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Abstract
Surplus use of chemical fertilizers in crop field to meet the increasing demand of 
crop production has greatly hampered the soil ecosystem and human health. An 
alternative environment-friendly approach to sustainable agriculture is encour-
aging the use of biofertilizers. Plant growth-promoting microorganisms are one 
such group of potent biofertilizers. Many bacteria and fungi can develop close 
associations with the crop plant which improves growth, immunity and overall 
development of the plant. Thus understanding the action of various mechanisms 
exhibited by these microorganisms can show us the way to formulate the 
microbes to be used as biofertilizers. Continuous efforts are made to develop 
strategies for optimizing bioformulations. This chapter gives a deep understand-
ing of the transformation of a microbe into a fertilizer. Distinctive properties of 
plant growth-promoting microbes and strategies to develop and optimize the bio-
formulations in addition to the phenomenon of integrated management have 
been discussed broadly.
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2.1  Introduction and Brief History on Microbial 
Biofertilizers

Agricultural practices always work with the aim of improving crop yield. For 
increasing productivity chemical fertilizers are being used. It leads to spoilage of 
the soil health through affecting its biodiversity by altering the chemical composi-
tion, microbial flora and ecosystem(s) (Wall et al. 2015). Early nineteenth-century 
chemical fertilizer industries started producing synthetic fertilizers and pesticides 
consisting of phosphorous (P), potassium (K) and nitrogen (N) to boost crop pro-
duction and disease protection (Belay et al. 2002; Meng et al. 2013). Many research-
ers in recent years found the negative impact of chemical fertilizers and their 
hazardous nature on soil and human health. Farmers are being the target population 
for pesticide poisoning due to their direct exposure and lack of technical knowledge 
(Amundson et al. 2015). Current agricultural practices are quite dependent on syn-
thetic chemical fertilizers as they directly help in increasing the required elements 
in soil. Studies suggest that long-term continuous application of chemicals results in 
soil acidification and reduced soil quality which ultimately hampers human health 
and creates environmental imbalance (Geisseler and Scow 2014). Hence there is an 
increasing need to have alternative sustainable agricultural practices and biotechno-
logical approaches to increase crop productivity, improve soil health and conserve 
biodiversity. In this approach microbes play a vital role in maintaining agricultural 
sustainability by maintaining diversity of ecosystems and improving soil health in a 
safer way (McDaniel et al. 2014; Altieri 1999). Continuous interaction between the 
plant and its surrounding microbiome helps build some positive interactions. 
Depending upon the site of interaction, it is designated as phyllosphere, rhizosphere, 
epiphytic and endophytic bacteria (Rout 2014; Philippot et al. 2013; Lindow and 
Brandl 2003; Hartmann et al. 2009; Dong et al. 2003). Bacteria possessing the traits 
which benefit the plant in growth and disease protection are termed as plant growth- 
promoting bacteria (PGPB) (Mantelin and Touraine 2004; Bashan 1998; Bashan 
and de-Bashan 2005). Bioformulations were in agricultural practice in the history 
where discovery of Bassi in 1835 illustrated Beauveria bassiana infection in silk-
worm (Brownbridge et al. 2012). This discovery laid a path for identifying the role 
of microbes in disease protection. The discovery of Bt (Bacillus thuringiensis) toxin 
gave more strength to the idea of researchers to think more about microbes as an 
alternative for chemicals (Sayyed et  al. 2003). Later most of the bacteria were 
reported for their plant growth-promoting and biocontrol activity. Many studies 
reported the successful application of various bioformulations in controlling the 
disease and improving plant growth (Glick and Bashan 1997). Beneficial microbes 
such as Pseudomonas spp. (Ahemad and Khan 2012a), Bacillus spp. (Canbolat 
et al. 2006), Klebsiella spp. (Ahemad and Khan 2011), Rhizobium (Ahemad and 
Khan 2009), Azospirillum (Rodrigues et al. 2008) and Burkholderia sp. (Guo et al. 
2015) have been reported in different crops like rice (Mirza et al. 2006), green gram 
(Wani et al. 2007), wheat (Khalid et al. 2004), chickpea (Verma et al. 2014), maize 
(Braud et al. 2009a, b), black gram (Ganesan 2008), barley (Canbolat et al. 2006), 
Brassica (Belimov et al. 2005), soybeans (Gupta et al. 2005), sunflower (Faisal and 
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Hasnain 2005) and tomato (Ahemad and Kibret 2014). The commercialization of 
PGPR started in the late eighteenth century, and its popularity increased over the 
time with successful use as bioinoculants. The application of PGPB in sustainable 
agriculture is the need of the hour (Brockwell and Bottomley 1995; Vessey 2003). 
Mechanism of action of these microbial inoculants varies; researcher found that 
these are specific to host and region. Moreover, bacteria need to face unfavourable 
conditions after inoculation which make them reduce their expressive traits (Bashan 
1998). Bacterial consortiums were made with multiple bacteria to combine multiple 
traits that benefit plant growth and combat against phytopathogens. Based on their 
expressive traits, numerous numbers of biofertilizers came into existence with vari-
ous types of formulation. Moreover, recent development in studies on agriculture 
reveals that microbiome activities in soil and sustainable agriculture are interlinked 
to each other. This chapter will collectively focus on plant growth-promoting bacte-
ria (PGPB) and their mechanism of action in growth promotion and role in biofor-
mulations for sustainable development of agriculture.

2.2  Mechanisms of Action of Plant Growth-Promoting 
Rhizobacteria

2.2.1  Phosphate Solubilization

Phosphorus, a key nutritional element, plays an indispensable role in several plant 
developmental processes like macromolecular biosynthesis, photosynthesis, respi-
ration, signal transduction and energy transfer (Khan et  al. 2010). Despite the 
abundance of phosphorus in soil, sometimes it becomes inaccessible to plants, as 
they can only absorb soluble forms of phosphorus, i.e. mono- and dibasic phos-
phate (Jha et al. 2012). To resolve the problems related to plant phosphorus defi-
ciency, chemically synthesized phosphate fertilizers are used. But the use of 
phosphate fertilizer comes with various drawbacks like release of highly volatile 
and poisonous hydrogen fluoride (HF) gas during manufacture (Sharma et  al. 
2013), heavy metal accumulation in soil and plant after application, eutrophication 
and hypoxia of lakes and marine estuaries (Lugtenberg et al. 2013), etc. Phosphate 
solubilizing microbes (PSM) provide an eco-friendly alternative to chemical fertil-
izers. The common mechanisms used by PSM for phosphate solubilization include 
(i) organic acid (acetic, malic, tartaric, gluconic, lactic, 2-ketogluconic, oxalic and 
succinic, citric) secretion (Patel et  al. 2015) and (ii) extracellular enzyme (non-
specific phosphatases, phytases, phosphatases and C-P lyases) production 
(Bloemberg and Lugtenberg 2001). Phosphate solubilization trait is widespread 
among rhizosphere microflora. Some of the efficient PSMs identified till date are 
Aspergillus niger, Penicillium sp., Kluyvera cryocrescens, Pseudomonas aerugi-
nosa, Bacillus amyloliquefaciens, Bacillus licheniformis, Bacillus atrophaeus, 
Paenibacillus macerans, etc.
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2.2.2  Nitrogen Fixation

Nitrogen (N) is the major mineral element required by plants for growth and devel-
opment but is also the most limiting available nutrient for plant growth (Valentine 
et  al. 2010). Dinitrogen constitutes a major portion of atmospheric gas (78%). 
However, most organisms cannot use this form of nitrogen. Prokaryotes are involved 
in the task of making dinitrogen available to other eukaryotes via the ATP-dependent 
process of biological nitrogen fixation (BNF) where dinitrogen is reduced to ammo-
nia (Dos Santos et al. 2012). Bioavailability of nitrogen in the form of ammonia and 
nitrates is limited. Modern agriculture depends largely on nitrogen fertilizers for 
high crop yields (Galloway et al. 2008). The drawbacks of using chemical nitrogen 
fertilizers are:

 (i) Production of nitrogen fertilizers requires a vast amount of non-renewable fos-
sil fuel (Erisman et al. 2007).

 (ii) High emission of greenhouse gases, which constitute a key factor in climate 
change.

 (iii) Half of the nitrogen fertilizer applied is lost to leaching, resulting in significant 
health and environmental problems (Olivares et al. 2013).

 (iv) Increase in soil acidity due to release of hydrogen ions in fertilizer applied on 
soil (Arma 2016).

Therefore, replacing chemical nitrogen fixation by BNF can generate a new per-
spective of agricultural sustainability (Farrar et al. 2014). Legumes fix atmospheric 
N through symbiotic nitrogen fixation (SNF). A part of the N fixed by legumes can 
be transferred to neighbouring non-fixing plants by means of N-transfer (Fustec 
et  al. 2009). N-transfer is the movement of N from one legume plant (donor) to 
another nonlegume plant (receiver) in a mixed stand of plant community (Høgh- 
Jensen and Schjoerring 2000; Pirhofer-Walzl et  al. 2012). N-transfer facilitates 
more efficient utilization of fixed N, minimizes N losses and maintains a good level 
of biomass production (Thilakarathna et al. 2016). Paenibacillus polymyxa P2b-2R, 
an endophytic strain, is capable of fixing nitrogen (N) and promoting growth in a 
broad range of hosts including canola (Brassica napus L.) (Anand et al. 2013; Padda 
et  al. 2016). Recently it was reported that inoculation of maize and wheat with 
nitrogen-fixing rhizobacterium Pseudomonas protegens Pf-5 X940 largely improved 
nitrogen content and biomass accumulation in both vegetative and reproductive tis-
sues, and this beneficial effect was positively associated with high nitrogen fixation 
rates in roots (Fox et al. 2016).

2.2.3  Phytohormone Production

Phytohormones produced by plant-associated microflora can stimulate plant growth 
and development by modulating endogenous plant hormone levels (Gray 2004) 
(Van Loon 2007). The most important microbial plant growth regulators reported 

U.K. Vandana et al.



29

till date include auxins such as indole-3-acetic acid, cytokinins and gibberellins 
(GAs). Eighty percent of rhizospheric microbes isolated from various crops are 
reported to produce auxin as secondary metabolites (Ahemad and Khan 2011). 
Plant-associated rhizobacteria can synthesize auxin in either L-tryptophan- 
dependent or L-tryptophan-independent pathways. Three tryptophan-dependent 
routes for auxin synthesis are known in rhizobacteria which are (i) indole-3-pyruvic 
acid (IPyA) pathway found in Rhizobium, Bradyrhizobium and Azospirillum; (ii) 
indole-3-acetamide (IAM) pathway used by some pathogenic bacteria like 
Agrobacterium tumefaciens, Pseudomonas syringae, Pantoea agglomerans, etc.; 
and (iii) tryptamine pathway found in Bacillus licheniformis and Bacillus megate-
rium. Rhizobacterial IAA has been identified as a key effector molecule in plant- 
microbe interaction causing either phytostimulation or pathogenesis (Ahemad and 
Khan 2012b; Mahanty et  al. 2016). Besides IAA, there are reports of microbial 
phytostimulation by cytokinin production. Bacillus megaterium has been reported 
to enhance the growth of Arabidopsis thaliana and Proteus vulgaris seedlings via 
cytokinin synthesis (Castro et al. 2008). Bacteria belonging to diverse genera such 
as Pseudomonas, Azospirillum, Bacillus, Proteus, Klebsiella, Xanthomonas, 
Pseudomonas, etc. are well-characterized cytokinin producers. Apart from that gib-
berellin (GA) production has been detected in both bacteria and fungi. Though the 
exact role of bacterial GA is not known yet, GA-producing bacteria are still used for 
enhancing seed germination rate (Goswami et al. 2016).

2.2.4  Insecticidal Protein Production

Insect pests cause a major crop loss. Reduction of 39% yield and loss amounting 
US$ 500 million annually is caused by the fall armyworm Spodoptera frugiperda 
(Lepidoptera: Noctuidae) in corn (Zea mays) cultivation in Brazil. Native strains of 
entomopathogenic nematodes active against S. frugiperda represent a promising 
alternative to the intensive use of chemical insecticides to control fall armyworm 
population in corn plantations. Conventional control methods are ineffective espe-
cially when pest attacks the below-ground plant parts. Protecting plants with micro-
bial agents such as PGPR is an ecologically friendly approach (Péchy-Tarr et al. 
2013). Insecticidal toxins so far have been exploited mainly in two bacterial groups 
Bacillus thuringiensis (Bt) and Photorhabdus/Xenorhabdus species. B. thuringien-
sis is a gram-negative rod-shaped bacterium which produces a diverse range of 
insecticidal protein such as crystal (Cry) and cytolytic (Cyt) toxins (Roh et al. 2007). 
Photorhabdus/Xenorhabdus species are gram-negative bacteria producing insecti-
cidal toxins (Tc) and live in symbiotic relationship with entomopathogenic nema-
todes (ffrench-Constant et al. 2007). Two related strains of P. fluorescens CHA0 and 
Pf-5 exhibit both antifungal activity and insecticidal activity. Their insecticidal 
activity depends greatly on a large protein production termed as the Fit toxin (Péchy- 
Tarr et al. 2013) which also contributes to oral insecticidal activity (Ruffner et al. 
2013). Yersinia entomophaga MH96 secretes Yen-Tc protein toxin complex which 
when ingested by sensitive insects causes its death within 72 h of infection (Busby 
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et al. 2012). Insecticidal toxin (Tc) formed by three-component (TcA-, TcB- and 
TcC-like proteins) complexes were found effective for symbiosis and insecticidal 
activity (ffrench-Constant et al. 2007). Symbiotic bacterial interactions with nema-
todes is one of the viable alternative for chemicals as their interaction leads bacteria 
to produce factors that can control/kill the insect host and facilitate the growth of 
nematodes. Bacterial ureases have been studied extensively for their role in insecti-
cidal activity (Salvadori et al. 2012).

2.2.5  Antibiotic Production

Indirect mechanism of plant growth promotion by bacteria involves antibiotic pro-
duction as well which have inhibitory effects on pathogenic organisms in the rhizo-
sphere (Glick 1995) (Ahmad et  al. 2008). Antibiotics constitute a wide and 
heterogeneous group of low molecular weight chemical organic compounds that are 
produced by a wide variety of microorganisms (Raaijmakers et al. 2002). The basis 
of antibiosis relies on the secretion of molecules which can reduce or kill the growth 
of target pathogen (Glick et al. 2007). Some antibiotic compounds are diffusible 
such as phenazines, phloroglucinols, pyoluteorin, pyrrolnitrin and cyclic lipopep-
tides, and some are volatile like hydrogen cyanide (HCN) (Haas and Défago 2005). 
Mostly the Pseudomonas genus in comparison to other bacterial species has the 
ability to produce antibiotics (Santoyo et al. 2012). Pyoluteorin (Plt), phenazine- 1- 
carboxylic acid (PCA), 2,4-diacetylphloroglucinol (DAPG), pyrrolnitrin (Prn), 
hydrogen cyanide (HCN) and pyoluteorin (Plt) and protein-type (bacteriocins) are 
some types of antimicrobial compounds synthesized by Pseudomonas (Haas and 
Keel 2003). 2,4-DAPG is the most efficient antibiotic in the control of plant patho-
gens and can be produced by various strains of Pseudomonas (Nakkeeran et  al. 
2006). This antibiotic has antifungal, antibacterial and antihelmintic properties 
(Loper and Gross 2007; Velusamy et al. 2006; Cronin et al. 1997). Thomashow and 
Weller (1988) demonstrated the first experimental proof that a Pseudomonas antibi-
otic can suppress plant disease in an ecosystem. Pseudomonas fluorescens 2–79 
strain (isolated from the rhizosphere of wheat) synthesized phenazine antibiotic 
phenazine-1-carboxylic acid (PCA) which could suppress take-all disease caused 
by the fungal pathogen Gaeumannomyces graminis var. tritici (Ggt) on wheat. 
Pseudomonas PCA-negative mutants are partially devoid of their ability to inhibit 
the fungus in vitro and to suppress take-all disease in vivo.

Recently, Pseudomonas and Bacillus species are known to have a new class of 
biocontrol agent called lipopeptide (LP) bio-surfactants which possess positive 
effect on competitive interactions with organisms such as bacteria, fungi, nema-
todes and plants (De Bruijn et al. 2007; Raaijmakers et al. 2010). Bacillus LPs were 
mostly studied as antagonists, but they also facilitate root colonization (Bais et al. 
2004). Khabbaz et  al. (2015) reported that Pseudomonas fluorescens Pf 9A-14, 
Pseudomonas sp. Psp. 8D-45 and Bacillus subtilis Bs 8B-1 showed broad-spectrum 
antagonistic activity and provided suppression of Pythium damping-off and root rot 
of cucumber. Pseudomonas strains contained genes for biosynthesis of antibiotics, 
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viz. PCA, 2, 4-diacetylphloroglucinol, pyrrolnitrin and pyoluteorin, whilst B. subti-
lis Bs 8B-1 contained antibiotic lipopeptides such as fengycin, bacillomycin, baci-
lysin, surfactin and iturin A.  These antagonistic bacteria have also shown a 
significant increase in fresh weights of both cucumber and radish plants. The antag-
onistic activity of the three bacterial strains and the growth inhibition of Phytophthora 
capsici and Rhizoctonia solani might have been due to the production of different 
types of antibiotics.

2.2.6  Siderophore Production

Along with antibiotics, siderophores also function in root disease suppression 
(Martínez-Viveros et al. 2010). The term “siderophores” is derived from the Greek 
word meaning “iron carriers”. They are relatively low molecular weight, ferric ion- 
specific chelating agents produced and utilized by bacteria and fungi growing under 
low iron stress (Neilands 1995). The primary function of these compounds is to 
scavenge the ferric iron [Fe (III)] from different terrestrial and aquatic habitats and 
thereby make it available for microbial and plant cells for their cellular growth and 
metabolism (Ahmed and Holmström 2014). The importance of iron (Fe) in the 
growth of almost all living organisms is because it acts as a catalyst in enzymatic 
processes, oxygen metabolism, electron transfer and DNA and RNA syntheses 
(Aguado-Santacruz et al. 2012). Acquirement of Fe through siderophore production 
displays the competitive fitness of plant growth-promoting bacteria to colonize 
plant roots (Barton and Abadia 2006) thereby outcompeting the pathogenic micro-
organisms in the rhizosphere (Siddiqui 2006). The primary role of siderophore is to 
sequester iron, but it also forms complexes with other essential elements, viz. Mo, 
Mn, Co and Ni, in the environment and make them available for microbial cells 
(Bellenger et al. 2008) (Braud et al. 2009a, b). pH influences Fe(III)-siderophore 
complex formation. Fe has to compete against free proton for siderophore binding 
sites and also against metals such as divalent cations (Cd2+, Cu2+, Ni2+, Pb2+ and 
Zn2+) (Albrecht-Gary and Crumbliss 1998), trivalent cations (Mn3+, Co3+ and 
Al3+) and actinides (Th4+,U4+ and Pu4+) (Weber 2005).

2.2.7  Hydrogen Cyanide Production

Many rhizobacteria are capable of producing a volatile compound known as HCN 
which plays a role in biocontrol of certain plant pathogens (Martínez-Viveros et al. 
2010) (Gupta et  al. 2015). HCN genes are widely distributed among many 
Pseudomonas strains producing antibiotic 2,4-DAPG (Haas and Défago 2005). The 
hcnAB genes are shown to be particular in detecting HCN-producing pseudomonas 
among the bulk isolates (Svercel et  al. 2007). In addition with the established 
hypothesis of biocontrol by HCN-producing strains, another new hypothesis 
evolved where it is stated that HCN is involved in geochemical processes and regu-
lation of nutrient availability. HCN is also involved in metal sequestration (Wongfun 
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et  al. 2013), and this sequestration leads to increased availability of phosphate 
(Rijavec and Lapanje 2016).

2.2.8  Bacterial Volatile Compounds

Many PGPRs have been reported to secrete volatile compounds known as bacterial 
volatile compounds (BVCs) which trigger plant growth and immunity (Chung et al. 
2016). For a rhizobacteria to contribute in plant’s growth promotion, it is studied 
that there must be a close association between the microbe and the root, but volatile 
compound-producing rhizobacteria does not require any established physical con-
tact to trigger growth response (Ortíz-Castro et al. 2009). BVC are low molecular 
weight compounds (<300 Da) secreted by bacteria (Chung et al. 2016). Bacterial 
volatiles include inorganic compounds such as ammonia, H2S, HCN and NO, and 
therefore these volatiles are referred to as BVCs rather than volatile organic com-
pounds (VOCs) (Audrain et  al. 2015). BVCs such as 2,3-butanediol and acetoin 
accelerate plant growth and induce systemic resistance (Ryu et al. 2003). Bacteria- 
emitting BVC was reported to colonize the maize tissue both underground and 
aboveground and secrete BVC which strikes the plant’s physiology, growth and 
defence (D’Alessandro et al. 2014). Bacillus sp. B55 secretes sulphur-containing 
BVC-dimethyl disulphide (DMDS) which increased sulphur content in Nicotiana 
attenuata and also enhanced the plant growth (Meldau et al. 2013).

2.2.9  Rhizoremediation

Microbes have the potential to detoxify various soil contaminants (petroleum hydro-
carbons (PHCs), pesticides halogenated hydrocarbons, polycyclic aromatic hydro-
carbons (PAHs), heavy metals, etc.) through diverse mechanisms like bioexclusion, 
biosorption, bioleaching and bioaccumulation. Degradation of contaminants occurs 
in the rhizosphere by combined action of microbial products and plant root exu-
dates. Bioremediation of non-biodegradable heavy metals has been reported to be 
done by different plant beneficial rhizobacteria like Achromobacter xylosoxidans, 
Azotobacter chroococcum, Ochrobactrum sp., Bacillus subtilis, Bacillus megate-
rium, Bradyrhizobium, Pseudomonas sp., Mesorhizobium, Brevibacillus sp., 
Kluyvera ascorbata, Pseudomonas putida, Ralstonia metallidurans, Rhizobium, 
Sinorhizobium sp., Pseudomonas aeruginosa, Variovorax paradoxus, Psychrobacter 
sp., Xanthomonas sp., etc. (Mahanty et al. 2016). Microbes can do either biotrans-
formation or biodegradation to detoxify the pesticides. For microbial biodegrada-
tion, enzyme systems involved are hydrolases, esterases and the mixed function 
oxidases (MFO) in the first metabolic stage and the glutathione S transferases (GST) 
system in the second phase (Ortiz-Hernández et al. 2013). It has been reported that 
Azospirillum, Enterobacter, Azotobacter, Bacillus, Klebsiella, Gordonia, 
Paenibacillus, Serratia, Pseudomonas, etc. can reduce pesticide toxicity in soil 
(Shaheen and Sundari 2013).
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2.2.10  Induced Systemic Resistance

Defence responses in plants can be activated via two mechanisms. One is induced 
systemic resistance (ISR) triggered by nonpathogenic PGPR, and the other is sys-
temic acquired resistance (SAR) triggered by a pathogenic agent (Pieterse et  al. 
2009). SAR leads to activation of pathogenesis- related (PR) genes and involves 
salicylic acid (SA) as signalling molecule (Durrant and Dong 2004). ISR is SA 
independent but requires signalling pathway of jasmonic acid (JA) followed by eth-
ylene signalling (van Loon et  al. 1998). Yet both ISR and SAR require 
nonpathogenesis- related protein (NPR1), a key regulatory protein. ISR prepares the 
plant to encounter pathogen by priming for enhanced defence. During pathogen or 
insect attack, the defence response is accelerated leading to faster and enhanced 
resistance (Conrath et al. 2006). SAR and ISR pathways have been reported to exert 
additive effect on A. thaliana against a broad range of pathogens (van Wees et al. 
2000). The enhanced defence response due to the additive effect was supported by 
molecular studies which revealed an increased expression of pepper defence genes 
CaTin1, CaPR1 and CaPR4 after application of combined treatment of Bacillus 
pumilus INR7 with a chemical inducer, benzothiadiazole (BTH), in the field and 
subsequent suppression against bacterial spot disease caused by Xanthomonas axo-
nopodis pv. vesicatoria in pepper (Yi et al. 2013).

2.2.11  Induced Systemic Tolerance

Induction of microbe-driven abiotic stress tolerance in plant is referred to as 
“induced systemic tolerance (IST)” (Yang et al. 2009). Molecular mechanism of 
plant-microbe crosstalk associated with IST is largely unknown. Beneficial microbes 
can enhance survivability of stress-affected plants by diverse mechanisms. One of 
the most important mechanisms is the modulation of hormonal status in host plant. 
In response to stress stimuli (salinity, drought, metal toxicity, etc.), retardation in 
plant growth and development is due to the increase in stress ethylene level. Some 
plant growth-promoting bacteria produce ACC deaminase enzyme which cleaves 
ACC, the precursor of ethylene to ammonia and α-ketobutyrate (KB), thereby low-
ering ethylene level and promoting plant growth under stress. The level of ACC 
deaminase activity differs among bacterial genera under various environmental con-
ditions (Singh and Jha 2016). Experimental evidence suggests that bacteria showing 
ACC deaminase activity approximately >20 nmol α-ketobutyrate (KB) mg-1 h-1 
are sufficient to reduce the growth inhibitory effects of stressors (Penrose and Glick 
2003). Volatile emission is another important microbial trait involved in plant 
growth stimulation under stress (Ryu et al. 2003). For instance, VOC produced by 
Bacillus subtilis confers salt tolerance in Arabidopsis thaliana by modulating the 
expression of high-affinity Na+  transporter HKT1  in a tissue-specific manner 
(Zhang et al. 2008).
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Table 2.1 List of some beneficial plant growth-promoting traits

Trait Role Microbe Reference
Phosphate 
solubilization

1. Organic acid 
production

Bacillus licheniformis; 
B. amyloliquefaciens; 
Penicillium sp.

Chen et al. (2006) 
and Wakelin et al. 
(2004)

2.Phytase production Bacillus mucilaginosus; 
Aspergillus niger

Li et al. (2007) and 
Vassilev et al. 
(2007)

3. Phosphatase 
production

Burkholderia cepacia, 
Serratia marcescens

Ryu et al. (2005) 
and Unno et al. 
(2005)

Nitrogen fixation 1. Symbiotic Rhizobium phaseoli; 
Vesicular-arbuscular 
mycorrhizal fungi

Shah et al. (2010)

2. Non-symbiotic Gluconacetobacter 
diazotrophicus

Bhattacharyya and 
Jha (2012)

Phytohormone 
production

1. IAA production Bacillus licheniformis; 
Phoma glomerata and 
Penicillium sp.

Goswami et al. 
(2016) and Waqas 
et al. (2012)

2. Cytokinin production Bacillus megaterium Castro et al. (2008)
3. Gibberellin 
production

Acetobacter 
diazotrophicus, Phoma 
glomerata and 
Penicillium sp.

Basti et al. (1998) 
and Waqas et al. 
(2012)

Biocontrol 1. Extracellular enzyme 
production
  (a) Chitinase Enterobacter 

agglomerans
Nielsen and 
Sörensen (1999)

  (b) Glucanase Bacillus cepacia Compant et al. 
(2005)

2. Antibiotic production Pseudomonas 
fluorescens; 
Trichoderma koningii

Thomashow and 
Weller (1988) and 
Xiao-Yan et al. 
(2006)

3. Siderophore 
production

Pseudomonas 
aeruginosa

Braud et al. 
(2009a, b)

4. HCN production Pseudomonas 
chlororaphis

Nandi et al. (2015)

Potassium 
solubilization

Production and 
excretion of organic 
acid and inorganic acid

Bacillus mucilaginosus Ullman et al. 
(1996)

Induced systemic 
tolerance

1. ACC deaminase 
production

Achromobacter 
piechaudii; Trichoderma 
asperellum; Penicillium 
citrinum

Mayak et al. 
(2004), Viterbo 
et al. (2010) and 
Jia et al. (2000)

2. Exopolysaccharide 
production

Oceanobacillus 
profundus

Qurashi and Sabri 
(2011)

3. VOC production Bacillus 
amyloliquefaciens

Choi et al. (2014)

U.K. Vandana et al.



35

2.3  Strategies for Development and Optimization 
of Bioformulations

2.3.1  Large-Scale Production of Strains

For mass production of inoculants, the viable cells of the strains have to prove effi-
cient enough in maintaining their genetic stability, exerting the desired effect on 
target crops and their survival under adverse conditions. Preparation of microbial 
inoculum is considered to be key factor in maintaining viability of the inoculant on 
seed (Moënne-Loccoz et al. 1999). The production of microbial inoculants starts 
with preparation of broth culture to reach high population density of bacterial cells. 
The main factors during inoculum preparation include (i) the specified growth 
media; (ii) optimal growth conditions such as pH, temperature, O2, etc.; (iii) purity 
of the media; and (iv) cost (Herrmann and Lesueur 2013). The microbial cultures 
are then inoculated on different types of carrier which serves as the delivery vehicle 
of live biofertilizers from the factory to the field (Bashan et al. 2014). Acclimatization 
of inoculants in the carrier material for several days prior to application to seed can 
improve the inoculums’ efficacy (O’Callaghan 2016).

2.3.2  Formulation

Jones and Burges (1998) regarded formulation as vital factor in bioinoculant devel-
opment. Roles of formulation are to (i) stabilize the microbe, (ii) help in the delivery 
of the microbe to the target zone, (iii) protect the microbe during seed storage and 
(iv) enhance the functionality of the microbe in situ after planting. Over the years 
scientists have been trying to improve the survival of pre-inoculated seeds, and so 
various formulation efforts are being targeted. Microbial formulations are divided 
into conventional type and advanced type. Conventional type includes (1) solid for-
mulation (peat, granules, powders, etc.), but microbial shelf life is less in it due to 
desiccation and (2) liquid formulation, based on broth cultures, but they lack car-
rier protection and quickly lose viability on the seed. Advanced type involves the 
most promising technique for constructing carriers of microorganisms called (1) 
microencapsulation formulation which has been proven to be advantageous over 
conventional types (John et al. 2011). Biofilms have been proposed as possible bio-
formulation for both bacteria and fungi (Seneviratne et al. 2008). Recently it was 
reported that Trichoderma atroviride spores can be formulated by an adhesive, xan-
than gum, provided optimal storage conditions are maintained and thus can be 
effectively delivered on to seeds (Swaminathan et al. 2016).

2.3.3  Storage and Transport

Formulation is important during storage and transport of the biofertilizers (Malusá 
et al. 2012). Thus endurance of bioinoculant is necessary during its storage period 
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and also after its application onto the soil where it has to compete with other native 
microbes for space and nutrient (Bashan et  al. 1995). The carriers and optimum 
conditions required to maintain the bioinoculants differs as it depends on the strains 
used. PGPR continued to multiply and maintain their metabolic activity when peat 
was used as carrier (Rice et al. 2000). The sludge-based carrier could maintain rhi-
zobia population at neutral pH and water holding capacity even after 130 days of 
storage at 25 ° C (Ben Rebah et al. 2002). Encapsulation of microbial cells offers 
longer viability when stored at 4  ° C.  Moreover encapsulated bacteria could be 
stored at 4 °C or room temperature for up to 6 months with static population size 
(Rouissi et al. 2010). Long-term storage of bioinoculants results in cell sedimenta-
tion. Vandergheynst et al. (2007) used hydrophobic silica nanoparticles for thicken-
ing the oil phase which greatly cut down cell sedimentation thereby improving cell 
viability during storage. The reason behind is the dispersed water retaining the oil 
which prevented cells from desiccation. More insights into overcoming the problem 
of cell sedimentation using nanomaterials will be beneficial for further long-term 
storage of biofertilizers.

2.3.4  Inoculation in the Field

Introduction of the biofertilizers into the field depends on various factors including 
concentration of the inoculums, mode of biofertilizer application, competition of 
inoculants with the native niche for survival and user-friendliness of the bioinocu-
lant (Dey et al. 2012). Farmers need to have proper knowledge about how microbes 
perform in soil prior to their inoculation in the fields (Date 2001). The lower quan-
tity of inoculants having high cell concentration (104–106) shows similar efficiency 
as the higher quantity of inoculants with lesser cell concentration does (Schulz et al. 
2008). Mode of biofertilizer application is mainly done by four ways: (a) inocula-
tion of seeds with powder formulation, (b) water-suspended peat sprayed onto fur-
row during seed sowing, (c) soil inoculation with peat granules and (d) liquid 
formulations (Bashan 1998). Biofilm-based application of microbial consortium 
was proved to be advantageous for fixing N2 in the soybean over the conventional 
practise of rhizobia inoculation (Jayasinghearachchi and Seneviratne 2004). Since 
the microbial population in the soil could get diluted along with time, repeated 
application of bioinoculum during the growing season is required to escalate the 
effect of microbial application (Bashan et  al. 1995) (Malusá et  al. 2012). 
Agrichemicals are often used as seed dressing. Thus compatibility of seed inocu-
lants with those agrichemicals such as pesticides is the most important because 
pesticides have been reported to alter the structure and function of the bioinoculum 
(Fox et al. 2007; O’Callaghan 2016).

U.K. Vandana et al.



37

Fig. 2.1 Steps involved in inoculum preparation to inoculation in field (Herrmann and Lesueur 
2013)
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2.3.5  Integrated Management

Crop production is at stake due to increase in incidences of pests, namely, animal 
pests (insects, nematodes, mites, etc.), plant pathogen (bacteria, protozoa, fungi, 
virus) and weeds. Crop protection is being developed for prevention and control of 
pests (Oerke 2006). Integrated crop protection management can be broadly classi-
fied into four types: (i) integrated soil fertility management (ISFM) (ii) integrated 
pest management (IPM), (iii) integrated weed management (IWM) and (iv) inte-
grated nutrient management (INM). However on a broader perspective, it is seen 
that all the four kinds are interrelated.

Soil infertility is the considered to be greatest obstacle for increasing crop yield 
in developing nations worldwide. For farmers to get benefited by the application of 
modernized tools in farming, soil fertility has to be restored (Khosro and Yousef 
2012). Physical, chemical and biological properties of soil also influence the crop 
plant’s ability to resist or tolerate insect pests. A fertile soil possesses high organic 
matter and beneficial organisms which fight infection and provide nutritional bal-
ance to the plant. Imbalanced nutrition in soil can reduce pest resistance (Altieri and 
Nicholls 2003) (Magdoff and van Es 2000). The soil microbes can thus be involved 
in integrated pest management programmes (Gadhave et al. 2016). The techniques 
used by farmers for pest management are also applicable for soil fertility manage-
ment and vice versa (Altieri and Nicholls 2003).

Pests contribute to huge amount of crop loss (Oerke 2006). FAO regards IPM as 
a pillar of both sustainable intensification of crop production and pesticide risk 
reduction (http://www.fao.org/agriculture/crops/thematic-sitemap/theme/pests/
ipm/en/) since it promotes biological activity in soil, minimizing the use of pesti-
cides by incorporating alternative methods to control pests (Hobbs et al. 2008).

Among pests, weeds are also considered as major biotic constrain to food pro-
duction (Rigby and Cáceres 2001). Integrated weed management system follows 
cultural practices, viz. crop rotation, irrigation, sowing, intercropping, etc., to reduce 
weed emergence (Barberi 2002). Biofertilizer like Azolla forms a thick mat of thal-
lus on standing water surface in the lowland rice farming system preventing light to 
penetrate the weed seeds resulting in weed suppression (Kathiresan 2002). Insect 
pests are also welcomed by many weed species and so indirectly IWM also exerts 
positive influence on IPM (Kathiresan 2007).

INM aims to subside the harmful impact of chemical fertilizers containing ele-
ments like N, P, K, etc. (Adesemoye and Kloepper 2009) by development of micro-
bial inoculants consisting of nitrogen fixing, phosphorus dissolving and potassium 
mobilizing organisms (Sangeetha and Suseela Bhai 2016). Adesemoye et al. (2008) 
showed that plant N content was increased after inoculation with PGPR which 
might have resulted from increased fertilizer N utilization efficiency in an INM 
system. Co-inoculation of wheat plant with Azospirillum and P-solubilizing bacteria 
increased N and P uptake by the plant (El-Komy 2005).

A deep insight into understanding the interaction among microbe-fertilizer-plant 
can help in developing new strategies for integrated management. This will focus on 
improving the agricultural practices by lowering the adverse effects exerted on the 
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environment due to the use of conventional agriculture practices (Geisseler and 
Scow 2014). Microbial fertilizers are promising than the conventional chemical fer-
tilizers since they do not possess threat to the ecosystem in the long run.

2.3.6  Commercialization

Key for extensive commercialization of bioinoculants demands coordination 
between the research and industrial sector and insightfulness of the farmers (Glick 
2012). Steps involved in successful commercialization are as follows:

 1. Expressive biological functional traits of bacteria should be well determined.
 2. Indigenous varieties should be engineered for appropriate environmental 

conditions.
 3. Better evaluated understanding on rhizosphere, phyllosphere, endophytic 

microbes interactions and their beneficial and harmful effects.
 4. Inter- and intramicrobial communication studies on healthy biodiversity (plant- 

fungi, bacteria-fungi, bacteria-insects, bacteria-bacteria) for welfare of the plant.
 5. Farmer friendly methods of application development.

2.4  Mechanism of Biofertilizer Action on Plant

Depending upon the mechanism of action, present-day microbial biofertilizers can 
be broadly divided into two categories, viz. nutrient uptake stimulators and biopes-
ticides. The fate of the designed bioformulation and its performance under field 
condition largely depends upon the properties of microbe(s) by which it is made of. 
Various microbes can promote plant growth either directly or indirectly by diverse 
mechanisms. Depending upon the microbial functional trait, bioformulations are 
classified into three major groups: nitrogen fixers, phosphate solubilizers and plant 
growth-promoting microbes (PGPM).

Nitrogen-fixing microorganisms convert atmospheric dinitrogen into plant- 
usable form as ammonia by an ATP-driven process called biological nitrogen fixa-
tion (BNF) (Gothwal et  al. 2008). Biological nitrogen fixers can be free-living, 
associative or symbiotic in nature (Mazid and Khan 2014). As specific nitrogen 
fixers can only colonize certain plant groups, so depending upon that, the specific 
bioformulation for a plant is recommended. For example, bioformulations contain-
ing symbiotic nitrogen fixer, Rhizobium is appropriate for leguminous plants. 
Similarly, Azospirillum, a free-living nitrogen fixer, is particularly applied to C4 
plants, because it is dependent on the salt of organic acids like malic and aspartic 
acid for nitrogen fixation (Mazid and Khan 2014).

The key enzyme complex required for biological nitrogen fixation is nitrogenase 
encoded by the nif gene cluster (Goswami et  al. 2016). Nitrogenase complex is 
made up of two components, viz. dinitrogenase reductase (iron protein) and dinitro-
genase (molybdenum – iron protein). Dinitrogenase component is responsible for 
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fixing nitrogen by using the electrons provided by dinitrogenase reductase (Mahanty 
et al. 2016).

In case of legume-Rhizobia (Rhizobium/Bradyrhizobium/Sinorhizobium/ 
Azorhizobium/Mesorhizobium) association, (iso)flavonoids present in plant root 
exudate act as stimuli for the activation of nodulation genes (nod, nol, noe) of com-
patible rhizobia and subsequent production of nodulation factor (lipochitin oligo-
saccharides) to initiate root curling followed by nodulation of leguminous plant 
(Ibáñez et al. 2015). Research studies reported that plant ethylene level increases 
upon Rhizobium infection in order to prevent subsequent rhizobial infection and 
promote nodulation (Abeles et al. 1992; Mahanty et al. 2016). It has been found that 
some rhizobial strains increase nodule number by producing a phytotoxin called 
rhizobitoxine which inhibits ACC synthase enzyme in legumes and thereby lowers 
plant ethylene level (Vijayan et al. 2013).

Another important group of microbial biofertilizers called phosphate solubiliz-
ing microbes can solubilize bound phosphorus from organic or inorganic complexes 
and make it available for plant uptake. Low molecular weight inorganic acids (such 
as gluconic and citric acids) produced by soil bacteria possess carboxyl and hydroxyl 
groups which can chelate the cations (calcium, aluminium, iron) bound to insoluble 
phosphatic compounds accompanying the release of plant-usable soluble phospho-
rus. Rhizobium leguminosarum, Rhizobium meliloti and Bacillus firmus have been 
reported to produce 2-ketogluconic acid for mineral phosphate solubilization (Abd- 
Alla 1994; Sridevi and Mallaiah 2009). Microbes can also mineralize complex 
structured organic phosphorus (tricalcium phosphate, rock phosphate, aluminium 
phosphate, etc.) by secreting a range of enzymes like non-specific phosphatases 
which catalyse the hydrolysis of phosphoric esters and convert organic phosphorus 
to inorganic form, phosphatases and C-P lyases that break C-P bonds in organo-
phosphonates and phytases for phosphorus release from phytic acid (Goswami et al. 
2016). It has been found that some microbes can perform both solubilization and 
mineralization activity (Pereira and Castro 2014) proving them extremely efficient 
biofertilizing agent.

Besides nitrogen fixation and phosphate solubilization, other prominent micro-
bial traits involved in plant growth enhancement include phytohormone production, 
siderophore production, antibiotic production, HCN production and ACC deami-
nase production. Phytohormone-producing bacteria are ubiquitous in plant rhizo-
sphere and serve as a potent candidate for biofertilizer formulation due to its ability 
of regulating plant growth by modulating endogenous hormonal level in plants. 
Agrobacterium tumefaciens, Bacillus megaterium, Pseudomonas syringae, Pantoea 
agglomerans, Rhizobium, Bradyrhizobium, Erwinia herbicola, etc. are reported to 
enhance plant growth by IAA production (Goswami et al. 2016).

Bacterial siderophore production is involved in improving plant iron nutrition. 
Iron predominantly exists in soil as Fe3+ which easily forms insoluble oxides and 
hydroxides inaccessible for assimilation in both plant and bacteria. Siderophore, a 
low molecular weight compound (usually <1 KDa), produced by bacteria and fungi 
under iron-limiting condition binds with Fe3+ ion and reduces it to Fe2+ molecule. 
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Release of Fe2+ molecules in rhizosphere by microbes benefits plants in terms of 
iron utilization (Mahanty et al. 2016).

Occurrence of ACC deaminase production trait in bacteria is directly linked to 
induced systemic tolerance (IST). Under stressful condition, plant ethylene level 
increases. 1-aminocyclopropane-1-carboxylic acid (ACC) is the precursor of ethyl-
ene. ACC deaminase produced by bacteria cleaves ACC into α-ketobutyrate and 
ammonia, thereby reducing plant ethylene level, so that plant can grow well under 
unfavourable condition. Scientific studies suggested that ACC deaminase- producing 
bacterial strains like Achromobacter piechaudii ARV8, Pseudomonas fluorescen-
sYsS6, Pseudomonas migulae 8R6, etc. can reduce adverse effect of different stress 
conditions (drought, salinity, flooding, temperature, heavy metal toxicity, etc.) on 
plant growth and yield (Ali et al. 2012; Glick 2014; Mayak et al. 2004; Goswami 
et al.  2016). Pseudomonas putida Rs-198 confer salt tolerance in cotton by decreas-
ing Na+ absorption and increasing the rate of uptake of other divalent cations like 
K+, Mg2+ and Ca2+(Yao et al. 2010).

Another promising strategy of microbial plant growth promotion is the biocon-
trol. Biocontrol can be achieved by beneficial microbes by production of various 
anti-phytopathogenic metabolites, viz. HCN, 2,4 diacetylphloroglucinol (DAPG), 
phenazine-1-carboxylic acid (PCA), phenazine-1-carboxamide (PCN), pyoluteorin 
(Plt), pyrrolnitrin (Prn), oomycin A, viscosinamide, butyrolactones, kanosamine, 
zwittermicin A, aerugine, rhamnolipids, cepaciamide A, ecomycins, pseudomonic 
acid, azomycin, antitumor antibiotics FR901463, cepafungins and antibiotic karali-
cin (Bhattacharyya and Jha 2012). It was reported that soil inoculation with 
Pseudomonas fluorescens and arbuscular mycorrhizal fungi can prevent root rot 
disease in Phaseolus vulgaris L (Neeraj and Singh 2011; Bhardwaj et al. 2014). 
Mycorrhiza produces bioactive compounds called Myc factors which are perceived 
by host roots for activation of symbiosis (SYM) pathway (Bhardwaj et al. 2014).

It was observed that some biofertilizers like R. leguminosarum, Rhizobium sp. 
IRBG 74 and Bradyrhizobium sp. IRBG 271 can increase net photosynthetic rate of 
plants (Mahanty et  al. 2016). PGPR Strains like Achromobacter xylosoxidans, 
Azotobacter chroococcum, Bacillus subtilis, Bradyrhizobium, Pseudomonas sp., 
Brevibacillus sp., Kluyvera ascorbata, Mesorhizobium, etc. were reported to pos-
sess bioremediation potential (Shinwari et  al. 2015; Mahanty et  al. 2016). 
Biofertilizers with bioremediation potential may play pivotal role in restoring fertil-
ity of contaminated unfertile soil.

2.5  Commercially Available Bioformulations: Success 
and Drawback

In the present era marked by global warming and food scarcity, biofertilizers have 
arisen as a promising substitute to hazardous agrochemicals. Problems arising due 
to the use of various chemical fertilizers in modern agricultural practices are innu-
merable and increasing day by day. It has been reported that chemical fertilizers 
cause mineral imbalance in plant body resulting in the reduction of valuable 
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nutrients in food. For example, excess of potassium treatment in plant can decrease 
ascorbic acid and carotene in foods. Moreover, methemoglobinemia may arise due 
to consumption of vegetables grown in NO3 rich soil (Mazid and Khan 2014). On 
the contrary, biofertilizers can perform all functions of agrochemicals like soil 
enrichment, plant growth stimulation, yield enhancement, etc. without causing any 
deleterious effect to the ecosystem.

Rhizobium, belonging to the family Rhizobiaceae, is a potent biofertilizer able to 
fix atmospheric nitrogen by forming symbiotic relation with legumes (lentil, pea, 
black gram, soybean, ground nut, etc.) and certain nonlegumes (Parasponia) (Saikia 
et al. 2007; Mazid and Khan 2014). Some crop-specific inoculants of Rhizobium 
include Rhizobium japonicum for soybean, R. trifolii for berseem, R. lupini for 
chickpea, R. phaseoli for green gram and R. Meliloti for lucerne. Though rhizobium 
is a very good substitute of nitrogen fertilizers, its application is limited by crop 
specificity and variable response under field condition. Another important nitrogen- 
fixing biofertilizer, Azotobacter, can fix nitrogen non-symbiotically. Problem asso-
ciated with Azotobacter application is that it requires a large amount of organic C 
and Mo for stimulating nitrogenase enzyme activity during N fixation (Khan et al. 
2011; Mazid et al. 2011). For optimizing biofertilizer activity, we should first know 
the constraints. Major constrains related to application of biofertilizer in agricul-
tural system include (Table 2.2):

• Limited resource generation
• Problems in quality control
• Problems with inoculation techniques
• Compatibility with host genotype
• Standardization of proper dosage
• Occurrence of mutation in microbial strain throughout the bioformulation 

development
• Lack of assurance about the biofertilizer activity under various climatic 

conditions
• Impact of season change on biofertilizer activity
• Influence of native soil microflora
• Wrong inoculation techniques
• Unavailability of suitable carrier resource
• Lack of awareness among farmers
• Market level constraints
• Inadequate experienced staff

2.6  Conclusion and Future Perspective

Major constraint for biofertilizers is that their effect in field and lab conditions var-
ies. Commercialization of biofertilizers is lacking a regulatory body. Policy making 
authorities should make guidelines in preparation of biofertilizer and its activity to 
be accepted globally. Farmer-friendly approaches with novel techniques of 
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Table 2.2 List of some commercially available microbial biofertilizers

Commercial 
bioformulation

Microbial 
ingredient(s) Benefits Reference

BiotaMax Bacillus subtilis, B. 
megaterium, B. 
licheniformis, B. 
pumilus, B. 
laterosporus, 
Paenibacillus 
polymyxa, 
Trichoderma 
harzianum, T. viride,
T. polysporum, T. 
koningii

Increases root mass –
stronger, healthier 
root systems

http://www.biotamax.
com

Process nutrients 
more efficiently
Degrade organic 
material
Produces plant 
growth hormones
May result in a 
decreased need for 
traditional fertilizers
Reduced root 
oxidation

JumpStart® Penicillium bilaiae Increased root 
development

http://www.
novozymes.com/en/
solutions/agriculture/
bioag-in-australia

Improved nitrogen 
fixation in legume 
crops
Improved stress 
tolerance
Improved seed 
quality
Earlier, more even 
maturity
Savings on costs, 
handling, 
transportation, 
storage and time 
requirements 
compared to more 
phosphate fertilizer
Lower environmental 
impact
Higher yield

Custom B5™ Bacillus subtilis, B. 
laterosporus, B. 
licheniformis, B. 
megaterium, B. 
pumilus

Enhance soil 
productivity

http://www.biotamax.
com

Ovalis Rhizofertil Pseudomonas putida 
I-4163

Improve soil quality 
by mineral 
amendment and 
stimulate plant 
growth

https://www.
agriculture-xprt.com/
products/
ovalis-rhizofertil-
biofertilizers-518517

(continued)
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application methods need to be developed. Although biofertilizers are employed in 
agriculture practices, they couldn’t make huge impact like chemical fertilizers due 
to lack of educated farmers and repugnance of biofertilizers due to their incompat-
ibility with new soils. Government of individual countries over the globe should 
encourage organic farming by offering special incentives. Above all successful bio-
fertilizer usage will come into existence where limitations are reduced to an extent 
that it can compete with the market of chemical industries.
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