Order Sharp Estimates for Monotone
Operators on Orlicz-Lorentz Classes

Mikhail L. Goldman

Abstract We consider the monotone operator P, which maps Orlicz-Lorentz class
Agp,, into some ideal space Y = Y (R,). Orlicz-Lorentz class is determined as
the cone of Lebesgue-measurable functions on R, = (0, co) having the decreas-
ing rearrangements that belong to weighted Orlicz space Lg , under some general
assumptions concerning properties of functions @ and v. We prove the reduction
theorems allowing reducing the estimates of the norm of operator P : Ag, — Y to
the estimates for its restriction on some cone of nonnegative step-functions in L ,.
Application of these results to identical operator mapping Ag , into the weighted
Lebesgue space Y = L (R4 ; g) gives the sharp description of the associate space
for A . The main results of this paper were announced in [20]. They develop the
results of our paper [19] related to the case of N-functions.
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1 Some Properties of General Weighted Orlicz Spaces

This section contains the description of needed general properties of weighted Orlicz
spaces. Some of them (not all) are presented in different forms in the literature; see
for example the books of Krasnoselskii and Rutickii [1], Maligranda [2], Krein
et al. [3], and Bennett and Sharpley [11].

Definition 1 We denote as ® a class of functions @ : [0, c0) — [0, co] with
the following properties: @ (0) = 0; @ is increasing and left continuous on R,
@ (+00) = 0o; @ is neither identically zero nor identically infinite on R .
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For @ € ® we introduce
to =supfr €[0,00): @ () =0}; (D
to =inf{t € Ry : @ (t) = 00} 2)
(too = 00 is assumed if @ (1) < 0o, t € Ry). Then,
10 € [0,00); I € (0,00]; 1o < foo, 3)
D()=0, tel0,1], DPI)=00, >ty 4)

(the last in the case 7o, < 00).
Everywhere below we assume that

®ed, veM, v>0 almosteverywherein R,. 5)

Here, M = M (R,) is the set of all Lebesgue-measurable functions on R. For
A >0, f € M we denote

o0

() = / ® (A 1f ())v () dor, ©)

0
[ 7]y, =inf A>0: 00 () <1). (7)

Orlicz space Lg , is defined as the set of functions f € M : Hf”(m < 00.

Note that general concept of Orlicz—Lorentz spaces was developed by Kaminska
and Raynaud [12]. In this article there is a general definition of Orlicz-Lorentz spaces,
even with two weights, generated by an increasing function @. The necessary and
sufficient conditions are discussed there for the Minkowski functional to be a norm,
quasi-norm or the space to be linear.

The goal of this Section is to describe some needed general properties of Orlicz
spaces Lg ,. In particular, we would like to answer the following question. Let
ce Ry fieM, f, € Ly, Whatare the conditionson @ € @ such that the estimate

D) <ch(f), A>d|f],, (8)

implies that f; € Ly ,, and
|ills., <dl22ls, ©

with some constant d = d (¢) € R, not depending of fi, f>.
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Remark 1 Let @ € ®, c =d = 1 in the estimate (8). Then (9) is valid withd = 1.
Indeed, we have J) (f2) <1 for every A > || b2 ||q> ,» so that (8) = Jy (f1) < 1.

Therefore, A > | f1], ,- Thus, (9) follows withd = 1. Sowehaved = d (1) = 1 in
(8), (9). ’

Our nearest considerations will be devoted to the justification of this estimate for
c € (0, 1), which makes possible to obtain (9) with some d € (0, 1). To consider the
case ¢ € (1, co) we need some additional conditions on function @ € ®.

For ¢ € (0, 1) we assume that 7y = 0; to, = 00 in (1), and in (2). Let us denote

dc)=inf{d € (0,1]: & (dt) > cP (t), t € (0,00)}, ce€(0,1). (10)
For ¢ € (1, 00) we assume that

ot~ =0. (11)

o0

It means that at least one of the conditions 7y = 0; 7o, = o0 is fulfilled. We denote
by

d()=inf{d>1: ®dt)Z2cP (), 1 € (to,dfltoo)}, ce(l,o0) (12)
(under assumption (11), we have ty < d~'t., for any d > 1). It is clear that
ce(0,11=d(c) €[0,1]; ce(l,00)=d(c)e[l,ox].
For ¢ € (1, co) we denote by
O.={P eB: d() < oo}. (13)
Theorem 1 Let @ and v to satisfy the conditions (5), and c € Ry. If c € (0, 1) we
require that ty = 0; too = 00 in (1), (2); if ¢ € (1, 00) then (11), and the condition

@ € O, have to be fulfilled. Let d(1) = 1, and d(c) being determined by (10), (12)
for ¢ # 1. Then the inequality,

D) <en(fh), A>d© | f],, (14)

for functions f; € M, f, € Ly, implies

fieLloy, [fillg, <d@|rls, (15)

Corollary 1 Let 0 < ¢ < ¢ < 00; and the conditions (5) and (11) be fulfilled.
Moreover, if ¢y = min {cl_l, cz} € (0, 1), we require that t) = 0; to, = 00, if ¢ =
max {cfl, cz} > 1, then @ € O, is assumed. If

() <alx(fi) Sy (f2), (16)
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for every A > 0, then

fi€Lloy & fr€ Loy difi ||4,’U < ||f2||¢,,v < fi ||¢,v, (17)

where »
di=d(c;") ., da=d(c). (18)

see (10), (12).

We need some lemmas for the proof of Theorem 1.
Let f € Ly, f # 0. For ¢ € R, we define

Ap@©=(A>0: chh(f)<1). (19)

It follows from (6), and from the properties of @ € @ that J (f) decreases, and
it is right continuous as function of A. Therefore,

A @ #D= As () =[A(),0), As(c)=inf Ay (c). (20)

We have for ¢ € (0, 1]
A @D A (M) =0>0: O <Y=[|f],, ). @D

sothat A ¢ (c) # #. The following lemma gives more general nonempty — conditions
for Ay (c).

Lemma 1 Let the conditions (5) be fulfilled, let f € Lg ., f # 0. Then, the follow-
ing conclusions hold:

(1) if @ (+0) =0, then Ay (c) # ¥ for every c € R;
(2) if @ (+0) > O, then

- 4-1

c> | @ (+0) / vdx = As(c) =9, (22)
E(f)
- .|
c< | D HO0 / vdx = As(c) #9, (23)
E(f)

where
E(f)={x € Ry :0 < |f(x)] <oo}.
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Remark 2 1In the conditions of Lemma 1 we have,

0< BN <L Ae[[f]pp00). AHLOD. (24)
Therefore, the following limit exists

OgJoo(f):)\ETOOJ)\(f)gL (25)

In the proof of this lemma we particularly establish that

0< Joo (f) =  (+0) / vdx < 1. 26)
E(f)

Moreover, we will show that i (E (f)) = oo, and

D (+0) > 0= 0 < / vdx < @ (+0)", 27)
E(f)

because v > 0 almost everywhere.

Proof (of Lemma 1)
1. Denote

Eg(f)={xeRi: [f()I=0}, Ex(f)={xe€Ry: |f(x)|=o00}.

Then,
Ry =Ey(HUE(fH)UEx(f). (28)

For \ € [”f”(p’u, oo) we have,

o0

I (f) :=/¢> (A @) 0 dx < 1. (29)

0
It means that almost everywhere
DA f)v@x) <co=® (A f)]) <oo=|f(x)] <oo.  (30)
In the first implication, we take into account that v (x) > 0 almost everywhere,

and in the second one, we use the condition @ (+00) = co. From (30), it follows
that



42 M. L. Goldman

p(Es (f)) =0. @31
Moreover, f # 0= u(Ey (f)) < oo.
From here, and from (28) we see that  (E (f)) = 00, and

I(f) = / ® (A If(x)l)v(x)dx+/CD(A"If(x)I)v(x)dx. (32)
Eo(f) E(f)

For x € Eg(f) we have A™'|f (x)|=0= & (A\™"|f (x)]) =0 (recall that
@ (0) =0).
Therefore,

() = / ® (A1 (v () dox. (33)
E(f)

We see that
-1 -1
Ne[[£]g,00) =@ (1 @) v <@ ([£],, 1 ) v e Ly (R,
and A — +o0 implies
0<Af@WI=>0=0 M\ |f@)vE) —> @ (H0)v(x).
Therefore, we have by Lebesgue majored convergence theorem
S (f) = lim 5y (F) = +0) [ vdx.
—+00

E(f)

It proves (26).
2. If @ (+0) = O then, /\lim Jy (f) =0, so that for every ¢ € Ry we can find
— 400

A(c) € Ry, with J, (f) < ™', A > A(c). It means that Ay (c) #0.
3. Now, let @ (4+0) > 0. Note that J) (f) decreases in A\, therefore we have for
every A > 0 by (26) and (22),

cIr(f) 2 cls (f) =cD (+0) / vdx > 1= As(c) =0.
E(f)
By the conditions (23) with A — +o00, we have

Alim cIh(f) =cd (+0) / vdx < 1,
—+00
E(f)
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so that
AA() >0: ch(f) <1, AZA()= Af(c) #9.

Remark 3 Let ¢ € (0, 1] in the conditions of Lemma 1. Then, Af (¢) # @. Indeed,

by (26), 1

@ (4+0) / vdx >1,
E(f)
so that the assertions (23) are fulfilled for ¢ € (0, 1).If ¢ = 1 we also obtain A s (¢) #
# (see Remark 1).
Remark 4 Under assumptions of Lemma 1 let
—1
@ (+0)>0;,c=| @ (+0) / vdx € (1, 00) (34)

E(f)

(see (25) and (26)). Then both variants of the answer are possible. Let us give the
examples.

1. If @ (r) > @ (+0), t € R, then we have E (fy) = E; for function fy = xg
where E C R,,0 < u(E) < o0, and therefore

ey (fo) =c® (A_l)/v(x)dx > c® (—i—O)/v (x)dx = 1.
E

E

It means that Ay, (¢) = ¥.

2.Let30 >0: @ (t) = @ (4+0),t € (0,0).

Then we have A (c) # @ for every bounded function f. Indeed, let | f (x)| < M
almost everywhere. Then, A > M§~! = & ()\’1 | f (x)|) <@ (/\’IM) = @ (40),

cJy (f) < c® (+0) / vdx =1= Ay (c) D (M5!, 00).
E(f)
Let the conditions (5) be fulfilled, and f € Lg ,, f # 0. Denote
A(f;d)=inf{\>0: J,(df) < o0}. (35)

We have
e ld]f]g,00) = h@n <1, (36)

so that
A(fid) <d|f],, (37)
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Lemma 2 Let the conditions (5) be fulfilled, and c € (0, 1); tg =0, too = 00 in
(1), (2). Let d(c) be defined by (10). Then the following estimate holds for function
feleow f#0

ch(f) <h@f), AelA(f;d),00). (38)
with any d > d(c).
Proof We use formula (33). For x € E (f),d > d (c) we have by definition (10)

0< A f)l <oo=cd (N If @) <@ (A ldf (0)]),
so that
ch(f) = / cP (/\71 lf (X)\) v(x)dx < / @ ()\71 ldf (x)l) v(x)dx < Jx(@df).
E(f) E(f)

Corollary 2 From (36)—(38), it follows that \ € [d”f”q),v, oo) =chh(f) < 1,0
that
Ar(0) D [d||f||¢,v, oo) 40, Vd>d(c).

Thus,
A5 @2 [d© | f] g, 00) v

Lemma 3 Let the conditions (5) and (11) be fulfilled, and c € (1, 00), d (c¢) being

defined by (12) and ® € O,. Then, estimate (38) holds for function f € Lg,, f # 0,
with any d > d(c).

Proof For A > 0,d > d (c) we define
Go(f)=Go(f; ) ={x e R : A" [f (0] <o}, (40)
GH=G(f;iN={xeR:tp<A'|fW)| <00}, tw=00; (41
GUH=G(fiAhd)={xeR:to<A"|f (0] <d 1}, too <005 (42)
Go(f) ={x €Ry: |f ()] =00}, loo=00; (43)
Goo (f) =G (fsNd)={x € Ry : N [f ()| >d 't} 1o <00. (44)

Then,
Ry =Go(HUG(fHUG (f). (45)

We have according to (40) and (4),
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xe€Gy(fi= (AN f W) =0= / (A f @) v(x)dx =0. (46)
Go(f)
Further, A\ > A (f; d) implies J) (df) < oco. Therefore, almost everywhere
@ (A Hdf (D)) v(x) <oo= & (A df (x)]) < 0. 47)

Here we take into account that v (x) > 0 almost everywhere. Now, if 7., = oo then
@ (+00) = 00, and if 1o, < oo then @ (t) = 00, t > 1. Therefore, in both cases

x € Goo (f) = @ (A" df (x)]) = oo. (48)
From here, and from (47), it follows that

(G (f)) =0= / & (A f W) v)dx =0. (49)
Goo(f)

Now, (45), (46), and (49) imply
()= / @ (AT f @) v (x)dx. (50)
G(f)

Forx € G (f) wehavet = A7 | f (x)] € (fy, 00), if toc = 00,011 € (19, d™ "1 ]
if 1o < 00. By (12) we have ford > d (¢)

@) <Pdt), te(to,d 'tx). (51)

If 1oc < 00, this inequality is extended onto (fo, d '] by the limiting passage
with t — d~ 't (let us recall that @ is left continuous). Therefore,

c@ (N @) < (A df (0]), xeG(f), (52)

so that,

cn= [ co(Vlirm)vmd < [ @ (xar i) veods <s@n.
G(f) G

This proves estimate (38) .
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Proof (of Theorem 1) In the assumptions of this theorem, Remark 1 exhausts the case
= 1. For function f = f, € Lg,, f> # 0, we can apply Lemma 2 with ¢ € (0, 1),
or Lemma 3 with ¢ € (1, 00). In both cases we obtain (38) for f = f>. It is true in

particular for all A € [d ” N H B0 oo) because of (37). For such values of \, we have
inequality J) (df>) < 1. Therefore, by (14), and (38),

DD el () < h@f) <1 Aeld]f],,. ).

It means that,
Hfluqb,v < d||f2||¢_v, d>d().

Thus, the relations (15) follow.
Example 1 If @ (t) =1°,¢t € [0, 00), € > 0, then
10=0, fo=00, d(c)=c"% ceR,.
Example 2 Let @ (t) = e' — 1,1 € [0, 00). Then,
th=0, teo=00, ¢c>1=d(c)=c.
Example 3 Let® (1) =1In" (t + 1),t € [0, 00),y > 0.Then, ) = 0,7, = 00,d (¢) =

oo for every ¢ > 1. Indeed, if ¢ > 1, the inequality In” (df + 1) > cIn” (r 4+ 1) fails
for every d € R, whent € R, is big enough, because

. In" (dt + 1)
lim [——| =1
t>+oo | In7 (t+1)
Example 4 Let the condition (11) be fulfilled, lete > 0, and @ (¢) t~° 1 on (fy, fo).
Then,

c>1=d() <cl. (53)

Indeed, for every 1 € (o, c™/1)
@ (c7r) = (1) [@ () () ] = () [ 01 ] = e ().

It means that d (¢) < c¢'/=.

Example 5 Let the condition (11) be fulfilled, let p € (0, 1], and @ be p-convex on
[70, 1), that is for «, 5 € (0, 1], o + 37 = 1 the inequality holds

D (at+01)<a’@ @)+ PP (1), t, 7€ [l ). (54)
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If t < oo, then by passage to the limit this inequality is extended on [#y, 7 ]-
Thus, we have,
c>1=d()<cP. (55)

Indeed, (54) implies @ () t~7 1 on [fo, t), and the result of Example 4 is applica-
ble here.

Example 6 (Young function) Let @ : [0, oo) — [0, co] be the so-called Young func-

tion that is,
t

@ (1) =/30(T)dT, (56)

0

where ¢ : [0, 00) — [0, 0] is the decreasing and left-continuous function, and
i (0) =0, ¢ is neither identically zero, nor identically infinity on (0, co). Then,
@ € O, and 1y, t, being introduced for @ by (1) and (2), are the same as their
analogues for . We assume that (11) is satisfied. Function @ is convex on [fy, fo)
because 0 < ¢ 1. Thus, we can apply the conclusions of Example 5 with p = 1. In
particular,c > 1 = d (c) < c.

Theorem 2 Let the conditions (5) and (11) be fulfilled, and @ being p-convex on
[t0, txo) With some p € (0, 1]. Then, the following conclusions hold.

(1) The triangle inequality takes place in Ly ,: if f, g € Le,, then f 4+ g € Lo,
and

1/p
1£+alo, < (1715, +19l5,) " (57
(2) The quantity || f”qm is monotone quasi-norm (norm, if p = 1):

feM, 1f1<gelon=feLow |flo,<lols, 9

that has Fatou property:

foeM. 0< £t £ 1 f],, = tm ], 59)

n—oo

Conclusion. In the conditions of Theorem 2 L ,, forms ideal quasi-Banach space
having Fatou property (Banach space if p = 1, in particular in the case of Young
function @).

Proof (of Theorem 2) 1. Let f, g € Lg,,. Then, we have for all A > || ng’v, o=
lall5...
Do (F)= [ @ (P IF o) v dr < 1 (60)

Ry
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Ju (9) = / @ (P 1g ()] v (x)dx < 1. (61)

R+
Now, almost everywhere on R, (60), and (61) yield,
o (AIf @)+ @ (17 g ()]) < o0, (62)
because v (x) > 0 almost everywhere on R... Further, for ., = oo we denote
E(f)=1{x Ryt |f ()] < o0}, (63)
E(9)=1{xeRy: g < oo}, (64)
and for t,, < 0o we denote
E(f)y={xeR: X7 |f W) <t} (65)
E@)={xeR: X7 g0 < 1o} (66)
In both cases we have according to (62),

® ()\—l/p If (0)]) =00, xe€ R\E (f) = mes (R+\E (f)) =0,

@ (17 |g()]) =00, x € Ry\E (g) = mes (R+\E (9)) =0.

Therefore,
mes (RA\[E (NN E@)]) =0, 67)
T (f) = / @ (AP 0)) v (x) dx, (68)
E(f)NE(9)
T (9) = / @ (7 g (0)]) v (x) dx, (69)
E(f)NE(g)

T (f +9) = / DA+ PIf @) +g@Il)vx)dx.  (70)

E(f)NE(g)
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For @ € © the following inequality holds

O (A+p P If () +g@I) <
<O+ P IfF@OI+O+w P lg@)]). (71)

We define
a= NP+ B= O T

=X F @l =P gl
In this case a” + B7 = 1, and we have for x € E(f) N E(g)
t, 7 €[0,00), too=00; t,T7T€[0,tx], ls < O00.

Therefore, the estimate (54) is applicable for the right-hand side of (71). As the
result,

A+ PIf ) +gmI) <

A —1y H -1/
S5R® AW @) e (g @)

We integrate this inequality over the set E (f) N E (g), and take into account
formulas (68)—(70). Then,

I
Jogpr (f +9) < S (f) + mhl/n (9) - (72)

A
A+ p
From (72), (60), and (61), it follows that

1

Jogprr (f +9) < Nt =

+ 1.

A p
Thus,
If+9le, <O+m'7.

This inequality holds for all A, p, satisfying the conditions A\ > “ f ||i o 1=

H g ”Z) b Therefore, estimate (57) is valid.
2. Let us check the properties of quasi-norm.
For ¢ = 0 it is obvious that J) (cf) = J) (0) = 0, VA > 0, so that

||cf\|¢,v =inf(A>0: Jy(cf) <1} =0=|c| ||f||¢_v.
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For ¢ # 0 we have,

lef|lp, =infiA>0: Ji(cf) <V =inf{A>0: Jy(f) <1}
=inf{lclp>0: J, () <1} =lel|f],,
Thus, we have Hcf”q)m = |c| Hf”q),v for all € R.

Moreover, it is evident that f = 0 = || f || by = 0. Let us show the inverse. Let
7], =0 Then,

[fly,=infA>0: () <S=0=L(f)<LVA>0. (73)
Let us suppose that f is not equivalent to zero. Then,
e >0,ECR,: meskE >0;|f(x)]>e, x€E.

It means that for every A > 0

I (f) >/q>(x1 If @) v (x) dx > cp(xle)/v(x)dx. (74)

E E

We know that v (x) > 0 almost everywhere, and mesE > 0. Then, f v(x)dx >
E

0. Moreover, @ (A~'¢) 1 0o (A | 0). Thus, the right-hand side in (74) tends to +o0
if A | 0, that prevents to (73). Therefore, the above assumption fails, thatis f =0
almost everywhere on R, . These assertions together with triangle inequality (57)
show that the quantity H f || . has all properties of quasi-norm (norm if p = 1).

3. Let us prove the property of monotonicity for quasi-norm. The increasing of
function @ € @ implies that

Ifl<g= L)< (@, YA>0.

We have inequality J), (g) < 1 when\ > ||g}|¢ »9E Lg . Then,

DO <L A= gl = [flo. < l9ls. (75)

4. Now, we prove the Fatou property. Let f, € M., f, 1 f. Function @ € © is
increasing and left continuous, therefore @ (A" [ £, (x)[) * @ (A" | f (x)]) almost
everywhere. We can apply B. Levy monotone convergence theorem for every A > 0:

I =/<1> (A1 Gl)v () dx 1 /qb (A1 @) @) dx = Iy (/).
Ry

Ry
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(this conclusion is valid as well in the case J) (f) = o0). Then,
D) <Dy neN=|flly, <|flg, neN.

Denote
By =suwp || fu],, = lim | fu],,
neN

n—0o0o

Let us show that By = “f”q)‘v. Itis clear that B, < ”f”(p,v_ Suppose that B, <
| f] 4, Forany X e (Bf, f||¢’v) we have

A< | fllp, =inf{u>0: 2, () <1} = () > 1.
At the same time, for every n € N
A> | fall g, = D) < 1.

Thus,
I(f) = HILH(}O I (fw) <L

This contradiction shows that the above assumption was wrong. Thus, B =
1714
The following result is useful by the calculation of the norm of operator over

Orlicz space Lg .

Lemma 4 Let the condition (5) be fulfilled. Then, the following equivalence takes
place for f € M,

1 £p, <1 5 () =/<1> (If v @) dx < 1. (76)
0
Proof Obviously,
hH<t=|fl,, <1 (77

From the other side, we have

Ji (f)=1AiIr111A(f)- (78)
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Indeed, A | 1= @ (A7'[f (X)) * @ (| f (x)]) almost everywhere because of
increasing and left-continuity of function @ € ®. Then, by B. Levy monotone con-
vergence theorem

[e¢]

[easwvemar=tm [ @ (i @)ow s,
0

0

which gives (78). Consequently, if J; (f) > 1, we can find Ay > 1, such that
Jy, (f) > 1. Then, Jy (f) < 1= X > XAy (because of decreasing of Jy (f) by A).
Therefore,

Hf||¢’v =inf(A>0: Jy(f) <1} =X > 1.

Finally,
B =15 [l > 1

Together with (77), it implies the equivalence (76).

For the completeness, we formulate the results in the case of failure of the condi-
tions (11), namely when

to oo < 00 & 0 < 1y < 1o < 00. (79)
Lemma 5 In the conditions (5) the following estimates hold for function f € M,
ol oy <M1 WL, <t Al (80)

Proof Letty > 0,

f||Lx < 00. Then, we have for any A > to_1 || f”Loo that

Fl<fl,. =0 irm)<e (A rl,.) =0

almost everywhere by the property (4). Therefore, A > 1, ! || f “ .= Ih(f)=0,
that is N

|}f||¢,u =inf{A>0: J,(f) <1} < t(;‘]|f||Lx.

It gives the first estimate in (80). Further, let #,, < o0, ‘
|| f || o, We have J) (f) < co. Then, by analogy with the proof of (29), and (30) we

obtain that @ ()\‘1 |f (x)I) < oo almost everywhere. Thus, by (4) we conclude that
{x € Ry : A1 (X)] > 1o} is set of measure zero. It means that A" | f (x)| < oo
almost everywhere, and

f||q>’v < o0o. Forany \ >

D) <o= | f],. < M. @81)

It gives the second estimate in (80).
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Corollary 3 Let the conditions (5) and (79) be fulfilled. Then the two-sided estimate
takes place for every function f € M

o o, <171, <ol o (82)

showing that Ly, = Lo with the equivalence of the norms. Here Lo, = Lo, (R4)
is the space of all essentially bounded functions.

The above corollary shows that we lose the specific of Orlicz spaces in its condi-
tions.
Nevertheless, we formulate in this case the answer on the above posed question.

Lemma 6 Let the conditions (5) and (79) be fulfilled, and f| € M, f, € Lg . If for
every A > H 12 ||¢ , we have Jy (f1) < oo, then f| € Ly ,, and

[illo, <101l £ollg. (83)

so that we obtain inequality
. <teclfollo,

Proof We have J) (f1) < oo for every A > || b

| Al <t
Together with the first estimate in (80), it gives (83).

”tD,v

2 Discrete Weighted Orlicz Spaces

2.1. Here, we consider the discrete variants of Orlicz spaces. For it, we assume that
®ecO; B=1{Bu), BuecRi, meZ=1{0,+1,42,..}.  (84)

Denote
losg = {a ={au}, oy € R: “O‘“zm < oo},

where

lef, =infA>0: jx(@ <1}, @@= &N "loanl)sn. (85
.3

Let us formulate some discrete analogues of the results of Sect. 1. An analogue
of Theorem 1 is as follows.

Theorem 3 Let the conditions (84) be fulfilled; let c € R, and if ¢ € (0, 1), then
to=0;tc =00in (1), (2), ifc € (1,0) the (11) is fulfilled. Let d(1) = 1, d(c) is
determined by (10), and (12) for ¢ # 1, moreover, for ¢ € (1, 00) we assume that
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@ € O,. Let the following estimate holds for sequences o = {a,}, v = {7V}, where
b AS ld),v:
@) <ch). Azd@© |, - (86)

Then, o € lg y, and the inequality holds
la,,, <d@]~],, (87)

Corollary 4 Let the conditions (84) and (11) be fulfilled, let 0 < ¢; < ¢ < 00,
and o = {ay,}, v = {Ym}. Moreover, if co = min {cfl, cz} € (0, 1), then we require
to = 0; o = 00, if ¢ = max {cl_l, cz} > 1, then we require ® € ©,. Let

(M < (@) <y (), (88)
for every A > 0. Then the following estimates hold

di|,,, <lel,, <&, (89)

withdy = d (c;")", dy = d (c2), see (10), (12).
Now, we formulate an analogue of Theorem 2.

Theorem 4 Let the conditions (21) and (11) be fulfilled, and @ be p-convex on
[t0, ts0) for p € (0, 1]. Then the following conclusions hold.

(1) Triangle inequality takes place inlg . Namely, if & = {ap}, v = {vm}; a, v €
lp. g, then o + v € I g, and

1/p
o+l < (lalf,, +1817,) - (90)
(2) The quantity ||oz||lw is monotone quasi-norm (norm for p = 1):
|| < yms meZ; yelps= aclep, Ha”lw <,

that possess Fatou property: let o' = {a’fn}, Y ={Ym}, n € N, then

0< O/'m TAm(ntoo), meZ= ”’Y”lo..a - nlggo ||0/' ||la>.e’1.
Conclusion. In the conditions of Theorem 4. ly g forms discrete ideal quasi-
Banach space (Banach space for p = 1; particularly, when @ Young function is)
that possesses Fatou property.



Order Sharp Estimates for Monotone Operators on Orlicz—Lorentz Classes 55

Lemma 7 Let the condition (84) be fulfilled. Then the following equivalence takes
place:

lal,, <14 i@ =@ (anhf < 1.

2.2. To establish these discrete analogues of the results of Sect. 1, we can introduce
the sequence {yt,,} such that

pn < s R =UAns Ay = [, i) O

We define the weight function v € M, v > 0 satisfying the conditions
/ vdt = f3,. (92)
A”X

Then we restrict the considerations of Sect. I on the set of step-functions

Lo, = {f €Loy: f =D OmXa, Om € R} , (93)

where x »,, is the characteristic function of interval A,,. For such functions, we have
D =i@s [ flg,=lel, . o=} (94)

Indeed,

oo

nin=fentiropnd=3 .-
A

m
0 m

=> o\ |am|)/vdt =2 @ (A awl)Bn = r (@)
m A m

Now, all above-mentioned discrete formulas are the partial cases of corresponding
formulas of Sect. I applied to step-functions in Orlicz space.

2.3. Here, we describe one special discretization procedure for integral assertions
on the cone 2 of nonnegative decreasing functions in L ,:

Q={felo,: 0< [}, (95)
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We assume here that the weight function v satisfies the conditions

t
0< V() :=/vd7‘ <00, VteR,, (96)
0

Moreover, we assume that Vis strictly increasing, and
V (+00) = 0. o7

(the case V (+00) < oo we will consider separately). For fixed b > 1 we introduce
the sequence {y,,} by formulas

=V (D) & V() =b", meZ=1{0,£1,+2,...},  (98)

where V~! is the inverse function for the continuous increasing function V. Then,
the condition (91) is fulfilled, because

0< tim 1 lim u, =0; lim p, = oco. 99)
m——0o0

m—+00
Moreover, we introduce the cone of nonnegative step-functions

S=Lj,NLo, = {f €Loy: [ =D YmXa,: Yn>0.me z}; (100)

m

as well as the cone of nonnegative decreasing step-functions
ézgmiqb,v:[feLw: f£=2 anxa,: 0< oy ¢]. (101)
m

For f € £2 we determine step-functions fy, f| € 2:

for= D f (meD)Xa,.  fii= D f (m)Xa,. (102)

m

Then,
h<sr<h=|fle, <o, <o, (103)

(the left hand side inequality in (103) is valid everywhere on R, ). We use the equal-
ities (94) for step-functions fy and f. Then,

| follo, = Hewmsidl,, 5 Wfillg, = Hand],, o = fGuw). — (104)
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Here, according to (92), and (98),

ﬁm=/vdr=V(um+1)—vwm>=bm(b—1), meZ. (105

A

Remark 5 By the discretization (98)—(105) the shift-operators

+ [{’Ym}] = {’Vm-H} , T- [{’Ym}] = {me—l} (106)

are bounded as operators in /g 3.
It is a partial case of the following result.

Lemma8 Letb > 1;, ® € ®,;, B3 ={Bn}; On € Re, 1 < Bus1/Bn < b, me Z.
Then,
7] <1 | <de, (107)

where d (b) is the constant (12) withc = b > 1. If @ is convex function, we obtain the
estimates (107) with d (b) = b. In particular, it is true in the case of Young function
@ see Example 6.

Proof To obtain estimates (107) let us note that for every A > 0

I met) < @D s I Eymat) < bjn {ym)) - (108)

Indeed,

A@m) =D A )8 = D0 (7 ) B

meZ meZ

) =D e N ) B =D 0 (A 1yl) Bt

meZ meZ

and we obtain (108) by taking into account the conditions on § = {3,,}. From (108),
and (86), (87), it follows that

|7 a1, , = 1w}, , < O,
| 7= 1, , = Momidl,, , < d @ [, - (109)
If @ is convex, then d (b) = b. Thus, we come to estimates (107).
Let us apply estimate (107) to the sequence {v,,} = {a;,+1}. Then, by (104) we
have,

[l = ltendll,, <d® lonall,, =d® [ fl,, 10

Substituting of (110) into (103) implies the following conclusion.
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Conclusion Let b > 1; @ € O, weight v satisfies the conditions (96), (97). We
realize the discretization procedure (98)—(105) for function f € 2, see (95). Then,

d® " | Alo, <1 lo, < 16 (111

where d (b) was defined in (12) with ¢ = b > 1. Here f is the step-function, deter-
mined by, (102), that satisfies(104).

Remark 6 All the results of Sect.2.1 are carried over the discrete weighted Orlicz
spaces in which the conditionm € Z = {0, =1, &2, ...} is replaced by the condition
me Z~ ={0,—1, =2, ...} in the notations (84) and below. Thus, here we consider
the sequences o = {a,}, B = {Bn}, v = {ym}; m € Z~. The proofs for these dis-
crete formulas are the same as in Sect.2.2. Only, we have

1 =005y < Pmt1, ME LT

R+ = U Am7 Am = [Mma ,um-&-l) , meZ,

meZ-

(112)

in (91), and assume m € Z~ in (92)—(94).
2.4. Now, let us describe the discretization procedure for the cone (95) in the case

t [ee]
0< V() := / vdT <00, VYteR,, V(400):= / vdT < 00. (113)
0 0

Without loss of generality, we will assume that
V(1) =1. (114)

‘We follow the considerations of Sect. 2.3 with small modifications.
According to (114) we have,

b=V (+o00) > 1. (115)

We introduce the discretizing sequence {y,, } by formulas
p1 =00, py=V'(d"), meZ ={0,-1,-2,...}. (116)
Here, V! is the inverse function for the increasing continuous function V, so

that
V() =0", m=1,0,—1,-2,... (117)


http://dx.doi.org/10.1007/978-981-10-6119-6_2
http://dx.doi.org/10.1007/978-981-10-6119-6_2
http://dx.doi.org/10.1007/978-981-10-6119-6_2
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Then,
©.0)= [J An. [1.00) = 4,
ms (118)
Ry = U Ap, Ap= [,um» Hmt1) -
mezZ-

We introduce step-functions on R, connected with f € £2 by the decomposition
(118):

fO (t) = z Am+1X A, (t) ,

meZ-

(119)
L@ =D amxa, O, aw=f ().
mezZ-
Then,
fost<hi=lhle, <Iflo. < ils. (120)
For step-functions fj and f; we have,
[follo = tamsedlz, 2 [51]s, = [tands, - (121)
Here ﬁ = {/3m}m€Z*’
ﬁm=/vdt=V(um+1)—V(Mm)=bm b-=1, meZ", (122)
Am
and we denote for v = {7y, },,cz-
) =D & (A yl) Bus (123)
mezZ-
[}z, , = inf {A >0 (fmd) < 1} (124)

Let us mentioned that the notations (121)—(124) are slightly different from ones
in Sects. 2.1-2.3 introduced by (84), (85). Now we deal with one-sided sequences.

Remark 7 The next shift-operator is bounded in l_q;,g:

T [{Vm}] = {P)/mfl}mgz— . (125)
This is the partial case of the following result.

Lemma9 Letb > 1; @ € ®), and

ﬂ = {Bm}meZ* ’ ﬂm >0, 1< Bm//Bm—l <b, meZ .


http://dx.doi.org/10.1007/978-981-10-6119-6_2
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Then the following estimate holds for the norm of operator T_ : l_qj,/g 3 8
IT-] <d®, (126)

where d (b) is the constant (12) withc = b > 1. If @ is p-convex, we obtain estimate
(126) with d (b) = b'/?.
Proof Note that B B

Ix ym=—1}) < bjx {ym}) - (127)

Indeed,

A = D @ (A ) = D @ (A ) B

meZ- m<—1

and we obtain (127) by taking into account the conditions on 3 = {G,},,cz-- It
follows from (127), and (86), (87) (see also Remark 6)

|7 t0val1l;, , = [Om-1};, , < ® [, - (128)

If @ is p-convex, then d (b) = b'/P_ Thus, estimate (126) holds.
We apply (126) to the sequence {7,,} = {a,u+1}. Then, we have according to (121),

[ Aillo, = ey, , < d® Haw)l;,, =d® [ folg, (129

Substitution of (129) into (120) gives the following conclusion.

Proposition 1 Let us realize the discretization procedure (113)—(129) for function
f € 82. Then,

ORI PR Fi PR /) P (130)

where d (D) is determined by (12) with c = b > 1. Here, the equality (121) holds for
Sfunction fi (119).

3 Estimates for the Norm of Monotone Operator
on Cone 2

3.1 The Case of Nondegenerate Weight

We preserve all the notation of Sects. 1 and 2. Let (N, 9, ) be the measure-space
with non-negative full o-finite measure 7; let L = L (N, i, i) be the set of all 7-
measurable functions u : N — R; L™ = {u € L : u > 0}. Here, we assume point-
wise inequalities to be fulfilled n-almost everywhere. Let Y = Y (N, i, ) C L be
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an ideal space, that is Banach, or quasi-Banach space of measurable functions with
monotone norm, or quasi-norm H . || y SO that

ur € L, |ul <luzl, up €Y =u €Y, HLHHY ||142Hy (131)
General theory of ideal spaces in the normed case was considered in [3], one special
variant of such theory was developed in [11] on the base of concept of Banach
function spaces, that includes Orlicz spaces. Let P : MT — L™ be the so called
monotone operator, i.e.,

fheM', f<h p—ae = Pf<Ph n—ae. (132)

We define the norms of restrictions of operator P on the cones £2 (95), and Q
(101):

I1Plgny = Sup{||Pf||y fe2. | fly, < } (133)

[Pl =sw{lPsly: e

[ f gy <1} (134)

Lemma 10 Let the conditions (84) be fulfilled, b > 1; @ € ®,. We assume that
weight function satisfies (96) and (97), and realize the discretization procedure (98)—
(105) for function f € $2. The following estimates take place

1Plony <IPlomy <d®[P]gy, (135)
with d (b) determined in (12) forc = b > 1.

Proof The left-hand side inequality in (135) is obvious because of embedding Q2c
£2. From the other side, for every function f € §2, and for f; in (102), we have
f<fi=Pf<Pfl, and H N qu,u <d (b) Hf“(m (see the conclusion after the
proof of Lemma 8). Moreover,

feR=fi= f(mxa, €2

Consequently, for every f € §2

[271y < [PAly <1Ploeylfilo, <d@[Plsoy ] flo,  (136)

and

[Ploy =sup{lPs], : 1 <a® Py



62 M. L. Goldman

Now, we consider the norm of restriction on the cone S (100):

[Pls.y =swp {IPr]y: £ es. [ f],, <1} (137)

Theorem 5 Let the conditions of Lemma 10 be fulfilled. Then, the following two-
sided estimate takes place

O [Py < I Plony <d® [P],. (139)
where d (b) is determined by (12) with ¢ = b > 1, and
c)=d(co®); cob)=[bb-D""]>1 (139)
Proof Inequality (138) follows by (135), and by the analogous inequality
1Pl < 1Plsey < c® | Plonye (140)

The left inequality in (140) is obvious because of inclusion £ C S. Let us prove the
right one.
1. We introduce sup-operator A by formula Ay = a, where v = {Vn},yez; @ =

{am }m627 and

Q= sup ||, meZ. (141)
k>m

Let us prove the boundedness of operator A : Ip 3 — lp g With corresponding esti-
mate

|43l <e® ], (142

We assume that v € [y 5 (otherwise is nothing to prove). Let A > nyH los" Then,

A =D 0 (N ul)se < 1. (143)

kez
We have 3, = b* (b — 1) 1 o0, so that
(143) = @ (A" |[%l) = 0(k > +00). (144)
Let us show that for all non-zero terms of series

@) =D @ (A ap) B, (145)

meZ
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the equalities hold
Jk(m): m <k(m) <oo, &N 'ay) =S N |veml)- (146)
For any € > 0 we have
K@) eZ: Nl <to+e, Vk=K (o). (147)

Here 1) is determined by (1) for @ € @. Indeed, if (147) fails, there exist ¢y > 0 and
subsequence of numbers k; — 00 such that

Mwl=zt0+e. jeN=o A" |w|) =@ +e)>0.
This contradicts to (144). Thus, (147) is valid. Moreover, for every m € Z, we have
@ (A ') #0 = A'ay, > fo. Therefore, if we sete = g, = 27" (A ayy — 19) > 0
then,
Al <to+e=2"" A" +10), k=K (em)).

according to (147). It means that  sup || < 2= (ay, + toN\) < uy. Thus,

K=K (2mr)
Qp = sup [ul = max  |xl.
k>m mgkgK(Em.)\)

Therefore, 3k (m) : m < k(m) < K (5,,1,A), Q= |’yk(m) | It follows from (145)
and (146), that

@ =0 (A vim]) B (148)

meZ

Moreover, all terms in (148) are finite because of (143). From (148), it follows that

N@ <D Bu D @M ul) =D @ (A ) D6

meZ k>m keZ m<k

But, 53, = b™t! — b™, so that

D b=t =co®) B, cob)=bb-1D".

m<k

As the result, we have estimate

(@) <o) D@ (X ) Be = co (b) jr (), (149)
keZ
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forall A > H*yHl ?.Here,co (b) > 1,sothatd (cy (b)) > 1, whered (c) is the constant

(12). It means that inequality (149) is true for A > d (co (b)) |7, - By Theorem 3,
it implies the estimate h
led,, <do®) ],

coinciding with (142).
2. Now, we denote v = {v,}, Ym = f (um) = 0, m € Z for every f € S. Then,

f=Foy =D mxa,
m

Further, we introduce «,,, = sup v, m € Z, and for @« = {«,,} consider function
k>m

fy = z AmXA,-
m

Then, f € 2, see (101), and

for < S Niwollow=lal,, <c® bl =c® ol 150

o0’
see (142). Therefore, for f = f,, € S there exists f(,) € §2 such that
Pf < Pfl; ”f(a)”qb,u <c(b) ||f||q),v'
Here, f(o) € 2, and we obtain for every function f € §

1211y < 1Pfaly < [Plaoylfwls, <c®[Playl s

This gives the second inequality in (140).

Remark 8 Theorem 5 discovers the main goal of the discretization procedure
(98)—(105). In this theorem, we reduce the estimates for the restriction of monotone
operator on the cone of nonnegative decreasing functions £2 to the estimates of this
operator on some set of nonnegative step-functions. In many cases, such reduction
admits to apply known results for step-functions or their pure discrete analogues for
obtaining needed estimates on the cone §2. Such approach we realize, for example,
in Sect.4 in the problem of description of associate norms.
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3.2 The Case of Degenerate Weight

We use all notation and assumptions of Sect.2.4, see (113)—(130). Introduce the
cones

20 = {a ={anlnez : 0< am 1 }; (151)
Q20 = [f =fo: fa)= Z amXa, (1); a € .QO] . (152)
mezZ-
Define i
[Py =sup {17l £ e @0l ], <1} (153)

Lemma 11 The following two-sided estimate holds in above notation and assump-
tions:

[Pl gy < [Plgny <d®[P]g, .y (154)

Here, d (b) is defined by (12) withc = b > 1.

Proof The left hand side inequality in (154) is evident because of inclusion Qo C 2.
From the other side we have f < fj; = Pf < Pfj, for every function f € 2, and
|| fi ||q) ) < d (b) || f||¢ e Now, let us take into account that

fe2= = fmxa, ) 2.

meZ~

Therefore,
[271y <[PAlly < 1Pl ylille, <d® [Plg sl fls, 159
Consequently,
[Plgy =sw{IPfly: e fl,, <t} <d®|P4 -

Now, we introduce the cone of nonnegative step-functions connected with the par-
ticipation in Sect.2.4:

SZ{foa: fa@ =" awxa, (0 o 20, meZ], (156)

meZ-

and consider the related norm of the restriction

[Pls., =sw{[Psl,: £eS |£],, <1} (157)


http://dx.doi.org/10.1007/978-981-10-6119-6_2
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Lemma 12 Define
c(by=d(cob): cob)=[bb-17"]>1

see (85). The following two-sided estimate holds in the notation and assumptions of
this Subsection:

[Py < [Plsay <c® [P,y (158)

Proof The left hand side inequality in (158) is evident because of inclusion £2y C S.
Let us prove the right one. We introduce the maximal operator B by the formula
By = a, where a = {ap )} pez-3 7 = {Vmbmez-» and

Q= max ||, meZ . (159)
kezZ- k>=m

Let us show the boundedness of operator B : lp 5 — lp 5. Lety € lp 5. Then, if
A=, - wehave jy (1) = X @ (A" %) B < 1 s0 that @ (A" |el) < o0,

keZ~
k € Z~. Moreover, recall that @ € @ is increasing, so that

@ (A 'ay) = max @ (A |yl) < Z @ (A" %el).

keZ—k>m
keZ—k>m

Then,

M@ =D @ (N an) B <
mezZ-
< Z ﬁm Z P (/\_1 |’Yk|) = Z @ ()\_l |’Yk|) Zﬁnr

meZ- keZ= k=m keZ- m<k

We have according to (122), 8,, = "™+ — b", and

D B =" = Breo (). (160)
m<k
Consequently,
@) <co®) D@ (A ) B =co®) jr () (161)
keZ-

This inequality gives

[{am};, , < d o@D [ty - (162)
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Now, we denote 7,, = f (tm) =0, m € Z~, for function f € §, so that f = iy

Further, we introduce, according to (159), a,,, = max ||, m € Z7. Then, a =
keZ— k>=m

{an) € R0, fo € 20, and
foz Foo N fallo, =lels,, <c® s, =c® Al 163)
From (163) it follows that for given f = f, € S there exits f, € §2o such that
PF< Pl fuloy <e® [ F],,
Consequently, for every f € S,

1271y <[[Praly < [Playlfalo, < c®1Plg /1o

This inequality gives the second estimate in (158).

4 The Associate Norm for the Cone of Nonnegative
Decreasing Functions In Weighted Orlicz Space

4.1 The Case of Nondegenerate Weight

We preserve all notations of Sects. 1-3, and apply the results of Sect. 3 in the impor-
tant partial case when ideal space Ycoincides with the weighted Lebesgue space
Li(Ry; g), g € M™, and monotone operator P is the identical operator. In this case

o0
HPHQ_)stup /fgdt: fe;|f oo STt =
0
o0
= sup /fgdt: fe2:hH<iy=|g| (164)
0

(see (133); let us recall the equivalence ”f”q) » S 1< Ji(f) <1, see (76)). It

means that the norm || ) “ oLy coincides in this case with the associate norm for the
cone £2 (95), equipped with the functional

o0

1) = /  (f)vdx.

0
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We have according to the results of Sect.3, Theorem 5,

[Plony =Py (165)
where in our case
||P”s_>y=Sup{Zamgm Doy 2 0; Z¢(am)ﬂm < 1], (166)
mezZ mezZ
and
gm=/gdt>0; ﬂmz/vdtzb’"(b—l), meZ. (167)
A A

Let us note that the norm (166) coincides with the discrete variant of Orlicz norm,
see [2]:

ltgm},, = sup[Zam gl = =05 D @ () B < 1], (168)

meZ meZ

Our nearest aim is to describe explicitly the norm (168) in terms of complementary
function ¥. We restrict ourselves with the case of Young function. Thus, let as in
Example 6, @ : [0, oo) — [0, co] be Young function that is,

1

D (1) = / p(T)dT, (169)

0

where ¢ : [0, 0c0) — [0, oo] is the decreasing and left-continuous function, and
¢ (0) =0, ¢ is neither identically zero, nor identically infinity on (0, co0). Let ¥
be the complementary Young function for @, that is

v ()= d 0, 0ol ;
Q) O/w(f) 7, 1 €[0,00]; (170)

Y(ry=inf{o: p(o) =71}, 7€]0,00].

Function 1) is left inverse for the left-continuous increasing function ¢. It has the
same general properties as (, so that ¥ is Young function too. Moreover, ¢ (o) =
inf {7 : ¥ (1) > o}, and @ in its turn is the complementary Young function for ¥
(see [11, p. 271]). It is well-known that
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¥ (t) =sup[st — D (5)];
520

st P(s)+ W (), s,tel0,00), (171)

and the equality takes place in (171) if and only if ¢ (s) = or ¢ (t) = s (see [11,
pp. 271-273]).

The next result is well-known in the theory of discrete weighted Orlicz spaces. It
is valid for any positive weight sequence, and plays the crucial role for equivalent
description of the Orlicz norm (168).

Theorem 6 Let @, and ¥ be the complementary Young functions, let 3 = {3y},
Bm € Ry, m € Z. Then, Orlicz norm (168) is equivalent to the norm

{8 gm},,, - (172)

Namely,
{8 am},, , < gt <2[{8a"an}ll, .- (173)

Corresponding notations of the discrete norms we introduced in (84), (85).

Conclusion. Let us formulate some results of our considerations.

Let @, and W be the complementary Young functions, let the conditions (96), and
(97) be fulfilled, and the discretization procedure (98)—(105) be realized. Then, the
following equivalence takes place for the norm (164)

lo|" = ondl,, . B=16u}s pu =ﬁ,;1/|g|dt. (174)
A

Now, our aim is to present this answer in the integral form.

Theorem 7 Let @, and ¥ be the complementary Young functions, let the conditions
(96), and (97) be fulfilled. The following two-sided estimate holds for the associate
norm (164) with fixed ) <a < 1 :

||g“/ = | pa (g)“lm =inf {A>0: /lI/ A o)y dt <1, (175)
0

pa(git) ==V (@)~ / lg (MldT, 0, )=V '@V @), teRy (176)

ba (1)

The norms (175) are equivalent for different values a € (0, 1).
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Here and below, we use the notation
A’:“B(:)Hc:c(a)e[l,oo):c’lgA/Bgc. (177)

Remark 9 Let us assume additionally that function @ in Theorem 7 satisfies A;-
condition, that is

ICe(l,00): @ (2t) < CP (1), VteR,. (178)
Then,
lol = v / g (ldr|,,- (179)
0

Proof (of Theorem T) We use the description (174) with b = a='/> > 1. Then, a =
b2, and

t

P < palgit)y =V () / lgldT < p), t €Ay, (180)
V-1V ()
where

om Hm+1
Py, = b~ / lgldT: pp=0b"" / lgldT. (181)

Mm—1 Hm—2

Therefore,

Fo(t) <pa(g;t) < Fi (1), teRy, (182)

where Fy, F) are step-functions
Fot) =D prxa, 0. Fi@®) = phxa, ®,

and
|Foly,, = I{entl,,,- [£1ly, = [{e} -

so that
e, < lee @y, < Hond - (183)

Thus, needed result (175) follows from the equivalence

e, = e, = Hondl, - (184)

It remains to prove (184). The equalities (174) and (181) show that
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P =b72 (b= 1) pui; (185)
P = Py + b0 + (b= 1) pur. (186)

Consequently,
Hendli,, =272 @ =D [ton-sd],,, <67 @ =D toul],,,. (187

ltonll,, =5 6= [}l <6007 )], 89

In the last inequality, we take into account the boundedness of shift-operators in ly, 3
with Young function ¥, and 5 = {3,,} in (105), see Remark 5 and Lemma 8. Thus,

[tom-i}],,., <bltendly, - Homit,, < e,
We have by (186),

o= ltenll,,, < 1A, (159)

b, < 1o, + 014, + @ = Do, (90)
Like (187), the estimate is valid

1eh i, < 2o,

We substitute this estimate into (190), take into account the inequality (187) and
obtain

i}, <3@=Dton],, -

Consequently,
=1 oy, < Hendli,, <3@ =D [ton}],, - (191

The estimates (187), (188), and (191) give the needed equivalence (184).
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5 The Case of Degenerated Weight Function

We use the results of Sect. 3.2 to estimate the norm of restriction of monotone operator
on the cone £2 in the case of degenerated weight. According to Lemmas 11, and 12,
the following two-sided estimate holds

[Pl oy = 1215y (192)

We apply these results in the special case, when the ideal space Y coincides with
the weighted Lebesgue space L (R,; g), g € M, and the monotone operator P
is identical operator. Recall that in this case H P || o_y coincides with the associate
norm to the cone 2, equipped with the functional

o0

1) = / ® (f)vdr,

0

and the following equality holds for H P || oy

1Pllsy = sup[ D ngn =00 D @ (o) B < 1]. (193)

meZ~ meZ~

Here,
gm=/gdt>0; ﬁm=/vdr=b""(b—1), meZ". (194)

Ap Ap

Note that the norm (193) coincides with the discrete variant of Orlicz norm; see [2]:

[{gm}

[/4)'_3 = Sup[ Z Ay |gm| : Ay 2 O; Z @ (am) ﬁm < ]] ) (195)

meZ- meZ-

Our nearest aim is to give the explicit description of the norm (195) in terms
of complementary Young function. Thus, let @ be Young function, and ¥ be its
complementary Young function.

We apply corresponding variant of Theorem 6, and obtain the equivalence of
Orlicz norm (195) to the norm

Namely,

H {Pm}”[m < ” {gm} T < 2” {pm}”l’ww}- (197)
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Here, .
” {Pm}”,’w = inf {/\ >0: ) ({pm}) < 1}; (198)
Alom) = D@ (N pl) B (199)
mezZ-

See the relating notations in (121)—(124).
Conclusions. Let us formulate some results of our considerations.
We introduce the discretizing sequence {{ty },,cz- by formulas

V(um) =0", meZ ={0,-1,-2,...} (200)

for fixed b > 1, and function V with the properties described in Sect.2.4.
We set 11 = 0o, and determine

A = [fms prmy1) s m € Z7; (201)

B =/vdr =" (b—1); pu= ﬂ,;l/|g|dr. (202)
Ap

Am

Further, we have the equivalence for the associate norm || g ||, (164)

lol = [toudl, . 8= 16} (203)

where ¥ is the complementary function for Young function @.
Now, our aim is to present this description in integral form.

Theorem 8 Let ¥ be the complementary function for Young function @, and weight
satisfies the conditions of Sect. 2.4, in particular,

V (+00) < 0. (204)
Denote
b=V (+o0)/V(1)>1,a=>b"2. (205)
Then, in the notation (176),
o0
lgl" = 1pa (@) x0.0 [y, + / lgld. (206)
V1@V (+00))

Proof Let us note that

P < Pa (G 1) X)) ) < plhy tE€A,, meZ . (207)
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Here, p;, = py = 0, and form < —1

Hm Hom+1

p, = bt / lgldT; pl =b"" / lgldT.

Hom—1 Hm—2

Then,
Fo(®) <pa(g:t)xon () <Fi (), te€Ry,

where Fy, F; are step-functions

Fo)= > phxa, 0. Fi@®) = D phxa, ®.

mezZ- mezZ-
and
[Foly, = et 7, 1F s, = 1o} 7,
so that
I{en}z, , < lpe @ xonly, < [{en},
Moreover,
{pm}meZ’ = {ﬁm}meZ* + {ﬁm}WIEZ_ ’
where
ﬁm=,0m,m<—1’l_)0=0; PAm=07m<—1,,50=PO-
Consequently,
ow 7, , = 11oudll, , + [{An} 5, ,-
Introduce
A, (g) = Pm - ! /||dt meZz"
" T8 T BT a8 ) T '
Note that,

[}z, =inf {2 >0: @ (3\p0) fo <1} = Ao (9) =

1
= TR 1)_1)/|9|dt_

(208)

(209)

(210)

@211)

212)

213)
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According to (210),

e}, + A= @) < pa (@) xon [y, + A1 (@) <
<[{enl;,, +A-1 (- (214)

Further, we will prove the equivalence
e, + A @ = [{ond s, = 1and;, (215)

Then, both parts of (214) will be equivalent to H {pm} H i (the second term in the
right hand side of (214) is subordinate to the first one). Consequently, we obtain

lpa (@ x|y, + A-1 (9) = [{Bu}];, -
Now, we take into account the estimate (212), and obtain the equivalence
100 @) x0.0 g, + A1 9 + A0 @ = [ 5, , + A0 @) = [{pul ],
According to (203), this is the needed estimate (206).

Thus, it remains to prove (215). We recall that pj = pj = 0. For m < —1 the
equalities (202), and (208) show that

P =b72 (b= 1) i (216)
P = Pt + b + (B = 1) . (217)

From (216) it follows,
Hondls,, <672 @ =D [(pn-sd;,, <67 =D Bl C18)
[tom}s,, = A @)+ [{e0} 7, (219)

In (218) we take into account the boundedness of shift operator in the space [y, 8
with Young function ¥, and 8 = {§,,} from (202); see Lemma 9. Therefore,

lon-131;, , < Blond;, -

To prove (219) we use the following chain of equalities (recall that py = p, = 0)

Ao =D W AN o) B = (A 50) B+ DL W (A )8

meZ~ m<=2
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In the second term we use the equality g, = b> (b — 1)~} Pppyr» M < —2 (see
(216)), so that

DT )= >, WA= 1) ) B =

m<—2 m<—2
= D> v oD p,)Bn =
m<—1
=b' > A B-1)7" )8 =
m<—1
=b"' DU (AT -1 p),) B
mezZ-

As the result we obtain,
I =@ (A 5o) Boa + 07 mpa ({0))) - (220)
Let A = max {Ay, A}, where
AN =inf{A>0:0 (A5 B <1—b""} =5 /@ (D),
o =inf {A>0:jo-upan ({p)}) < 1} =026 =D [{p};, -

Then, j\ ({p}) < 1, and (220) implies

[, < A=max 5w @, 2o-07" {4}, ] e

’fw.a

From the other side, we see by (220), that

g =¥ (N5 B =
= [{pn}l;,, =inf {A>0: & (A\15) By <1} =A41(9),

Together with (218), it gives inequality
[, > max [A @)@~ D7 el ] (222)

Inequalities (221) and (222) imply the two-sided estimate (219) with constants
depending on b, because p_; /¥~ (1) = A_| (g).
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Now, we will obtain the estimate (215). The equality (217) shows that
[{on} 7, , = @ =D o, ; (223)

[{o} s, < b} s, +2l{endli,, + @ =D lend]z, - @224)

The first term in (224) is not bigger than the second one because of the estimate
for the norm of shift operator. In its turn, the second term is not bigger than the third
one in view of the estimate (218). As the result we obtain,

I{on s, <3@=D[{Bull;, (225)

Estimates (223) and (225) imply the equivalence

[{on} s, , = 1tan), -

Together with (219) it gives (215), thus completing the proof of Theorem.

6 Applications to Weighted Orlicz-Lorentz Classes

Recall the notion of decreasing rearrangement for measurable function. Let My =
My (R.) be the subspace of functions f : Ry — R, measurable with respect to
Lebesgue measure i, finite almost everywhere, and such that distribution function
Ay is not identically infinity for f € My. Here,

A =plx e Ry [f ()] >y}, yeR,. (226)

Then, 0 < Ay |, Ay (y) = 0(y — +00). Consider the decreasing rearrange-
ment f* of function f,

A =inf{y € Ry : \;(y) <t}.1 € R;. (227)

We deal with Orlicz-Lorentz class A , related to Orlicz space Ly . For f € M
we define

/cp AL @)v () di, A > 0. (228)
0
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Here v € M ™, integration by Lebesgue measure and weight satisfies the condition
(8). Weighted Orlicz-Lorentz class A4 ,, consists of functions f € My (R4) such that
f* e L,,. We equip it by the functional

Ir*) g, =imf{A>0: n(f) <t} (229)

To deal with linear space Ag ,, it would be assumed additionally that weight
function V (8) satisfies A,-condition, that is

ICeR,: VQ)KCV (), VteR,. (230)

It is known that such assumption is necessary for the validity of triangle inequality
in Lorentz space; see for example [14]. Nevertheless, we need not estimate (230) in
our considerations. Anyway, we can consider class Ag , as the cone in My, that
consists of functions having finite values of functional (229). Here, we present the
analogous for the results of Sect.3 concerning estimates of the norms of monotone
operators over Orlicz-Lorentz classes. We recall some descriptions. Let (N, )i, 1)
be the measure space with nonnegative o-finite measure 7; as L = L (N, i, n) we
denote space of all n-measurable functions u : N — R; L™ = {u € L : u > 0}. Let
Y=Y, (N,)N,n) C L,i =1,2beideal spaces; P : MO+ (Ry) — L™ beamonotone
operator related to these spaces by the following condition: for & € §2

[Py, =sup {IPrly, £ e MR 17 =), (231)
We illustrate these conditions by two examples.
Example 7 Let P be identical operator on M(]L (Ry),
Yi=Li(Ry;9), geMi (Ry); Ya=Li(Ryg").

Then, the equality (231) reflects the well-known extremal property of decreasing
rearrangements; see [11, Sects. 2.3-2.8]):

o0 o0
sup /fgdt: feMS, f*=h =/hg*dt.
0 0

Example 8 Let Y be an ideal space, and monotone operator P : My (Ry) — LT
satisfies the condition

|Prll, < Prel,. feMd(Ry. (232)

Then, the equality (231) holds with Y} =Y, =Y.


http://dx.doi.org/10.1007/978-981-10-6119-6_2
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Indeed, f € My (Ry) = h:= f* € M{ (Ry), h* = h, and
|Pal, <sup{[Prl,: 7 My R, f* =},
From the other side, for every function f € M (Ry) : f* = h, we have accord-
ing to (232),
IPrly <lPflly = [Phly = sup{[[PFly : £ €My R 7 =h} <|[Ph,.
Remark 10 Example 8 covers, in particular, such operator as

o0

(Pf)(x):/k(x,T)f(T)dT, x €N, (233)

0

where k is nonnegative measurable function on N x Ry, and k (x, 7) is decreasing
and right continuous as function of 7 € R;.. Then, for f € M (R, ), and almost all
x € N, we obtain by the well-known Hardy’s lemma

[e¢] o]

P = [k nf ndr < [ ko dr = (Pr) .
0 0
Consequently, inequality (232) holds for every ideal space Y.

Proposition 2 Ler P : MO+ (R;) — L be monotone operator and equality (231)
be true. We define Ay, , = Ag , N My and introduce the norms

1Py oy =sup {IPr]y, £ e M RO 7], <1} (234)
[Plg .y, =su{|Pn],,: nea |a],,<1}. (235)

Then, these norms coincide to each other:
1Plas v =Py, (236)

Proof We use the equivalence

feMy;

Flo,<ten=rea: i, <1

and obtain
— . + * __ .
AL — - P R I = . N b S .
1Py oy, = 5w [sup ([ PFly, = £ &M Ry, £ =h}: he |n],,<1]

According to (231), the right hand side here coincides with || P || Qo
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Remark 11 This Proposition admits us to reduce estimates of the norm

|| p || A Sy, (234) to the estimates presented in Sects.3 and 4. In particular, by the
P

help of Example 7, we reduce the associate norm for function g € M on Orlicz—

Lorentz class to the associate norm for its decreasing rearrangement ¢g* on the cone
£2:

oo
loll, =sup { [ £iglar: £ e |51, <11 =lo'l"
0

Then, Theorem 7 and Remark 9 lead to the following result.

Theorem 9 Let the assumptions of Theorem 7 be fulfilled. Then,

o0

lol’ = [pa (4*)],, =inf {2 >0 /w(xlpa (¢ ))vnrdi <1}, @37
0

where p, was determined in (176). Norms (237) are equivalent for different values
a € (0,1).

Remark 12 Assume additionally that function @ satisfies A,-condition in
Theorem 9. Then,
t

MMQHVM”/QWﬂMLW (238)

0

Remark 13 In (237) and (238), we present some modifications of the result in [18]
that develop preceding results of paper [13]. Note that, in [13] formula (238) was
established under restriction that both functions @, and ¥ satisfy A,-condition.
Concerning duality problems for Orlicz, Lorentz, and Orlicz-Lorentz spaces see
also [2, 4, 15, 16].

Now, let us describe the modification of the above presented results.

Theorem 10 Let Y C L be some ideal space with quasi-norm “”Y’ letP:M"T —
L™ be a monotone operator satisfying the condition: there exists constant C € R
such that

IPrl, <clprey. feM™Ry). (239)

Y’

Then,
”P”Q—>Y < “P”A;_v—ﬁ < C”P||.Q—>Y‘ (240)

If C = 1in (239), then we have equality of the norms in (240).

Corollary 5 In the conditions of Theorem 10 we have

120y, ~v = P[5y
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For the proof of Theorem 10, let us note that (239) implies
Pal, <sp{|Prly : £ Mg R f =n}<Cleal,.  @an
Indeed, f € M (Ry) = h:= f*e M (Ry),h* =h, and
|Prl, <sup{[[Pfl,: feMy Ry, f*=h}.
From the other side, for any function f € Mo+ (Ry) : f* = h, we have by (239),

\pfly <clpf|, =c|phr|, =
= sup{||Pf||Y D feEMF(Ry), ff=h}< C||Ph||y.

Moreover, (241) implies (240). Indeed, we use equivalence
femy |fl,, <1eh=rea: i, <1
and obtain

1Play —y=swp[sup{IPFly: f €M Re). 1* =h}: heg ]y, <1].

Here, according to (241), the right hand side is estimated from below by

sup[”Ph”Y :he$2,

Mo, <1 =1Ploey

and, in addition, from above by the same value multiplied by C.

Example 9 Theorem 10 covers the case of Hardy—Littlewood maximal operator M :
M+ (R+) — M+ (R+)’ where

(Mf)(x):sup||A|1/f(T)dT: ACR;xe A,
A

and Y =Y (R;) is rearrangement invariant space (shortly: RIS). Indeed,
by Luxemburg representation theorem (see [11, Chap. 2, Theorem 4.10]), for every
RIS Y there exists unique RIS Y =Y (R;):

lolly = lg"ll7. g€ MR).
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Note that,
Mf) () =Mf* @) =17 / f*(rdr, teRy.
0
Then, [Mf |, = | M| 5. [Mf*], = [Mf*];.

It is known that 3C € R;: M f)* (x) < C M f*) (x); see [11, Chap. 2]. Conse-

quently,

My = [vp)*)y < cmre]y = clmre],.

This inequality coincides with the estimate (239) for operator P = M. Therefore,

Theorem 10 is applicable to this operator, and we come to equivalences

IMILy; .y =Mooy = My
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