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Abstract We consider the monotone operator P , which maps Orlicz-Lorentz class
ΛΦ,v into some ideal space Y = Y (R+). Orlicz-Lorentz class is determined as
the cone of Lebesgue-measurable functions on R+ = (0,∞) having the decreas-
ing rearrangements that belong to weighted Orlicz space LΦ,v under some general
assumptions concerning properties of functions Φ and v. We prove the reduction
theorems allowing reducing the estimates of the norm of operator P : ΛΦ,v → Y to
the estimates for its restriction on some cone of nonnegative step-functions in LΦ,v .
Application of these results to identical operator mapping ΛΦ,v into the weighted
Lebesgue space Y = L1(R+; g) gives the sharp description of the associate space
for ΛΦ,v . The main results of this paper were announced in [20]. They develop the
results of our paper [19] related to the case of N-functions.
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1 Some Properties of General Weighted Orlicz Spaces

This section contains the description of needed general properties of weighted Orlicz
spaces. Some of them (not all) are presented in different forms in the literature; see
for example the books of Krasnoselskii and Rutickii [1], Maligranda [2], Krein
et al. [3], and Bennett and Sharpley [11].

Definition 1 We denote as Θ a class of functions Φ : [0,∞) → [0,∞] with
the following properties: Φ (0) = 0; Φ is increasing and left continuous on R+,
Φ (+∞) = ∞; Φ is neither identically zero nor identically infinite on R+.
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For Φ ∈ Θ we introduce

t0 = sup {t ∈ [0,∞) : Φ (t) = 0} ; (1)

t∞ = inf {t ∈ R+ : Φ (t) = ∞} (2)

(t∞ = ∞ is assumed if Φ (t) < ∞, t ∈ R+). Then,

t0 ∈ [0,∞) ; t∞ ∈ (0,∞] ; t0 � t∞, (3)

Φ (t) = 0, t ∈ [0, t0] , Φ (t) = ∞, t > t∞ (4)

(the last in the case t∞ < ∞).
Everywhere below we assume that

Φ ∈ Θ, v ∈ M, v > 0 almost everywhere in R+. (5)

Here, M = M (R+) is the set of all Lebesgue-measurable functions on R+. For
λ > 0, f ∈ M we denote

Jλ ( f ) :=
∞∫

0

Φ
(
λ−1 | f (x)|)v (x) dx, (6)

∥∥ f ∥∥
Φ,v

= inf {λ > 0 : Jλ ( f ) � 1} . (7)

Orlicz space LΦ,v is defined as the set of functions f ∈ M : ∥∥ f ∥∥
Φ,v

< ∞.
Note that general concept of Orlicz–Lorentz spaces was developed by Kaminska

andRaynaud [12]. In this article there is a general definition ofOrlicz-Lorentz spaces,
even with two weights, generated by an increasing function Φ. The necessary and
sufficient conditions are discussed there for the Minkowski functional to be a norm,
quasi-norm or the space to be linear.

The goal of this Section is to describe some needed general properties of Orlicz
spaces LΦ,v . In particular, we would like to answer the following question. Let
c ∈ R+; f1 ∈ M , f2 ∈ LΦ,v .What are the conditions onΦ ∈ Θ such that the estimate

Jλ ( f1) � cJλ ( f2) , λ > d
∥∥ f2∥∥Φ,v

, (8)

implies that f1 ∈ LΦ,v , and ∥∥ f1∥∥Φ,v
� d

∥∥ f2∥∥Φ,v
(9)

with some constant d = d (c) ∈ R+ not depending of f1, f2.
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Remark 1 Let Φ ∈ Θ , c = d = 1 in the estimate (8). Then (9) is valid with d = 1.
Indeed, we have Jλ ( f2) � 1 for every λ �

∥∥ f2∥∥Φ,v
, so that (8) ⇒ Jλ ( f1) � 1.

Therefore, λ �
∥∥ f1∥∥Φ,v

. Thus, (9) follows with d = 1. So we have d = d (1) = 1 in
(8), (9).

Our nearest considerations will be devoted to the justification of this estimate for
c ∈ (0, 1), which makes possible to obtain (9) with some d ∈ (0, 1). To consider the
case c ∈ (1,∞) we need some additional conditions on function Φ ∈ Θ .

For c ∈ (0, 1) we assume that t0 = 0; t∞ = ∞ in (1), and in (2). Let us denote

d (c) = inf {d ∈ (0, 1] : Φ (dt) � cΦ (t) , t ∈ (0,∞)} , c ∈ (0, 1) . (10)

For c ∈ (1,∞) we assume that

t0t
−1
∞ = 0. (11)

It means that at least one of the conditions t0 = 0; t∞ = ∞ is fulfilled. We denote
by

d (c) = inf
{
d > 1 : Φ (dt) � cΦ (t) , t ∈ (t0, d−1t∞

)}
, c ∈ (1,∞) (12)

(under assumption (11), we have t0 < d−1t∞ for any d > 1). It is clear that

c ∈ (0, 1] ⇒ d(c) ∈ [0, 1] ; c ∈ (1,∞) ⇒ d(c) ∈ [1,∞] .

For c ∈ (1,∞) we denote by

Θc = {Φ ∈ Θ : d(c) < ∞} . (13)

Theorem 1 Let Φ and v to satisfy the conditions (5), and c ∈ R+. If c ∈ (0, 1) we
require that t0 = 0; t∞ = ∞ in (1), (2); if c ∈ (1,∞) then (11), and the condition
Φ ∈ Θc have to be fulfilled. Let d(1) = 1, and d(c) being determined by (10), (12)
for c �= 1. Then the inequality,

Jλ ( f1) � cJλ ( f2) , λ > d (c)
∥∥ f2∥∥Φ,v

, (14)

for functions f1 ∈ M, f2 ∈ LΦ,v implies

f1 ∈ LΦ,v,
∥∥ f1∥∥Φ,v

� d (c)
∥∥ f2∥∥Φ,v

. (15)

Corollary 1 Let 0 < c1 � c2 < ∞; and the conditions (5) and (11) be fulfilled.
Moreover, if c0 = min

{
c−1
1 , c2

} ∈ (0, 1), we require that t0 = 0; t∞ = ∞; if c =
max

{
c−1
1 , c2

}
> 1, then Φ ∈ Θc is assumed. If

Jλ ( f2) � c1 Jλ ( f1) � c2 Jλ ( f2) , (16)
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for every λ > 0, then

f1 ∈ LΦ,v ⇔ f2 ∈ LΦ,v; d1
∥∥ f1∥∥Φ,v

�
∥∥ f2∥∥Φ,v

� d2
∥∥ f1∥∥Φ,v

, (17)

where
d1 = d

(
c−1
1

)−1
, d2 = d (c2) . (18)

see (10), (12).

We need some lemmas for the proof of Theorem 1.
Let f ∈ LΦ,v , f �= 0. For c ∈ R+ we define

Λ f (c) = {λ > 0 : cJλ ( f ) � 1} . (19)

It follows from (6), and from the properties of Φ ∈ Θ that Jλ ( f ) decreases, and
it is right continuous as function of λ. Therefore,

Λ f (c) �= ∅ ⇒ Λ f (c) = [λ f (c) ,∞) , λ f (c) = inf Λ f (c) . (20)

We have for c ∈ (0, 1]

Λ f (c) ⊃ Λ f (1) = {λ > 0 : Jλ ( f ) � 1} =
[∥∥ f ∥∥

Φ,v
,∞
)

, (21)

so thatΛ f (c) �= ∅. The following lemmagivesmore general nonempty—conditions
for Λ f (c).

Lemma 1 Let the conditions (5) be fulfilled, let f ∈ LΦ,v , f �= 0. Then, the follow-
ing conclusions hold:

(1) if Φ (+0) = 0, then Λ f (c) �= ∅ for every c ∈ R+;
(2) if Φ (+0) > 0, then

c >

⎡
⎢⎣Φ (+0)

∫

E( f )

vdx

⎤
⎥⎦

−1

⇒ Λ f (c) = ∅, (22)

c <

⎡
⎢⎣Φ (+0)

∫

E( f )

vdx

⎤
⎥⎦

−1

⇒ Λ f (c) �= ∅, (23)

where
E( f ) = {x ∈ R+ : 0 < | f (x)| < ∞} .
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Remark 2 In the conditions of Lemma 1 we have,

0 � Jλ ( f ) � 1, λ ∈
[∥∥ f ∥∥

Φ,v
,∞
)

, Jλ ( f ) ↓ (λ ↑) . (24)

Therefore, the following limit exists

0 � J∞ ( f ) = lim
λ→+∞

Jλ ( f ) � 1. (25)

In the proof of this lemma we particularly establish that

0 � J∞ ( f ) = Φ (+0)
∫

E( f )

vdx � 1. (26)

Moreover, we will show that μ (E ( f )) = ∞, and

Φ (+0) > 0 ⇒ 0 <

∫

E( f )

vdx � Φ (+0)−1 , (27)

because v > 0 almost everywhere.

Proof (of Lemma 1)
1. Denote

E0 ( f ) = {x ∈ R+ : | f (x)| = 0} , E∞ ( f ) = {x ∈ R+ : | f (x)| = ∞} .

Then,
R+ = E0 ( f ) ∪ E ( f ) ∪ E∞ ( f ) . (28)

For λ ∈
[∥∥ f ∥∥

Φ,v
,∞
)
we have,

Jλ ( f ) :=
∞∫

0

Φ
(
λ−1 | f (x)|)v (x) dx � 1. (29)

It means that almost everywhere

Φ
(
λ−1 | f (x)|) v (x) < ∞ ⇒ Φ

(
λ−1 | f (x)|) < ∞ ⇒ | f (x)| < ∞. (30)

In the first implication, we take into account that v (x) > 0 almost everywhere,
and in the second one, we use the condition Φ (+∞) = ∞. From (30), it follows
that
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μ (E∞ ( f )) = 0. (31)

Moreover, f �= 0 ⇒ μ (E0 ( f )) < ∞.
From here, and from (28) we see that μ (E ( f )) = ∞, and

Jλ ( f ) =
∫

E0( f )

Φ
(
λ−1 | f (x)|)v (x) dx +

∫

E( f )

Φ
(
λ−1 | f (x)|)v (x) dx . (32)

For x ∈ E0 ( f ) we have λ−1 | f (x)| = 0 ⇒ Φ
(
λ−1 | f (x)|) = 0 (recall that

Φ (0) = 0).
Therefore,

Jλ ( f ) =
∫

E( f )

Φ
(
λ−1 | f (x)|)v (x) dx . (33)

We see that

λ ∈
[∥∥ f ∥∥

Φ,v
,∞
)
⇒Φ

(
λ−1 | f (x)|) v (x) � Φ

(∥∥ f ∥∥−1
Φ,v

| f (x)|
)

v (x) ∈ L1 (R+) ,

and λ → +∞ implies

0 < λ−1 | f (x)| → 0 ⇒ Φ
(
λ−1 | f (x)|) v (x) → Φ (+0) v (x) .

Therefore, we have by Lebesgue majored convergence theorem

J∞ ( f ) = lim
λ→+∞

Jλ ( f ) = Φ (+0)
∫

E( f )

vdx .

It proves (26).
2. If Φ (+0) = 0 then, lim

λ→+∞
Jλ ( f ) = 0, so that for every c ∈ R+ we can find

λ (c) ∈ R+, with Jλ ( f ) � c−1, λ � λ (c). It means that Λ f (c) �= ∅.
3. Now, let Φ (+0) > 0. Note that Jλ ( f ) decreases in λ, therefore we have for

every λ > 0 by (26) and (22),

cJλ ( f ) � cJ∞ ( f ) = cΦ (+0)
∫

E( f )

vdx > 1 ⇒ Λ f (c) = ∅.

By the conditions (23) with λ → +∞, we have

lim
λ→+∞

cJλ ( f ) = cΦ (+0)
∫

E( f )

vdx < 1,
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so that
∃λ (c) > 0 : cJλ ( f ) � 1, λ � λ (c) ⇒ Λ f (c) �= ∅.

Remark 3 Let c ∈ (0, 1] in the conditions of Lemma 1. Then, Λ f (c) �= ∅. Indeed,
by (26), ⎡

⎢⎣Φ (+0)
∫

E( f )

vdx

⎤
⎥⎦

−1

� 1,

so that the assertions (23) are fulfilled for c ∈ (0, 1). If c = 1we also obtainΛ f (c) �=
∅ (see Remark 1).

Remark 4 Under assumptions of Lemma 1 let

Φ (+0) > 0; c =
⎡
⎢⎣Φ (+0)

∫

E( f )

vdx

⎤
⎥⎦

−1

∈ (1,∞) (34)

(see (25) and (26)). Then both variants of the answer are possible. Let us give the
examples.

1. If Φ (t) > Φ (+0), t ∈ R+ then we have E ( f0) = E; for function f0 = χE

where E ⊂ R+, 0 < μ (E) < ∞, and therefore

cJλ ( f0) = cΦ
(
λ−1) ∫

E

v (x) dx > cΦ (+0)
∫

E

v (x) dx = 1.

It means that Λ f0 (c) = ∅.
2. Let ∃δ > 0 : Φ (t) = Φ (+0), t ∈ (0, δ) .

Then we haveΛ f (c) �= ∅ for every bounded function f . Indeed, let | f (x)| � M
almost everywhere. Then, λ > Mδ−1 ⇒ Φ

(
λ−1 | f (x)|) � Φ

(
λ−1M

) = Φ (+0),

cJλ ( f ) � cΦ (+0)
∫

E( f )

vdx = 1 ⇒ Λ f (c) ⊃ (Mδ−1,∞) .

Let the conditions (5) be fulfilled, and f ∈ LΦ,v , f �= 0. Denote

λ ( f ; d) = inf {λ > 0 : Jλ (d f ) < ∞} . (35)

We have
λ ∈

[
d
∥∥ f ∥∥

Φ,v
,∞
)

⇒ Jλ (d f ) � 1, (36)

so that
λ ( f ; d) � d

∥∥ f ∥∥
Φ,v

(37)
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Lemma 2 Let the conditions (5) be fulfilled, and c ∈ (0, 1); t0 = 0, t∞ = ∞ in
(1), (2). Let d(c) be defined by (10). Then the following estimate holds for function
f ∈ LΦ,v , f �= 0

cJλ ( f ) � Jλ (d f ) , λ ∈ [λ ( f ; d) ,∞) . (38)

with any d > d(c).

Proof We use formula (33). For x ∈ E ( f ) , d > d (c) we have by definition (10)

0 < λ−1 | f (x)| < ∞ ⇒ cΦ
(
λ−1 | f (x)|) � Φ

(
λ−1 |d f (x)|) ,

so that

cJλ ( f ) =
∫

E( f )

cΦ
(
λ−1 | f (x)|

)
v (x) dx �

∫

E( f )

Φ
(
λ−1 |d f (x)|

)
v (x) dx � Jλ (d f ) .

Corollary 2 From (36)–(38), it follows that λ ∈
[
d
∥∥ f ∥∥

Φ,v
,∞
)

⇒ cJλ ( f ) � 1, so

that
Λ f (c) ⊃

[
d
∥∥ f ∥∥

Φ,v
,∞
)

�= ∅, ∀d > d (c) .

Thus,

Λ f (c) ⊃
[
d (c)

∥∥ f ∥∥
Φ,v

,∞
)

. (39)

Lemma 3 Let the conditions (5) and (11) be fulfilled, and c ∈ (1,∞), d (c) being
defined by (12) andΦ ∈ Θc. Then, estimate (38) holds for function f ∈ LΦ,v , f �= 0,
with any d > d(c).

Proof For λ > 0, d > d (c) we define

G0 ( f ) ≡ G0 ( f ;λ) = {x ∈ R+ : λ−1 | f (x)| � t0
}
, (40)

G ( f ) ≡ G ( f ;λ) = {x ∈ R+ : t0 < λ−1 | f (x)| < ∞} , t∞ = ∞; (41)

G ( f ) ≡ G ( f ;λ, d) = {x ∈ R+ : t0 < λ−1 | f (x)| � d−1t∞
}
, t∞ < ∞; (42)

G∞ ( f ) = {x ∈ R+ : | f (x)| = ∞} , t∞ = ∞; (43)

G∞ ( f ) ≡ G∞ ( f ;λ, d) = {x ∈ R+ : λ−1 | f (x)| > d−1t∞
}
, t∞ < ∞. (44)

Then,
R+ = G0 ( f ) ∪ G ( f ) ∪ G∞ ( f ) . (45)

We have according to (40) and (4),
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x ∈ G0 ( f ) ⇒ Φ
(
λ−1 | f (x)|) = 0 ⇒

∫

G0( f )

Φ
(
λ−1 | f (x)|) v (x) dx = 0. (46)

Further, λ > λ ( f ; d) implies Jλ (d f ) < ∞. Therefore, almost everywhere

Φ
(
λ−1 |d f (x)|) v (x) < ∞ ⇒ Φ

(
λ−1 |d f (x)|) < ∞. (47)

Herewe take into account that v (x) > 0 almost everywhere. Now, if t∞ = ∞ then
Φ (+∞) = ∞, and if t∞ < ∞ then Φ (t) = ∞, t > t∞. Therefore, in both cases

x ∈ G∞ ( f ) ⇒ Φ
(
λ−1 |d f (x)|) = ∞. (48)

From here, and from (47), it follows that

μ (G∞ ( f )) = 0 ⇒
∫

G∞( f )

Φ
(
λ−1 | f (x)|) v (x) dx = 0. (49)

Now, (45), (46), and (49) imply

Jλ ( f ) =
∫

G( f )

Φ
(
λ−1 | f (x)|) v (x) dx . (50)

For x ∈ G ( f ) we have t = λ−1 | f (x)| ∈ (t0,∞), if t∞ = ∞, or t ∈ (t0, d−1t∞
]

if t∞ < ∞. By (12) we have for d > d (c)

cΦ (t) � Φ (dt) , t ∈ (t0, d−1t∞
)
. (51)

If t∞ < ∞, this inequality is extended onto
(
t0, d−1t∞

]
by the limiting passage

with t → d−1t∞ (let us recall that Φ is left continuous). Therefore,

cΦ
(
λ−1 | f (x)|) � Φ

(
λ−1 |d f (x)|) , x ∈ G ( f ) , (52)

so that,

cJλ ( f ) =
∫

G( f )

cΦ
(
λ−1 | f (x)|

)
v (x) dx �

∫

G( f )

Φ
(
λ−1 |d f (x)|

)
v (x) dx � Jλ (d f ) .

This proves estimate (38) .
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Proof (of Theorem 1) In the assumptions of this theorem,Remark 1 exhausts the case
= 1. For function f = f2 ∈ LΦ,v , f2 �= 0, we can apply Lemma 2 with c ∈ (0, 1),
or Lemma 3 with c ∈ (1,∞). In both cases we obtain (38) for f = f2. It is true in

particular for all λ ∈
[
d
∥∥ f2∥∥Φ,v

,∞
)
because of (37). For such values of λ, we have

inequality Jλ (d f2) � 1. Therefore, by (14), and (38),

Jλ ( f1) � cJλ ( f2) � Jλ (d f2) � 1, λ ∈
[
d
∥∥ f2∥∥Φ,v

,∞
)

.

It means that, ∥∥ f1∥∥Φ,v
� d

∥∥ f2∥∥Φ,v
, d > d (c) .

Thus, the relations (15) follow.

Example 1 If Φ (t) = tε, t ∈ [0,∞), ε > 0, then

t0 = 0, t∞ = ∞, d (c) = c1/ε, c ∈ R+.

Example 2 Let Φ (t) = et − 1, t ∈ [0,∞). Then,

t0 = 0, t∞ = ∞, c > 1 ⇒ d (c) = c.

Example 3 LetΦ (t) = lnγ (t + 1), t ∈ [0,∞),γ > 0.Then, t0 = 0, t∞ = ∞,d (c) =
∞ for every c > 1. Indeed, if c > 1, the inequality lnγ (dt + 1) � c lnγ (t + 1) fails
for every d ∈ R+ when t ∈ R+ is big enough, because

lim
t→+∞

[
lnγ (dt + 1)

lnγ (t + 1)

]
= 1.

Example 4 Let the condition (11) be fulfilled, let ε > 0, and Φ (t) t−ε ↑ on (t0, t∞).
Then,

c > 1 ⇒ d (c) � c1/ε. (53)

Indeed, for every t ∈ (t0, c−1/εt∞
)

Φ
(
c1/εt

) = (c1/εt)ε [Φ (c1/εt) (c1/εt)−ε
]

�
(
c1/εt

)ε [
Φ (t) t−ε

] = cΦ (t) .

It means that d (c) � c1/ε.

Example 5 Let the condition (11) be fulfilled, let p ∈ (0, 1], and Φ be p-convex on
[t0, t∞), that is for α,β ∈ (0, 1], αp + β p = 1 the inequality holds

Φ (αt + βτ ) � αpΦ (t) + β pΦ (τ ) , t, τ ∈ [t0, t∞) . (54)



Order Sharp Estimates for Monotone Operators on Orlicz–Lorentz Classes 47

If t∞ < ∞, then by passage to the limit this inequality is extended on [t0, t∞].
Thus, we have,

c > 1 ⇒ d (c) � c1/p. (55)

Indeed, (54) impliesΦ (t) t−p ↑ on [t0, t∞), and the result of Example 4 is applica-
ble here.

Example 6 (Young function) LetΦ : [0,∞) → [0,∞] be the so-calledYoung func-
tion that is,

Φ (t) =
t∫

0

ϕ (τ )dτ , (56)

where ϕ : [0,∞) → [0,∞] is the decreasing and left-continuous function, and
ϕ (0) = 0, ϕ is neither identically zero, nor identically infinity on (0,∞). Then,
Φ ∈ Θ , and t0, t∞, being introduced for Φ by (1) and (2), are the same as their
analogues for ϕ. We assume that (11) is satisfied. Function Φ is convex on [t0, t∞)

because 0 � ϕ ↑. Thus, we can apply the conclusions of Example 5 with p = 1. In
particular, c > 1 ⇒ d (c) � c.

Theorem 2 Let the conditions (5) and (11) be fulfilled, and Φ being p-convex on
[t0, t∞) with some p ∈ (0, 1]. Then, the following conclusions hold.

(1) The triangle inequality takes place in LΦ,v: if f, g ∈ LΦ,v then f + g ∈ LΦ,v ,
and ∥∥ f + g

∥∥
Φ,v

�
(∥∥ f ∥∥p

Φ,v
+ ∥∥g∥∥p

Φ,v

)1/p
. (57)

(2) The quantity
∥∥ f ∥∥

Φ,v
is monotone quasi-norm (norm, if p = 1):

f ∈ M, | f | � g ∈ LΦ,v ⇒ f ∈ LΦ,v,
∥∥ f ∥∥

Φ,v
�
∥∥g∥∥

Φ,v
, (58)

that has Fatou property:

fn ∈ M, 0 � fn ↑ f ⇒ ∥∥ f ∥∥
Φ,v

= lim
n→∞

∥∥ fn∥∥Φ,v
. (59)

Conclusion. In the conditions of Theorem 2 LΦ,v forms ideal quasi-Banach space
having Fatou property (Banach space if p = 1, in particular in the case of Young
function Φ).

Proof (of Theorem 2) 1. Let f, g ∈ LΦ,v . Then, we have for all λ �
∥∥ f ∥∥p

Φ,v
, μ �∥∥g∥∥p

Φ,v
,

Jλ1/p ( f ) =
∫

R+

Φ
(
λ−1/p | f (x)|) v (x) dx � 1; (60)
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Jμ1/p (g) =
∫

R+

Φ
(
μ−1/p |g (x)|) v (x) dx � 1. (61)

Now, almost everywhere on R+ (60), and (61) yield,

Φ
(
λ−1/p | f (x)|)+ Φ

(
μ−1/p |g (x)|) < ∞, (62)

because v (x) > 0 almost everywhere on R+. Further, for t∞ = ∞ we denote

Ẽ ( f ) = {x ∈ R+ : | f (x)| < ∞} , (63)

Ẽ (g) = {x ∈ R+ : |g (x)| < ∞} , (64)

and for t∞ < ∞ we denote

Ẽ ( f ) = {x ∈ R+ : λ−1/p | f (x)| � t∞
}
, (65)

Ẽ (g) = {x ∈ R+ : λ−1/p |g (x)| � t∞
}
. (66)

In both cases we have according to (62),

Φ
(
λ−1/p | f (x)|) = ∞, x ∈ R+\Ẽ ( f ) ⇒ mes

(
R+\Ẽ ( f )

)
= 0,

Φ
(
μ−1/p |g (x)|) = ∞, x ∈ R+\Ẽ (g) ⇒ mes

(
R+\Ẽ (g)

)
= 0.

Therefore,
mes

(
R+\

[
Ẽ ( f ) ∩ Ẽ (g)

])
= 0, (67)

Jλ1/p ( f ) =
∫

Ẽ( f )∩Ẽ(g)

Φ
(
λ−1/p | f (x)|) v (x) dx, (68)

Jμ1/p (g) =
∫

Ẽ( f )∩Ẽ(g)

Φ
(
μ−1/p |g (x)|) v (x) dx, (69)

J(λ+μ)1/p ( f + g) =
∫

Ẽ( f )∩Ẽ(g)

Φ
(
(λ + μ)−1/p | f (x) + g (x)|) v (x) dx . (70)



Order Sharp Estimates for Monotone Operators on Orlicz–Lorentz Classes 49

For Φ ∈ Θ the following inequality holds

Φ
(
(λ + μ)−1/p | f (x) + g (x)|) �

� Φ
(
(λ + μ)−1/p | f (x)| + (λ + μ)−1/p |g (x)|) . (71)

We define
α = λ1/p (λ + μ)−1/p , β = μ1/p (λ + μ)−1/p ;

t = λ−1/p | f (x)| , τ = μ−1/p |g (x)| .

In this case αp + β p = 1, and we have for x ∈ Ẽ ( f ) ∩ Ẽ (g)

t, τ ∈ [0,∞) , t∞ = ∞; t, τ ∈ [0, t∞] , t∞ < ∞.

Therefore, the estimate (54) is applicable for the right-hand side of (71). As the
result,

Φ
(
(λ + μ)−1/p | f (x) + g (x)|) �

� λ

λ + μ
Φ
(
λ−1/p | f (x)|)+ μ

λ + μ
Φ
(
μ−1/p |g (x)|) .

We integrate this inequality over the set Ẽ ( f ) ∩ Ẽ (g), and take into account
formulas (68)–(70). Then,

J(λ+μ)1/p ( f + g) � λ

λ + μ
Jλ1/p ( f ) + μ

λ + μ
Jμ1/p (g) . (72)

From (72), (60), and (61), it follows that

J(λ+μ)1/p ( f + g) � λ

λ + μ
+ μ

λ + μ
= 1.

Thus, ∥∥ f + g
∥∥

Φ,v
� (λ + μ)1/p .

This inequality holds for all λ, μ, satisfying the conditions λ �
∥∥ f ∥∥p

Φ,v
, μ �∥∥g∥∥p

Φ,v
. Therefore, estimate (57) is valid.

2. Let us check the properties of quasi-norm.
For c = 0 it is obvious that Jλ (c f ) = Jλ (0) = 0, ∀λ > 0, so that

∥∥c f ∥∥
Φ,v

= inf {λ > 0 : Jλ (c f ) � 1} = 0 = |c| ∥∥ f ∥∥
Φ,v

.
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For c �= 0 we have,

∥∥c f ∥∥
Φ,v

= inf {λ > 0 : Jλ (c f ) � 1} = inf
{
λ > 0 : Jλ/|c| ( f ) � 1

}
= inf

{|c| μ > 0 : Jμ ( f ) � 1
} = |c| ∥∥ f ∥∥

Φ,v
.

Thus, we have
∥∥c f ∥∥

Φ,v
= |c| ∥∥ f ∥∥

Φ,v
for all ∈ R.

Moreover, it is evident that f = 0 ⇒ ∥∥ f ∥∥
Φ,v

= 0. Let us show the inverse. Let∥∥ f ∥∥
Φ,v

= 0. Then,

∥∥ f ∥∥
Φ,v

= inf {λ > 0 : Jλ ( f ) � 1} = 0 ⇒ Jλ ( f ) � 1,∀λ > 0. (73)

Let us suppose that f is not equivalent to zero. Then,

∃ε > 0, E ⊂ R+ : mesE > 0; | f (x)| � ε, x ∈ E .

It means that for every λ > 0

Jλ ( f ) �
∫

E

Φ
(
λ−1 | f (x)|) v (x) dx � Φ

(
λ−1ε

) ∫

E

v (x) dx . (74)

We know that v (x) > 0 almost everywhere, and mesE > 0. Then,
∫
E

v (x) dx >

0. Moreover, Φ
(
λ−1ε

) ↑ ∞ (λ ↓ 0). Thus, the right-hand side in (74) tends to +∞
if λ ↓ 0, that prevents to (73). Therefore, the above assumption fails, that is f = 0
almost everywhere on R+. These assertions together with triangle inequality (57)
show that the quantity

∥∥ f ∥∥
Φ,v

has all properties of quasi-norm (norm if p = 1).
3. Let us prove the property of monotonicity for quasi-norm. The increasing of

function Φ ∈ Θ implies that

| f | � g ⇒ Jλ ( f ) � Jλ (g) , ∀λ > 0.

We have inequality Jλ (g) � 1 whenλ �
∥∥g∥∥

Φ,v
, g ∈ LΦ,v . Then,

Jλ ( f ) � 1, ∀λ �
∥∥g∥∥

Φ,v
⇒ ∥∥ f ∥∥

Φ,v
�
∥∥g∥∥

Φ,v
. (75)

4. Now, we prove the Fatou property. Let fn ∈ M+, fn ↑ f . Function Φ ∈ Θ is
increasing and left continuous, therefore Φ

(
λ−1 | fn (x)|) ↑ Φ

(
λ−1 | f (x)|) almost

everywhere. We can apply B. Levy monotone convergence theorem for every λ > 0:

Jλ ( fn) =
∫

R+

Φ
(
λ−1 | fn (x)|)v (x) dx ↑

∫

R+

Φ
(
λ−1 | f (x)|)v (x) dx = Jλ ( f ) .
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(this conclusion is valid as well in the case Jλ ( f ) = ∞). Then,

Jλ ( fn) � Jλ ( f ) , n ∈ N ⇒ ∥∥ fn∥∥Φ,v
�
∥∥ f ∥∥

Φ,v
, n ∈ N .

Denote
B f = sup

n∈N

∥∥ fn∥∥Φ,v
= lim

n→∞
∥∥ fn∥∥Φ,v

Let us show that B f = ∥∥ f ∥∥
Φ,v

. It is clear that B f �
∥∥ f ∥∥

Φ,v
. Suppose that B f <∥∥ f ∥∥

Φ,v
. For any λ ∈

(
B f ,

∥∥ f ∥∥
Φ,v

)
we have

λ <
∥∥ f ∥∥

Φ,v
= inf

{
μ > 0 : Jμ ( f ) � 1

}⇒ Jλ ( f ) > 1.

At the same time, for every n ∈ N

λ >
∥∥ fn∥∥Φ,v

⇒ Jλ ( fn) � 1.

Thus,
Jλ ( f ) = lim

n→∞ Jλ ( fn) � 1.

This contradiction shows that the above assumption was wrong. Thus, B f =∥∥ f ∥∥
Φ,v

.

The following result is useful by the calculation of the norm of operator over
Orlicz space LΦ,v .

Lemma 4 Let the condition (5) be fulfilled. Then, the following equivalence takes
place for f ∈ M,

∥∥ f ∥∥
Φ,v

� 1 ⇔ J1 ( f ) =
∞∫

0

Φ (| f (x)|)v (x) dx � 1. (76)

Proof Obviously,
J1 ( f ) � 1 ⇒ ∥∥ f ∥∥

Φ,v
� 1. (77)

From the other side, we have

J1 ( f ) = lim
λ↓1

Jλ ( f ) . (78)



52 M. L. Goldman

Indeed, λ ↓ 1 ⇒ Φ
(
λ−1 | f (x)|) ↑ Φ (| f (x)|) almost everywhere because of

increasing and left-continuity of function Φ ∈ Θ . Then, by B. Levy monotone con-
vergence theorem

∞∫

0

Φ (| f (x)|)v (x) dx = lim
λ↓1

∞∫

0

Φ
(
λ−1 | f (x)|)v (x) dx,

which gives (78). Consequently, if J1 ( f ) > 1, we can find λ0 > 1, such that
Jλ0 ( f ) > 1. Then, Jλ ( f ) � 1 ⇒ λ > λ0 (because of decreasing of Jλ ( f ) by λ).
Therefore, ∥∥ f ∥∥

Φ,v
= inf {λ > 0 : Jλ ( f ) � 1} � λ0 > 1.

Finally,
J1 ( f ) > 1 ⇒ ∥∥ f ∥∥

Φ,v
> 1.

Together with (77), it implies the equivalence (76).

For the completeness, we formulate the results in the case of failure of the condi-
tions (11), namely when

t−1
0 t∞ < ∞ ⇔ 0 < t0 � t∞ < ∞. (79)

Lemma 5 In the conditions (5) the following estimates hold for function f ∈ M,

t0
∥∥ f ∥∥

Φ,v
�
∥∥ f ∥∥L∞

; ∥∥ f ∥∥L∞
� t∞

∥∥ f ∥∥
Φ,v

. (80)

Proof Let t0 > 0,
∥∥ f ∥∥L∞

< ∞. Then, we have for any λ � t−1
0

∥∥ f ∥∥L∞
that

| f (x)| �
∥∥ f ∥∥

L∞
⇒ Φ

(
λ−1 | f (x)|) � Φ

(
λ−1
∥∥ f ∥∥L∞

)
= 0,

almost everywhere by the property (4). Therefore, λ � t−1
0

∥∥ f ∥∥L∞
⇒ Jλ ( f ) = 0,

that is ∥∥ f ∥∥
Φ,v

= inf {λ > 0 : Jλ ( f ) � 1} � t−1
0

∥∥ f ∥∥L∞
.

It gives the first estimate in (80). Further, let t∞ < ∞,
∥∥ f ∥∥

Φ,v
< ∞. For any λ �∥∥ f ∥∥

Φ,v
we have Jλ ( f ) < ∞. Then, by analogy with the proof of (29), and (30) we

obtain that Φ
(
λ−1 | f (x)|) < ∞ almost everywhere. Thus, by (4) we conclude that{

x ∈ R+ : λ−1 | f (x)| > t∞
}
is set of measure zero. It means that λ−1 | f (x)| � t∞

almost everywhere, and

Jλ ( f ) < ∞ ⇒ ∥∥ f ∥∥L∞
� λt∞. (81)

It gives the second estimate in (80).
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Corollary 3 Let the conditions (5) and (79) be fulfilled. Then the two-sided estimate
takes place for every function f ∈ M

t0
∥∥ f ∥∥

Φ,v
�
∥∥ f ∥∥L∞

� t∞
∥∥ f ∥∥

Φ,v
, (82)

showing that LΦ,v = L∞ with the equivalence of the norms. Here L∞ = L∞ (R+)

is the space of all essentially bounded functions.

The above corollary shows that we lose the specific of Orlicz spaces in its condi-
tions.

Nevertheless, we formulate in this case the answer on the above posed question.

Lemma 6 Let the conditions (5) and (79) be fulfilled, and f1 ∈ M, f2 ∈ LΦ,v . If for
every λ >

∥∥ f2∥∥Φ,v
we have Jλ ( f1) < ∞, then f1 ∈ LΦ,v , and

∥∥ f1∥∥Φ,v
� t−1

0 t∞
∥∥ f2∥∥Φ,v

. (83)

Proof We have Jλ ( f1) < ∞ for every λ >
∥∥ f2∥∥Φ,v

so that we obtain inequality∥∥ f1∥∥L∞
� t∞λ similarly as it was made in (81). Therefore,

∥∥ f1∥∥L∞
� t∞

∥∥ f2∥∥Φ,v
.

Together with the first estimate in (80), it gives (83).

2 Discrete Weighted Orlicz Spaces

2.1. Here, we consider the discrete variants of Orlicz spaces. For it, we assume that

Φ ∈ Θ; β = {βm} , βm ∈ R+, m ∈ Z = {0,±1,±2, ...} . (84)

Denote
lΦ,β =

{
α = {αm} , αm ∈ R : ∥∥α∥∥lΦ,β

< ∞
}

,

where

∥∥α∥∥lΦ,β
:= inf {λ > 0 : jλ (α) � 1} , jλ (α) =

∑
m

Φ
(
λ−1 |αm |)βm . (85)

Let us formulate some discrete analogues of the results of Sect. 1. An analogue
of Theorem 1 is as follows.

Theorem 3 Let the conditions (84) be fulfilled; let c ∈ R+, and if c ∈ (0, 1), then
t0 = 0; t∞ = ∞ in (1), (2); if c ∈ (1,∞) the (11) is fulfilled. Let d(1) = 1; d(c) is
determined by (10), and (12) for c �= 1, moreover, for c ∈ (1,∞) we assume that
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Φ ∈ Θc. Let the following estimate holds for sequences α = {αm}, γ = {γm}, where
γ ∈ lΦ,v:

jλ (α) � cjλ (γ) , λ � d (c)
∥∥γ∥∥lΦ,β

. (86)

Then, α ∈ lΦ,v , and the inequality holds

∥∥α∥∥lΦ,β
� d (c)

∥∥γ∥∥lΦ,β
(87)

Corollary 4 Let the conditions (84) and (11) be fulfilled, let 0 < c1 � c2 < ∞,

andα = {αm} , γ = {γm}. Moreover, if c0 = min
{
c−1
1 , c2

} ∈ (0, 1) , then we require
t0 = 0; t∞ = ∞; if c = max

{
c−1
1 , c2

}
> 1, then we require Φ ∈ Θc. Let

c1 jλ (γ) � jλ (α) � c2 jλ (γ) , (88)

for every λ > 0. Then the following estimates hold

d1
∥∥γ∥∥lΦ,β

�
∥∥α∥∥lΦ,β

� d2
∥∥γ∥∥lΦ,β

, (89)

with d1 = d
(
c−1
1

)−1
, d2 = d (c2), see (10), (12).

Now, we formulate an analogue of Theorem 2.

Theorem 4 Let the conditions (21) and (11) be fulfilled, and Φ be p-convex on
[t0, t∞) for p ∈ (0, 1]. Then the following conclusions hold.

(1) Triangle inequality takes place in lΦ,v . Namely, ifα = {αm}, γ = {γm};α, γ ∈
lΦ,β , then α + γ ∈ lΦ,β , and

∥∥α + γ
∥∥
lΦ,β

�
(∥∥α∥∥plΦ,β

+ ∥∥β∥∥plΦ,β

)1/p
. (90)

(2) The quantity
∥∥α∥∥lΦ,β

is monotone quasi-norm (norm for p = 1):

|αm | � γm, m ∈ Z; γ ∈ lΦ,β ⇒ α ∈ lΦ,β,
∥∥α∥∥lΦ,β

�
∥∥γ∥∥lΦ,β

,

that possess Fatou property: let αn = {αn
m

}
, γ = {γm}, n ∈ N, then

0 � αn
m ↑ γm (n ↑ ∞) , m ∈ Z ⇒ ∥∥γ∥∥lΦ,β

= lim
n→∞

∥∥αn
∥∥
lΦ,β

.

Conclusion. In the conditions of Theorem 4. lΦ,β forms discrete ideal quasi-
Banach space (Banach space for p = 1; particularly, when Φ Young function is)
that possesses Fatou property.
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Lemma 7 Let the condition (84) be fulfilled. Then the following equivalence takes
place: ∥∥α∥∥

lΦ,β
� 1 ⇔ j1 (α) =

∑
m

Φ (|αm |)βm � 1.

2.2. To establish these discrete analogues of the results of Sect. 1, we can introduce
the sequence {μm} such that

μm < μm+1; R+ = ∪
m

Δm; Δm = [μm,μm+1) . (91)

We define the weight function v ∈ M , v > 0 satisfying the conditions

∫

Δm

vdt = βm . (92)

Then we restrict the considerations of Sect. 1 on the set of step-functions

L̃Φ,v =
{
f ∈ LΦ,v : f =

∑
m

αmχΔm , αm ∈ R

}
, (93)

where χΔm is the characteristic function of interval Δm . For such functions, we have

Jλ ( f ) = jλ (α) ; ∥∥ f ∥∥
Φ,v

= ∥∥α∥∥lΦ,β
, α = {αm} . (94)

Indeed,

Jλ ( f ) =
∞∫

0

Φ
(
λ−1 | f (t)|)v (t) dt =

∑
m

∫

Δm

. . . =

=
∑
m

Φ
(
λ−1 |αm |)

∫

Δm

vdt =
∑
m

Φ
(
λ−1 |αm |)βm = jλ (α) .

Now, all above-mentioned discrete formulas are the partial cases of corresponding
formulas of Sect. 1 applied to step-functions in Orlicz space.

2.3. Here, we describe one special discretization procedure for integral assertions
on the cone Ω of nonnegative decreasing functions in LΦ,v:

Ω ≡ { f ∈ LΦ,v : 0 � f ↓} . (95)
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We assume here that the weight function v satisfies the conditions

0 < V (t) :=
t∫

0

vdτ < ∞, ∀t ∈ R+, (96)

Moreover, we assume that V is strictly increasing, and

V (+∞) = ∞. (97)

(the case V (+∞) < ∞ we will consider separately). For fixed b > 1 we introduce
the sequence {μm} by formulas

μm = V−1 (bm)⇔ V (μm) = bm, m ∈ Z = {0,±1,±2, . . .} , (98)

where V−1 is the inverse function for the continuous increasing function V . Then,
the condition (91) is fulfilled, because

0 < μm ↑; lim
m→−∞ μm = 0; lim

m→+∞ μm = ∞. (99)

Moreover, we introduce the cone of nonnegative step-functions

S ≡ L+
Φ,v ∩ L̃Φ,v =

{
f ∈ LΦ,v : f =

∑
m

γmχΔm ; γm � 0,m ∈ Z

}
; (100)

as well as the cone of nonnegative decreasing step-functions

Ω̃ ≡ Ω ∩ L̃Φ,v =
{
f ∈ Lϕ,v : f =

∑
m

αmχΔm ; 0 � αm ↓
}

. (101)

For f ∈ Ω we determine step-functions f0, f1 ∈ Ω̃:

f0 :=
∑
m

f (μm+1)χΔm , f1 :=
∑
m

f (μm)χΔm . (102)

Then,
f0 � f � f1 ⇒ ∥∥ f0∥∥Φ,v

�
∥∥ f ∥∥

Φ,v
�
∥∥ f1∥∥Φ,v

(103)

(the left hand side inequality in (103) is valid everywhere on R+). We use the equal-
ities (94) for step-functions f0 and f1. Then,

∥∥ f0∥∥Φ,v
= ∥∥{αm+1}

∥∥
lΦ,β

; ∥∥ f1∥∥Φ,v
= ∥∥{αm}∥∥

lΦ,β
, αm := f (μm) . (104)
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Here, according to (92), and (98),

βm =
∫

Δm

vdt = V (μm+1) − V (μm) = bm (b − 1) , m ∈ Z . (105)

Remark 5 By the discretization (98)–(105) the shift-operators

T+ [{γm}] = {γm+1} , T− [{γm}] = {γm−1} (106)

are bounded as operators in lΦ,β .

It is a partial case of the following result.

Lemma 8 Let b > 1; Φ ∈ Θb; β = {βm}; βm ∈ R+, 1 � βm+1/βm � b, m ∈ Z .

Then, ∥∥T+
∥∥ � 1,

∥∥T−
∥∥ � d (b) , (107)

where d (b) is the constant (12) with c = b > 1. IfΦ is convex function, we obtain the
estimates (107) with d (b) = b. In particular, it is true in the case of Young function
Φ; see Example 6.

Proof To obtain estimates (107) let us note that for every λ > 0

jλ ({γm+1}) � jλ ({γm}) ; jλ ({γm−1}) � bjλ ({γm}) . (108)

Indeed,

jλ ({γm+1}) =
∑
m∈Z

ϕ
(
λ−1 |γm+1|

)
βm =

∑
m∈Z

ϕ
(
λ−1 |γm |)βm−1;

jλ ({γm−1}) =
∑
m∈Z

ϕ
(
λ−1 |γm−1|

)
βm =

∑
m∈Z

ϕ
(
λ−1 |γm |)βm+1,

and we obtain (108) by taking into account the conditions on β = {βm}. From (108),
and (86), (87), it follows that

∥∥T+ [{γm}]∥∥lΦ,β
= ∥∥{γm+1}

∥∥
lΦ,β

�
∥∥{γm}∥∥

lΦ,β
,

∥∥T− [{γm}]∥∥lΦ,β
= ∥∥{γm−1}

∥∥
lΦ,β

� d (b)
∥∥{γm}∥∥

lΦ,β
. (109)

If Φ is convex, then d (b) = b. Thus, we come to estimates (107).
Let us apply estimate (107) to the sequence {γm} = {αm+1}. Then, by (104) we

have, ∥∥ f1∥∥Φ,v
= ∥∥{αm}∥∥

lΦ,β
� d (b)

∥∥{αm+1}
∥∥
lΦ,β

= d (b)
∥∥ f0∥∥Φ,v

. (110)

Substituting of (110) into (103) implies the following conclusion.
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Conclusion Let b > 1; Φ ∈ Θb, weight v satisfies the conditions (96), (97). We
realize the discretization procedure (98)–(105) for function f ∈ Ω , see (95). Then,

d (b)−1
∥∥ f1∥∥Φ,v

�
∥∥ f ∥∥

Φ,v
�
∥∥ f1∥∥Φ,v

, (111)

where d (b) was defined in (12) with c = b > 1. Here f1 is the step-function, deter-
mined by, (102), that satisfies(104).

Remark 6 All the results of Sect. 2.1 are carried over the discrete weighted Orlicz
spaces in which the conditionm ∈ Z = {0,±1,±2, . . .} is replaced by the condition
m ∈ Z− = {0,−1,−2, . . .} in the notations (84) and below. Thus, here we consider
the sequences α = {αm} ,β = {βm} , γ = {γm}; m ∈ Z−. The proofs for these dis-
crete formulas are the same as in Sect. 2.2. Only, we have

μ1 = ∞; μm < μm+1, m ∈ Z−;
R+ = ∪

m∈Z−
Δm; Δm = [μm,μm+1) , m ∈ Z−,

(112)

in (91), and assume m ∈ Z− in (92)–(94).

2.4. Now, let us describe the discretization procedure for the cone (95) in the case

0 < V (t) :=
t∫

0

vdτ < ∞, ∀t ∈ R+, V (+∞) :=
∞∫

0

vdτ < ∞. (113)

Without loss of generality, we will assume that

V (1) = 1. (114)

We follow the considerations of Sect. 2.3 with small modifications.
According to (114) we have,

b = V (+∞) > 1. (115)

We introduce the discretizing sequence {μm}by formulas

μ1 = ∞; μm = V−1
(
bm
)
, m ∈ Z− = {0,−1,−2, . . .} . (116)

Here, V−1 is the inverse function for the increasing continuous function V , so
that

V (μm) = bm, m = 1, 0,−1,−2, . . . (117)

http://dx.doi.org/10.1007/978-981-10-6119-6_2
http://dx.doi.org/10.1007/978-981-10-6119-6_2
http://dx.doi.org/10.1007/978-981-10-6119-6_2
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Then,
(0, 1) =

⋃
m�−1

Δm, [1,∞) = Δ0,

R+ =
⋃

m∈Z−
Δm, Δm = [μm,μm+1) .

(118)

We introduce step-functions on R+ connected with f ∈ Ω by the decomposition
(118):

f0 (t) =
∑
m∈Z−

αm+1χΔm (t) ,

f1 (t) =
∑
m∈Z−

αmχΔm (t) , αm = f (μm) .
(119)

Then,
f0 � f � f1 ⇒ ∥∥ f0∥∥Φ,v

�
∥∥ f ∥∥

Φ,v
�
∥∥ f1∥∥Φ,v

. (120)

For step-functions f0 and f1 we have,

∥∥ f0∥∥Φ,v
= ∥∥{αm+1}

∥∥
l̄Φ,β

; ∥∥ f1∥∥Φ,v
= ∥∥{αm}∥∥

l̄Φ,β
. (121)

Here β = {βm}m∈Z− ,

βm =
∫

Δm

vdt = V (μm+1) − V (μm) = bm (b − 1) , m ∈ Z−, (122)

and we denote for γ = {γm}m∈Z−

j̄λ ({γm}) =
∑
m∈Z−

Φ
(
λ−1 |γm |)βm; (123)

∥∥{γm}∥∥
l̄Φ,β

= inf
{
λ > 0 : j̄λ ({γm}) � 1

}
. (124)

Let us mentioned that the notations (121)–(124) are slightly different from ones
in Sects. 2.1–2.3 introduced by (84), (85). Now we deal with one-sided sequences.

Remark 7 The next shift-operator is bounded in l̄Φ,β :

T− [{γm}] = {γm−1}m∈Z− . (125)

This is the partial case of the following result.

Lemma 9 Let b > 1; Φ ∈ Θb, and

β = {βm}m∈Z− , βm > 0, 1 � βm/βm−1 � b, m ∈ Z−.

http://dx.doi.org/10.1007/978-981-10-6119-6_2
http://dx.doi.org/10.1007/978-981-10-6119-6_2
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Then the following estimate holds for the norm of operator T− : l̄Φ,β → l̄Φ,β

∥∥T−
∥∥ � d (b) , (126)

where d (b) is the constant (12) with c = b > 1. IfΦ is p-convex, we obtain estimate
(126) with d (b) = b1/p.

Proof Note that
j̄λ ({γm−1}) � b j̄λ ({γm}) . (127)

Indeed,

j̄λ ({γm−1}) =
∑
m∈Z−

Φ
(
λ−1 |γm−1|

)
βm =

∑
m�−1

Φ
(
λ−1 |γm |)βm+1;

and we obtain (127) by taking into account the conditions on β = {βm}m∈Z− . It
follows from (127), and (86), (87) (see also Remark 6)

∥∥T− [{γm}]∥∥l̄Φ,β
= ∥∥{γm−1}

∥∥
l̄Φ,β

� d (b)
∥∥{γm}∥∥

l̄Φ,β
. (128)

If Φ is p-convex, then d (b) = b1/p. Thus, estimate (126) holds.
We apply (126) to the sequence {γm} = {αm+1}. Then,we have according to (121),

∥∥ f1∥∥Φ,v
= ∥∥{αm}∥∥

l̄Φ,β
� d (b)

∥∥{αm+1}
∥∥
l̄Φ,β

= d (b)
∥∥ f0∥∥Φ,v

. (129)

Substitution of (129) into (120) gives the following conclusion.

Proposition 1 Let us realize the discretization procedure (113)–(129) for function
f ∈ Ω . Then,

d (b)−1
∥∥ f1∥∥Φ,v

�
∥∥ f ∥∥

Φ,v
�
∥∥ f1∥∥Φ,v

, (130)

where d (b) is determined by (12) with c = b > 1. Here, the equality (121) holds for
function f1 (119).

3 Estimates for the Norm of Monotone Operator
on Cone Ω

3.1 The Case of Nondegenerate Weight

We preserve all the notation of Sects. 1 and 2. Let (N,�, η) be the measure-space
with non-negative full σ-finite measure η; let L = L (N,�, η) be the set of all η-
measurable functions u : N → R; L+ = {u ∈ L : u � 0}. Here, we assume point-
wise inequalities to be fulfilled η-almost everywhere. Let Y = Y (N,�, η) ⊂ L be
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an ideal space, that is Banach, or quasi-Banach space of measurable functions with
monotone norm, or quasi-norm

∥∥·∥∥Y so that

u1 ∈ L , |u1| � |u2| , u2 ∈ Y ⇒ u1 ∈ Y,
∥∥u1∥∥Y �

∥∥u2∥∥Y . (131)

General theory of ideal spaces in the normed case was considered in [3], one special
variant of such theory was developed in [11] on the base of concept of Banach
function spaces, that includes Orlicz spaces. Let P : M+ → L+ be the so called
monotone operator, i.e.,

f, h ∈ M+, f � h μ − a.e. ⇒ P f � Ph η − a. e. (132)

We define the norms of restrictions of operator P on the cones Ω (95), and Ω̃

(101): ∥∥P∥∥
Ω→Y = sup

{∥∥P f
∥∥
Y : f ∈ Ω,

∥∥ f ∥∥
Φ,v

� 1
}

. (133)

∥∥P∥∥
Ω̃→Y

= sup
{∥∥P f

∥∥
Y

: f ∈ Ω̃,
∥∥ f ∥∥

Φ,v
� 1
}

. (134)

Lemma 10 Let the conditions (84) be fulfilled, b > 1; Φ ∈ Θb. We assume that
weight function satisfies (96) and (97), and realize the discretization procedure (98)–
(105) for function f ∈ Ω . The following estimates take place

∥∥P∥∥
Ω̃→Y �

∥∥P∥∥
Ω→Y � d (b)

∥∥P∥∥
Ω̃→Y , (135)

with d (b) determined in (12) for c = b > 1.

Proof The left-hand side inequality in (135) is obvious because of embedding Ω̃ ⊂
Ω . From the other side, for every function f ∈ Ω , and for f1 in (102), we have
f � f1 ⇒ P f � P f1, and

∥∥ f1∥∥Φ,v
� d (b)

∥∥ f ∥∥
Φ,v

(see the conclusion after the
proof of Lemma 8). Moreover,

f ∈ Ω ⇒ f1 =
∑
m

f (μm)χΔm ∈ Ω̃.

Consequently, for every f ∈ Ω

∥∥P f
∥∥
Y �

∥∥P f1
∥∥
Y �

∥∥P∥∥
Ω̃→Y

∥∥ f1∥∥Φ,v
� d (b)

∥∥P∥∥
Ω̃→Y

∥∥ f ∥∥
Φ,v

, (136)

and

∥∥P∥∥
Ω→Y = sup

{∥∥P f
∥∥
Y : f ∈ Ω,

∥∥ f ∥∥
Φ,v

� 1
}

� d (b)
∥∥P∥∥

Ω̃→Y .



62 M. L. Goldman

Now, we consider the norm of restriction on the cone S (100):

∥∥P∥∥S→Y = sup
{∥∥P f

∥∥
Y : f ∈ S,

∥∥ f ∥∥
Φ,v

� 1
}

. (137)

Theorem 5 Let the conditions of Lemma 10 be fulfilled. Then, the following two-
sided estimate takes place

c (b)−1
∥∥P∥∥S→Y �

∥∥P∥∥
Ω→Y � d (b)

∥∥P∥∥S→Y , (138)

where d (b) is determined by (12) with c = b > 1, and

c (b) = d (c0 (b)) ; c0 (b) = [b (b − 1)−1] > 1. (139)

Proof Inequality (138) follows by (135), and by the analogous inequality

∥∥P∥∥
Ω̃→Y �

∥∥P∥∥S→Y � c (b)
∥∥P∥∥

Ω̃→Y . (140)

The left inequality in (140) is obvious because of inclusion Ω̃ ⊂ S. Let us prove the
right one.

1. We introduce sup-operator A by formula Aγ = α, where γ = {γm}m∈Z ; α =
{αm}m∈Z , and

αm = sup
k�m

|γk | , m ∈ Z . (141)

Let us prove the boundedness of operator A : lΦ,β → lΦ,β with corresponding esti-
mate ∥∥Aγ

∥∥
lΦ,β

� c (b)
∥∥γ∥∥

lΦ,β
. (142)

We assume that γ ∈ lΦ,β (otherwise is nothing to prove). Let λ �
∥∥γ∥∥

lΦ,β
. Then,

jλ (γ) =
∑
k∈Z

Φ
(
λ−1 |γk |

)
βk � 1. (143)

We have βk = bk (b − 1) ↑ ∞, so that

(143) ⇒ Φ
(
λ−1 |γk |

)→ 0 (k → +∞) . (144)

Let us show that for all non-zero terms of series

jλ (α) =
∑
m∈Z

Φ
(
λ−1αm

)
βm, (145)
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the equalities hold

∃k (m) : m � k (m) < ∞, Φ
(
λ−1αm

) = Φ
(
λ−1

∣∣γk(m)

∣∣) . (146)

For any ε > 0 we have

∃K (ε) ∈ Z : λ−1 |γk | � t0 + ε, ∀k � K (ε) . (147)

Here t0 is determined by (1) for Φ ∈ Θ . Indeed, if (147) fails, there exist ε0 > 0 and
subsequence of numbers k j → +∞ such that

λ−1
∣∣γk j

∣∣ � t0 + ε0, j ∈ N ⇒ Φ
(
λ−1

∣∣γk j

∣∣) � Φ (t0 + ε0) > 0.

This contradicts to (144). Thus, (147) is valid.Moreover, for everym ∈ Z , we have
Φ
(
λ−1αm

) �= 0 ⇒ λ−1αm > t0. Therefore, if we set ε = εm,λ ≡ 2−1
(
λ−1αm − t0

)
> 0

then,
λ−1 |γk | � t0 + ε = 2−1

(
λ−1αm + t0

)
, ∀k � K

(
εm,λ

)
,

according to (147). It means that sup
k�K(εm,λ)

|γk | � 2−1 (αm + t0λ) < αm . Thus,

αm = sup
k�m

|γk | = max
m�k�K(εm,λ)

|γk | .

Therefore, ∃k (m) : m � k (m) � K
(
εm,λ

)
, αm = ∣∣γk(m)

∣∣. It follows from (145)
and (146), that

jλ (α) =
∑
m∈Z

Φ
(
λ−1

∣∣γk(m)

∣∣)βm . (148)

Moreover, all terms in (148) are finite because of (143). From (148), it follows that

jλ (α) �
∑
m∈Z

βm

∑
k�m

Φ
(
λ−1 |γk |

) =
∑
k∈Z

Φ
(
λ−1 |γk |

)∑
m�k

βm .

But, βm = bm+1 − bm , so that

∑
m�k

βm = bk+1 = c0 (b) βk, c0 (b) = b (b − 1)−1 .

As the result, we have estimate

jλ (α) � c0 (b)
∑
k∈Z

Φ
(
λ−1 |γk |

)
βk = c0 (b) jλ (γ) , (149)
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for allλ �
∥∥γ∥∥lϕ,β

. Here,c0 (b) > 1, so that d (c0 (b)) � 1, where d (c) is the constant

(12). It means that inequality (149) is true for λ � d (c0 (b))
∥∥γ∥∥lϕ,β

. By Theorem 3,
it implies the estimate ∥∥α∥∥lϕ,β

� d (c0 (b))
∥∥γ∥∥lϕ,β

,

coinciding with (142).
2. Now, we denote γ = {γm}, γm = f (μm) � 0, m ∈ Z for every f ∈ S. Then,

f = f(γ) :=
∑
m

γmχΔm .

Further, we introduce αm = sup
k�m

γk , m ∈ Z , and for α = {αm} consider function

f(α) =
∑
m

αmχΔm .

Then, f(α) ∈ Ω̃ , see (101), and

f(γ) � f(α),
∥∥ f(α)

∥∥
Φ,v

= ∥∥α∥∥lΦ,β
� c (b)

∥∥γ∥∥lΦ,β
= c (b)

∥∥ f(γ)

∥∥
Φ,v

; (150)

see (142). Therefore, for f = f(γ) ∈ S there exists f(α) ∈ Ω̃ such that

P f � P f(α);
∥∥ f(α)

∥∥
Φ,v

� c (b)
∥∥ f ∥∥

Φ,v
.

Here, f(α) ∈ Ω̃ , and we obtain for every function f ∈ S

∥∥P f
∥∥
Y �

∥∥P f(α)

∥∥
Y �

∥∥P∥∥
Ω̃→Y

∥∥ f(α)

∥∥
Φ,v

� c (b)
∥∥P∥∥

Ω̃→Y

∥∥ f ∥∥
Φ,v

.

This gives the second inequality in (140).

Remark 8 Theorem 5 discovers the main goal of the discretization procedure
(98)–(105). In this theorem, we reduce the estimates for the restriction of monotone
operator on the cone of nonnegative decreasing functions Ω to the estimates of this
operator on some set of nonnegative step-functions. In many cases, such reduction
admits to apply known results for step-functions or their pure discrete analogues for
obtaining needed estimates on the cone Ω . Such approach we realize, for example,
in Sect. 4 in the problem of description of associate norms.
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3.2 The Case of Degenerate Weight

We use all notation and assumptions of Sect. 2.4, see (113)–(130). Introduce the
cones

Ω0 = {α = {αm}m∈Z− : 0 � αm ↓} ; (151)

Ω̃0 =
{
f = fα : fα (t) =

∑
m∈Z−

αmχΔm (t) ; α ∈ Ω0

}
. (152)

Define ∥∥P∥∥
Ω̃0→Y = sup

{∥∥P f
∥∥
Y : f ∈ Ω̃0,

∥∥ f ∥∥
ϕ,v

� 1
}

. (153)

Lemma 11 The following two-sided estimate holds in above notation and assump-
tions: ∥∥P∥∥

Ω̃0→Y �
∥∥P∥∥

Ω→Y � d (b)
∥∥P∥∥

Ω̃0→Y . (154)

Here, d (b) is defined by (12) with c = b > 1.

Proof The left hand side inequality in (154) is evident because of inclusion Ω̃0 ⊂ Ω .
From the other side we have f � f1 ⇒ P f � P f1, for every function f ∈ Ω , and∥∥ f1∥∥Φ,v

� d (b)
∥∥ f ∥∥

Φ,v
. Now, let us take into account that

f ∈ Ω ⇒ f1 (t) =
∑
m∈Z−

f (μm)χΔm (t) ∈ Ω̃0.

Therefore,

∥∥P f
∥∥
Y �

∥∥P f1
∥∥
Y �

∥∥P∥∥
Ω̃0→Y

∥∥ f1∥∥Φ,v
� d (b)

∥∥P∥∥
Ω̃0→Y

∥∥ f ∥∥
Φ,v

. (155)

Consequently,

∥∥P∥∥
Ω→Y = sup

{∥∥P f
∥∥
Y : f ∈ Ω,

∥∥ f ∥∥
Φ,v

� 1
}

� d (b)
∥∥P∥∥

Ω̃0→Y .

Now, we introduce the cone of nonnegative step-functions connected with the par-
ticipation in Sect. 2.4:

S̄ =
{
f = fα : fα (t) =

∑
m∈Z−

αmχΔm (t) ; αm � 0, m ∈ Z−
}

, (156)

and consider the related norm of the restriction

∥∥P∥∥S̄→Y = sup
{∥∥P f

∥∥
Y : f ∈ S̄,

∥∥ f ∥∥
Φ,v

� 1
}

. (157)

http://dx.doi.org/10.1007/978-981-10-6119-6_2
http://dx.doi.org/10.1007/978-981-10-6119-6_2
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Lemma 12 Define

c (b) = d (c0 (b)) ; c0 (b) = [b (b − 1)−1
]

> 1,

see (85). The following two-sided estimate holds in the notation and assumptions of
this Subsection: ∥∥P∥∥

Ω̃0→Y �
∥∥P∥∥

S̄→Y � c (b)
∥∥P∥∥

Ω̃0→Y . (158)

Proof The left hand side inequality in (158) is evident because of inclusion Ω̃0 ⊂ S̄.
Let us prove the right one. We introduce the maximal operator B by the formula
Bγ = α, where α = {αm}m∈Z− ; γ = {γm}m∈Z− , and

αm = max
k∈Z−,k�m

|γk | , m ∈ Z−. (159)

Let us show the boundedness of operator B : l̄Φ,β → l̄Φ,β . Let γ ∈ l̄Φ,β . Then, if
λ �

∥∥γ∥∥
l̄Φ,β

, we have j̄λ (γ) = ∑
k∈Z−

Φ
(
λ−1 |γk |

)
βk � 1 so that Φ

(
λ−1 |γk |

)
< ∞,

k ∈ Z−. Moreover, recall that Φ ∈ Θ is increasing, so that

Φ
(
λ−1αm

) = max
k∈Z−,k�m

Φ
(
λ−1 |γk |

)
�

∑
k∈Z−,k�m

Φ
(
λ−1 |γk |

)
.

Then,

j̄λ (α) =
∑
m∈Z−

Φ
(
λ−1αm

)
βm �

�
∑
m∈Z−

βm

∑
k∈Z−,k�m

Φ
(
λ−1 |γk |

) =
∑
k∈Z−

Φ
(
λ−1 |γk |

)∑
m�k

βm .

We have according to (122), βm = bm+1 − bm , and

∑
m�k

βm = bk+1 = βkc0 (b) . (160)

Consequently,

j̄λ (α) � c0 (b)
∑
k∈Z−

Φ
(
λ−1 |γk |

)
βk = c0 (b) j̄λ (γ) . (161)

This inequality gives

∥∥{αm}∥∥
l̄Φ,β

� d (c0 (b))
∥∥{γm}∥∥

l̄Φ,β
. (162)
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Now, we denote γm = f (μm) � 0, m ∈ Z−, for function f ∈ S̄, so that f = fγ .
Further, we introduce, according to (159), αm = max

k∈Z−,k�m
|γk |, m ∈ Z−. Then, α =

{αm} ∈ Ω0, fα ∈ Ω̃0, and

fα � fγ,
∥∥ fα∥∥Φ,v

= ∥∥α∥∥l̄Φ,β
� c (b)

∥∥γ∥∥l̄Φ,β
= c (b)

∥∥ fγ∥∥Φ,v
. (163)

From (163) it follows that for given f = fγ ∈ S̄ there exits fα ∈ Ω̃0 such that

P f � P fα; ∥∥ fα∥∥Φ,v
� c (b)

∥∥ f ∥∥
Φ,v

.

Consequently, for every f ∈ S̄,

∥∥P f
∥∥
Y �

∥∥P fα
∥∥
Y �

∥∥P∥∥
Ω̃0→Y

∥∥ fα∥∥Φ,v
� c (b)

∥∥P∥∥
Ω̃0→Y

∥∥ f ∥∥
Φ,v

.

This inequality gives the second estimate in (158).

4 The Associate Norm for the Cone of Nonnegative
Decreasing Functions In Weighted Orlicz Space

4.1 The Case of Nondegenerate Weight

We preserve all notations of Sects. 1–3, and apply the results of Sect. 3 in the impor-
tant partial case when ideal space Y coincides with the weighted Lebesgue space
L1 (R+; g), g ∈ M+, and monotone operator P is the identical operator. In this case

∥∥P∥∥
Ω→Y = sup

⎧⎨
⎩

∞∫

0

f gdt : f ∈ Ω; ∥∥ f ∥∥
ϕ,v

� 1

⎫⎬
⎭ =

= sup

⎧⎨
⎩

∞∫

0

f gdt : f ∈ Ω; J1 ( f ) � 1

⎫⎬
⎭ = ∥∥g∥∥′

(164)

(see (133); let us recall the equivalence
∥∥ f ∥∥

Φ,v
� 1 ⇔ J1 ( f ) � 1, see (76)). It

means that the norm
∥∥P∥∥

Ω→Y coincides in this case with the associate norm for the
cone Ω (95), equipped with the functional

J1 ( f ) =
∞∫

0

Φ ( f )vdx .
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We have according to the results of Sect. 3, Theorem 5,

∥∥P∥∥
Ω→Y

∼= ∥∥P∥∥S→Y , (165)

where in our case

∥∥P∥∥S→Y = sup

{∑
m∈Z

αmgm : αm � 0;
∑
m∈Z

Φ (αm) βm � 1

}
, (166)

and

gm =
∫

Δm

gdt � 0; βm =
∫

Δm

vdt = bm (b − 1) , m ∈ Z . (167)

Let us note that the norm (166) coincides with the discrete variant of Orlicz norm,
see [2]:

∥∥{gm}∥∥
l ′Φ,β

= sup

{∑
m∈Z

αm |gm | : αm � 0;
∑
m∈Z

Φ (αm)βm � 1

}
, (168)

Our nearest aim is to describe explicitly the norm (168) in terms of complementary
function Ψ . We restrict ourselves with the case of Young function. Thus, let as in
Example 6, Φ : [0,∞) → [0,∞] be Young function that is,

Φ (t) =
t∫

0

ϕ (τ )dτ , (169)

where ϕ : [0,∞) → [0,∞] is the decreasing and left-continuous function, and
ϕ (0) = 0, ϕ is neither identically zero, nor identically infinity on (0,∞). Let Ψ

be the complementary Young function for Φ, that is

Ψ (t) =
t∫

0

ψ (τ )dτ , t ∈ [0,∞] ;

ψ (τ ) = inf {σ : ϕ (σ) � τ } , τ ∈ [0,∞] .

(170)

Function ψ is left inverse for the left-continuous increasing function ϕ. It has the
same general properties as ϕ, so that Ψ is Young function too. Moreover, ϕ (σ) =
inf {τ : ψ (τ ) � σ}, and Φ in its turn is the complementary Young function for Ψ

(see [11, p. 271]). It is well-known that
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Ψ (t) = sup
s�0

[st − Φ (s)] ;

st � Φ (s) + Ψ (t) , s, t ∈ [0,∞) , (171)

and the equality takes place in (171) if and only if ϕ (s) = t or ψ (t) = s (see [11,
pp. 271–273]).

The next result is well-known in the theory of discrete weighted Orlicz spaces. It
is valid for any positive weight sequence, and plays the crucial role for equivalent
description of the Orlicz norm (168).

Theorem 6 Let Φ, and Ψ be the complementary Young functions, let β = {βm};
βm ∈ R+, m ∈ Z. Then, Orlicz norm (168) is equivalent to the norm

∥∥{β−1
m gm

}∥∥
lΨ,β

. (172)

Namely, ∥∥{β−1
m gm

}∥∥
lΨ,β

�
∥∥{gm}∥∥

l ′Φ,β
� 2
∥∥{β−1

m gm
}∥∥

lΨ,β
. (173)

Corresponding notations of the discrete norms we introduced in (84), (85).
Conclusion. Let us formulate some results of our considerations.
Let Φ, and Ψ be the complementary Young functions, let the conditions (96), and

(97) be fulfilled, and the discretization procedure (98)–(105) be realized. Then, the
following equivalence takes place for the norm (164)

∥∥g∥∥′ ∼= ∥∥{ρm}∥∥
lΨ,β

, β = {βm} , ρm = β−1
m

∫

Δm

|g| dt . (174)

Now, our aim is to present this answer in the integral form.

Theorem 7 LetΦ, andΨ be the complementary Young functions, let the conditions
(96), and (97) be fulfilled. The following two-sided estimate holds for the associate
norm (164) with fixed 0 < a < 1 :

∥∥g∥∥′ ∼= ∥∥ρa (g)
∥∥

Ψ,v
= inf

⎧⎨
⎩λ > 0 :

∞∫

0

Ψ
(
λ−1ρa (g; t))v (t) dt � 1

⎫⎬
⎭ , (175)

ρa (g; t) := V (t)−1

t∫

δa(t)

|g (τ )|dτ , δa (t) := V−1 (aV (t)) , t ∈ R+. (176)

The norms (175) are equivalent for different values a ∈ (0, 1).
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Here and below, we use the notation

A ∼= B ⇔ ∃c = c (a) ∈ [1,∞) : c−1 � A/B � c. (177)

Remark 9 Let us assume additionally that function Φ in Theorem 7 satisfies Δ2-
condition, that is

∃C ∈ (1,∞) : Φ (2t) � CΦ (t) , ∀t ∈ R+. (178)

Then,

∥∥g∥∥′ ∼= ∥∥V (t)−1

t∫

0

|g (τ )|dτ
∥∥

Ψ,v
. (179)

Proof (of Theorem 7) We use the description (174) with b = a−1/2 > 1. Then, a =
b−2, and

ρ′
m � ρa (g; t) = V (t)−1

t∫

V−1(aV (t))

|g| dτ � ρ′′
m, t ∈ Δm, (180)

where

ρ′
m = b−(m+1)

μm∫

μm−1

|g| dτ ; ρ′′
m = b−m

μm+1∫

μm−2

|g| dτ . (181)

Therefore,
F0 (t) � ρa (g; t) � F1 (t) , t ∈ R+, (182)

where F0, F1 are step-functions

F0 (t) =
∑
m

ρ′
mχΔm (t), F1 (t) =

∑
m

ρ′′
mχΔm (t),

and ∥∥F0

∥∥
Ψ,v

= ∥∥{ρ′
m

}∥∥
lΨ,β

,
∥∥F1

∥∥
Ψ,v

= ∥∥{ρ′′
m

}∥∥
lΨ,β

,

so that ∥∥{ρ′
m

}∥∥
lΨ,β

�
∥∥ρa (g)

∥∥
Ψ,v

�
∥∥{ρ′′

m

}∥∥
lΨ,β

. (183)

Thus, needed result (175) follows from the equivalence

∥∥{ρ′
m

}∥∥
lΨ,β

∼= ∥∥{ρ′′
m

}∥∥
lΨ,β

∼= ∥∥{ρm}∥∥
lΨ,β

. (184)

It remains to prove (184). The equalities (174) and (181) show that
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ρ′
m = b−2 (b − 1) ρm−1; (185)

ρ′′
m = ρ′

m−1 + bρ′
m + (b − 1) ρm . (186)

Consequently,

∥∥{ρ′
m

}∥∥
lΨ,β

= b−2 (b − 1)
∥∥{ρm−1}

∥∥
lΨ,β

� b−1 (b − 1)
∥∥{ρm}∥∥

lΨ,β
. (187)

∥∥{ρm}∥∥
lΨ,β

= b2 (b − 1)−1
∥∥{ρ′

m+1

}∥∥
lΨ,β

� b2 (b − 1)−1
∥∥{ρ′

m

}∥∥
lΨ,β

. (188)

In the last inequality, we take into account the boundedness of shift-operators in lΨ,β

with Young function Ψ , and β = {βm} in (105), see Remark 5 and Lemma 8. Thus,

∥∥{ρm−1}
∥∥
lΨ,β

� b
∥∥{ρm}∥∥

lΨ,β
,
∥∥{ρ′

m+1

}∥∥
lΨ,β

�
∥∥{ρ′

m

}∥∥
lΨ,β

.

We have by (186),

(b − 1)
∥∥{ρm}∥∥

lΨ,β
�
∥∥{ρ′′

m

}∥∥
lΨ,β

; (189)

∥∥{ρ′′
m

}∥∥
lΨ,β

�
∥∥{ρ′

m−1

}∥∥
lΨ,β

+ b
∥∥{ρ′

m

}∥∥
lΨ,β

+ (b − 1)
∥∥{ρm}∥∥

lΨ,β
. (190)

Like (187), the estimate is valid

∥∥{ρ′
m−1

}∥∥
lΨ,β

� b
∥∥{ρ′

m

}∥∥
lΨ,β

.

We substitute this estimate into (190), take into account the inequality (187) and
obtain ∥∥{ρ′′

m

}∥∥
lΨ,β

� 3 (b − 1)
∥∥{ρm}∥∥

lΨ,β
.

Consequently,

(b − 1)
∥∥{ρm}∥∥

lΨ,β
�
∥∥{ρ′′

m

}∥∥
lΨ,β

� 3 (b − 1)
∥∥{ρm}∥∥

lΨ,β
. (191)

The estimates (187), (188), and (191) give the needed equivalence (184).
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5 The Case of Degenerated Weight Function

Weuse the results of Sect. 3.2 to estimate the normof restriction ofmonotone operator
on the cone Ω in the case of degenerated weight. According to Lemmas 11, and 12,
the following two-sided estimate holds

∥∥P∥∥
Ω→Y

∼= ∥∥P∥∥S̄→Y . (192)

We apply these results in the special case, when the ideal space Y coincides with
the weighted Lebesgue space L1 (R+; g), g ∈ M+, and the monotone operator P
is identical operator. Recall that in this case

∥∥P∥∥
Ω→Y

coincides with the associate
norm to the cone Ω , equipped with the functional

J1 ( f ) =
∞∫

0

Φ ( f )vdt,

and the following equality holds for
∥∥P∥∥S̄→Y :

∥∥P∥∥S̄→Y = sup

{∑
m∈Z−

αmgm : αm � 0;
∑
m∈Z−

Φ (αm)βm � 1

}
. (193)

Here,

gm =
∫

Δm

gdt � 0; βm =
∫

Δm

vdt = b−m (b − 1) , m ∈ Z−. (194)

Note that the norm (193) coincideswith the discrete variant ofOrlicz norm; see [2]:

∥∥{gm}∥∥
l̄ ′Φ,β

= sup

{∑
m∈Z−

αm |gm | : αm � 0;
∑
m∈Z−

Φ (αm)βm � 1

}
, (195)

Our nearest aim is to give the explicit description of the norm (195) in terms
of complementary Young function. Thus, let Φ be Young function, and Ψ be its
complementary Young function.

We apply corresponding variant of Theorem 6, and obtain the equivalence of
Orlicz norm (195) to the norm

∥∥{ρm}∥∥
l̄Ψ,β

; ρm = β−1
m gm . (196)

Namely, ∥∥{ρm}∥∥
l̄Ψ,β

�
∥∥{gm}∥∥

l̄ ′Φ,β
� 2
∥∥{ρm}∥∥

l̄Ψ,β
. (197)
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Here, ∥∥{ρm}∥∥
l̄Ψ,β

= inf
{
λ > 0 : j̄λ ({ρm}) � 1

} ; (198)

j̄λ ({ρm}) =
∑
m∈Z−

Ψ
(
λ−1 |ρm |)βm; (199)

See the relating notations in (121)–(124).
Conclusions. Let us formulate some results of our considerations.
We introduce the discretizing sequence {μm}m∈Z− by formulas

V (μm) = bm, m ∈ Z− = {0,−1,−2, . . .} (200)

for fixed b > 1, and function V with the properties described in Sect. 2.4.
We set μ1 = ∞, and determine

Δm = [μm,μm+1) , m ∈ Z−; (201)

βm =
∫

Δm

vdt = bm (b − 1) ; ρm = β−1
m

∫

Δm

|g| dt . (202)

Further, we have the equivalence for the associate norm
∥∥g∥∥′

(164)

∥∥g∥∥′ ∼= ∥∥{ρm}∥∥
l̄Ψ,β

, β = {βm} , (203)

where Ψ is the complementary function for Young function Φ.
Now, our aim is to present this description in integral form.

Theorem 8 LetΨ be the complementary function for Young functionΦ, and weight
satisfies the conditions of Sect. 2.4, in particular,

V (+∞) < ∞. (204)

Denote
b = V (+∞)/V (1) > 1, a = b−2. (205)

Then, in the notation (176),

∥∥g∥∥′ ∼= ∥∥ρa (g)χ(0,1)

∥∥
Ψ,v

+
∞∫

V−1(aV (+∞))

|g|dt. (206)

Proof Let us note that

ρ′
m � ρa (g; t)χ(0,1) (t) � ρ′′

m, t ∈ Δm, m ∈ Z−. (207)

http://dx.doi.org/10.1007/978-981-10-6119-6_2
http://dx.doi.org/10.1007/978-981-10-6119-6_2
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Here, ρ′
0 = ρ′′

0 = 0, and for m � −1

ρ′
m = b−(m+1)

μm∫

μm−1

|g| dτ ; ρ′′
m = b−m

μm+1∫

μm−2

|g| dτ . (208)

Then,
F0 (t) � ρa (g; t)χ(0,1) (t) � F1 (t) , t ∈ R+, (209)

where F0, F1 are step-functions

F0 (t) =
∑
m∈Z−

ρ′
mχΔm (t), F1 (t) =

∑
m∈Z−

ρ′′
mχΔm (t),

and ∥∥F0

∥∥
Ψ,v

= ∥∥ {ρ′
m

} ∥∥
l̄Ψ,β

,
∥∥F1

∥∥
Ψ,v

= ∥∥ {ρ′′
m

} ∥∥
l̄Ψ,β

,

so that ∥∥{ρ′
m

}∥∥
l̄Ψ,β

�
∥∥ρa (g)χ(0,1)

∥∥
Ψ,v

�
∥∥{ρ′′

m

}∥∥
l̄Ψ,β

. (210)

Moreover,
{ρm}m∈Z− = {ρ̄m}m∈Z− + {ρ̂m}m∈Z− ,

where
ρ̄m = ρm,m � −1, ρ̄0 = 0; ρ̂m = 0,m � −1, ρ̂0 = ρ0. (211)

Consequently, ∥∥{ρm}∥∥
l̄Ψ,β

∼= ∥∥{ρ̄m}∥∥
l̄Ψ,β

+ ∥∥{ρ̂m}∥∥l̄Ψ,β
. (212)

Introduce

Am (g) = ρm

Ψ −1 (1/βm)
= 1

βmΨ −1 (1/βm)

∫

Δm

|g|dt, m ∈ Z−. (213)

Note that,

∥∥{ρ̂m}∥∥l̄Ψ,β
= inf

{
λ > 0 : Ψ

(
λ−1ρ0

)
β0 � 1

} = A0 (g) =

= 1

(b − 1) Ψ −1
(
(b − 1)−1

)
∞∫

1

|g|dt.
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According to (210),

∥∥{ρ′
m

}∥∥
l̄Ψ,β

+ A−1 (g) �
∥∥ρa (g)χ(0,1)

∥∥
Ψ,v

+ A−1 (g) �

�
∥∥{ρ′′

m

}∥∥
l̄Ψ,β

+ A−1 (g) . (214)

Further, we will prove the equivalence

∥∥{ρ′
m

}∥∥
l̄Ψ,β

+ A−1 (g) ∼= ∥∥{ρ′′
m

}∥∥
l̄Ψ,β

∼= ∥∥{ρ̄m}∥∥
l̄Ψ,β

. (215)

Then, both parts of (214) will be equivalent to
∥∥{ρ̄m}∥∥

l̄Ψ,β
(the second term in the

right hand side of (214) is subordinate to the first one). Consequently, we obtain

∥∥ρa (g)χ(0,1)

∥∥
Ψ,v

+ A−1 (g) ∼= ∥∥{ρ̄m}∥∥
l̄Ψ,β

.

Now, we take into account the estimate (212), and obtain the equivalence

∥∥ρa (g)χ(0,1)

∥∥
Ψ,v

+ A−1 (g) + A0 (g) ∼= ∥∥{ρ̄m}∥∥
l̄Ψ,β

+ A0 (g) ∼= ∥∥{ρm}∥∥
l̄Ψ,β

.

According to (203), this is the needed estimate (206).
Thus, it remains to prove (215). We recall that ρ′

0 = ρ′′
0 = 0. For m � −1 the

equalities (202), and (208) show that

ρ′
m = b−2 (b − 1) ρ̄m−1; (216)

ρ′′
m = ρ′

m−1 + bρ′
m + (b − 1) ρ̄m . (217)

From (216) it follows,

∥∥{ρ′
m

}∥∥
l̄Ψ,β

� b−2 (b − 1)
∥∥{ρ̄m−1}

∥∥
l̄Ψ,β

� b−1 (b − 1)
∥∥{ρ̄m}∥∥

l̄Ψ,β
. (218)

∥∥{ρ̄m}∥∥
l̄Ψ,β

∼= A−1 (g) + ∥∥{ρ′
m

}∥∥
l̄Ψ,β

. (219)

In (218) we take into account the boundedness of shift operator in the space l̄Ψ,β

with Young function Ψ , and β = {βm} from (202); see Lemma 9. Therefore,

∥∥{ρm−1}
∥∥
l̄Ψ,β

� b
∥∥{ρm}∥∥

l̄Ψ,β
.

To prove (219) we use the following chain of equalities (recall that ρ̄0 = ρ′
0 = 0)

j̄λ ({ρ̄m}) =
∑
m∈Z−

Ψ
(
λ−1ρ̄m

)
βm = Ψ

(
λ−1ρ̄−1

)
β−1 +

∑
m�−2

Ψ
(
λ−1ρ̄m

)
βm .
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In the second term we use the equality ρ̄m = b2 (b − 1)−1 ρ′
m+1, m � −2 (see

(216)), so that

∑
m�−2

Ψ
(
λ−1ρ̄m

)
βm =

∑
m�−2

Ψ
(
λ−1b2 (b − 1)−1 ρ′

m+1

)
βm =

=
∑
m�−1

Ψ
(
λ−1b2 (b − 1)−1 ρ′

m

)
βm−1 =

= b−1
∑
m�−1

Ψ
(
λ−1b2 (b − 1)−1 ρ′

m

)
βm =

= b−1
∑
m∈Z−

Ψ
(
λ−1b2 (b − 1)−1 ρ′

m

)
βm .

As the result we obtain,

j̄λ ({ρ̄m}) = Ψ
(
λ−1ρ̄−1

)
β−1 + b−1 j̄(b−1)b−2λ

({
ρ′
m

})
. (220)

Let λ = max {λ1,λ2}, where

λ1 = inf
{
λ > 0 : Ψ

(
λ−1ρ̄−1

)
β−1 � 1 − b−1

} = ρ̄−1/Ψ
−1 (1),

λ2 = inf
{
λ > 0 : j̄(b−1)b−2λ

({
ρ′
m

})
� 1
} = b2 (b − 1)−1

∥∥{ρ′
m

}∥∥
l̄Ψ,β

.

Then, j̄λ ({ρ̄m}) � 1, and (220) implies

∥∥{ρ̄m}∥∥
l̄Ψ,β

� λ = max
{
ρ̄−1/Ψ

−1 (1), b2 (b − 1)−1
∥∥{ρ′

m

}∥∥
l̄Ψ,β

}
. (221)

From the other side, we see by (220), that

j̄λ ({ρ̄m}) � Ψ
(
λ−1ρ̄−1

)
β−1 ⇒

⇒ ∥∥{ρ̄m}∥∥
l̄Ψ,β

� inf
{
λ > 0 : Ψ

(
λ−1ρ̄−1

)
β−1 � 1

} = A−1 (g) .

Together with (218), it gives inequality

∥∥{ρ̄m}∥∥
l̄Ψ,β

� max
{
A−1 (g) , b (b − 1)−1

∥∥{ρ′
m

}∥∥
l̄Ψ,β

}
. (222)

Inequalities (221) and (222) imply the two-sided estimate (219) with constants
depending on b, because ρ̄−1/Ψ

−1 (1) ∼= A−1 (g).
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Now, we will obtain the estimate (215). The equality (217) shows that

∥∥{ρ′′
m

}∥∥
l̄Ψ,β

� (b − 1)
∥∥{ρ̄m}∥∥

l̄Ψ,β
; (223)

∥∥{ρ′′
m

}∥∥
l̄Ψ,β

�
∥∥{ρ′

m−1

}∥∥
l̄Ψ,β

+ b
∥∥{ρ′

m

}∥∥
l̄Ψ,β

+ (b − 1)
∥∥{ρm}∥∥

l̄Ψ,β
. (224)

The first term in (224) is not bigger than the second one because of the estimate
for the norm of shift operator. In its turn, the second term is not bigger than the third
one in view of the estimate (218). As the result we obtain,

∥∥{ρ′′
m

}∥∥
l̄Ψ,β

� 3 (b − 1)
∥∥{ρ̄m}∥∥

l̄Ψ,β
. (225)

Estimates (223) and (225) imply the equivalence

∥∥{ρ′′
m

}∥∥
l̄Ψ,β

∼= ∥∥{ρ̄m}∥∥
l̄Ψ,β

.

Together with (219) it gives (215), thus completing the proof of Theorem.

6 Applications to Weighted Orlicz-Lorentz Classes

Recall the notion of decreasing rearrangement for measurable function. Let M0 =
M0 (R+) be the subspace of functions f : R+ → R, measurable with respect to
Lebesgue measure μ, finite almost everywhere, and such that distribution function
λ f is not identically infinity for f ∈ M0. Here,

λ f (y) = μ {x ∈ R+ : | f (x)| > y} , y ∈ R+. (226)

Then, 0 � λ f ↓, λ f (y) → 0 (y → +∞) . Consider the decreasing rearrange-
ment f ∗ of function f ,

f ∗ (t) = inf
{
y ∈ R+ : λ f (y) � t

}
, t ∈ R+. (227)

We deal with Orlicz-Lorentz class ΛΦ,v related to Orlicz space LΦ,v . For f ∈ M0

we define

Jλ

(
f ∗) =

∞∫

0

Φ
(
λ−1 f ∗ (t)

)
v (t) dt, λ > 0. (228)
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Here v ∈ M+, integration by Lebesguemeasure andweight satisfies the condition
(8).WeightedOrlicz-Lorentz classΛΦ,v consists of functions f ∈ M0 (R+) such that
f ∗ ∈ Lϕ,v . We equip it by the functional

∥∥ f ∗∥∥
Φ,v

= inf
{
λ > 0 : Jλ

(
f ∗) � 1

}
. (229)

To deal with linear space ΛΦ,v , it would be assumed additionally that weight
function V (8) satisfies Δ2-condition, that is

∃C ∈ R+ : V (2t) � CV (t) , ∀t ∈ R+. (230)

It is known that such assumption is necessary for the validity of triangle inequality
in Lorentz space; see for example [14]. Nevertheless, we need not estimate (230) in
our considerations. Anyway, we can consider class ΛΦ,v as the cone in M0, that
consists of functions having finite values of functional (229). Here, we present the
analogous for the results of Sect. 3 concerning estimates of the norms of monotone
operators over Orlicz-Lorentz classes. We recall some descriptions. Let (N,�, η)

be the measure space with nonnegative σ-finite measure η; as L = L (N,�, η) we
denote space of all η-measurable functions u : N → R; L+ = {u ∈ L : u � 0}. Let
Yi = Yi (N,�, η) ⊂ L , i = 1, 2 be ideal spaces; P : M+

0 (R+) → L+ be amonotone
operator related to these spaces by the following condition: for h ∈ Ω

∥∥Ph∥∥
Y2

= sup
{∥∥P f

∥∥
Y1

: f ∈ M+
0 (R+) , f ∗ = h

}
. (231)

We illustrate these conditions by two examples.

Example 7 Let P be identical operator on M+
0 (R+),

Y1 = L1 (R+; g) , g ∈ M+
0 (R+) ; Y2 = L1

(
R+; g∗) .

Then, the equality (231) reflects the well-known extremal property of decreasing
rearrangements; see [11, Sects. 2.3–2.8]):

sup

⎧⎨
⎩

∞∫

0

f gdt : f ∈ M+
0 , f ∗ = h

⎫⎬
⎭ =

∞∫

0

hg∗dt .

Example 8 Let Y be an ideal space, and monotone operator P : M+
0 (R+) → L+

satisfies the condition

∥∥P f
∥∥
Y

�
∥∥P f ∗∥∥

Y
, f ∈ M+

0 (R+) . (232)

Then, the equality (231) holds with Y1 = Y2 = Y.

http://dx.doi.org/10.1007/978-981-10-6119-6_2
http://dx.doi.org/10.1007/978-981-10-6119-6_2
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Indeed, f ∈ M+
0 (R+) ⇒ h := f ∗ ∈ M+

0 (R+), h∗ = h, and

∥∥Ph∥∥Y � sup
{∥∥P f

∥∥
Y : f ∈ M+

0 (R+) , f ∗ = h
}
.

From the other side, for every function f ∈ M+
0 (R+) : f ∗ = h, we have accord-

ing to (232),
∥∥P f

∥∥
Y �

∥∥P f ∗∥∥
Y = ∥∥Ph∥∥Y ⇒ sup

{∥∥P f
∥∥
Y : f ∈ M+

0 (R+) , f ∗ = h
}

�
∥∥Ph∥∥Y .

Remark 10 Example 8 covers, in particular, such operator as

(P f ) (x) =
∞∫

0

k (x, τ ) f (τ ) dτ , x ∈ N, (233)

where k is nonnegative measurable function on N × R+, and k (x, τ ) is decreasing
and right continuous as function of τ ∈ R+. Then, for f ∈ M+

0 (R+), and almost all
x ∈ N, we obtain by the well-known Hardy’s lemma

(P f ) (x) =
∞∫

0

k (x, τ ) f (τ ) dτ �
∞∫

0

k (x, τ ) f ∗ (τ ) dτ = (P f ∗) (x) .

Consequently, inequality (232) holds for every ideal space Y .

Proposition 2 Let P : M+
0 (R+) → L+ be monotone operator and equality (231)

be true. We define Λ+
Φ,v = ΛΦ,v ∩ M+

0 and introduce the norms

∥∥P∥∥
Λ+

Φ,v→Y1
= sup

{∥∥P f
∥∥
Y1

: f ∈ M+
0 (R+) ,

∥∥ f ∗∥∥
Φ,v

� 1
}

; (234)

∥∥P∥∥
Ω→Y2

= sup
{∥∥Ph∥∥Y2 : h ∈ Ω,

∥∥h∥∥
Φ,v

� 1
}

. (235)

Then, these norms coincide to each other:

∥∥P∥∥
Λ+

Φ,v→Y1
= ∥∥P∥∥

Ω→Y2
. (236)

Proof We use the equivalence

f ∈ M+
0 ; ∥∥ f ∗∥∥

Φ,v
� 1 ⇔ h = f ∗ ∈ Ω : ∥∥h∥∥

Φ,v
� 1,

and obtain
∥∥P∥∥

Λ+
Φ,v→Y1

= sup
[
sup
{∥∥P f

∥∥
Y1

: f ∈ M+
0 (R+) , f ∗ = h

}
: h ∈ Ω,

∥∥h∥∥
Φ,v

� 1
]
.

According to (231), the right hand side here coincides with
∥∥P∥∥

Ω→Y2
.
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Remark 11 This Proposition admits us to reduce estimates of the norm∥∥P∥∥
Λ+

Φ,v→Y1
(234) to the estimates presented in Sects. 3 and 4. In particular, by the

help of Example 7, we reduce the associate norm for function g ∈ M on Orlicz–
Lorentz class to the associate norm for its decreasing rearrangement g∗ on the cone
Ω:

∥∥g∥∥′
∗ := sup

⎧⎨
⎩

∞∫

0

f |g| dt : f ∈ M+
0 ; ∥∥ f ∗∥∥

Φ,v
� 1

⎫⎬
⎭ = ∥∥g∗∥∥′

.

Then, Theorem 7 and Remark 9 lead to the following result.

Theorem 9 Let the assumptions of Theorem 7 be fulfilled. Then,

∥∥g∥∥/

∗ ∼= ∥∥ρa (g∗)∥∥
Ψ,v

= inf

⎧⎨
⎩λ > 0 :

∞∫

0

Ψ
(
λ−1ρa

(
g∗; t))v (t) dt � 1

⎫⎬
⎭ , (237)

where ρa was determined in (176). Norms (237) are equivalent for different values
a ∈ (0, 1).

Remark 12 Assume additionally that function Φ satisfies Δ2-condition in
Theorem 9. Then,

∥∥g∥∥/

∗ ∼= ∥∥V (t)−1

t∫

0

g∗ (τ )dτ
∥∥

Ψ,v
. (238)

Remark 13 In (237) and (238), we present some modifications of the result in [18]
that develop preceding results of paper [13]. Note that, in [13] formula (238) was
established under restriction that both functions Φ, and Ψ satisfy Δ2-condition.
Concerning duality problems for Orlicz, Lorentz, and Orlicz-Lorentz spaces see
also [2, 4, 15, 16].

Now, let us describe the modification of the above presented results.

Theorem 10 Let Y ⊂ L be some ideal space with quasi-norm
∥∥·∥∥Y , let P : M+ →

L+ be a monotone operator satisfying the condition: there exists constant C ∈ R+
such that ∥∥P f

∥∥
Y � C

∥∥P f ∗∥∥
Y , f ∈ M+ (R+) . (239)

Then, ∥∥P∥∥
Ω→Y �

∥∥P∥∥
Λ+

Φ,v→Y � C
∥∥P∥∥

Ω→Y . (240)

If C = 1 in (239), then we have equality of the norms in (240).

Corollary 5 In the conditions of Theorem 10 we have

∥∥P∥∥
Λ+

Φ,v→Y
∼= ∥∥P∥∥S→Y .
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For the proof of Theorem 10, let us note that (239) implies

∥∥Ph∥∥Y � sup
{∥∥P f

∥∥
Y : f ∈ M+

0 (R+) , f ∗ = h
}

� C
∥∥Ph∥∥Y . (241)

Indeed, f ∈ M+
0 (R+) ⇒ h := f ∗ ∈ M+

0 (R+) , h∗ = h, and

∥∥Ph∥∥
Y

� sup
{∥∥P f

∥∥
Y

: f ∈ M+
0 (R+) , f ∗ = h

}
.

From the other side, for any function f ∈ M+
0 (R+) : f ∗ = h, we have by (239),

∥∥P f
∥∥
Y � C

∥∥P f ∗∥∥
Y = C

∥∥Ph∥∥Y ⇒
⇒ sup

{∥∥P f
∥∥
Y : f ∈ M+

0 (R+) , f ∗ = h
}

� C
∥∥Ph∥∥Y .

Moreover, (241) implies (240). Indeed, we use equivalence

f ∈ M0;
∥∥ f ∗∥∥

Φ,v
� 1 ⇔ h = f ∗ ∈ Ω : ∥∥h∥∥

Φ,v
� 1,

and obtain

∥∥P∥∥
Λ+

Φ,v→Y =sup
[
sup
{∥∥P f

∥∥
Y : f ∈ M+

0 (R+) , f ∗ = h
}

: h ∈ Ω,
∥∥h∥∥

Φ,v
� 1
]
.

Here, according to (241), the right hand side is estimated from below by

sup
[∥∥Ph∥∥Y : h ∈ Ω,

∥∥h∥∥
Φ,v

� 1
]

= ∥∥P∥∥
Ω→Y ,

and, in addition, from above by the same value multiplied by C.

Example 9 Theorem 10 covers the case of Hardy–Littlewood maximal operator M :
M+ (R+) → M+ (R+), where

(M f ) (x) = sup

⎧⎨
⎩|Δ|−1

∫

Δ

f (τ ) dτ : Δ ⊂ R+; x ∈ Δ

⎫⎬
⎭ ,

and Y = Y (R+) is rearrangement invariant space (shortly: RIS). Indeed,
by Luxemburg representation theorem (see [11, Chap. 2, Theorem 4.10]), for every
RIS Y there exists unique RIS Ỹ = Ỹ (R+):

∥∥g∥∥Y = ∥∥g∗∥∥
Ỹ , g ∈ M (R+) .
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Note that,

(
M f ∗)∗ (t) = M f ∗(t) = t−1

t∫

0

f ∗ (τ )dτ , t ∈ R+.

Then,
∥∥M f

∥∥
Y = ∥∥(M f )∗

∥∥
Ỹ
,
∥∥M f ∗∥∥

Y = ∥∥M f ∗∥∥
Ỹ
.

It is known that ∃C ∈ R+: (M f )∗ (x) � C (M f ∗) (x); see [11, Chap. 2]. Conse-
quently, ∥∥M f

∥∥
Y = ∥∥(M f )∗

∥∥
Ỹ

� C
∥∥M f ∗∥∥

Ỹ
= C

∥∥M f ∗∥∥
Y .

This inequality coincides with the estimate (239) for operator P = M. Therefore,
Theorem 10 is applicable to this operator, and we come to equivalences

∥∥M∥∥
Λ+

Φ,v→Y
∼= ∥∥M∥∥

Ω→Y
∼= ∥∥M∥∥S→Y .
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