 nm range

MLV Multilamellar vesicles Several concentric vesicles, with variable size

MVV Multivesicular vesiclesb Vesicles containing smaller non-concentric vesicles

GV Giant vesicles Diameter in the 1–100 �m range
a Note that commonly reported diameters are indicated. For example, 100 �m GVs are rare. MLVs
and MVVs are terms not strictly related to size, rather to morphology
b Also called ‘vesosomes’. Mimics of a cell with intracellular organelles

separating potentially interfering chemical paths, and providing at the same time a
large surface for solute/membrane interactions. Although vesosomes have not been
extensively used, it is foreseeable that future studies on artificial cells will be based
on these structures, especially if methods for their systematic production will be
optimized.

The third important factor is the method of preparation [30, 31]. Several methods
have been employed, depending on the chemical nature of the vesicle building
block, on the desired vesicle morphology, and on the compounds that need to
be encapsulated or reconstituted in the vesicle. Actually it is not possible to
give a general recipe and the choice must be deduced according to experimental
restrictions and goal of the research. Such matter should also tuned on the basis of
compatibility between the preparation method and the requirements of lipid/solute
system - which in turn should be combined after considering chemical compatibility.

6.2.1 Chemical Nature of Lipids

To be more specific, some general considerations about the chemical nature of lipids
are reported below (a detailed discussion can be also find in [32]):

1. Phospholipid and fatty acids (Fig. 6.3a, b) are the two main compounds which
have been used to construct protocellular models. Phospholipids, however, owing
to their chemical complexity, cannot be considered as very primitive chemicals,
and therefore fatty acid vesicles are better suited when the focus is on the
membrane structure, behavior, chemical and inter-vesicle reactivity. On the other
hand, phospholipid vesicles (liposomes) can still be used as primitive cell models
if the focus is on intra-vesicle reactions, or on other aspects, providing that the
nature of the vesicle membrane is not a conceptual issue.

2. More in detail, also fatty acids can be differentiated on the basis of primitive
plausibility. In this context, short chain saturated fatty acids, such as the decanoic
acid/decanoate system (C10:0) [33], probably represents better the nature of
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Fig. 6.3 Chemical structures of amphiphiles used for assembling vesicles as cellular models.
(a) Phospholipids; here one of the most used lipid is shown, namely a phosphatidylcholine
(lecithin) named 1-palmitoyl-2-oleoyl-sn-glycero-3-phosophatidylcholine (POPC); (b) fatty acids;
in particular the protonated forms of oleic acid (C18:1) and decanoic acid (C10:0) are shown –
note that only the second has a realistic primitive relevance; (c) isoprenoids, in particular a partially
ionized geranylgeranylphosphate is shown

primitive cells membrane. However, most of the published studies have been
carried out with oleic acid/oleate vesicles (C18:1) [34–42] and myristoleic
acid/myristoleate (C14:1) [43–46].

3. Membranes composed by only one chemical species, on the other hand, are
not realistic, and mixtures of diverse amphiphilic molecules better represent
primitive membranes [44, 45, 47]. Studies on pure compounds are nevertheless
useful to preliminarily decipher the properties of individual compounds, before
engaging with the study of mixtures.

4. In contrast to fatty acid vesicles, which have been investigated at a considerable
extent, isoprenoid compounds (Fig. 6.3c), such as polyprenyl phosphates (alone
or as mixtures with polyprenols), have been studied only in a very few cases
[22–25, 48, 49]. The ionizable phosphate head group implies a pH-dependence
in their self-assembly properties. Linear and branched polyprenyl compounds
can form vesicles whose properties are only partially known. This contrasts
with the importance of isoprenoids in modern cells. Archaea membranes are
made of isoprenoid-derivatives monolayers; whereas cholesterol, ergosterol and
lanosterol are typically found in Eukarya cells.

5. Pure fatty acid vesicles, being composed in their ‘stable’ form by about 50% car-
boxylate (typically as sodium salts) are sensitive to important multivalent cations
such as Fe2C, Fe3C, Ca2C and Mg2C [50] (at relatively low concentration) and to
monovalent cations (at high concentration) [51]. Note also that HC destabilizes
fatty acid vesicles by binding to carboxylate (RCOO� C HC � RCOOH).
Indeed, the limited pH-range of existence of pure fatty acid vesicles (generally
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between 7–7.5 and 9–9.5) should be always considered. Sensitivity to Mg2C (an
important cation due to its interaction with nucleic acids and their precursors) has
been improved by mixed systems composed of fatty acids and monoacylglycerols
[44, 50–53] or by chelating Mg2C by citrate [54].

6. Most of liposomes-based work has been carried out with the zwitterionic
phosphatidylcholine (lecithin), which self-assemble in a very stable mem-
brane and in a wide pH range. The other zwitterionic phospholipid, namely
phosphatidylethanolamine does not form generally stable membranes, being
characterized by an unfavorable packing parameter [55] (v=al < 1; v being
the molecule volume, a the effective head group area, l the molecule length).
Moreover the positive charge on the head amino group (�NHC3 ) is pH-dependent,
whereas the phosphatidylcholine trimethylammonium group is not (�NMeC3 ).
Other phospholipids have been generally used as a lipid mixtures (especially
the anionic phosphatidylglycerol), with phosphatidylcholine being the main
component, possibly also including cholesterol. The simplest phospholipid,
namely, phosphatidic acid – which also form vesicles at intermediate pH – has
not been deeply investigated in the context of origin of life.

7. Both in the case of fatty acids and phospholipids, care should be taken in order to
be aware of the physical state of the hydrocarbon chains, i.e., solid-like or liquid-
like. The transition temperature, Tm is an important parameter to consider for
designing protocellular systems. The physical state of the membrane will impact
on vesicle stability and small-solute permeability. Fatty acids are single-chain
charged molecules, and their solubility can be high. Therefore in such systems,
the critical aggregation concentration (c.a.c.) is an issue to consider.

8. Polymersomes, which have been occasionally employed to build synthetic cells,
have no direct relevance for the origins of life. However, their development might
be functional for specific biotechnological applications, in virtue of their great
stability.

6.2.2 Vesicle Type (Morphology)

With respect to vesicle type (or morphology, see Fig. 6.2), vesicles are generally
classified according to Table 6.1 entries. The most utilized vesicle types in origins
of life studies are LUVs and GVs. LUVs have been probably the most common
type of vesicles due to several reasons. Some are technical reasons and of-
opportunity reasons, and it will be commented below. Another considerations –
which might count contrasting opinion among investigators – focus on the idea
(on the hypothesis) of how large where primitive cells. To be more detailed, we
will see below that the spontaneous hydration of lipids generally brings about quite
large vesicles, for example GVs. It is plausible then that in absence of strong
shearing forces, large vesicles (in the micrometer range) are better candidates for
representing protocells. Contemporary living cells also have similar sizes, from the
smallest bacteria (ca. 1 �m) to large unicellular eukaryotes (10–50 �m). However,
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one should also consider the stringent conditions for realizing a living dynamics, in
terms of number of molecules, local concentration, surface-to-volume requirements.
These features are probably better embodied in LUVs (0.1–0.2 �m). An interesting
discussion has been developed around the minimal requirements of life, also in
terms of dimensions, as reported in the proceedings of a dedicated workshop [56],
and experimental studies [57].

As mentioned, LUVs can be produced in highly reproducible way from a wide
variety of lipids, thanks to standard procedures (film hydration, freeze-thawing,
extrusion, purification by size exclusion chromatography/dialysis). The large part of
a vesicle population prepared in this way is spherical and unilamellar. The procedure
allows the entrapment of both water-soluble (dissolved in the aqueous buffer used
to hydrate the lipid film) and lipid-soluble substances (dried together the lipids).
Another advantage is that the resulting dispersion can be manipulated almost as
a normal solution, and bulk measurements (absorption spectroscopy, fluorescence,
etc.) can be applied. LUVs model small primitive cells, much smaller that bacteria.
Their size is instead typical of viruses, and the size distribution is typically narrow
(after extrusion). The fact that LUVs can be produced in such reproducible and
homogeneous form (uniform with respect to size, shape, lamellarity) make LUVs a
quite attractive model, especially if one is interested in average properties (averaged
over the whole vesicle population). Fatty acid LUVs and phospholipid LUVs have
been extensively used.

GVs, on the other hand, are also widely used. Their main feature is the very
large size – in the 1–100 �m range (typically 5–20 �m), which allows their direct
visualization by light microscopy in the form of aqueous suspension (whereas
LUVs cannot). Importantly, GVs have high trapped volume and therefore contain a
large number of solutes. GVs requires special preparation methods. The two main
methods derive from the classical film hydration method that is used to produce
LUVs and MLVs. These ‘classical’ methods are the so-called natural swelling
method and the electroswelling method. The natural swelling method consists in
hydrating thin lipid films without mechanical perturbation. The film, sometimes
pre-hydrated by aqueous vapours, is left for a long time (hours) in contact with the
aqueous solution without stirring, shaking, etc. Lipid films swell gently, creating
GVs of various size and morphology, also multi-vesicular GVs. Electroswelling is
essentially a way to accelerate this process, by application of an alternating electrical
field. Lipids are stratified over wires or planar electrodes and alternating current
is applied. Swelling occurs in shorter times (less than 1 h). Both methods work
well for phosphatidylcholine GVs and low ionic strength buffers. This can be a
limitation because in many cases physiological-like buffers are necessary. It has
been shown that negatively charged GVs (e.g., including phosphatidylglycerol in
their membrane) can be produced by the natural swelling method in the presence of
high ionic strength buffers [58]. Note that fatty acid GVs have been produced only
by modifications the film hydration/natural swelling method, not by electroswelling,
whereas mixed phospholipid/fatty acid vesicles have been produced by the next-
discussed droplet transfer method [59].
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Fig. 6.4 GVs prepared by the droplet transfer method [60]. (a) Preparation of a water-in-oil
macroemulsion with mineral oil, surfactants (POPC) and the inner-solution. (b) Preparation of an
oil over outer-solution system with surfactants at the interface. In a second step the macroemulsion
droplets are inserted in this system and sink down due to the density difference between the inner-
and outer-solution. (c) As they wander through the interface they get a second layer of surfactants
such that they now have a bilayer of phospholipids, i.e. they are vesicles now, if the conditions
are good (according to our measurements, generally in about 30% of all cases) – otherwise they
merge with the interface and the inner-solution is released into the outer-solution (which generally
happens 70% of all cases). (d) This leads to a size distribution of the vesicles which does not allow
vesicles greater then a critical size, even though the macroemulsion droplets generated in the first
step were greater (Reproduced from [63] with the permission of Springer)

In addition to these two classical methods, which are very useful for studying
the properties of lipid membranes, a novel GVs preparation protocol has been
introduced recently [60]. This is based on the transformation of water-in-oil (w/o)
lipid-stabilized droplets. W/o droplets are centrifuged across a lipid-containing
interface and get covered by a second lipid monolayer, so to form GVs (Fig. 6.4).
This method forms GVs with traces of the apolar solvent (the ‘oil’) used to prepare
the w/o droplets and it is therefore questionable whether or not the resulting GVs
can be used for accurate biophysical measurements of membrane properties. On
the other hand, the strength of the method relies in its application to encapsulate
molecules in the GVs lumen, especially macromolecules [61]. Moreover, asym-
metric lipid membranes can be created with this method [62], and mixtures of
lipids can be used, provided that the w/o droplets are sufficiently stabilized in
the first step of the preparation. Mixed phosphatidylcholine/fatty acids GVs have
been successfully prepared by the droplet transfer method [59]. Despite these
advantages, the droplet transfer method (as well as the electroswelling method)
cannot be considered of prebiotic relevance. Nevertheless it has been used in several
cases to produce solute-filled vesicles which model primitive cells. The focus
was therefore not on the mechanism of formation of such vesicles, but on their
properties/dynamics/interaction with other vesicles, and so on.
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The natural swelling method is therefore the preferred method to simulate the
emergence of early cell-like structures from amphiphiles and water. It produces a
heterogeneous population of vesicles that realistically represents a sort of primitive
ecosystem, where synergies, cooperations, competitions and selections among these
coexisting ‘units’ took place. In addition to these important features, especially
when the realistic primitive cell modeling is desired, it should be reminded that
the GVs prepared by the natural swelling method are characterized by an intrinsic
diversity in size, lamellarity, and morphology. This makes difficult to define a sort
of ‘average’ behavior. It follows that studies done on more homogeneous samples
(LUVs, GVs prepared by the electroswelling method or droplet transfer method)
and those done on spontaneously formed GVs by natural swelling complement each
other. Moreover, it should be recalled that microfluidics offers a novel technological
route for the construction of highly homogeneous GVs [64–71].

6.2.3 Preparation Methods and Solute Entrapment

It is worth to recall the interplay between lipid types, methods of preparation and an
essential feature of lipid micro-compartments, namely, their capacity of entrapping
water-soluble or lipid-soluble substances. Clearly, this is of vital importance
when models of primitive cells are prepared. Water-soluble substances (inorganic
salts, sugars, small polar molecules, proteins, nucleic acids, ribosomes, . . . ) are
encapsulated inside vesicles in the moment of their formation (Fig. 6.5). Generally,
such molecules have low permeability and their addition after vesicle formation
does not bring about their internalization. An exception are small molecules which

Fig. 6.5 Solute-filled vesicles are simply obtained by letting vesicle formation in a solution of
the solute(s) of interest. When vesicle forms, they capture part of the external solution, so that
solutes become encapsulated inside. Their permeability is low (as they are water-soluble) and thus
they are not released. A purification step generally follows the entrapment, but in some cases,
external solutes and their potential reactions are blocked/inhibited by the addition of another (non-
permeable) agent



6 Minimal Cellular Models for Origins-of-Life Studies and Biotechnology 187

are present in solution in two forms (charged and non-charged), for example in the
case of amines (RNHC3 and RNH2), or other compounds with acid/base forms with
a similar feature. In some cases, the neutral form can permeate the lipid membrane
and be transformed in the charged non-permeable species inside the vesicle, due
to a different pH value [72]. This procedure has been applied in the construction of
doxorubicine-containing liposomes [73, 74] (for drug delivery) but a similar strategy
can work in the case of other molecules of prebiotic interest [75–78].

Lipid vesicles originate, ultimately, from a closure mechanism whereby a curved
lipid layer closed on itself capturing a portion of the aqueous solution. In ideal
conditions, and in absence of strong solute-lipid interactions (as it could be, for
example, when cationic lipids are allowed to form vesicles in the presence of nucleic
acids), the entrapment process is equivalent to a random sampling. One can imagine
that open lipid bilayers (homogeneously distributed in the solution) capture portions
of the solution in random way. Probably the method that more closely matches with
this description is the ethanol injection method [79]. In the other methods practical
constraints prevent the occurrence of these ideal conditions, but nevertheless it
is useful to describe what would be the ideal case and then compare it with the
observations.

The fraction of whole volume V captured by a vesicle with volume v is v=V ,
and this ratio represents the entrapment probability p. The average number � of
entrapped solutes will be pN, where N is the total number of solutes in the whole
solution. As N D NAC0V , it results that � D pN D v=V � NAC0V D NAC0v

(where NA is the Avogadro’s number and C0 the bulk solute concentration). As in all
microscopic phenomena, stochastic events related to the randomness of microscopic
conditions affect the local solute concentration; consequently the closure of open
lipid bilayers produces a population of vesicles where the number n of solute
entrapped in a certain vesicle differs from �, the most probable one. Given a certain
vesicle size, a solute occupancy distribution }.n/ is obtained, that can be typically
described by a Poisson distribution (Fig. 6.6):

}.n/ D
�ne��

nŠ
(6.1)

Note that the Poisson distribution becomes similar to the Gaussian distribution
when � is large. This simple analysis reveals that together with vesicles that
encapsulate the expected number of solute molecules, there will be always vesicles
with n smaller or larger than �. This means that when vesicle forms, even in
the most ideal conditions (negligible solute-solute and solute-lipid interactions,
homogeneous and isotropic solutions, homogeneous distribution of lipids in the
whole solution), the resulting vesicle population is – by definition – heterogeneous
in terms of solute content.

This has two consequences. First, from the technical viewpoint, one has to
distinguish among (i) the (very much used) average entrapment efficiency (or
entrapment yield, or similar values) which considers the overall amount of entrapped
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Fig. 6.6 Poisson and power-law distribution. Simulated Poisson and power-law distribution f (n)
as function of the number n of encapsulated molecules. The Poisson curve has been generated by
using � = 2.52, which corresponds to the expected value of encapsulated molecules when vesicles
with diameter 200 nm are formed in a 1 �M solution. The power-law curve has been generated with
A = 0.75 and k = 2.5 [82]. The plots refer to the same datasets but different y-axis: (a) linear, (b)
logarithmic. The latter representation helps understanding that the encapsulation of high number
of molecules (say, n = 20) when 2.52 are expected is highly improbable according to the Poisson
distribution (�10�12), but 109 times more probable when a power-law is considered (10�3)

solute, divided by the number of vesicles (or by the lipid concentration), and
(ii) the (less used) individual entrapment which instead measures the content of
each vesicle, individually. The first measure is obtained by bulk measurements, the
second, by techniques that allow the individual analysis of vesicles (e.g., microscopy
[80–82], flow cytometry [83, 84]). Second, from the viewpoint of utilizing vesicles
as primitive cell model, this fact evidences that populations of primitive cells,
being formed by spontaneous lipid self-assembly into vesicles, and spontaneous
entrapment of molecules, are ‘diverse’ also in terms of solute filling, in addition
to size, lamellarity, morphology [85]. As the internalized solutes play the role
of metabolic components, this implies that some protocells would function better
than others, and being subjected to a proto-Darwinian selection, in virtue of better
function, better reproduction rate, better stability (however, cooperation/synergy
should not be neglected [59]). This has a profound implication for depicting realistic
origins-of-life scenarios, as it has been indeed done in recent work, although
referring to different behaviour [40, 86–88].

According to what has been discussed above, a vesicle population is character-
ized by a diversity in the inner solute content, which is spread around a certain
average value �. Such average solute number linearly depends on the product of
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vesicle volume v and bulk solute concentration C0, as expected. Small vesicles
display strong stochastic fluctuations in the number of encapsulated molecules.
For instance, when LUVs (diameter 100 nm) are formed in the presence of 10 �M
solute, � D 3:15 meaning that ca. 60% of vesicles have entrapped 2, 3, or 4 solute
molecules, whereas the others a quite different number. For example, the probability
of finding a vesicle with 10 solute molecules is 0.1%. The ‘long tail’ on the right-
side of the solute occupancy distribution mean (�) is much more important than the
left part. Here there are vesicles which are filled with solutes, much more than the
expectation. Normally their number is very low, but – as detailed in the ‘super-filled’
vesicles Box, there are cases that challenge the Poisson distribution.

‘Super-filled’ vesicles. Although the Poisson distribution is the expected
solute-occupancy distribution for an ideal random entrapment process
(demonstrated in [84, 89]), recent reports have shown an intriguing divergence
from the expectations, as reviewed and discussed in [90]. In particular, a
series of paper have revealed that when macromolecules are encapsulated
in conventional submicrometer vesicles prepared by different methods, the
experimentally observed solute occupancy distribution does not follow the
Poisson distribution [82, 91–94]. Rather, it is shaped as a ‘power law’, namely
f .n/ D A=.n C 1/k, where A and k are positive parameters. This means
that most of the vesicles are empty, and few of them are instead solute-
filled (Fig. 6.6). However, because the power law function goes to zero slower
than the Poisson function, it results that the amount of vesicles with high
n is higher for a power law than for a Poisson process. In other words,
actually there is a non-zero probability of finding solute-filled vesicles, with
n well above the expected average �. For example, the 0.1% of vesicles
prepared in the presence of ferritin (or ribosomes) has an intra-vesicle solute
concentration up to 10 times higher than the expected value. Clearly, when
vesicles are formed in a mixture of essential macromolecules (essential for
the sustainment of a network) some of the vesicles would be capable – against
the expectations – of co-entrapping several copies of these solutes. In turn,
such ‘super-filled’ vesicles could be very efficient in the realization of an
internal reaction network, and so being favoured with respect to the empty
or regularly filled one. Experimental evidences about this mechanism have
been provided [82, 91, 92, 94]. A mechanism based on the perturbation of
open bilayer closure rate has been suggested for accounting the observations
(but for a counterexample, see [95, 96]).

The discussion on random encapsulation holds in the case of vesicles prepared by
conventional methods, and when the solute encapsulation is the study focus. On the
other hand, the above-mentioned droplet transfer method (Fig. 6.4) radically differ
from the others and it is best suitable for a ‘directed’ encapsulation of water-soluble
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molecules. Due to recent developments, this method has become probably the best
method for preparing solute-filled GVs intended as synthetic cells, when there is
no intention to study the self-assembly phenomena underlying the spontaneous
emergence of solute-filled vesicles (i.e., modeling the origin of primitive cells).
The directed entrapment occurs because solutes are firstly emulsified in form of
w/o droplet (achieving 100% compartmentalization), and droplets are transformed
in vesicles. The remaining source of inter-vesicle variability is now only the solute
partition among droplets while they form by coagulation/fragmentation steps [85].

A completely different discussion refers to lipid-soluble molecules. In contrast
to water-soluble ones, they have the spontaneous tendency of binding to lipid
membranes, and their inclusion in the vesicle structure is easy. The exceptions
are membrane proteins. If a protocell model is designed in a way that it includes
membrane proteins (enzymes, transport protein, signaling protein) care should be
taken to design the lipid type and the vesicle preparation method (and these two
things are somehow interlinked). It may seems that the reconstitution of complex
membrane proteins in protocellular model is not a fully pertinent exercise. However,
it is expected that primordial polypeptides with hydrophobic character could deco-
rate early membranes complexifying their repertoire of functions (e.g., permeability
changes, inter-vesicle interactions, vesicle-surface interactions, binding of free
floating molecules). In this respect, the inclusion of lipid soluble or lipid-anchoring
molecules is certainly relevant.

Moreover, when the protocell model is built to demonstrate the reliability of
minimal transformation pathways, or their use for investigating protocell transfor-
mations, the reconstitution of modern membrane enzymes can be an essential step.
From this perspective, also phospholipid membranes can be employed as primitive
membrane models. An example is given by one of the early papers on vesicle self-
reproduction. The four enzymes that convert lipid precursors into lipid molecules
were reconstituted in lipid vesicles [97]. The goal of the work was to demonstrate
that a lipid-producing liposome could grow like a cell, producing from within the
building blocks for enlarging the membrane (according to the autopoiesis theory –
see below).

In conclusion, when vesicles are intended as cell models, there are several aspects
to consider, and these are somehow linked to each other. The type of lipids, the
vesicle type, the preparation method and the solute entrapment are all connected,
and unfortunately not all combinations are easily accessible or even already
explored. Clearly, the choice will depend on the aim of a study. Table 6.2 offers
a framework for such discussion. For example, allegedly primitive compounds,

Table 6.2 Different compounds and approaches in vesicles as cell model research

Component type Scope Examples

Allegedly primitive Realistic protocell Fatty acids, small peptides, . . .

Modern biomolecules Minimal functions Enzymes, ribosomes, phospholipids, . . .

Synthetic Fully synthetic cells Polymers, hybrid molecules, . . .
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as well as components extracted from modern cells (and synthetic molecules as
well) have been successfully employed to build cellular models, and vesicles of
very different types have been constructed. However, it should be useful, when
discussing the choices underlying the constructed models, keep clear what is the aim
of the study, and what the model aims at revealing. For example, it is evident that a
realistic primitive cell model should be built from allegedly primitive compounds,
such as simple membrane-forming lipids (fatty acids, isoprenoids, fatty alcohols,
etc.), and molecules which mimic the early catalysts (such as small peptides or
ribozymes). When the focus is on minimal cell function, irrespective from the actual
molecular species that carry out a certain function, modern molecules have been
used (enzymes, DNA, ribosomes, modern lipids, . . . ). We have to distinguish two
possible aims for the second-line approach of Table 6.2. One aim could be the
construction of primitive cell models, but using modern molecules to test some
hypotheses about minimal function. Another aim could be the construction of a
biotechnological tool, a sort of synthetic cell, for some specific applications. Finally,
one can imagine also fully-synthetic cell model that show how living-like functions
can be achieved in ‘orthogonal’ way – namely – by using compounds not selected
in the natural evolutionary pathway (synthetic polymers, ad hoc designed lipids,
hybrid materials, and so on). Of course, the distinction between the approaches
can become blurred in certain circumstances, and the possibility of hybridization
should be considered also positively. Any advancement in this new field carry a
scientific and technological potential that should not be necessarily restricted by
classifications.

Despite these differences, the approaches indicated in Table 6.2 have a common
ground, and this should be emphasized: assembling a cell-like entity from sepa-
rated parts. This operational procedure, whose roots are in the chemical science
(building a complex molecule from small parts), has been dubbed as ‘synthetic’
approach. It corresponds to an operational bottom-up approach, even when the
protocell design might originate from a conceptual top-down approach (think, for
instance, of designing a protocell by removing unnecessary components from a fully
fledged cell, and then construct the protocell by assembling these essential parts).
Describing and commenting this approach is the topic of the next section.

6.3 The Synthetic or Bottom-Up Approach

Let us remark better the concepts which lay at the basis of the vesicle usage
as cell models. In the introduction it has been quickly said that the ‘synthetic
approach’ (also called constructive approach) is typical of origins-of-life research.
The philosophy of the synthetic approach can be summarized by the words of
Liu and Fletcher [98], saying that “we are much better at taking cells apart than
putting them together”, evidencing how in modern science the analytic rather than
the synthetic method has been largely applied for gaining knowledge about how
biological entities work. Actually the analytical approach has been very successful.
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In the field of primitive cell research, however, such an approach cannot be applied,
and primitive cells – or better, their models – can be only constructed in the
laboratory, by assembling molecular pieces and verifying hypotheses, checking
which kind of constraints apply, building minimal metabolic pathways, and so on.

Understanding-by-building can be the motto of this practice. Clearly, difficulties
exist due to the ignorance of the exact conditions that allowed the emergence
of first cells from non-living molecules, and on the exact order of the steps that
accompanied the success of cellular homeostasis and self-reproduction. Never-
theless the synthetic approach is the only one that might give scientific answers
to this age-long question, and especially demonstrating that life emerges, as a
result of out-of-equilibrium organization, yet according to the laws of physics and
chemistry (we will see later that this special type of organization must necessarily be
autopoietic).

Understanding-by-building, however, is also a motto of a modern biology branch,
synthetic biology (SB). SB is a young discipline born by applying the engineering
vision to biology [99]. However it differs from genetic engineering because it
focuses on the engineering (‘rewiring’) of whole cells. SB generally aims at
achieving concrete goal, typical of bioengineering, such as creating biosensors,
letting biological cells (most often: bacteria) producing fine chemicals, or biofuels,
or pharmaceuticals, constructing bacterial strains for bioremediations, and so on.
On the other hand, from its very beginning, a special focus was reserved to the
construction of minimal cells, i.e., living cells with minimal complexity. This goal is
important for basic understanding of living cells (what is the minimal non-reducible
complexity associated with life) and for biotechnological purposes (eliminating
unnecessary circuitry is thought to be equivalent to optimize energy usage in
cells).

Mainstream SB research looks at minimal synthetic cells as a product of genomic
manipulation (with the already achieved goal of a cell that has been deprived of its
native genome and transplanted with a minimal synthetic genome, according to the
Venter’s team approach [100, 101]). Such a path is now recognized as the ‘top-
down’ approach to synthetic cell (using SB techniques). It is top-down because it
starts from a pre-existing organism, and implies a minimization design done by
the scientist. An alternative approach to minimal synthetic cells is based on the
‘bottom-up’ construction, from a minimal set of molecules, not from cells – as it
has been described in this review. This second path would lead to the improvement
of biological understanding of cellular processes once they are reconstituted from
scratch in simplified systems, and when the noise due to other concurrent processes
has been eliminated in the novel, minimized, cell-like design.

It is evident that the philosophy, the methods, the synthetic (constructive)
approaches for the bottom-up construction of mimimal cells largely overlap with
those which are typical of research on primitive cells. This leads to an unexpected,
yet very fertile, common arena which is interesting also from the viewpoint
of science epistemology [102, 103]. It is quite intriguing that one of the most
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ambitious biology branches shares with the research on the primitive cells its most
fundamental conceptual and practical tools.

Bottom-up synthetic minimal cells and models of primitive cells, thus, are two
different implementations of the synthetic bottom-up approach. Both aims at assem-
bling cell-like systems from non-living molecular parts, and at understanding the
function of cellular systems (understanding by building). Perhaps, the most obvious
difference refers to the type of molecules used for building such minimalized
cells, as already specified in Table 6.2. It should be noted that as the field is
very young, the terminology is not yet crystallized. Different authors uses different
terms like primitive cell, protocell, minimal cell, synthetic cell, artificial cell, semi-
synthetic cell, semi-synthetic minimal cell. In contrary to their apparent diversity,
all vesicle-based cell models built according to the bottom-up synthetic approach
show a certain degree of similarity. Very different is the case of synthetic cells built
by genetic manipulations of existing cells or by genome implanting, referred, as
mentioned, as top-down approach. Nota bene: With respect to the bottom-up/top-
down dichotomy, it is worth noting that the authentic bottom-up approach, based
on non-designed self-organization and emergence is actually not really applied
(stricto sensu). Rather, the methodological bottom-up approach (assembling a cell-
like structure from its parts, based on self-assembly of molecular systems) is often
preceded by a design step (deciding what molecules include, foresee patterns,
combining parts which function together), which is a typical top-down practice
(designing a system with a final goal in mind).

6.4 Modelling Primitive Cells

One of the primary goal of origins-of-life research is creating model of primitive
cells, those entities that originated from self-assembly of molecules which are
supposed to be available in early times. These very basic structures were very
different from the cells as we know them. They were simpler, performed worst than
evolved cells, probably they were partially unstable and perhaps ‘limping’ [11].
As it has been recently discussed by us [104], the formation of self-reproducing
protocells that are able to display essential features of biological autonomy marks
the transition between non-life and life. One generally focuses on the notion of cells
with minimal complexity, but what does ‘minimal’ life mean? The definition of life
is still an open question that divides scholars [105, 106]. Most would agree on the
fact that a living system displays homeostatic self-maintenance, self-reproduction
and the capability to evolve. Autopoiesis (self-production) is a theory proposed by
two biologists, Humberto Maturana and Francisco Varela [107, 108], that provides
an operational definition of life as that process of self-bounded structures that
produce their own components own to chemical transformations occurring within
the autopoietic organization itself (Fig. 6.7). Autopoiesis does not explain how
life originated, but tells us how a living system works – and therefore, how to
construct it.
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Fig. 6.7 Essentials of autopoiesis theory. On the top, the definition of autopoietic organization in
terms of a network of production of components [107]; on the bottom, application of autopoietic
theory to primitive cells, synthetic cells, etc. [109]

Here we present a brief overview of autopoietic theory [109], as recently
discussed in our publication [104]. The central feature that characterises
all living entities (and in particular unicellular organisms) is their self-
maintenance. By self-maintenance, here we mean the self-generation of all
components by chemical reactions, occurring within a boundary (e.g., the cell
membrane). The boundary is also produced by the internal metabolic system.
This self-generation is due to the peculiar form of chemical organization, that
is, a dynamical organization typical of autopoietic systems. It is defined as a

(continued)
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network of processes of productions of the molecular components, which (1)
participate recursively in the network of processes for their own production
and (2) occur in a defined region (physical space) delimited by a physical
boundary (Fig. 6.7). The physical boundary also belongs to the autopoietic
organization. The so-obtained physical entity is an autopoietic unit. Note that
the autopoietic organization is a collective, distributed property of the whole
system, and does not reside in any particular molecule. In autopoietic theory,
the operational closure is often included in the discussion, to mean that the
autopoietic unit reacts to environmental changes in order to maintain its own
inner autopoietic organization, and that the unit tolerates only changes that
can be accommodated within the autopoietic organization.

Based on autopoietic theory, some important experimental achievements have
been obtained in the 1990s with fatty acid vesicles, namely, autopoietic self-
reproduction of reverse micelles [110], micelles [111] and LUVs [34]. In all cases,
fatty acids were used to construct these structures. The self-reproduction of fatty
acid GVs has been also reported [42, 112]. Despite the historical and conceptual
relevance of reverse micelle and micelle self-reproduction (a programmatic paper
co-authored by Luisi and Varela appeared in 1989 [113] where chemical autopoiesis
was firstly sketched in the reverse micelle system), in Sect. 6.4.1 only the self-
reproduction of vesicles will be commented. Interested readers can find useful a
recently published comprehensive review [114]. Next, selected examples showing
the occurrence of reactions inside fatty acid vesicles will be presented (Sect. 6.4.3).

6.4.1 Vesicle Self-Reproduction

Autopoietic vesicle self-reproduction has been designed after inspiration to the
autopoietic theory. Fatty acid vesicles have been used as model of self-reproducing
vesicles. This was a somehow fortunate case, as there are easily accessible exper-
imental routes for realizing a self-reproducing mechanism, and fatty acid vesicles
are also the most plausible models of primitive cells. Pre-existing fatty acid vesicles
(generally oleic acid/oleate vesicles, which are stable at slighly alkaline pH, i.e.,
8.5) were provided with feeding material in form of externally added fatty acid
precursors (water-insoluble fatty acid anhydride) or directly with free fatty acids in
the form of micelles, which are easily deliverable in pseudo-homogeneous phase.

The rationale is the following. According to autopoiesis, an autopoietic cell
takes up molecular precursors from its environment and transforms them in the
components of its dynamical network (including assembling the physical boundary:
the membrane, which limits and define the autopoietic cell against the background).
Such a process is central to autopoietic organization, and involves by definition all
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components of the autopoietic network. However, the focus on the membrane allows
a further advantageous implementation. Autopoiesis also means self-maintenance.
Despite the concurrent and ever-present anabolic and catabolic processes, the
autopoietic entity maintains its identity. Quantitatively this means that the rate
of precursors uptake and components production (Vp) is balanced by the rate of
components destruction/release in the environment (Vd), or Vp D Vd. No net
component production or accumulation takes place. The autopoietic unit self-
maintains in a homeostatic state. However, if Vp > Vd the autopoietic system can
grow, producing new components that can constitute a novel (daughter) system
following a growth/division process (Fig. 6.8). Note that the reaction takes place
within the boundary of structure/unit. This process, when applied to cells or their
vesicle models, has been called autopoietic self-reproduction [35, 115].

Fig. 6.8 General schemes for the self-reproduction of supramolecular structures. The uptake of
a suitable precursor P by the preformed self-assembled structure, and its transformation to S, the
membrane-forming compound, brings about the growth of the structure boundary. The growth
induces a destabilization of the structure, which divides in two (or more) similar structures (not
necessarily of the same size). The production of S proceeds with rate Vp, the destruction/release
of S (not shown in the drawing) proceeds with rate Vd . If Vp > Vd the structure grows; if
Vp D Vd the structure is in a (dynamic) homeostatic state; if Vp < Vd the structure collapses.
The autopoietic self-reproduction mechanism has been studied for micelles (bottom, left), reverse
micelles (bottom, centre), and vesicles (bottom, right; not drawn to scale) (Reproduced from [116]
with the permission of Springer)
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6.4.1.1 Premise on Fatty Acids Dispersed in Water

Depending on pH, fatty acids can be found essentially in three different forms when
dispersed in an aqueous solution. At low pH (for example, below ca. 7.5) fatty
acids are protonated (R � COOH) and separate from the solution. Intramolecular
interactions are dominantly hydrophobic. At high pH (for example above ca. 9.5)
fatty acids are deprotonated, in the form of soaps (R � COO�NaC) and due to their
large hydrated head group they self-assembly into micelles, as expected from the
Israelachvili-Mitchell-Ninham generalization [55]. At intermediate pH values, both
forms of fatty acids are significantly present, so that hydrogen bonding can occurs
between the carboxylic form and the carboxylate (R � COO�: : : HOOC�R). The
pKa is within this pH range. The average head group area decreases when compared
to fully deprotonated molecules, and fatty acids self-assemble as bilayers (and
therefore as vesicles). It has been proposed that a dynamic network of hydrogen
bonds characterizes fatty acid membrane surface at these intermediate pH values
[117]. Note that when compared to short-chain carboxylic acids, the pKa of fatty
acids in their associated form is ca. 3 units higher. This is because the carboxylate
charges that originate after deprotonation are near each other in the membrane,
making difficult the extraction of further protons.

6.4.1.2 Biphasic System

Oleic anhydride is not soluble in water. When oleic anhydride is stratified over a
pH 8.5–9.0 buffer, basic hydrolysis occurs at the macroscopic interface between
the oleic anhydride phase (or droplets if the system is dispersed) and the aqueous
phase. The number of anhydride molecules hydrolized in this way is very small and
the hydrolysis occurs very slowly. If oleic acid/oleate vesicles are instead present
in the aqueous phase, the oleic anhydride molecules are taken up by the vesicles,
which solubilize the anhydride in the membrane (Fig. 6.9a). Anhydride molecules
are then easily and rapidly hydrolized to form fatty acids, the vesicles’ building
blocks. The net result is the accretion of the ‘parent’ vesicles due to in situ synthesis
of their membrane components, reaching an unstable state, then split to give rise to
‘daughter’ vesicles.

Such an approach has been studied in a number of cases [35, 118], which also
include intra-vesicle reactions (see Sect. 6.4.3).

6.4.1.3 Homogeneous Sytems

At high pH, fatty acids in aqueous solution form micelles. Micelles, in contrary
to vesicles, as very small spherical assemblies (the diameter of a small oleate
micelles can be estimated to be 3.5–4 nm, the sum of the length of two extended
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oleate molecules) (for a discussion on the co-existence of vesicles and micelles, see
[119]). Due to the small micelle size, a micelle solution is transparent. Micelles are
dynamic systems, whose fatty acid (FA) components are in rapid equilibrium with
the monomer form in solution, FAn � nFA.

Most experiments have been carried out with the oleic acid/oleate system.
When a small aliquot of oleate micelles (high pH) are added to a pH 8.5 buffer
(e.g., bicine or borate buffer), the protonation of oleate molecules brings about a
structural rearrangement of the micelles which transform into bilayer and then into
vesicles. The whole process takes several minutes to occur, as evidenced by turbidity
measurements. If, however, pre-existing oleic acid/oleate vesicles are present in
the buffered solution, an alternative (and faster) path is available. Pre-existing
vesicles uptake oleate molecules from the micelles (or even include the micelles)
in their membrane. The membrane area increases due to the insertion of new oleic
acid/oleate molecules (Fig. 6.9b). Consequently, the vesicle grow (plausibly in non-
spherical way [120]), reach an unstable state, and divide into two daughter vesicles.
Many studies have been carried out on this system, especially with oleic acid/oleate

Fig. 6.9 Two different feeding methods for achieving fatty acid vesicles growth and division (cf.
Fig. 6.8). (a) Oleic acid/oleate vesicles are added to a solution in the presence of oleic anhydride.
The anhydride is stratified over the aqueous phase and dispersed in form of oil-in-water droplets
under mechanical agitation. Anhydride molecules are taken up by the vesicles, which solubilize the
anhydride molecules in their bilayer, where it is hydrolized by hydroxy ions to give oleic acid and
oleate – the membrane-forming compound. In this way, the parent vesicle increases its membrane
area, reach an unstable state (not shown) and divide in two or more ‘daughter’ vesicles (not shown).
(b) Oleic anhydride can be substituted by oleate micelles, which are added, in a small volume, to an
oleic acid/oleate vesicle suspension. Oleate micelles deliver oleate molecules to the vesicle bilayer
either via the monomeric form, either after vesicle/micelle collision. As in the case (a), the vesicle
growth and division are not shown
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LUVs, which has the advantage of being homogeneous (in contrary to the anhydride
method, which occurs in a two-phases system), and therefore it can be studied by
spectroscopic methods [37, 39–41, 121]. In addition to the increased rate of micelle-
to-vesicle transformation due to the uptake-growth-division mechanism, it results
that the size distribution of parent and daughter vesicles are approximately similar.
This has been called ‘matrix effect’ [36–39]. A possible vesicle intermediate has
been visualized by cyro-transmission electronmicroscopy [120]. Moreover, it has
been recently extended to oleic acid/oleate GVs. In the latter case, direct observation
by light microscopy has shown that GVs uptake oleate micelles, elongate to form
tubular vesicles, then fragment into many new vesicles by a pearling/breakage
mechanism [42, 122, 123].

6.4.2 Relevance of Vesicle Autopoietic Self-Reproduction

The above-mentioned observations have great relevance in origins-of-life scenario,
because they show that the proliferation of cell-like structures is possible also in
absence of the complex macromolecular machineries that characterize modern cell
growth-division. The only requirement is that adequate precursors are available in
the environment of the protocells. Moreover it demonstrates that a quite complex
chemical system, hold together solely by non-covalent interactions, can behave in
coordinate manner displaying some of the features of biological systems. As we will
see in the next section, if a chemical reaction is occurring inside the self-reproducing
vesicles, this corresponds to a minimal model of cell. One of the still missing goal
is the substitution of the externally-added lipids with the internally-produced ones.
A first attempt was done in 1991, with the incorporation of four lipid-producing
enzymes in phosphatidylcholine liposomes [97]. More recent studies have followed
this idea [124, 125] but the desired pattern has not been observed yet (mainly
because the limited amount of newly-produced lipids). Indeed, the realization of
compartmentalized reactions inside self-reproducing vesicles is the closest way for
modeling primitive cells.

It is important to emphasize that the vesicle self-reproduction has been discov-
ered by using fatty acids. The ‘substrate’ vesicles have been fatty acid LUVs or
GVs, or phosphatidylcholine LUVs [39] (for a study on phosphatidylcholine GVs
and fatty acid micelles, see [126]). Studies on other chemical systems have been also
reported. In one case, an ad hoc designed artificial surfactant was shown to display
GVs growth and division [127, 128]. In another case, lipids have been generated
by chemical ligation [129] (an interesting case even if self-reproduction was not
observed). Whereas fatty acids are prominent candidates for the first membrane-
forming compounds [130], terpenoids, which can also have primitive origin [22],
have been investigated much less with respect to the dynamical properties of their
assemblies. The Murchison meteorite, in addition, also contains a suite of alkyl
dicarboxylic acids up to 18 carbons [131, 132], whose self-assembly properties are
not well known (C. Thomas and P. L. Luisi, unpublished results).
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6.4.3 Reactions and Other Patterns

The second issue for the construction of primitive cellular models from the bottom-
up is the realization of reactions inside vesicles. Most of work is done with
enzyme-based pathways, which model primitive pathways. The latter are difficult
to identify and carry out. Examples of these allegedly primitive pathways are the
formose reaction (producing sugars from formaldehyde in basic conditions [133]),
or the various enzyme-free paths for oligonucleotide synthesis from activated
mononucleotides, or primitive condensation reactions to form oligopeptides, and so
on. Enzyme-based pathways, on the other hand, are easy to implement as purified
enzymes are available from several sources, or house-made, or synthesized in situ
by cell-free protein synthesis.

The first two studies (1994/1995) of compartmentalized reactions deserve special
mention, as the reactions occurred inside self-reproducing fatty acid vesicles. Both
systems focused on the production of nucleic acids inside oleic acid/oleate LUVs:
(1) the so-called Oparin reaction (oligomerization of ADP to give poly(A), under
catalysis of polynucleotide phosphorylase (PNPase)); and (2) the RNA replication
catalized by Qˇ-replicase. These two systems are sketched in Fig. 6.10. In the
first case, ADP was added to PNPase-containing vesicles. ADP permeates into
the vesicles and is polymerized inside the aqueous lumen, with the production
of inorganic phosphate [35, 134]. In the second case, a (+)-strand RNA template,
nucleotides triphosphate and Qˇ-replicase have being co-entrapped inside vesicles,
with the result of producing the complementary RNA (–)-strand [118]. These
reactions were simultaneous to vesicle growth and division, so that a simplified
model of RNA-producing primitive cell was realized.

Next (1995–1999), the polymerase chain reaction was carried out in phos-
phatidylcholine LUVs (non self-reproducing) [135] (but see also [136, 137]) and

Fig. 6.10 Reactions inside vesicles. (a) The Oparin reaction consists in the oliogomeriza-
tion/polymerization of ADP operated by PNPase. The reaction is interesting from the viewpoint
of origins-of-life because it produce a RNA molecule without a template. The Oparin reaction
was carried out in DMPC vesicles [134] or in oleic acid/oleate vesicles [35]. In both cased ADP
was added externally and ADP firstly diffuses from the environment to the vesicle core. (b)
Qˇ-replicase is another interesting enzyme as it is a RNA-dependent RNA polymerase, capable
of replicating RNA without need of DNA. All components required for the reaction were co-
entrapped inside oleic acid/oleate vesicles [118]. Note that in works [35, 118] autopoietic vesicle
self-reproduction occurred simultaneously to internalized reactions
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few years later the first production of a long peptide – poly(Phe) – by translation
was similarly observed [138]. In particular, the latter example signifies a transition
towards an approach that later was recognized as typical of bottom-up synthetic
biology (i.e., the synthesis of proteins in the vesicle lumen). This promising and
flourishing topic will be specifically discussed in Sect. 6.5. Note, however, that
protein synthesis inside fatty acid vesicles has not been reported yet.

A number of studies have been carried out on reactivity inside fatty acid vesicles,
in particular for showing the oligomerization of activated nucleotides in the vesicle
lumen [44], to the function of encapsulated ribozymes [46, 139], and to face the
Mg2C-induced destabilization of fatty acids [54, 88, 140]. Of particular relevance are
those studies where ribozymes are encapsulated inside fatty acid vesicles because
these systems model quite closely the primitive cell-like structures that played a role
in the RNA-world hypothesis [141]. On the other hand, the intra-vesicle synthesis
of short peptides, catalyzed by Ser-His [142], has been also reported, and because
the reaction product migrates to the vesicle membrane, a mechanism of competition
among vesicles emerges [87].

In conclusion, a number of reactions have been reported as occurring inside fatty
acid vesicles. However, due to the relatively high solubility of fatty acids (it depends
on the chain length), when compared with double-chain phospholipids, they can
potentially interfere with the reactions. The field of micro-compartmentalized
reaction is certainly richer in examples when phospholipid vesicles (liposomes) are
used. We should comment, however, on the necessity of developing experimental
cases based on primitive membranes, like fatty acids, terpenoids, or mixtures of
different surfactants in order to test hypotheses on primordial compartmentalization
and robustness of early chemical pathways.

6.5 Semi-synthetic Minimal Cells

The point of junction between the synthetic approach typical of origins-of-life
and the advancing synthetic biology (SB) derives from a common program which
focuses on the synthesis of proteins inside vesicles. In origins-of-life perspective,
this is a key step that would allow the construction, from a bottom-up approach,
of primitive cell models displaying functions for the realization of an autopoietic
cell. In synthetic biology, cell-free protein synthesis (CFPS) represents a tool for
engineering man-made devices, such as functional synthetic cells for a variety
of applications (understanding biochemical paths, for biosensoring, as proof-of-
concept, etc., up to nanomedicine vehicles).

Such goals can be reached by constructing the so-called ‘semi-synthetic minimal
cells’ (Fig. 6.11), that can be defined as those cell-like structures built by co-
encapsulation of the minimal number of biochemicals (DNA, RNA, enzymes, . . . )
inside lipid vesicles, in order to achieve a certain function (ultimately, being alive).
Here, for brevity, semi-synthetic minimal cells will be referred simply as synthetic
cells.
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Fig. 6.11 Semi-synthetic minimal cells. The minimal number of genes, enzymes, RNAs, and
low molecular-weight compounds are encapsulated into synthetic lipid vesicles. The membrane
acts as a boundary to confine the interacting internalized molecules, and thanks to its semi-
permeability allows the material exchange between the semi-synthetic minimal cell and its
environment (nutrients uptake, waste release). More elaborated model include membrane proteins
for transportation, sensing, catalysis

The bottom-up constructive approach perfectly fits with SB philosophy based
on the concept of standard biological parts (http://parts.igem.org), of ‘biobricks’
and on the idea of letting a structure/function emerge as the result of molecular
parts interaction in the form of a molecular system. Moreover, it is well represented
by the concepts of orthogonality, modularity, programmability that are typical of
SB. However, subtle differences in the epistemology of the research on assembling
synthetic cells under the bottom-up SB view and origins-of-life perspectives have
been revealed [143].

The bottom-up construction of synthetic ‘cells’ – not necessarily alive – for
practical application is an essentially unexplored field where most of concepts,
techniques, usages, advantages and limitations have to be discovered. Up to now,
such kind of research has been essentially done by scholars more interested in
basic science, and especially in using bottom-up synthetic cells as cellular models
in search of biochemical/biophysical understanding. Most of researchers working in
traditional fields of biochemistry, molecular biology, physiology, biotechnology, and
so on can express, especially if working in multidisciplinary teams, a great potential
to fully exploit these structures.

The intersection between SB and the practice of assembling synthetic cells
has been discussed elsewhere, in most of its conceptual and practical aspects
[11, 17, 144, 145]. Here we would like to recall only two of these facets. The

http://parts.igem.org
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first is the so-called minimal genome. The minimal genome can be defined as the
minimal set of genes that encode the proteins (enzymes) capable of supporting
autopoietic cellular self-maintenance under permissive conditions. By permissive
conditions we mean that most of the low molecular weight molecules required
for cell metabolism are available in the cell environment and do not require the
corresponding intracellular synthetic step. Comparative genomics have revealed
that, based on the smallest prokaryotes a minimal gene set could include about 200–
300 genes (reviewed in [11]). A study focused on the endosymbiont Buchnera set
the figure to 206 genes [146], most of which (�50%) are devoted to transcription-
translation (TX-TL). As it will become clear in the next section, the goal of creating
a bottom-up synthetic cell by including 206 genes is currently beyond the actual
possibility. Moreover, this is not the central point in contemporary research, which
is instead focused at understanding the interplay between microcompartmentalized
reactions and the compartment feature, their interplay in terms of physics and
chemistry [17, 85]. The second facet is a technical one, and refers to the development
of microfluidics for the assembly of synthetic cells – a process that is currently just a
potential one, but it can quickly become a realistic procedure. As we have stressed in
an early report [144], microfluidic fabrication of solute-filled vesicles is a goal that
pave the way to fully programmable systems (Fig. 6.12). Microfluidic devices would
reduce both the size heterogeneity and the wide solute occupancy distribution that
typically characterize spontaneous vesiculation. By reducing these two stochastic
phenomena one achieves vesicle populations (cell models) with uniform and
programmable features, that can be very advantageous for practical applications
(note that, in contrary, deciphering and exploiting stochastic phenomena is a key
value for primitive cell modeling). As mentioned in Sect. 6.2, vesicle-producing
microfluidic devices have been increasingly developed in the past years [64–71].

Fig. 6.12 Operative aspects of semi-synthetic minimal cell construction. The techniques currently
involved for the production of minimal cells, mainly based on cell-free systems and liposome
technology can be possibly improved by the future use of microfluidic devices. Some reports
pointing to this direction have been already published
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6.5.1 Protein Synthesis Inside Vesicles

As it has been mentioned, the core of current synthetic cell research is the CFPS
inside lipid vesicles. After the pioneer report on ribosomal poly(U) translation
inside phosphatidylcholine LUVs [138], in 2001 the Yomo group published the
first example of a functional protein synthesis, the green fluorescent protein (GFP)
in a heterogeneous vesicle population prepared by the natural swelling method
[147]. This paper was followed by a 2002 short note on the enhanced-GFP (eGFP)
synthesis inside liposomes prepared by the ethanol injection method [148]. From
that moment the number of reports on CFPS inside liposomes increased constantly,
and a certain number of proteins have been successfully produced in their correct
fold, as witnessed by their functionality (reviewed in [144]).

CFPS micro-compartmentalized reactions occurs after co-encapsulating all com-
ponents (�80) of CFPS ‘kits’, and an encoding DNA (or RNA) sequence, inside
vesicle (Fig. 6.13). Typically a DNA plasmid is mixed with a CFPS kit, kept at
low temperature to prevent the reaction start, vesicles are formed, and membrane-
impermeable killers of the reaction are added externally in order to block the
reaction outside vesicles (protease or RNase are often used). The reaction is
often started just by increasing the temperature. Therefore, protein synthesis inside
vesicles is a combination of liposome technology and CFPS methods. Lipids and
CFPS kits must be chemically compatible, capable of forming good vesicles, and
matching with the needs of the synthesized protein (think to membrane enzymes).
A practical example of how these three constraints have been overcome can be found
in [124].

The approach proposed by Noieraux and Libchaber (2004) focused on the
expression of ˛-hemolysin (˛HL) in GVs [61]. Thanks to the pore generated by
the self-assembly of ˛HL in the vesicle membrane, it was possible to ‘feed’ the
vesicle bioreactor for 4 days, as the energy-rich compounds were added to vesicles
and permeate in the vesicles core via the ˛HL pore. Notably, the pore also allowed
the release of by-products from the vesicles. After this report, ˛HL has been often
used for this aim.

A quite interesting CFPS kit for the bottom-up SB approach is the PURE system
(see the grey-box and Table 6.3).

The PURE system (Protein synthesis Using Recombinant Elements) is a
partially recombinant, cell-free, protein-synthesis system reconstituted solely
from those essential elements of the Escherichia coli translation system
[149, 150]. As shown in Table 6.3, it is composed of 36 individually
purified His-tagged proteins, purified ribosomes, and tRNAs mix (overall, 83
macromolecular components). It can be considered as a standard chassis for
synthetic biology. The PURE system performs CFPS by combining T7-RNA-

(continued)



6 Minimal Cellular Models for Origins-of-Life Studies and Biotechnology 205

Fig. 6.13 Protein synthesis inside lipid vesicles. Top: Reaction scheme. NTPs are polymerized to
give mRNA using a DNA template and RNA polymerase. The resulting mRNA is a template for
the protein synthesis, fuelled by aa-tRNAs. tRNA are re-charged by aminoacyl-tRNA synthetases
(RS) and amino acids. These three modules consume energy (ATP, GTP), which is re-formed
inside the vesicle by a fourth module (not shown) at expenses of creatine phosphate. Bottom: eGFP
synthesis in GVs produced by the droplet transfer method [144]. Panels (a,b): cell-free extracts plus
DNA; panels (c,d): cell-free extracts without DNA (negative control); panels (a,c): fluorescence
imaging; panels (b,d): bright-field imaging. On the top, equatorial profile of micrographs’ pixel
luminosity (panels a,b). Size bar represents 50 �m (The bottom part (panels a), (b), (c), (d) have
been reproduced from Ref. [144] with permission from The Royal Society of Chemistry)
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polymerase transcription and E. coli translation. With respect to traditional
CFPS kits, the PURE system has a lower yield (ca. one third [151]), but its
usage adds to the synthetic cell research from the viewpoint of the potential of
a full design and modularity. Indeed, one can imagine of modifying the PURE
system composition at will, or substitute some of its components with others,
and so on.

Table 6.3 Composition of the PURE system [150]

Component Concentration Component Concentration

IF1 2.70 �M IF2 0.40 �M

IF3 3.50 �M EF-G 0.26 �M

EF-Tu 0.92 �M EF-Ts 0.96 �M

RF1 0.25 �M RF2 0.24 �M

RF3 0.17 �M RRF 0.50 �M

AlaRS 1900 U/mL ArgRS 2500 U/mL

AsnRS 20 mg/mL AspRS 2500 U/mL

CysRS 630 U/mL GlnRS 1300 U/mL

GluRS 1900 U/mL GlyRS 500 U/mL

HisRS 630 U/mL IleRS 2500 U/mL

LeuRS 3800 U/mL LysRS 3800 U/mL

MetRS 6300 U/mL PheRS 1300 U/mL

ProRS 1300 U/mL SerRS 1900 U/mL

ThrRS 1300 U/mL TrpRS 630 U/mL

TysRS 630 U/mL ValRS 3100 U/mL

MTF 4500 U/mL Ribosomes 1.2 �M

Creatine kinase 4 �g/mL Myokinase 3 �g/mL

NDP kinase 1.1 �g/mL Pyrophosphatase 2.0 U/mL

T7 RNA polymerase 10 �g/mL Creatine phosphate 20 mM

ATP, GTP 2.0 mM CTP, UTP 1 mM

HEPES-KOH (pH 7.6) 50 mM Potassium glutamate 100 mM

Magnesium acetate 13 mM Spermidine 2.0 mM

DTT 1.0 mM 10 amino acids 0.3 mM

tRNA mix 56 A260/mL 10-formyl-5,6,7,8-tetrahydrofolic acid 10 mg/mL

The research on protein synthesis inside liposomes greatly advances. A number
of proteins have been produced inside vesicles in addition to GFP (or other
fluorescent proteins or ˇ-galactosidase and ˇ-glucuronidase as reporter proteins
[152, 153]). For example, T7 RNA polymerase to realize a two-steps genetic cascade
[154], ˛HL to create a pore in the membrane [61], lipid-synthesizing enzymes
[124, 125], Qˇ-replicase in order to replicate RNA [152]. More recent applications
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Fig. 6.14 Two remarkable examples of semi-synthetic minimal cell construction. (a) Starting from
Qˇ-replicase-encoding (+)-RNA strand and cell-free protein expression system, the production
of Qˇ-replicase was carried out inside liposomes, so that the complementary (�)-RNA strand is
produced from nucleotides and (+)-RNA template. In turn, (�)-RNA acts as a template for the Qˇ-
replicase catalyzed (+)-RNA strand synthesis. The correct production of (�)-RNA is confirmed
by the fact that it encodes for ˇ-galactosidase (that successfully catalyzes the formation of a
fluorogenic substrate [152]. (b) The two genes encoding for glycerol-3-phosphate acyltransferase
(GPAT) and lysophosphatidic acid acyltransferase (LPAAT) needs to be co-encapsulated inside
lipid vesicles, together with a CFPS kit (e.g., the PURE system). Actually, the two proteins
require different redox conditions, so that they were actually synthesized in two different vesicle
populations. In two steps, these membrane enzymes produce phosphatidic acid starting from
glycerol-3-phosphate and an acyl donor. Note that the vesicle membrane composition is a key
factor for realizing a functional system POPC 50.8%, POPE 35.6%, POPG 11.5%, CL 2.1% (POPC
1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine, POPE 1-palmitoyl-2-oleoyl-sn-glycero-
3- phosphatidylethanolamine, POPG 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylglycerol, CL
cardiolipin) [124]

refer to: 70 transcription factor (in order to realize a two-stage genetic cascade)
[155]; MreB (bacterial cytoskeleton filaments) [156]; EmrE (a transporter protein)
[157, 158]; BmOR1 and BmOrco (olfactory receptors and co-receptors) [159];
Sec translocon (mediator of membrane translocation of single- and multi-span
membrane proteins) [160].

For example, Yomo and collaborators [152] assembled a self-encoding replicase
system as it follows (Fig. 6.14a). Messenger RNA encoding the RNA-dependent
RNA replicase (Qˇ-replicase), was encapsulated inside liposomes together with
essential transcription-translation components. The Qˇ-replicase coding sequence
was successfully translated and the resultant Qˇ-replicase enzyme was functional.
It therefore replicated the RNA gene, producing its complementary strand. In turn,
the complementary RNA strand also encoded for ˇ-galactosidase, whose successful
translation was detected by measuring the conversion of fluorogenic substrate.
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Another instance comes from the attempts of synthesizing phospholipids inside
lipid vesicles (Fig. 6.14b). In particular, starting from glycerol-3-phosphate it in
principle possible to synthesize phosphatidic acid by two successive acylation
steps (using acyl-CoA as acyl donor). These two reactions are catalyzed by the
integral membrane enzyme G3PAT [2.3.1.15] and by the membrane associated
enzyme LPAAT [2.3.1.51]. Both enzymes can be synthesized inside liposomes by
CFPS (PURE system). Due to some issues about redox conditions the enzymes
were produced in two different liposome population to carry out phosphatidic acid
synthesis. A more recent version of this approach led to a significant understanding,
in several details, of such an approach [125].

Why protein synthesis? As it can be understood by the flourishing research on
CFPS inside liposomes, dominating micro-compartmentalized protein synthesis is
an essential conceptual and practical goal for the bottom-up assembly of cell-
like particles, either intended as primitive cell models or synthetic cells for
SB/biotechnology. It is a conceptual advancement because, as we have specified,
about 50% of the minimal genome refers to protein synthesis. Currently, TX-TL
components, purified from biological organisms, are inserted in liposomes, whereas
only a handful of genes is expressed. In future, one can imagine of realizing a
PURE system-producing synthetic cells, where all (�80) PURE system components
are synthesized in situ starting from the corresponding DNA sequences and PURE
system. This recursive logic is typical of biological systems. On the other hand,
CFPS is important from practical reasons as it paves the way to synthetic cell
functionalization with pores, receptor, enzymes, transducers, cytoskeletal elements,
and so on. All this will allow a stepwise increase of complexity and a better
understanding of biochemical systems by their full reconstitution.

6.5.2 Toward More Complex Functionalization

Some of the most interesting scenarios can be summarized by looking at the
contemporary trends, reports, and to the open questions [161].

1. MVV (vesosomes, see Fig. 6.2) are interesting structures consisting of small
vesicles contained inside a larger one. This structure is interesting because it
models a cell with subcellular organelles. Some reports have shown how to
produce such structure, but their use in synthetic cell research, to the best of
our knowledge, has not been reported [162–164].

2. The production of biochemical energy (e.g., ATP) is another open issue. A
possible way is the conversion of light energy in the form of a chemical gradient
(pH gradient), then exploiting such a gradient for fostering ATP synthesis via
ATP synthase. Photosynthetic proteins (or bacteriorhodopsin) are membrane
proteins, as ATP synthase. Clearly, the synthesis (or the reconstitution) of
correctly folded and correctly oriented membrane proteins inside liposomes is
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thus very important. We have been recently involved in the reconstitution of the
photosynthetic reaction centre in phospholipid GVs [165].

3. Movement is a property that is not strictly necessary for the definition of
living beings, but it is intriguing the construction of a synthetic cell capable of
autonomous motility. Similarly, cytoskeletal elements, division elements (such
as the bacterial Z-ring), and other similar proteins may be accessible targets for
the bottom-up approach.

4. From one to many. Most of current research focuses on individual cells, but it
is well known that even the simplest organisms often live in community. An
attempt to investigate the cooperation aspects of primitive cells has been done by
associating GVs in the form of colonies, on a flat support [59]. Intriguingly, the
colonies displayed several emerging properties that are not found in individual
vesicles. Other approaches based on molecular recognition of DNA-decorated
vesicles have been presented [166]. In some cases, GFP was produced in the
associated vesicles [167]. Note that such assemblies can be used as tissue models.

5. Mimicking inter-cellular communication is probably one of the most fascinating
goals (Fig. 6.15). Inspired by a hypothesis paper on the application of Turing test
to artificial cells [168], a first paper appeared in 2009 on liposomes sending a
signal molecule to bacteria [133], but the generation of the signal molecule was
not under genetic control. The idea was further elaborated within the realm of
bottom-up SB approaches (the combination of CFPS and liposome technology),
and an experimental plan for the implementation of synthetic-to-synthetic and
synthetic-to-natural communciation (and vice versa) was devised by Stano and
Rampioni [18] (for other approaches see [169–171]). It was realized also that
such an approach would bring about minimal cells as tools for the emerging
field of bio-chem information and communication technologies (bio-chem ICTs
[172, 173]). From then, important papers appeared on experimental realization
of this approach [174–178], that eventually goes in the direction described in the
next final point.

6.5.2.1 An Intriguing Perspective: Minimal Cognition in the Chemical
Domain

The reference here is to the so-called “embodied approach” to the study of cognition
[179], which aims at overcoming the mind-body dichotomy by bringing into focus
the fundamental role(s) the biological body plays in cognition. Despite this con-
sideration mainly refers to a high-level cognition, its extrapolation to the minimal
terms of unicellular systems can be interesting and perhaps fruitful. Synthetic cell
research contributes to the embodied approach to (minimal) cognition thanks to
the approaches originally introduced as proto-cybernetics, which are coherent with
those explained above (understanding-by-building, constructive/synthetic approach,
bottom-up). In particular the construction of artificial systems as models of cognitive
and biological processes serves to test and develop scientific theories about the
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mechanism underlying the natural processes. This is common to all sciences that
study natural processes through artificial models [180], and include software,
hardware, and – as a result of origins-of-life/SB bottom-up approaches – also
wetware models (synthetic cells) [102].

We have seen above that primitive cell models have been built under the
paradigm of autopoietic theory [108, 109]. However, according to the proponents
of autopoiesis, minimal autopoietic systems are also minimal cognitive systems, by
actively maintaining a dynamical coupling with their environment [181], i.e., being
capable of perceiving external events and actively reacting to them in a conservative
way (generation of an internal meaning to external perturbations).

This theoretical perspective offers to synthetic cell research the possibility of
playing a role in the avant-gard of artificial intelligence, in form of embodied arti-
ficial intelligence. The synthetic cells, in fact, do not process external stimuli under
a representational scheme, but being guided by the physico-chemical constraints
referring to their intra-cellular dynamical/functional inter- and supra-molecular rela-
tionships (embodiment). This new frontier is dense of possible developments [182].

6.6 Concluding Remarks

No questions are more fascinating and difficult to face than unveiling the mecha-
nisms that led to the origin of life on Earth more than 3.5 billions years ago. The
scientific search for the physico-chemical basis of such an important event – which
is within the realm of experimental study, started less than 100 years ago, and it

Fig. 6.15 Molecular communication between synthetic cells and between synthetic and natural
cells [18]. By a proper design it is possible to engineer synthetic cells for being capable of
communicating with other synthetic cells or with biological cells via chemical signaling. This
approaches paves the way to nanomedicine – imagine for example an ‘intelligent’ drug delivery
vehicle consisting of a minimal cells capable of interacting with biological cells in an organism
and synthesize a drug in situ only when necessary
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is continuously progressing thanks to technical and conceptual advancements. An
important branch of origins-of-life investigations is dedicated to understanding the
formation, the structure, the function of primitive cells, filling the gap between pure
prebiotic chemistry (the chemistry of molecules) and the last universal common
ancestor (LUCA). Is this the realm of the chemistry of molecular systems (systems
chemistry), where ensembles of molecules behaves and should be considered as a
whole.

Cell models based on vesicles are central to this arena, and it is significant that
the two faces of this approach look at primitive times, but simultaneously to modern
synthetic biology. In this chapter we have presented both directions evidencing the
common grounding despite the apparent differences. We are convinced that future
developments of these fields will contribute to a qualitative jump destined to modify
scientific and technological knowledge.

Hopefully, together with enforcing a new and fruitful wave in synthetic biology,
cell models will finally demonstrate that living systems emerge from non-living
matter without additional requirements. Or, with the words of Eschenmoser and
Kisakürek [183]:

The aim of an experimental aetiological chemistry is not primarily to delineate the pathway
along which our (‘natural’) life on earth could have originated, but to provide decisive
experimental evidence, through the realization of model systems (‘artificial chemical life’)
that life can arise as a result of the organization of the organic matter.
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