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Smart Polymer Gels
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1 Introduction

Polymer gels (PGs) are defined as viscoelastic cross-linked hydrophilic
three-dimensional polymeric networks with dissociated ionic functional groups.
PGs can absorb large amount of water or other biological fluids in short time and
release them under certain conditions (Thakur and Thakur 2014a, b, 2015). Smart
polymer gels (SPGs) are one class of polymer gels with a special characteristic
which is the response to the environment change such as temperature, electric, light,
sound field, magnetic fields, and pH. The response to the environment change gives
this class of materials wide range of application in many fields such as medical and
water treatment. SPGs are polymerized via normal polymerization methods such as
solution, suspension, and emulsion polymerization. Cross-linking process of SPGs
occurs via chemical (using cross-linking agent) or physical method (entanglements
or crystallites).

2 Classification of Smart Polymer Gels

SPGs are classified depending on their response to surrounding environment as
illustrated in Fig. 1.
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2.1 Thermosensitive Gels

This class of SPGs is defined by its ability to swell and shrink when the temperature
of surrounding fluid is change (Hongyan He 2006). This kind of PGs can be divided
into three classes: negative temperature sensitive, positive temperature sensitive,
and thermoreversible.

2.1.1 Negative Temperature Sensitive

This class of SPGs has critical parameter called low critical solution temperature
(LCST), which means that SPGs will shrink when the temperature increases above
LCST and showing swelling behavior at temperature less LCST. LCST of this class
of SPGs can be controlled using different ways such as changing the molar ratio of
ionic copolymer or by changing the solvent composition. In general, LCST of
polymer of more hydrophobic constituent shifts to low degree which means
changing the percentage ratio of hydrophobic to hydrophilic contents of SPGs leads
to change LCST (Schild 1992; Hongyan He 2006). Figure 2 shows the structures of
some of these polymers.

From the structure of negative thermosensitive SPGs, it can be seen that the
polymers have two parts; the first is hydrophilic part –CONH–, and the second is
hydrophobic part –R– (Zhang et al. 2003). At temperatures lower than LCST water
or fluid interact with the hydrophilic part by forming hydrogen bonds which leads
to dissolution and swelling behavior. At temperature higher than LCST
hydrophobic interaction among hydrophobic part will be stronger and hydrogen
bonds will become weaker; therefore, network shrinking occurs due to
inter-polymer chain association (Qiu and Park 2001), and the absorbed fluid will go
out of the structure (de-swelling process).

Fig. 1 Classification of SPGs according to their response to the external medium
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2.1.2 Positive Temperature Sensitive

Positive temperature SPGs are known with their upper critical solution temperature
(UCST) (Peppas et al. 2000). When the temperature is below UCST network
structure contract and release absorbed fluids (dehydration). Network relaxation
occurs at temperature higher than UCST (swelling). This type of PGs is retro-
gressive with negatively temperature sensitive gels. This class of SPGs is shrinking
at low temperature due to the formation of complex structure via hydrogen bonds.
Network structure dissociates at high temperature due to breaking of hydrogen
bonds and SPGs swelling to maximum possible extent rapidly above the UCST.
There are a wide range of polymers and copolymers that are positive temperature
such as poly(AAm-co-BMA), and poly(AA-co-AAm-co-BMA) (Hongyan He
2006).

2.1.3 Thermoreversible

This class SPGs has similar structure and contents of negative and positive tem-
perature SPGs with deference in kind of bonds. Polymer chains in this class are not
covalently cross-linked, and SPG undergoes sol–gel phase transitions instead of
swelling–shrinking transition (Hongyan He 2006). Sol–gel phase transformation
depends on glucose concentration in the surrounding medium. Sol–gel reversible
SPGs require glucose response cross-linking. The most commonly used ther-
moreversible gels are pluronic and tetronic compounds as illustrated in Fig. 3 (Qiu
and Park 2001).

Fig. 2 Negatively pH-sensitive polymer gels
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2.2 pH-Sensitive Polymer Gels

pH-sensitive gels are materials that respond to pH values of surrounding medium.
Swelling behavior occurs due to changes in hydrophobic–hydrophilic nature of
chains or due to hydrogen bonds and the complexation of inter- and intramolecular
or electrostatic repulsion. Depending on nature of polymer pendant group,
pH-sensitive PGs are classified into anionic and cationic polymer gels (Hongyan He
2006).

2.2.1 Anionic Polymer Gels

This class of SPGs often has carboxylic or sulfonic acid groups (Qiu and Park
2001). The more important parameter of anionic gels is the relation between pKa of
the polymer and pH of surrounding environment, which means that, when pKa is
higher than pH of surrounding medium, the ionized structure will increase the
electrostatic repulsion of the network and enhance the swelling properties (Hongyan
He 2006). Examples of anionic pH-sensitive PGs are shown in Fig. 4.

Fig. 3 Polymer structures of pluronic and tetronic
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2.2.2 Cationic Polymer Gels

Cationic SPGs usually have pendant group such as amine (Qiu and Park 2001). The
more important parameter in these materials is the relation between polymer pKb
and pH of surrounding medium. When pH of environment is lower than polymer
pKb amine group is changing from NH2 to NH3

+ which subsequently increase the
hydrophilicity, electrostatic repulsion, and absorption capacity (Peppas et al. 2000).
Polyacrylamide (PAAm) is the most used polymer as cationic polymer gels.

2.3 Electric Signal Sensitive

Raw matrix of this class is polyelectrolyte which is similar to pH-sensitive SPGs.
Electric-sensitive SPG undergoes swelling and de-swelling as a response of applied
electric signal. Electric-sensitive PGs have three kinds of transition phases: swel-
ling, shrinking or de-swelling, and bending. These phases depend on a number of
conditions such as the system that has been used to apply electric field (contact
system or spread system) (Kim et al. 2003; Hongyan He 2006). In the last decades,
new class of smart gels has been emerged called core–shell gels. Core–shell gels are
structured composite particles consisting of at least two different components: one
in principle forms the core and the other the shell of the particles (Ha et al. 2002).
This class of materials has attracted much attention because of the combination of
superior properties not possessed by the individual components. The systems might
combine the characteristics and properties of both shell and core (Hendrickson et al.
2010). Core–shell gels might be pH and thermosensitive at same time. This char-
acteristic granted this class of gels numbers of applications as impact modifiers,
surface coatings, printing, catalysis, pollution control, sensing, and drug delivery in
biomedical application (Jones and Lyon 2003; Li and Stöver 2000; Sasa and
Yamaoka 1994; Khan et al. 2008). Core–shell gels are usually prepared in spherical
form, implying a particle structure with the initially polymerized polymer located at
the center of the particle, and the later-formed polymers becoming incorporated into
the outer shell layer as illustrated in Fig. 5 (Dimonie et al. 1997). The core part may
be a solid or a liquid or a gas; however, the shell materials usually a solid but its

Fig. 4 Anionic pH-sensitive polymer gels
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nature depends on the type of applications (Jones and Lyon 2003). Core–shell
polymer gels can be in nanosize and microsize according to preparation methods
and targeted applications (Blackburn and Lyon 2008; Berndt et al. 2006).

3 Composites of Smart Polymer Gels

Composite of different materials can be possible solution to get special desired
properties for particular applications or to gain the desired properties from each
material in the compound. SPG composite has been carried out using different kind
of polymers, fibers, and fillers of different sizes from micro- to nanosize. Many
minerals have been used to act as filler for production of SPG composite such as
kaolin, diatomite, potassium humate, glass, smectite, kaolinite, sodium silicate,
bentonite, and montmorillonite (Kabiri et al. 2011). Natural fibers also have been
used in some areas such as study by Rui Liang et al. used wheat straw (WS) to
improve PGs properties and investigate the effect of WS on absorption capacity of
PAA superabsorbent hydrogel in distilled water and 0.9% sodium chloride (NaCl).
The result showed that the maximum absorbency attained at 20% of WS and
absorbency started decreasing after further increase in WS % as shown in Fig. 6
(Liang et al. 2009). Composite of SPGs was prepared to improve mechanical
properties, swelling behavior, and reduce cost. In fact, composites of polymer gels
were successfully prepared and utilized in many filed when mechanical properties is
needed. More information on polymer gel composites can be found in very good
review by Kabiri et al. (2011).

4 Properties of Smart Polymer Gels

4.1 Absorption Properties

Swelling behavior and absorption capacity (AC) are the most important properties
that give SPGs wide applications. In general, swelling and absorption properties are

Fig. 5 Core–shell polymers
(CSPs) consisting of central
part may be a solid, liquid, or
a gas and shell part usually a
solid
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attributed to the presence of hydrophilic groups such as –OH–, CONH–,
–CONH2–, and –SO3H in the chemical structure of the network (Hamidi et al.
2008). The ratio of sample weight at swelling and de-swelling actions is called
swelling ratio (SR) (Tang et al. 2008; Kim et al. 2003; Zuo Chun et al. 2007). There
are many factors affecting SR and AC of SPG such as chemical compositions
(Karadag et al. 2005; Guilherme et al. 2005), network structure (Patachia et al.
2007), cross-linking ratio, specific stimuli or the surrounding medium (Peppas et al.
2000; Hongyan He 2006), polymers molecular weight (Raj et al. 2009), and
chemical structure of polymer repeating unit (Chun et al. 2009). The swelling
process of SPGs can be explained as follows: The solvent tries to penetrate the
polymer networks to produce 3D-molecular network at the same time expanding
the molecular chains between the cross-linked points, thus decreasing the config-
uration enthalpy value. The molecular network has an elastic contractive force
which tries to make the networks contract. When these opposite forces reach
equilibrium, the expansion and contraction also reach a balance. In this process, the
osmotic pressure is the driving force for expansion of swelling and network elastic
force is the driving force of the contraction of gel. AC is estimated using volu-
metric, gravimetric, spectroscopic, and microwave method. The volumetric method
measures the sample volume changes or absorbed fluid before and after absorption.
The gravimetric method depends on measuring sample weight changes.
Spectrometric method uses UV-spectrum of sample change, and the microwave
method measures microwave absorption by energy changes. Absorbed water in
network structure of PAA can exist in three states: bound, half-bound, and free
water. Free water shows freezing point when the environment temperature is around
0 °C. However, this freezing point cannot be seen with bound water. The
half-bound water shows property between them. Bounded water is usually
0.39–1.18 g/g. Absorption capacity of SPG mainly depends on osmotic pressure,
network affinity, and network cross-linking density.

Fig. 6 Influence of wheat
straw content on the
absorbency of WS/APP
superabsorbent composites
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4.1.1 Cross-Linker and Cross-Linking Density

Cross-linker plays major role to adjust SPGs properties in terms of absorption and
mechanical properties. Cross-linking density of SPGs is controlled by the fraction
of cross-linking agent present in the polymerization and double bond conversion.
Therefore, smaller amount of cross-linking agent leads to different cross-linking
degree and change in AC of PGs. At low percentage of cross-linking agent, the
three-dimensional PGs do not form effectively and the water molecules cannot be
held resulting in SR and AC decrease. At high concentration of cross-linker a large
number of growing polymer chains are involved to produce an additional network
structure. High tied network does not allow water to enter the network and decrease
AC (Turkington and Paradise 2005; Peppas et al. 2000). Effect of cross-liker
content on SR of copolymer of carboxymethyl chitosan-g-polyacrylic acid is shown
in Fig. 7 (Shah et al. 2010).

Some researchers reported that the number of functional groups of cross-linker
has affected AC of polymer gels. Different AC of PGs of polyacrylamide (PAAm)
and polyacrylamide sodium acrylate (PAAm/SA) was obtained using different type
of cross-linker as shown in Fig. 8. AC via using 1,4-butanediol dimetacrylate
(BDMA), ethylene glycol dimethacrylate (EGDMA), N,N′-methylenebisacrylamide
(MPA), and trimethylolpropane triacrylate (TMPTA) were in the following order:

MPA > BDMA > EGDMA > TMPTA

Different AC is observed as a result of functional groups of each type of
cross-linker. MPA, BDMA, and EGDMA are tetrafunctional cross-linkers and
TMPTA is hexafunctional cross-linker. NH group of MPA increases SR and AC via
causing new hydrophilic interaction. Using TMPTA cross-linker led to many
cross-linking sites; therefore, the cross-linking density is higher than using other
cross-linker at same concentration which leads to decreased AC (Ren and Sun
2010). The chemical structure of cross-linker can affect absorption properties.
Cross-linking agent with hydrophilic property such as MPA enhances the AC as a
result of presences of amide groups (Vital et al. 2008). In addition, water solubility,

Fig. 7 Effect of MBAN/
mAA on the swelling ratio of
superabsorbent polymer
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short chains, and high activity of MPA give this kind of cross-linker wide use in
free radical polymerization (Turkington and Paradise 2005).

4.1.2 Initiator Content

Absorption capacity of SPGs is affected by the initiator content as a result of change
in polymer molecular weight. At low molecular weight, the relative amount of
polymer chain ends increases (polymer chain ends do not contribute to AC);
therefore, AC will decrease at high content of initiator (D’Ulivo 2004). Moreover,
when the content of initiator is low, the polymerization reaction takes place
slowly and leads high molecular weight and network structure with big pore size.

Fig. 8 Linking sites of a 1,4-butanediol dimetacrylate (BDMA), b ethylene glycol dimethaacry-
late (EGDMA), c N,N′-methylenebisacrylamide (MPA), d trimethylolpropane triacrylate
(TMPTA)
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Network with large voids has less ability to hold water and less WAC. At high
initiator content, the polymerization rate is high and the product has smaller space
size and that prevents fluid molecules from entering the network (Lin et al. 2007).
Figure 9 shows the effect of ammonium persulfate (Desrosiers et al. 2000) on water
absorbency of copolymer of PAA-co-PAAm filled with inorganic clay (Li and
Wang 2005). From above-mentioned, there is an optimum voids size to get max-
imum WAC and that can be controlled via initiator content.

4.1.3 Degree of Neutralization (DON)

DON is normally used between 0 and 80% for most polymerization process (Talpur
et al. 2009; Pourjavadi et al. 2004). Neutralization of acrylic acid (AA) using sodium
hydroxide (NaOH), the negatively charged carboxyl groups attached to polymer
chains, produces an electrostatic repulsion (ESR) which leads to network expansion
which means high AC is associated with high ESR. After certain degree of neutral-
ization, AC decreases with a corresponding increase in chain stiffness and counterion
condensation on the polyion “(screening effect)” (Dall and Sharples1991). At low
DON, the ESR is low which ultimately decreasing the absorption capacity of the
hydrogel networks. When DON start to increase the content of –CO2–Na groups
increases leading to enhancement in osmotic pressure between the inside and outside
network and enhancingACof SPGs.However, AC stop’s at certain value ofDONand
starts to decline. The main cause of decline in AC is the presence of Na+ ions which
leads to shielding of carboxylate anions on PAA chains and inhibits anion–anion
repulsion forces (El Bakouri et al. 2008). Table 1 shows DON effect on water
absorbency of PAA hydrogel at various cross-linking agent concentrations
(Yadvinder et al. 2005).

Fig. 9 Effect of mAPS/mAA
on the swelling ratio of
superabsorbent polymers
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4.1.4 Solvent Volume and Concentration

Network structure of SPGs is affected by solvent concentration as a result of
enhanced primary cyclization rate of multi-vinyl monomer during the polymer-
ization process. Increasing the reaction solvent volume leads to decrease in contents
reaction of cross-linking agent, initiator, and monomer and finally decreases in
polymerization rate and cross-linking density. Low solvent volume means reaction
contents’ viscosity is high and difficult movement for free radicals and monomer in
the reaction (El Bakouri et al. 2008; Munshi et al. 1978). Solvent concentration
affects network properties by affecting radical propagation dynamics. At low sol-
vent concentration, the double bond concentration surrounding by free radical is
relatively high. This leads to fast propagation step and less opportunity for free
radicals to recycle by reacting with its own pendant double bond. Solvent type and
quality have been reported to affect SPGs properties. Poor solvent use results in
loose network structure, and firm networks are a result of using good solvent
(Elliott and Bowman 2002). Previous study indicated that high solubility monomer
and homopolymer in solvent lead to difficulty in grafting polymerization. In the
same study, effect of solvent contents was determined by fixing other reaction
contents. The result showed that the maximum percentage of grafting was obtained
at 50-ml-total reaction mixture. As a conclusion of this section, solvent concen-
tration can be used to control free radical polymerization in both microscopic and
molecular levels.

4.1.5 Fiber Type and Content

AC of SPGs is highly affected by chemical composition and concentration of used
fibers. Hydrophilic groups on fiber surface contribute to enhance network absorp-
tion capacity. If the fibers act as additional cross-linking agent inside SPGs net-
work, high concentration of fibers leads to rigid network structure and less. Previous
work on sodium alginate (Na–Ag) grafted with carboxymethylcellulose
(CMC) showed that SR of polymer gels increase gradually with increase in Na–Ag
content, and the maximum AC is achieved at 0.5 weight ratio of Na–Ag/CMC.

Table 1 The effect of neutralization degree of acrylic acid at various cross-linking agent
concentrations on water absorbency of the synthesized beads

Water absorption capacity g g−1

Neutralization degree of acrylic acid % N,N-MBA

0.025 mol% 0.05 mol% 0.075 mol%

100 775 ± 99 568 ± 27 476 ± 15

76 581 ± 18 557 ± 51 471 ± 42

59 570 ± 68 523 ± 39 428 ± 28

46 507 ± 59 476 ± 17 447 ± 14
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After this ratio, AC decreases as a result of increase in viscosity of reaction mixture
which hindered reactants movement (Yang et al. 2003; Shah et al. 2010).
Kappa-carrageenan (kC) used as a fiber showed that WAC of the network was
increased with increase in kC content. Same result has been obtained using CMC
grafted with polyacrylonitrile (PAN), and starch-poly(sodium acrylate-co-
acrylamide) (Pourjavadi et al. 2007a; Bonakdar et al. 2010; Seoudi 2008).
Another study indicated that absorption properties of SPG were enhanced by filling
the structure with inorganic clay (attapulgite) (Li and Wang 2005).

4.1.6 Chemical Structure and Monomer Molar Ratio

Blending of two monomers to produce desirable properties of SPGs has been
studied intensively in the area of gels (Adem et al. 2009; Abd El-Rehim et al. 2006;
Kadlubowski et al. 2007; Zhang et al. 2009; Mahdavinia et al. 2008). The effect of
molar ratio of poly(acrylamide-acrylic acid) is shown in Fig. 10.

Increasing the polyacrylamide to more than 0.51 molar ratios leads to decrease
AC, and counter result was observed at ratio less than this value. This study
reported that the incorporation in suitable ratio of hydrophilic groups (–CONH,
COONa, and COOH) inside the network reduces the repelling action and increases
water absorbency (Li and Wang 2005). The chemical structure of polymer repeating
unit affects SR and AC by changing the ratio of hydrophilic to hydrophobic groups
(Chun et al. 2009). Network of high contents of hydrophilic groups swells to higher
degree than those of high hydrophobic groups. Hydrophobic groups may collapse
in the presence of water. The collapse chains minimize their exposure to water
molecule as such lower absorption capacity and swelling rate.

Fig. 10 Effect of molar ratio
of AM to AA content on
water absorbency of
superabsorbent polymer
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4.1.7 pH of Absorbed Fluid

Swelling behavior and absorption capacity of SPGs are affected by surrounding
medium (Peppas et al. 2000; Hongyan He 2006). Affect of swollen pH on
absorption and swelling capacity of polyelectrolytes has been considered in many
studies (Varshosaz and Falamarzian 2001; Liu et al. 2006; Sahoo et al. 2007; Yoo
et al. 2000; Kim and Park 2010; Karppi et al. 2007, 2008; Zhang et al. 2004; Wang
et al. 2008; Singh et al. 2007; Sheikh et al. 2010; Yang et al. 2009, Abd El-Rehim
et al. 2006). Effect of pH medium on swelling ratio of PAA hydrogel in Fig. 11
indicates that the high swelling ratio was at pH 4.9 solution. The cause of this value
is associated with pKa of polyacrylic acid (PAA) and swollen medium. PAA has
pKa of 4.9; therefore, when pH of swollen sample is less than pKa of PAA that
leads to high strength of H+ which affect carboxylic group ionization. At pH higher
than pKa of PAA, more carboxylic ions are formed which enhances electrostatic
repulsion and create more network free space and lead to increase in swelling ratio
(Sheikh et al. 2010).

4.2 Releasing Behavior

Definition of SPG indicated that the network has the ability to release absorbed fluid
as a response to environmental change (temperature, pH, ions, electric signal,
sound, and magnetic field). Releasing behavior of SPGs draws great attention of
many researches (Lee and Chen 2006; Kim and Peppas 2003; Tomic et al. 2007;
Liu et al. 2006; Chen et al. 2009; Lee et al. 2008; Fundueanu et al. 2001; Siemoneit
et al. 2006; Uchida et al. 2003; Issa et al. 1990; Huynh et al. 2009; Alemzadeh and
Vossoughi 2002; Chun et al. 2005; Tada et al. 2005). Releasing character of SPGs
via its sensitivity to environmental change grants this class of materials’ advantages

Fig. 11 Swelling ratio of PAA in media of different pH values as function of time
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to be used in drug control release in medical and water treatment applications.
Theophylline release from P(AA-co-AAm) hydrogel in distilled water indicated
that low release rate related with samples of high degree of cross-linking as illus-
trated in Fig. 12 (Katime et al. 1999).

4.3 Mechanical Properties SPGs

Applications of SPGs are limited in some areas because of their poor mechanical
properties (Tanaka et al. 2005). Mechanical properties of SPG are very important in
applications such as drug delivery system and agriculture when the hydrogel has to
withstand certain pressure in deep placement process (Omidian et al. 2005). There
are some methods such as increasing the cross-linking density, copolymerizing of
two kinds of polymer, and grafting with rigid substrates used to enhance
mechanical properties of polymer gels in general (Cauich-Rodriguez et al. 1996;
Katime et al. 2001). Mechanical properties of SPG can be controlled by changing
system cross-linking degree. High cross-linking degree leads to more brittle and
stronger network structure. Therefore, to achieve a relatively strong and elastic
property network, suitable cross-linking degree has to be optimized. Also,
mechanical properties are affected by the main monomers used to synthesize SPGs
which means copolymerization of two types of repeating unit (hydrophilic–
hydrophobic) (Katime et al. 2001; Patachia et al. 2007). The structural strength of
polymer gels can be enhance by introducing a comonomer to the main networks
which contribute to new hydrogen bonding and stable network structure (Solpan
et al. 2003; Peppas et al. 2000). Mechanical properties are improved using
nanomaterials, such as inorganic nanoclay and carbon nanotubes to produce
nanocomposites network structure (Xiang et al. 2006; Pourjavadi et al. 2007a).

Fig. 12 Fractional release
profiles of theophylline at
310 ± 0.2 K from
glassy poly(acrylic
acid-co-acrylamide)
(50/50%)/MBAAm gels in
water: (◯) (0.67%)
MBAAm, (□) (1.00%)
MBAAm, (△) (1.25%)
MBAAm, (◊) (1.50%)
MBAAm
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5 Application of Smart Polymer Gels

Unique properties of PGs such as absorption, swelling and de-swelling behavior,
hydrophobicity, biocompatibility, and sensitivity to environmental change are the
main reason for its wide applications. Homopolymer and copolymer of PGs have
been used in various applications in our daily life such as agricultural, biomedical,
water treatment, and other industrial applications (Katime et al. 1999, 2004; Liang
et al. 2009; Solpan et al. 2008; Shukla et al. 2009; Zhao et al. 2004; M’Bareck et al.
2006; Devine et al. 2006; Nho et al. 2004; Hoffman 2002).

5.1 Biomedical Application

SPGs materials have wide application in biomedical and pharmaceutical because of
their desirable properties such as minimal interfacial tension with surrounding
biological fluids, gas permeation, diffusion of low molecular weight, less
mechanical, and friction irritation to tissue (Cauich-Rodriguez et al. 1996). One of
the difficulties biomedical experts are facing nowadays is how to deliver such a
drug completely to particular place in the human body. Experts used a system called
drug delivery system to manage release and deliver drug to specific positions
(Wang et al. 2010; Blanco et al. 1996; Lukowski et al. 1992; Miao et al. 2010;
Kakoulides et al. 1998; Kamath and Park 2010; Gong et al. 2009; Kaetsu 1996;
Miyata et al. 2002; Geever et al. 2008; Nam et al. 2004; El-Hag et al. 2009;
Bhattarai et al. 2010; Adnadjevic and Jovanovic 2009; Li et al. 2009; Cheddadi
et al. 2011; Tu et al. 2010). SPGs of thermosensitive and pH sensitive are wildly
used in medical application as drug delivery system because of their sensitivity to
pH and temperature of human body. Many monomer and polymer were used in this
kind of application but the most used are PAA and PAAm and their copolymers.
PAA grafted with n-alkyl methacrylate was prepared to study swelling and release
kinetics of theophylline and aminophylline. This study indicated that the release of
theophylline is fairly independent of alkyl chain length while the release of
aminophylline is highly dependent on alkyl chain length (Katime et al. 2001).
Copolymer of P(AA-co-AAm) hydrogel was used for theophylline release in dis-
tilled water (Katime et al. 1999). SPG based of PAA filled with cotton fiber was
synthesized for gentamicin release. The outcome of this study showed the release of
drug from the grafted network is a chain relaxation controlled manner (Bajpai and
Das 2011). SPG of PAA grafted with gelatin (Ge) and cotton fiber was prepared for
gentamicin sulfate release (Changez et al. 2003; Bajpai and Das 2011; Changez
et al. 2004). The result of these studies regarded to use hydrogel based on PAA to
deliver gentamicin sulfate in controlled manner. Loaded gentamicin sulfate showed
fair antibacterial action against Escherichia coli. Grafted PAA with polyethylene
oxide using radiation polymerization was prepared as insulin carrier. This study
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indicated that insulin loaded on hydrogel has higher effect on lowering of blood
glucose over injection insulin solution (Nho et al. 2004).

SPGs of pH-sensitive material are able to convert chemical energy to mechanical
energy as such can serve as actuators or artificial muscles in medical applications.
SPGs have also been used in many other biomedical application including diag-
nostic, therapeutic, and implantable devices such as catheters, biosensors
(Pourjavadi et al. 2007b; Adhikari and Majumdar 2004), artificial skin (Devine
et al. 2006), and tissue engineering (Kim et al. 2008; Landers et al. 2002).

5.2 Water Treatment Application

Water pollution is considered as one of the most important issues facing humanity
these days. Usually, water is polluted by different undesirable ions and dyes. The
sources of these contaminants are either industrial or agricultural. Most factories
effluents are discarded into water (rivers, lakes, and seas). These ions and dyes
change the biological system of rivers and lakes and affect life of several kinds of
species. Wastewater has been treated using several methods such as biological
treatment, chemical precipitation, supercritical water oxidation, steam-stripping,
microwave radiation, ion exchange, and absorption methods. Absorption method
gets high attention because of its low energy consumption and easy operation
(Zheng and Wang 2009). Therefore, using the ability of such material to absorb and
separate particular ions or dyes from solution can be helpful (Guilherme et al. 2007;
Paulino et al. 2007). SPGs have been used in this felid for past forty years. Some
researchers studied AC of copolymer of PAA-PAAm-polysaccharide to methylene
blue (MB) from water. The result showed good AC of this copolymer and excellent
methylene blue removal (48 mg of dye per 1 g of SAP) (Paulino et al. 2006). In
another study, SPGs of PAA grafted with chitosan was prepared for ammonium
removal applications. This study indicated that PGs have high absorption capacity
of 30 mg/g ammonium nitrogen in a wide pH range of 4–9 (Zheng et al. 2009). In
another work, grafted PAA/chitosan/vermiculite gels were synthesized for
adsorption of methylene blue from water. The results showed that grafted hydrogel
has high adsorption for MB dye and suggested that it has the potential as adsorbent
for cationic dye removal from wastewater (Liu et al.). Many other SPGs based on
PAA copolymer were synthesized and absorption of cationic dyes such as
methylene blue, safranine-O (SO), magenta (M), Janus Green B (JGB), and ions
such as lead (Pb+2), cadmium (Cd+2), copper (Cu+2), (Ni+2), iron (Fe+3), (Mn+2)
were studied (Solpan et al. 2008; Xiong et al. 2009; Zheng et al. 2010; Duran et al.
1999; Li et al. 2011; Kangwansupamonkon et al. 2010; Dai et al. 2011; Zheng et al.
2011; El-Hag et al. 2003; Wei et al. 2009; Shirsath et al. 2011).
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6 Conclusion

SPGs are polymer gels that response to the surrounding environmental change in
their swollen and dry state. Conventional polymerization techniques were used to
syntheses and prepare SPGs such as solution, suspension, emulsion, and radiation
polymerization. Solution polymerization is the most widely used technique because
of its advantage of pure product (free of surfactants and other contaminants). SPGs
are classified depended on their sensitivity to thermo, pH, electric, magnetic, and
sound-sensitive gels. Swelling, release, and mechanical properties are the most
important criteria to select the correct SPGs for particular application. SPGs
properties are affected by initiator content, cross-linker kind and content, chemical
composition of polymer network, fiber content pH, and ion concentration of sur-
rounding medium. SPGs properties granted these materials very wide applications
in biomedical and water treatment.
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