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Abstract
Pseudomonas aeruginosa is a ubiquitous and opportunistic human pathogen that
represents a critical problem to the clinician due to the increased number of
resistant strains isolated from hospital settings. In addition, there is a great
variety of pathologies associated with this versatile Gram-negative bacterium.
P. aeruginosa cells are able to produce an incredible arsenal of virulence factors,
especially secreted molecules that act singly or together to ensure the
establishment, maintenance, and persistence of a successful infection in
susceptible hosts. In this context, pseudomonal proteases’ roles are highlighted
due to their ability to cleave key host proteinaceous substrates as well as to
modulate several biological processes, for example, escaping and modulating the
host immune responses in the bacterial own favor. Proteases secreted by
P. aeruginosa include elastase A (LasA), elastase B (LasB), alkaline protease
(AP), protease IV (PIV), Pseudomonas small protease (PASP), large protease A
(LepA), MucD, and P. aeruginosa aminopeptidase (PAAP). In the present
review, we discuss the role of each of these relevant proteases produced by
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P. aeruginosa taking into consideration their main biological functions in the
bacterium–host interaction that favors the establishment of the infectious
process.
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1 Introduction

Pseudomonads are bacteria well known for their metabolic versatility and wide-
spread spatiotemporal distribution [1]. One of the most important species of
pseudomonads is, with no doubt, Pseudomonas aeruginosa, which is a fascinating
ubiquitous Gram-negative bacterium with rod shape measuring 0.5–0.8 µm � 1.5–
3.0 µm (Fig. 1a) [1, 2]. P. aeruginosa presents the following metabolic features:
non-fermentative, catalase positive, oxidase positive, ammonia producer, and
usually aerobic, but it also can grow in an anaerobic environment if nitrate, citrate,
and arginine are available [3]. The production of 2-aminoacetophenone by the
bacterial cells generates the fruity grape-like odor that is characteristic of this
pseudomonad species. On blood agar plates, colonies of P. aeruginosa often dis-
play beta-hemolysis and a greenish metallic sheen due to the production of pig-
ments [2]. The characteristic that most distinguishes P. aeruginosa from the other
pseudomonads, and from the other species of Gram-negative non-fermenting bac-
teria, is its ability to produce pyocyanin, a blue-green phenazine pigment that gives
the green color to the bacterial colony (Fig. 1b) and also to the pus observed in
P. aeruginosa-infected tissues. This pigment and several others, such as pyochelin

Fig. 1 Scanning electron microscopy (a), showing the characteristic bacterial rod shape, and
colony morphology (b), evidencing the pyocyanin pigment, of Pseudomonas aeruginosa
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(purple-cyan), pyoverdin (yellow, green and fluorescent), pyomelanin
(light-brown), and pyorubin (red-brown), are secondary metabolites of P. aerugi-
nosa, which play an important role in bacterial nutrition, such as iron acquisition
and pathogenesis [2, 3]. Almost all P. aeruginosa strains are motile due to the
presence of a single polar flagellum that facilitates the locomotion and colonization
of a wide range of environmental niches [2]. This microorganism can grow within
the temperature range from 4 to 42 °C in terrestrial (soil) and aquatic habitats
(polluted, salt, and freshwater) as well as on the surface of animate hosts (insects,
plants, animals, and humans) and inanimate surroundings, mainly in the hospital
environment (distilled water, disinfectants, sinks, medical devices, and equipment),
being an important causative agent of nosocomial infections, particularly in
intensive care units (ICUs) [1–4]. One of the interesting characteristics of
P. aeruginosa is its pan-genome, which presents a larger genetic repertoire than the
human genome. This intriguing feature explains the broad metabolic capabilities of
P. aeruginosa and its distribution and adaptability in diverse environments [5].

P. aeruginosa is one of the most important bacterial species for public health
considerations due to its high resistance to different classes of antibiotics and its
capability to cause serious health care-associated as well as nosocomial infections
[6, 7]. Results reported from an International Nosocomial Infection Control Con-
sortium (INICC) surveillance study, performed between 2007 and 2012, in Latin
America, Asia, Africa, and Europe, in which prospective data were collected from
605,310 patients hospitalized in 503 ICUs, displayed frequencies of 42.8% of
Pseudomonas isolates resistant to amikacin and 42.4% to imipenem [8]. In the
USA, an estimated 51,000 health care-associated P. aeruginosa infections occur
each year, in which more than 6,000 (13%) of these are multidrug-resistant and 400
deaths per year are attributed to these infections [9]. The analyses based on data
extracted from the Public Health England (PHE) voluntary surveillance database in
the period 2008–2012 showed that 92% of Pseudomonas spp. isolates identified
from bacteremia in 3,457 reports were P. aeruginosa [10]. In Brazil, the National
Health Surveillance Agency (ANVISA), through the National Monitoring Micro-
bial Resistance Network Health Services (RM Network), published a report that
shows the main etiologic agents and the resistance phenotypes responsible for
causing primary bloodstream infections associated with the use of central venous
catheter in adult patients interned at ICUs from Brazilian hospitals between January
and December 2013. According to that study, 18,233 notifications were reported, of
which 1,850 (10.1%) were caused by P. aeruginosa, being the fifth pathogen most
often reported as the etiologic agent. The resistance rate to the carbapenems reached
37.4% (692 P. aeruginosa isolates) [11]. Additionally, the Infectious Diseases
Society of America has highlighted P. aeruginosa as part of a faction of
antibiotic-resistant bacteria, called ‘the ESKAPE pathogens’—Enterococcus fae-
cium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii,
Pseudomonas aeruginosa, and Enterobacter spp., capable of ‘escaping’ the bac-
tericidal action of antibiotics and mutually representing new paradigms in patho-
genesis, transmission, and resistance [12].
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P. aeruginosa is extensively resistant to multiple drugs and is increasingly
resistant to most available antibiotics, being a great emergency problem in the
hospital settings worldwide [13]. Interestingly, P. aeruginosa has evolved over time
in its ability to find new ways to be resistant to different classes of chemical
compounds as well as to build strategies to exchange genetic materials, allowing
that other bacteria also become drug-resistant [5]. Generally, resistance usually
occurs due to a combination of factors acting synergistically: (i) P. aeruginosa is
intrinsically resistant to antimicrobial agents due to its outer membrane/cell
envelope composition that reduces the permeability of several drugs; and
(ii) P. aeruginosa expresses a powerful repertoire of resistance mechanisms that can
be developed through mutations in the genomic content that regulates resistance
genes, and also acquired from other organisms via plasmids, transposons, or bac-
teriophages [14].

As a major opportunistic pathogen for humans, P. aeruginosa causes a plenty
variety of acute and chronic infections and presents significant levels of morbidity
and mortality [15, 16]. P. aeruginosa typically infects through airways, wounds,
urinary tract, ear canal, via ocular and implanted medical devices (e.g., catheters or
ventilators). Thereby, it is the main cause of eschars, conjunctivitis, keratitis, corneal
ulcer, osteomyelitis, otitis, urinary infections, surgical site infections, bloodstream
infections in ICUs and hospital-acquired pneumonia in immunocompromised indi-
viduals, mainly in patients with severe burn wounds, AIDS, lung cancer, chronic
obstructive pulmonary disease, bronchiectasis, and cystic fibrosis [16–18].

It is known that Gram-negative bacteria are common causes of a huge diversity
of infections including, intra-abdominal infections (IAIs), urinary tract infections
(UTIs), ventilator-associated pneumonia (VAP), and bacteremia [19]. In particular,
P. aeruginosa is one of the most important pathogens in the hospital setting, being
responsible for 27% of all pathogens and 70% of all Gram-negative bacteria
causing health care-associated infections in the USA, and it is the most common
Gram-negative organism causing VAP and the second most common organism
causing catheter-associated UTIs [7, 19]. The Centers for Disease Control and
Prevention found that P. aeruginosa totalized 7.1% of health care-associated
infection in the USA in 2011, being the second most common cause of pneumonia
in hospital settings and the third most common Gram-negative bacterium to cause
bloodstream infections [20]. P. aeruginosa is also a major cause of concern in the
cystic fibrosis setting, being the most common pathogen isolated from cystic
fibrosis sputum, and approximately 70% of adult cystic fibrosis patients are
chronically colonized by this microorganism [21, 22].

The pathogenic potential of P. aeruginosa is not only due to its metabolic/genetic
versatility and both intrinsic and acquired antibiotic resistance. Its ability to form
biofilm and to produce an arsenal of virulence attributes, including cell-associated
determinants (e.g., lipopolysaccharide, pili, and flagellum) and soluble secreted
factors (e.g., extracellular polysaccharides, exotoxins, pigments, and proteases), is
very important for the survival and adaptation of this pathogen in distinct envi-
ronments [17, 22, 23].

384 A.C.M. Galdino et al.



2 Pseudomonas aeruginosa: Establishing and Maintaining
an Infection

In order to establish an infection, P. aeruginosa cells count on a suite of virulence
factors (Fig. 2) [17, 24]. These factors act together not only causing injuries on the
host epithelial cell lining but also inducing dysfunctions in physiology and function,
such as host cell shape, membrane permeability, and protein synthesis, as well as
manipulating/overcoming host defenses, down-modulating the immune responses
and preventing P. aeruginosa endocytosis and obstructing clearance mechanisms,
thereby allowing this microbe to persist in cells/tissues and to establish an infection
in the host [25, 26]. The virulence of P. aeruginosa is mediated by multiple
mechanisms, but the major contributor is the production of extracellular proteases.
In general, these enzymes regulate multiple cellular and physiological processes
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Fig. 2 Virulence factors expressed/produced by P. aeruginosa cells: (i) lipopolysaccharide
(LPS) that induces cytokine production, (ii) pili that help bacterial adherence to the respiratory
epithelial cells, (iii) flagellum that participates in mobility, adherence, and internalization events,
(iv) extracellularly released molecules like proteases (responsible for the cleavage of key host
proteins), exotoxin A (inhibition of host protein synthesis), exoenzyme S (induces cytotoxic
effect), exoenzyme U (antiphagocytic effect), phospholipase C (cleavage of membrane phospho-
lipids), pigments (many biological effects, like pyocyanin that induces free radicals in host cells),
rhamnolipids (detergent action), soluble lectins (inhibition of beating of lung cells), and alginate
(phagocytosis inhibition, antifungal action, and host immune responses)

Pseudomonas aeruginosa and Its Arsenal of Proteases … 385



and are essential to the success of the infection. They degrade a wide array of host
proteins, impairing host defenses and destroying physical barriers that normally
prevent attachment and penetration of the bacteria [26–28].

3 Proteolytic Enzymes Produced by Pseudomonas
aeruginosa

P. aeruginosa is able to extracellularly release different kinds of proteases (Fig. 3),
which together are responsible for invasion and destruction of host tissues. Because
of the relevant roles played by proteases on the physiopathology of P. aeruginosa,
it has been shown that the majority of environmental and clinical strains of
P. aeruginosa exhibited proteolytic activity, particularly elastase activity [29–31].
According to Stover and co-workers [32], approximately 3% of the whole
P. aeruginosa genome is composed by open reading frames that encode proteases
[32]. Thus, the high genomic variability allows the bacterium to adapt its virulence
arsenal machinery to support the variations of environment conditions, and for that,
protease production in P. aeruginosa can vary greatly (Fig. 4) [32].

The expression of extracellular proteolytic enzymes in P. aeruginosa is directly
influenced by environmental factors and changes in the physicochemical properties
of culture medium (e.g., nutrients, temperature, pH, and aeration), which signifi-
cantly modulate the production of these crucial virulence factors [26, 33]. In
addition, the amount of protease produced depends on the cell cycle moment (e.g.,
lag, exponential, or stationary growth phase) and on the growing lifestyle (e.g.,
planktonic or biofilm). For instance, the total protease production (Fig. 5a) as well
as the specific elastase secretion increases along the first 48 h of in vitro cultivation

Elastase A (LasA)

Elastase B (LasB)

Alkaline protease (AP)

Protease IV (PIV)

Pseudomonas small protease (PASP)

Large exoprotease A (LepA)

MucD

P. aeruginosa aminopeptidase (PAAP)

Pseudomonas aeruginosa – PROTEASES
Fig. 3 Proteases secreted by
P. aeruginosa cells
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of P. aeruginosa planktonic cells (Fig. 5b). Further, according to Hastie and
co-workers [34], after 85 h of bacterial growth, the elastase production dropped off.

3.1 Elastase B

One of the best proteases characterized in Pseudomonas is elastase B (LasB), also
known as pseudolysin. This 33-kDa enzyme belongs to the M4 thermolysin-like
family of neutral, Zn-dependent metallo-endopeptidases (Fig. 6). This enzyme is
encoded by lasB gene as a pre-pro-protein, containing at the N-terminal region a
signal peptide of 23 amino acids that transport the enzyme through the inner
membrane to periplasmic place by bacterial secretory system [35].

The first and the most studied substrate of elastase B is bovine and human elastin
[36–38]. Some reports correlate the elastinolytic activity of elastase B to Pseu-
domonas infections in cystic fibrosis patients [39–43]. Histological studies have
detected altered elastin fibers in lung alveoli of cystic fibrosis patients on autopsy,
indicating a probable elastase activity on cystic fibrosis lung [39]. In addition, the
elastase activity is associated with vascular inflammation during P. aeruginosa
infection, since the disorganization of elastin fiber in vascular tissue caused by
protease degradation was observed [44]. Previously, our group analyzed the pro-
duction of virulence attributes in 96 clinical strains of P. aeruginosa recovered from
patients attended at hospitals located in three States of Brazil (Espírito Santo, Minas
Gerais, and Rio de Janeiro), and it was shown that all bacterial strains exhibited a

I II III IV V VI VII VIII

118 kDa

90 kDa

80 kDa

50 kDa

36 kDa

Fig. 4 Production of extracellular proteases in clinical isolates of P. aeruginosa recovered from
different anatomical sites. The proteolytic profiles were characterized by sodium dodecyl
sulfate-containing polyacrylamide gel electrophoresis (SDS-PAGE) containing 0.1% gelatin as the
protein substrate. Profile I—118 + 50 kDa; Profile II—118 + 90 + 50 kDa; Profile III—
90 + 50 kDa; Profile IV—118 + 80 + 50 kDa; Profile V—90 + 80 kDa; Profile VI—118 kDa;
Profile VII—90 kDa, and Profile VIII—36 kDa
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(a)

(b)

Fig. 5 Protease detection in P. aeruginosa. a Total extracellular protease production was analyzed
by the degradation of casein (1%) incorporated into Luria Bertani agar medium up to 48 h at 37 °C.
b The elastase activity was measured in the cell-free culture supernatant obtained from
P. aeruginosa cells grown in tryptic soy broth up to 48 h at 37 °C, using the fluorogenic peptide
substrate Abz-Ala-Gly-Leu-Ala-p-Nitro-Benzyl-Amide. Results were expressed as fluorescence
arbitrary units (FAU). In parallel, the number of bacterial cells along each time point was evaluated
by plating cells onto agar medium and expressed as colony-forming units (CFU)

Fig. 6 Elastase of P. aeruginosa is a typical zinc-metalloprotease. The purified elastase B is able
to cleave the fluorogenic peptide substrate Abz-Ala-Gly-Leu-Ala-p-Nitro-Benzyl-Amide along the
time. Conversely, 1,10-phenanthroline (1,10-Phen), a metalloprotease inhibitor, at 10 lMwas able
to block the substrate cleavage. FAU, fluorescence arbitrary units
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homogeneous elastase activity, with an average of 1069.28 ± 213.95 fluorogenic
arbitrary units (FAU) with no correlation with the original anatomical site of iso-
lation [16]. On the other hand, P. aeruginosa strains recovered from trachea, uri-
nary tract, and wounds of patients attended at University Medical Center/Texas
Tech Health Sciences Center were able to produce different amounts of elastase
[45]. Woods and co-workers [46] showed that Canadian P. aeruginosa strains
isolated from acute lung infections showed the highest production of elastase
(0.053 ± 0.021 mg/ml) compared with elastase activity of strains isolated from
burns, wounds, cystic fibrosis lung, and blood.

LasB is also able to cleave other host extracellular matrix proteins, such as
collagen type III and IV. Interestingly, after subcutaneous injection of purified
elastase B into mice, an intense degradation of basement membranes was observed,
and elastase B was responsible for severe hemorrhage and tissue damage [47].
Several studies have demonstrated that LasB-associated epithelial disruption is
mediated by the attack to intracellular tight junctions and cytoskeleton reorgani-
zation via inhibition of protein kinase C and activation of EGFR, ERK1/2 and
NFjB, urokinase, and protease-activated receptor 2 (PAR-2) [48–53]. Elastase B
can also interfere with the host bacterial clearance by degrading several components
of innate and adaptive immune defenses, including tumor necrosis factor-a
(TNF-a), interferon-c (IFN-c) and interleukin-2 (IL-2), monocyte chemotactic
protein-1 (MCP-1), and epithelial neutrophil activating protein-78 (ENA-78)
[52–57]. In addition, it was shown that elastase B was efficient in the inactivation of
key components of the complement system such as fluid-phase and cell-bound C1
and C3 and fluid-phase C5, C8, and C9 [44]. This multifunctional enzyme is also
able to cleave surfactant protein A and D (SP-A and SP-D), also known as collectin.
SP-A and SP-D are synthesized by alveolar type II epithelial cells and are
responsible for the recognition and binding to oligosaccharides present on the cell
surface of many bacteria to be phagocytized by host macrophages [58]. Previously,
Meyer and co-workers [59] have reported that a decrease on the SP-A and SP-D
levels in bronchoalveolar lavage (BAL) was observed in the lung of cystic fibrosis
individuals. Also, SP-D knockout mice were more sensible to P. aeruginosa cor-
neal infections when compared to wild-type animals, and only the wild-type mice
recovered completely of the infection [60]. Based on this, elastase B was suggested
to be responsible for the SP-D degradation in the eye [25, 26]. Furthermore,
pseudomonal elastase can interact with host adaptive immune system by degrading
immunoglobulins [61–63]. Bainbrigde and Flick [61] showed that elastase B was
able to cleave IgG molecules recovered from cystic fibrosis patients and the
degradation products bound to IgG-receptors of human neutrophils, thereby
inhibiting the opsonization of bacterial invaders. Lomholt and Kilian [63] reported
the IgA degradation in tears from patients infected with P. aeruginosa. They also
observed that isogenic mutants of P. aeruginosa knockout to either elastase or
alkaline protease were not able to completely inhibit the IgA degradation, indicating
that several proteases were working in concert to cleave IgA.

Furthermore, elastase B plays a key role in the differentiation of pseudomonal
biofilms. Tielen and co-workers [64] showed that strains that overexpress lasB gene
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were not able to form robust biofilms, and they observed the formation of few
microcolonies after 72 h of contact with glass surface. Those authors also assigned
that lasb-overexpressed strain shifted the composition of its extracellular polymeric
substances, reducing the alginate content as well as enhancing the rhamnolipids
concentration [64]. However, Yu and co-workers [65] demonstrated that elastase B
is crucial for biofilm formation. They observed that DlasB mutant decreased the
biofilm formation through down-regulation of rhamnolipids synthesis.

3.2 Elastase A

Another extracellular protease produced by P. aeruginosa is elastase A (LasA), a
metalloprotease that belongs to the subgroup A of M23 family of staphylolytic or
b-lytic zinc metallo-endopeptidases. LasA is codified as an elastase A pre-pro-protein
with molecular mass of 40 kDa [66, 67]. After its synthesis in intracellular bacterial
environment, LasA is secreted via type II secretion machinery and when it is secreted
to the extracellular space, LasA is immediately converted to its mature and active form
of 27 kDa due to the cleavage by other pseudomonal-secreted endopeptidases, such
as LasB, LysC, and protease IV [68, 69].

Elastase A is also called as staphylolysin, because it is able to cleave the pen-
taglycine bonds in the peptidoglycan of Staphylococcus aureus [70]. As well, LasA
degrades several glycine-rich synthetic peptides [71]. However, LasA exhibited a
limited elastinolytic activity [72]. Kessler and co-workers [71] showed that LasA
prefers cleaving Gly–Ala peptide bonds within the Gly-Gly-Ala sequences sur-
rounded by apolar sequences. Such sequences are uncommon in elastin, resulting in
low elastinolytic activity [26, 73]. Besides its own intrinsic elastinolytic activity,
LasA enhances significantly the elastinolytic activity of other proteases, including
LasB in P. aeruginosa, but also human leukocyte elastase and human neutrophil
elastase [74, 75]. Moreover, LasA is responsible for inducing shedding of the host
cell surface proteoglycan syndecan-1 (co-receptor proteins), which has been shown
to be important for P. aeruginosa survival [25, 26].

3.3 Alkaline Protease

Another pseudomonal protein shown to be important for phagocytic evasion is
alkaline protease (AprA), which is also known as aeruginolysin. Alkaline protease
is a 50-kDa zinc-metalloprotease, member of subfamily B of the M10 peptidase
family and metzincin superfamily. AprA, encoded by aprA gene, has a C-terminal
secretion signal located within the last 50 amino acid residues necessary to be
translocated and secreted by AprD, APrE, and AprF membrane proteins, which
form the bacterial type I secretory machinery [35].

It was reported that alkaline protease is able to degrade a large number of host
proteins, including fibronectin and laminin, important components of basal lamina
and endothelium. Therefore, alkaline protease develops an important function in
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invasion and hemorrhagic tissue necrosis in infections caused by P. aeruginosa
[76]. Furthermore, this protease was found in many isolates of P. aeruginosa
recovered from different human anatomical sites with especial elevated expression
in clinical isolates from eyes, gastrointestinal tract, and mucoid wounds exacerbated
in cystic fibrosis patients [25, 61]. AprA is important to bacterial escape from the
host immunological defenses, degrading complement proteins (C1q, C2, and C3)
and cytokines (IFN-c, TNF-a and IL-6) [76]. Also, alkaline protease and elastase B
are able to inhibit chemotaxis of neutrophils and block efficiently the phagocytosis,
which gives the pathogen an advantage in escaping from phagocyte cells that are
one of the first lines of host defense mechanisms [25, 31, 77, 78]. Moreover,
alkaline protease is able to inhibit flagellin recognition by TLR5 due to the
degradation of free flagellin monomers, helping P. aeruginosa cells to avoid the
immune detection [79]. This enzyme has also been shown to aid P. aeruginosa
survival in iron limitations conditions during human infections by cleaving trans-
ferrin that increase the siderophore-mediated iron uptake [80]. Gupta and
co-workers [81] also reported that treatment of mouse corneal tissue with alkaline
protease (50 ng) increases the binding of P. aeruginosa to the epithelial surface.

3.4 Protease IV

P. aeruginosa secretes a serine-type protease designated as protease IV (PIV) or
lysyl endopeptidase (PrpL), a 26-kDa protease belonging to the chymotrypsin
family S1 that has been demonstrated to be an important virulence factor in the
rabbit cornea, but is found in clinical isolates recovered from all the anatomical sites
analyzed [35, 82]. Its catalytic domain is formed by the triad His72, Asp122, and
Ser198. Moreover, it was demonstrated that the residue Ser197 adjacent to Ser198 is
critical to the catalytic activity [83]. Protease IV is encoded by piv gene (PA4175),
with a full length of 48 kDa, which is initially expressed in the cytoplasm in a
pre-pro-enzyme form and then processed to the 26-kDa mature protease after its
secretion into the extracellular milieu [83].

PIV participates in the tissue invasion/damage processes and hemorrhagic events
due to the cleavage of fibrinogen. It is well known that fibrinogen is required after
vascular damage, but the degradation of fibrinogen by PIV leads to hemorrhage
during P. aeruginosa infection [84]. PIV is also important to evade host immune
defenses because it is able to degrade plasminogen, immunoglobulin, C1q and C3,
and host antimicrobial peptide LL-37 [25, 68]. Furthermore, Malloy and co-workers
[82] observed that PIV degrades the surfactant proteins, SP-A, SP-D, and SP-B, by
a time- and dose-depended way in cell-free bronchoalveolar lavage fluid. Those
authors reported that degradation of SPs by protease IV reduced the association
among bacteria and alveolar macrophage. Interestingly, the incubation of pul-
monary surfactant with pseudomonal protease IV reduced the ability of the sur-
factant to diminish the superficial tension within the lung [82]. Protease IV has been
shown to be an iron-regulated protein, suggesting that its expression is regulated
irrespective of quorum sensing system, which is distinct from other pseudomonal
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proteases [69]. Protease IV has also been correlated to ring abscess lesions present
in pseudomonal keratitis [68]. Corroborating this finding, Engel and co-workers
[85] showed that protease IV-deficient mutants exhibited lower ocular virulence in
rabbits when intrastromally infected.

3.5 Pseudomonas Small Protease

P. aeruginosa small protease (PASP) is described as a 18.5-kDa secreted
zinc-dependent leucine aminopeptidase. PASP gene has been found in a large
number of P. aeruginosa clinical strains, but its higher expression is found during
the ocular infection [86]. Previous reports showed that PASP is found only in the
bacterial supernatant culture. According to Tang and co-workers [86], the sequence
of PASP gene appears to have a signal peptide consistent with that needed for type
II secretion system.

Direct inoculation of purified PASP into the rabbit cornea causes severe ocular
pathology, including epithelial erosion and ulcer in stroma, edema, and neutrophil
infiltration into the corneal stroma [87]. PASP has also been demonstrated to
cleavage host proteins required for maintaining structure of cornea, such as colla-
gens, fibrinogen (but not fibrin), complement C3, and antimicrobial peptide LL-37.
Studies of PASP, coupled with those of PIV, strongly support the hypothesis that
Pseudomonas proteases play a major role in keratitis [87].

3.6 Large Exoprotease A

Large exoprotease A (LepA) is an exoprotease with molecular mass of *100 kDa
produced by P. aeruginosa. LepA, as well as thrombin and trypsin, cleaves human
protease-activated receptors (PARs) 1, 2, and 4 in order to activate the critical
transcription factor NF-jB, which is associated with host inflammatory and
immune responses [49, 88].

3.7 MucD

MucD was reported to be a serine endoprotease that is localized within the
periplasmic space. Data suggest that MucD induced a significant reduction on the
levels of IL-1b, neutrophil-chemoattractant chemokines KC, and macrophage-
inflammatory protein-2 (MIP-2) in the early stages of bacterial infection as well as it
inhibited the recruitment of polymorphonuclear (PMN) cells into the cornea.
Furthermore, a decrease in PMN cells recruited to infection site favored the
establishment of infection by P. aeruginosa. MucD may be secreted to the extra-
cellular space, interfering with the biological functions of cytokines and
chemokines, but further investigation is needed to understand the mechanisms
underlying the role of MucD in keratitis [89, 90].
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3.8 Aminopeptidase

The P. aeruginosa aminopeptidase (PAAP) or leucine aminopeptidase has been
speculated as complementary enzyme to the activity of other endopeptidases. PAAP
has an important function in bacterial physiology; it acts releasing free amino
acids/small peptides from protein fragments produced by the others P. aeruginosa
endopeptidases, thereby providing low molecular mass nutrients that can be taken up
by the bacterium, which in turn may promote bacterial growth and proliferation [26].

4 Conclusions

P. aeruginosa is a metabolically versatile bacterium that can cause a wide range of
severe opportunistic infections in hospitalized patients. To cause this huge variety
of infections, P. aeruginosa has an arsenal of proteases that are involved in critical
events of bacterial pathogenicity and virulence, which are important for survival in
the host, tissue invasion, and evasion of host immune defenses. Therefore, this
review has highlighted the importance of each pseudomonal protease in bacterial
physiology and/or in infectious events. In this context, inhibitors able to block the
proteases produced by P. aeruginosa cells would represent a new drug class quite
promising to combat this widespread bacterial pathogen.
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