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Electrospinning of Hydrogels
for Biomedical Applications
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Abstract The field of biomedical applications for hydrogels requires the devel-
opment of nanostructures with specific controlled diameter and mechanical prop-
erties. Nanofibers are ideal candidates for these advanced requirements, and one of
the easiest techniques that can produce one-dimensional nanostructured materials in
fibrous form is the electrospinning process. This technique provides extremely thin
fibers with controlled diameter and highly porous microstructure with intercon-
nected pores. Electrospinning demonstrates extreme versatility allowing the use of
different polymers for tailoring properties and applications. It is a simple
cost-effective method for the preparation of scaffolds. In this section, we will dis-
cuss recent and specific applications with a focus on their mechanisms. As such, we
conclude this section with a discussion on perspectives and future possibilities on
this field.
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1 Introduction

Electrospinning is an easy technique for the production of nanoscale polymer fibers
from a variety of materials in one-dimensional, two-dimensional, and
three-dimensional configurations (Li and Xia 2004; Greiner and Wendorff 2007).
This technique provides extremely thin fibers with controlled diameters and highly
porous microstructure with interconnected pores; versatility allows the use of
various polymers for tailoring various applications requirements. The ability to
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produce nanofibers composites of blend polymers, composites with metals, and/or
ceramics with high surface area than regular fibers, it provides various areas of
applications such as nanocatalysis, tissue engineering, biomedical, pharmaceutical,
and environmental engineering (Bhardwaj and Kundu 2010). One of the limitations
of electrospinning is their low production rate which several groups are trying now
to overcome this by producing multiple spinnerets arranged in an ordered position
such as circle or lines (Hou et al. 2009; Persano et al. 2013).

Fields of applications on electrospinning largely studied are drug delivery, tissue
engineering, and wound healing. One of the main reasons on these applications is
that polymeric scaffolds produced by electrospinning have the advantage of mim-
icking the natural extracellular matrix (ECM). However, nanofibers produced by
electrospinning on tissue engineering have irregular distribution of cells and poor
migration at the interior of the scaffold on normal behaviors (Bhardwaj and Kundu
2010). Furthermore, the increase in packing density of nanofibers produced by
electrospinning limits cells to enter on the inner part of the fibers. Several tech-
niques have been performed to modify the fiber parameters to overcome these
issues (Li et al. 2014) which will be discussed in this chapter.

Although not yet deeply discussed, hydrogel nanofibers can overcome the
limitation of simple polymeric nanofibers. Hydrogels are hydrophilic cross-linked
polymers structured in three dimensions that can swell under aqueous conditions
but not dissolve instantly. Hydrogels swell to a greater or lesser extent in water due
to hydrophilic power of the group chains. On lower hydrophilicity, the polymer will
swell in water, but with a further increase in hydrophilicity the polymer becomes
water soluble (de Lima et al. 2015a, b). Hydrogel nanofibers have the advantage of
combining both techniques, and it is being widely investigated in wound healing
(Fogaça and Catalani 2013; Choi et al. 2015) since they can maintain a healing
environment and adequate humidity on the region of the wound and absorb the
exudate with exchange of minimal pain. In addition, their inherent abilities help on
diffusion of extended release of drugs, in particular on the case of hydrophobic
drugs (McKenzie et al. 2015).

The focus on this chapter will be treated, along with the fundamentals on
electrospinning, on the polymers employed for the application intended, modifi-
cations of parameters on fibers for tissue engineering. Finally, a focus on incor-
poration of drugs into nanofibers and the diverse applications with novel techniques
have been investigated with a perspective for future prospects.

2 Overview of Electrospinning

Electrospinning process is a simple and very controllable technique which produces
fine fibers using electrostatic forces. These fibers are either produced by polymer
melt or solution with fibers’ diameters in the nanometer scale with a large surface
area. A typical electrospinning apparatus usually involves syringe (attached with
the emitter) with feed pump, a grounded collector, and power supply with high
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voltage as described in Fig. 1 (Bhardwaj and Kundu 2010). The process of elec-
trospinning involves applying high voltage in the emitter and collector and charging
the polymeric solution. When this polymer reaches the electric emitter, the droplet
that is being held by its surface tension deforms once the electric field reaches an
important value to a cone formation labeled as “Taylor cone”; the polymeric
solution is then expelled in a jet shape from the emitter and accelerated toward the
collector which is of opposite polarity. During the traveling toward the collector,
the solvent is evaporated in the air and dried fibers form at the collector. However, it
is essential to adjust the electrospinning parameters due to instability of polymeric
jet to obtain uniform nanofibers (Greiner and Wendorff 2007).

2.1 Influence of Process Parameters on Electrospinning

The process parameters are important when aiming to obtain continuous
non-beaded fibers, and manipulating improves it when designing nanofibers; some
of these processes can be governed by the solution such as surface tension, con-
centration, viscosity, molecular weight, and conductivity. Alternatively, processing
parameters of the electrospinning apparatus also plays important roles, which are
flow rate, voltage, type of collector, and collector–emitter (tip) distance. Finally, the
ambient when producing nanofibers affects the morphology and structure.

Fig. 1 Schematic drawing of
basic setup for
electrospinning
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2.2 Characteristics of the Solution

2.2.1 Concentration

Concentration in electrospinning is crucial for fiber formation because it cannot be
formed until a minimum is required. According to Li and Wang (2013), there are
four critical concentrations that affect the morphology of fibers: very low—
nanoparticles are formed, and there is electrospray rather than electrospinning due
to limited viscosity and surface tensions (Deitzel et al. 2001). At slightly increasing
concentration, fibers and beads mixture occurs (Eda and Shivkumar 2007), and with
a suitable concentration evenly nanofibers are obtained (Fong et al. 1999). Finally,
in case of high concentrations, “helix-shaped” microribbons can be observed
(Yang et al. 2004).

2.2.2 Molecular Weight (MW)

The polymeric solution entangled chains are indicative of molecular weight and
along with concentration contribute to the solution viscosity and affect the mor-
phology of fibers. Electrospinning is essential to aim for higher molecular weight
since there are enough chain entanglements to stabilize the jet and form nanofibers
(Bhardwaj and Kundu 2010). An equation was obtained by (Gupta et al. 2005), for
the exact transition from beads to fibers as it will be discussed in Sect. 2.2.

2.2.3 Viscosity

As another crucial parameter, viscosity can also determine the fiber morphology
(Larrondo and St. John Manley 1981). The balance of viscosity is crucial since low
viscosity excludes the formation of continuous fibers and just beads are normally
obtained, whereas high viscosity makes difficult the jet formation of polymers on
the emitter. For melt electrospinning, the variation of polymer viscosity varies
depending on the spinning (Bhardwaj and Kundu 2010). The viscosity is also
connected to the concentration and molecular weight parameters. Various works
investigated the effect of viscosity onto electrospinning polymeric solutions
(Geng et al. 2005; Kim et al. 2010; Binulal et al. 2014).

2.2.4 Surface Tension

Surface tension values might be different for different solvents. Higher values of
surface tension might inhibit the electrospinning generating unsteady droplets
(Moses et al. 2001). A lower surface tension values on the other hand strongly
depend on the other parameters; for example, electrospinning can be formed on low
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electric field with low values of surface tension (Rogina 2014). According to
Bhardwaj et al., the surface tension determines the boundary of nanofibers’ con-
dition on electrospinning if all other variables are held constant.

2.2.5 Conductivity/Surface Charge Density

With a few exceptions, polymers are polyelectrolyte and this ability highly influ-
ences the jet formation. Usually, higher values of conductivity of the solution
decrease the nanofiber diameter and lower conductivity results in non-uniform
fibers with beads (Chuachamsai et al. 2008). Increasing conductivity can be
achieved by adding ionic salts on the polymeric solution like NaCl or KH2PO4 (Li
and Xia 2004) resulting in fibers with decreasing diameters and beadless fibers
(Huang et al. 2006).

2.3 Processing Parameters

2.3.1 Voltage

Voltage is one of the most important parameters since electric jets released from the
emitter only occur after a voltage threshold. Higher voltage on polymers for
electrospinning influences fiber diameter, but it depends on the concentration and
the emitter-to-collector distance (Deitzel et al. 2001; Li and Wang 2013).

2.3.2 Flow Rate

Flow rate affects the velocity of the jet and the amount of polymer transferred.
Lower flow rate is generally required since it leads to more time for polarization and
evaporation of the polymeric solution (Yuan et al. 2004). Higher values of flow rate
may induce the formation of bead fibers with thick diameter due to short drying
period before reaching the collector (Zhang et al. 2005).

2.3.3 Type of Collector

Collectors are conductive substrates that collect the charged fibers during the
electrospinning process. The simplest collector is aluminum foil, but it is difficult to
remove the fibers on this type of collector, so different arrangements have been
performed such as conductive paper, gridded bar, rotating rod, and wheel. Such
collectors can also contribute to the alignment of fibers which are useful in tissue
engineering (Vaquette and Cooper-White 2011).
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2.3.4 Distance Between the Collector and Emitter (Tip)

The distance between the emitter and collector also affects the fiber diameter and
structure. The required distance is usually minimal so that fibers dry before it
reaches the collector, otherwise beaded fibers will be formed (Ki et al. 2005).

2.4 Ambient Parameters

As explained previously, the ambient conditions affect the morphology of the
nanofibers. Humidity seems to have a great impact on some polymers in which after
a critical value it can dissolve in the cross-points of the structure and fuse together
forming a dispersal layer (Yao et al. 2013). On the other hand, it has been shown
that lower temperatures led to a slower evaporation of the solvent and fibers could
not be formed. The average diameter of the nanofibers has a complex relationship in
terms of temperatures (De Vrieze et al. 2009) since the formation of nanofibers on
electrospinning depends on the solvent and rigidity of the polymeric chains.

2.5 Theoretical Foundation for Electrospinning Polymers
Capable of Physical Gelation

The process formation of fibers via electrospinning is affected by various param-
eters such as flow rate (Uchko et al. 1999), voltage (Yuan et al. 2004; Zhang et al.
2005), polymer molecular weight (MW) (Casper and Stephens 2004; Tao and
Shivkumar 2007), and concentration (Fong et al. 1999; Deitzel et al. 2001; Eda and
Shivkumar 2007; Felice et al. 2015). To tailor these parameters to obtain a window
for range of fiber formations is not straightforward, since these processes are
interdependent on each other. For these reasons, an integrated approach must be
used to identify the range of fiber formation. For gel polymers, the nanofiber
formation is dependent on the entanglements of the structure of the gel and the
solution (Shenoy et al. 2005a). For this reason, a semiempirical method, described
by Shenoy et al. (2005a), can presume the shift over electrospraying to spinning
based on the amount of chain entanglements—physical link of polymeric chains
which are similarly to chemical cross-links (Shenoy et al. 2005b).

Equation (1) correlates the polymer MW to its entanglement solution MW. Due
to the preparation method of polymers, normally the average MW is considered.

neð ÞSo ln¼
Mw

Með Þso ln
¼ /Mw

Me
ð1Þ
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For polymers solutions, its entanglement value is dependent on the solution
concentration and the polymer volume fraction /, described in Eq. (2)

/p ¼
qsWp

qsWp þ 1�Wp
� �

qp
ð2Þ

where qp and qs denote the densities of polymer and solvent and Wp is polymer
weight concentration of the solution.

With these equations, it is possible to obtain a single value (ne) which corre-
sponds to viability of formation of fibers in electrospinning based on their polymeric
chain entanglements (Shenoy et al. 2005a; Husain et al. 2016).

The number of chain entanglements, due to variations of polymer solution
concentration (C) and molecular weight, causes morphology transitions on most
electrospinnable polymers (Felice et al. 2015). This variation of chain entanglement
leads to alteration of viscosity (Bock et al. 2012) and can be used as a determinant
for solution regimes of polymers (Gupta et al. 2005). The different solution regimes,
particles to fiber, can be defined by the Berry in Eq. (3) (Hager and Berry 1982)
which correlates the polymer concentration with the intrinsic viscosity:

Be ¼ g½ �C ð3Þ

where Be is the berry number, ð g½ � ¼ lim
c!0

gsp
C Þ the intrinsic viscosity; ηsp is the

specific viscosity, and C is the polymer concentration.
The solution regimes are classified according to the critical overlap concentration

(C*) and the chain entanglement concentration (Ce) described as diluted,
semi-diluted unentangled, and semi-diluted entangled also represented in Fig. 2
(Gupta et al. 2005). Chain overlap is absent in dilute system, and thus, chain
entanglement does not exist, limiting the system with significantly weak entan-
glements (Shenoy et al. 2005a). When the concentration of the solution is equal to
the concentration inside a single macromolecular chain, the critical concentration
overlap occurs, A ! B process in Fig. 2.

As the concentration increases, the chain reaction overlap occurs, but it is not
enough to produce a degree of entanglement. Although some entanglements are
observed, the chain entanglements within the drop formed on electrospray are not
enough to stabilize the particle structure formation and these are not optimum as it
leads to inferior and non-reproducible morphology since they lose their shape when
impacting over the collector showing a beaded and non-continuous fiber formation
(Husain et al. 2016). For entangled systems, Be > 4 or Ce is generally accepted as
the formation of pure fibers and the effect is due to the increase in entanglement
chains so the jet formation can be stabilized through jet breakup inhibition because
of the increased surface tension (Felice et al. 2015; Husain et al. 2016).

In practice, electrospun beaded fibers occur unexpectedly, but it was reported in the
literature (Taepaiboon et al. 2006;Husain et al. 2016). Formation of beads, as explained
before, usually is dependent on the parameters of the polymeric solution, which
include the polymer structure, concentration, and salt content (Li and Wang 2013).
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3 Applications

3.1 Tissue Engineering Applications

Tissue engineering creates artificial materials for regeneration of tissues based on
the approach from materials engineering and life science (Ma 2004; Lanza et al.
2011; Okamoto and John 2013). Mostly, the repair or replacement of failing organs
and tissues is facilitated by tissue engineering creating biological substitutes, like
the growing of cells on scaffolds to support the regeneration of the desired tissue
(Okamoto and John 2013). Cell interactions are extremely important for cell growth
since it can change the cell functions via complex pathways (Kai et al. 2013;
Temenoff and Mikos 2014).

Seeding of cells on scaffolds normally progresses with attachment followed by
proliferation and differentiation. The cell agility to proliferate is one of the most
important factors for tissue regeneration. With faster proliferation, the development
of the injured tissue is improved and reduces scar tissue formation in vivo (Prakash
et al. 2010; Kai et al. 2013).

Electrospinning for tissue engineering is one of the most used techniques since
its fibrous structure is comparable to the tissue extracellular matrix (ECM) (Kim
et al. 2005; Li et al. 2014; Guarino et al. 2015; Weng and Xie 2015). Ito et al.
(2005) have shown that the attachment of fibroblast-like cell line (COS-7) was

Fig. 2 Physical representation of the three solutions regimes with corresponding SEM images. a,
d dilute; b, e semi-dilute unentangled; c, f semi-dilute entangled. C* = 1/[η]. Adapted with per-
mission from Bock et al. (2012). Copyright (2016), Elsevier
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higher to nanofiber mats of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) than on
regular scaffolds of the same material after a short incubation time. The increased
surface area of nanofibers helped the improvement on cell attachment due to its 3D
features (Ito et al. 2005). Moreover, Chua et al. (2006) also demonstrated that
nanofiber scaffolds containing amine groups had higher cell proliferation and
adhesion, in comparison with films containing amine groups.

3.1.1 Choice of Polymer Hydrogel for Tissue Engineering

The behavior of cells can be adjusted by focal adhesion and signaling complexes
(Wozniak et al. 2004), and such behaviors are intimately related to the properties of
the scaffold (Kai et al. 2013). In addition, high-surface area nanofibrous scaffolds
are preferably used on tissue engineering and different cells react different to the
surface where it is attached (Leung and Ko 2011; Kai et al. 2015). Moreover,
materials have to be biocompatible—the body must not reject the implant or
scaffolds and must interact with it, so the spreading of cells is achieved faster (Yang
et al. 2010; Van Vlierberghe et al. 2011; Rogina 2014). Furthermore, it must not
elicit inflammatory response and cytotoxicity with a three-dimensional environment
for cell proliferation and adhesion (Langer and Peppas 2003; Leung and Ko 2011;
Parratt and Yao 2013). For these reasons, the choices of polymer and/or hydrogel
designed for tissue engineering are important. Figure 3 shows the different poly-
mers employed in electrospinning along with its properties. Currently, biodegrad-
able scaffolds are the most investigated materials for production of nanofibers via
electrospinning tissue engineering (Rogina 2014). Biodegradable nanofibers can
have tailored degradation rate in the body so that it will be metabolized or excreted.
The degradation mechanism normally consists of chemical degradation, and the
most important parameters are the polymer structure and the environment which
can also influence the degradation rate such as the pH and chemical structure
(Simionescu and Ivanov 2016).

3.1.2 Natural Polymer Hydrogel Nanofibers for Tissue Engineering

Natural-based hydrogels/polymers are normally obtained from living plants and
animals and are hydrophilic in nature; they can be extracted on polysaccharides and
cellulose from plants (Simionescu and Ivanov 2016). Although most are obtained
from vegetal sources, microorganisms can also synthesize biodegradable polymers.
Examples are: fish—fish sin serves as a collagen; crustaceans—shells have large
amounts of chitin; corals-algae—rich source of polysaccharides. These polymers
are biocompatible, biodegradable, and non-toxic. In addition, natural polymers have
an organized structure and it helps on cell viability and tissue ingrowth (Wolf et al.
2015; Simionescu and Ivanov 2016).
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The main advantages of natural polymers (collagen, chitosan, silk fibroin,
gelatin, etc.) are their inherent cellular interaction and similar chemical versatility—
greatly mimicking the extracellular matrix structure (ECM) for bone cell support
matrix, which encourages protein adsorption and cellular adhesion, surface
migration, and proliferation (Lai et al. 2014). However, ECM of different tissues
has unique characteristics (Li et al. 2014; Khorshidi et al. 2015).

Collagen nanofiber scaffold can be used as a matrix for osteogenic progenitor
cells to adhere, proliferate, and differentiate into osteoblasts (Chen and Lv 2015).
Some studies performed with collagen nanofibers exhibited an adhesion of over
45% for mesenchymal stem cell population in a quickly response time of 30 min at
room temperature (Chan et al. 2009).

In addition, recent studies suggest that stiffness plays an important part in bone
tissue engineering for nanofiber scaffolds. Collagen nanofibers when tested under
MG63 osteoblast-like cells produce bone-ECM proteins such as osteocalcin,
responsible for ECM deposition and mineralization; leading to superior values of
cell maturation and their cellular adhesion as well as response is increased based on
the value of stiffness of the scaffold (Torres-Giner et al. 2009; Tsai et al. 2012).

Fig. 3 Most common used natural and synthetic polymers on electrospinning along with its
biological, mechanical, and physiochemical properties. Reprinted with permission from Gunn and
Zhang (2010). Copyright (2016), Elsevier
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Chitosan, which is biocompatible and biodegradable, presents low toxicity and is
widely investigated on electrospinning as nanofibers (Rogina 2014). However, pure
electrospun chitosan fibers are difficult to obtain (Rogina 2014) and chemical
modifications into derivatives that are soluble in common organic solvents are used
(Neamnark et al. 2006). The morphology of chitosan fibers is altered by the acetic
acid concentration, whereas an increase in the solvent changes the chain entan-
glements and is easy to form uniform fibers (Geng et al. 2005). The properties of
chitosan nanofibers for bone regeneration have been studied (Shin et al. 2005), and
cells MG63 proliferated on the nanofiber with collagen and osteocalcin induction
after two weeks in vitro. In addition, chitosan can also maintain its integrity for as
long of six weeks and enhance bone regeneration without inflammatory reaction
due to its antifungal and antibacterial properties, which can be improved by UV
irradiation (Shin et al. 2005). Charged reactions can occur on chitosan, leading to a
network between polymeric chains (Berger et al. 2004). This network acts as a
hydrogel. However, one of the drawbacks is its poor mechanical strength and,
therefore, it is normally used with other material or cross-linked with a copolymer.

Alginate, a naturally biodegradable polysaccharide material, is obtained from
brown seaweed and is biocompatible, non-toxic, and non-immunogenic. However,
it is hard to obtain continuous and uniform nanofiber scaffolds by electrospinning
due to the rigid and extended chain conformation in aqueous solution and lack of
chain entanglement (Chen and Lv 2015). Therefore, the addition of another
copolymer is usually performed on alginate nanofibers. The ability of alginates to
absorb and retain water is superior to that of natural gums (Berger et al. 1953).

However, nanofibers composed of natural polymers are compared poorly in
terms of their mechanical properties with low resistance to aqueous solutions that
limits their use as tissue engineering. (Frenot and Chronakis 2003; Khadka and
Haynie 2012). Many researchers reported a number of cross-linking procedures to
stabilize the nanofibers synthesized using a wide range of natural polymers and
their blends (Delmar and Bianco-Peled 2016; Jalaja et al. 2016). The effect of
cross-linking on nanofibers creates a network of 3D polymer chains which can
possibly enhance fiber stability and other physical and mechanical properties
(Miraftab et al. 2015; Laha et al. 2016). Cross-linking on different natural polymers
have been performed (Torres-Giner et al. 2009; Gualandi et al. 2016; Jalaja et al.
2016), such as gelatin in order to decrease its solubility for being able to use in long
term (Zhang et al. 2006a). Laha et al. (2016) developed a gelatin with saturated
vapor of glutaraldehyde as cross-link. The effect of cross-link induces the nanofi-
bers to a more hydrogellic state (Fig. 4).

3.1.3 Synthetic Hydrogels/Polymer for Tissue Engineering

One of the drawbacks of using natural polymers is their inherent brittleness, in
addition to their restricted flexibility (Chen and Lv 2015). Additionally, synthetic
polymers can be easily modified in contrast to natural polymers which have
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sensitivity to processing conditions such as pH or UV radiations, water.
(Simionescu and Ivanov 2016).

Synthetic polymers are, as the name suggests, synthetized in the laboratory.
Between the synthetic nanofibers, the most attractive ones used in tissue engi-
neering include polyvinyl alcohol (PVA), poly(ethylene glycol) (PEG) and poly
(ethylene oxide) (PEO), polycaprolactone (PCL), poly(Lactic Acid) (PLA), and
poly-(N-vinyl-2-pyrrolidone) (PVP) (Wolf et al. 2015). With most of the
biodegradable synthetic materials approved by FDA, the interest in using these
materials has drawn great attention.

PVA polyvinyl alcohol is created as a result of free radical polymerization of
vinyl acetate with subsequent hydrolysis of acetate groups to hydroxyl moieties
resulting in a wide molecular weight distribution (Hassan and Peppas 2000). PVA
is biocompatible material and non-toxic with useful mechanical properties for tissue
engineering and has the ability to swell to a large extent in solutions similar to those
of human tissues. Nanofibers of PVA can be used as single scaffold (Felice et al.
2015) or combined (Yang et al. 2008; Vashisth and Pruthi 2016), especially for
drug delivery systems and tissue engineering (Felice et al. 2015). PVA can be easily
dissolved in aqueous solutions and produced as nanofibers via electrospinning.
Furthermore, cross-linking approaches have been performed to produce PVA
hydrogels, such as chemical cross-linking, freeze/thawed, and UV irradiation
(Franco et al. 2012; Canillas et al. 2015). The cross-linking via methanol and
chemical with glutaraldehyde seems to be the mostly used method for PVA
nanofiber hydrogel. However, glutaraldehyde and chemical cross-links seem to
have toxicity problems, which could impact and damage cells. Therefore, authors
tried to elaborate different physical and chemical cross-linking methods
(Torres-Giner et al. 2009).

Fig. 4 Digital images representing a non-cross-linked gelatin, b gelatin after cross-link, and
c gelatin with cross-link immersed in water. Reprinted with permission from Laha et al. (2016).
Copyright (2016), Elsevier
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PEG and PEG-containing block copolymers are used in many synthetic forms,
due to its non-degradability by simple swelling and its limited metabolism in the
body. In addition, PEG with molecular weight inferior of 50 kDa is used in tissue
engineering applications (Yamaoka et al. 1994) so that they can be totally degraded
on the kidneys (<30 kDa) or the liver (>30 kDa) (Veronese and Pasut 2005).

PCL nanofibers have been extensively used (Torres-Giner et al. 2009) due to
their bioresorb ability. Aliphatic polyesters are associated with low cost and slow
degradation. Mesenchymal stem cells (MSCs), which show potential to treat large
bone defects (Quarto et al. 2001), proliferate and grow well on PCL scaffold
(Yoshimoto et al. 2003), showing bone-like appearance when implanted on rat
models (Shin et al. 2004). In addition, in comparison with normal PCL substrates,
PCL nanofibers support higher MSC adhesion and viability (Ruckh et al. 2010). In
addition, PCL nanofiber demonstrates the deposition of HAp on simulated body
fluid (SBF) (Araujo et al. 2008).

Poly-(N-vinyl-2-pyrrolidone) (PVP) has excellent biocompatibility with high
ability to absorb water. PVP nanofibers are excellent candidates for fabrication of
nanofibers with non-spinnable materials due to various inorganic ions that can be
produced and its ability to disperse particles acting as covering agent, which makes
it a polymer of choice for the fabrication of electrospun fibers with non-spinnable
materials. However, PVP nanofibers are very soluble in water showing poor
properties as hydrogel (Lubasova et al. 2015). Consequently, PVP hydrogel
nanofibers with further cross-linking are required for improvements and acting as
hydrogels. Recent methods have been performing through Fenton reaction and UV
irradiation (Fogaça and Catalani 2013), also with polyacrylic acid, since this
reaction forms a strong hydrogen bond interaction (Lubasova et al. 2015).

3.1.4 Blend of Natural and Synthetic Polymer Nanofibers
and Integration of Nanofibers with Hydrogels
for Tissue Engineering

The polyblend of natural biodegradable polymers (chitosan and silk fibroin) with
synthetic polymers offers a major advancement in tissue engineering by the simple
and economical approach of the favorable biological properties on natural polymers
and the excellent mechanical properties of the synthetic polymers that favor cell
growth and proliferation (Gunn and Zhang 2010; Abdal-Hay et al. 2016). Various
polyblend polymers have been researched in the past years (Cosme et al. 2016; Hu
et al. 2016a; Mahoney et al. 2016; Zhijiang et al. 2016; Ziaee et al. 2016).

A common polyblend scaffold is made from PCL/gelatin mixture and demon-
strates increased hydrophilicity and promotes bone osteogenesis and mineralization
of MSCs in vitro (Alvarez Perez et al. 2012). In addition, with the support of PCL
the scaffold provided improved mechanical and biochemical properties to guide
bone regeneration. Currently, various types of polyblends have been researched for
the application intended, such as polyester urethane urea (PEUU) with gelatin for
application in myocardial tissue engineering. Since cardiac tissue challenges are the
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development of scaffold with suitable Young’s modulus, the polyblend PEUU/
gelatin provided relatively desirable values for the application intended. In addition,
cardiomyocytes were able to proliferate and grow in this nanofiber scaffold (Jamadi
et al. 2016).

The combination of nanofibers and pure hydrogels may offer the advantages of
incorporating both structures and minimize these problems. Although this concept
is in early stages, some researchers developed different designs for tissue engi-
neering applications (Bosworth et al. 2013; Xu et al. 2015).

Laminated composites The easiest way to incorporate both structures is to fab-
ricate individually and mix them by the layer-by-layer method, and this method is
adjustable by the layers, class of fibers, and hydrogels which can be tuned to the
morphology and mechanical properties required. Another technique is to cross-link
the hydrogels directly onto nanofiber films, dropping the solution onto the nanofiber
(Quinn et al. 2007; Manna and Patil 2009; Shi et al. 2015). In this application, the
voids that separate each nanofiber are filled with hydrogels. Yang et al. (2011)
developed a layer by layer of oriented nanofibers of PLA with collagen type 1
hydrogels. These were separated by filter paper with cells deposited onto the fibers
and incubated before adding another layer. The authors investigated the different
fiber directions on the arrangement of the layers. The results found that there was a
difference in direction of cells which were dependent on the orientation of the
deposited fiber. These suggested further studies were possible into developing
complicated structures to simulate ECM found in some tissues, such as skin and
cartilages.

Encapsulating fibers in hydrogel Controlled placement of fibers with an ordered
structure can be achieved by encapsulating the fibers in hydrogel. McMahon et al.
(2011) achieved a nanotubular scaffold with nanofibers of PEUU (poly(ester ure-
thane) urea and PEG-fibrin hydrogel (Mcmahon et al. 2011) for the application of
coronary artery bypass grafts. Basically, rectangular segments of aligned electrospun
fibers were revolved around latex mandrels. Smooth muscular progenitor cells were
embedded onto the fibers and incubated for two days. After incubation, the fibers
were revolved again through a latex tube with the cells facing outwards. The tube
was added in a hollow Teflon cylinder, and a thrombin/fibrinogen cell was added to
encapsulate the fibrous layers before polymerization and support enough mechanical
strength so that after the removal of the latex, the composite hydrogel would be
intact. After incubation, the latex and Teflon tubes were removed and the final
composite was immersed in diacrylate-derivatized polyethylene glycol
(PEG) solution for the final construct of PEG on fibrin gel. Finally, polymerization
was achieved by UV. This structure was hypothesized to mimic the coronary artery
vessels, showing a biphasic layer of hydrogel fibers and collagen. Suture strength
results showed that this construct has similar values to those of human artery. In
addition, smooth muscle cells were able to proliferate and migrate on this hydrogel
nanofiber construct.
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Injectable Composites A recently technique has been developed by Brown et al.
(2011) named as melt electrospinning writing which can produce complex porous
fiber structure using an automated stage, and this technique can create scaffolds by
stacking melt electrospun fibers on top of each other which is similar to melt
extrusion based on direct writing but in a sub-micrometer magnitude. (Visser et al.
2015) use the innovation of this technique to produce scaffolds for cartilage tissue
and via an injection mold prepared a reinforced hydrogel scaffold nanofiber by
adding the polymer GelMA with an etched PCL nanofiber scaffold produced by
melt electrospinning. These constructs have increased stiffness compared with
hydrogels or nanofiber scaffolds alone approaching that of articular cartilage tissue.
The scaffolds were also embedded with human chondrocytes and show viable
responses, retaining their morphology, and can respond to biological regime in
terms of matrix production and gene expression, making it a feasible material to
culture cells in various environments mechanically diverse.

3.2 Control of Fiber Parameters for Tissue Engineering

With recent progress of cells interactions and tissue microenvironment, important
investigations on the structural nanofiber scaffolds on different cells environment
have been performed (Liu et al. 2012; Li et al. 2014). For the application intended, a
control of the fiber parameters is important. Between these parameters, four majors,
as pointed by a great recent article Xu et al. (2013), have been deeply investigated:
fiber diameter, packing, orientation, and 3D shape.

Researchers have been trying to control the nanofiber diameter (Du et al. 2008)
since it can regulate cell behavior influence like adhesion, proliferation, migration,
differentiation, and protein adsorption (Christopherson et al. 2009). Currently,
controllable diameter size of the electrospun fibers produced has a range of
150 nm–5 lm (Ishii et al. 2008; Nasouri et al. 2012). These ranges of fiber are in
much smaller size than those produced by conventional electrospun methods
including some cells which help facilitate contact guidance of cells (Wang et al.
2010a). Normally, the size controls are dependent on the polymer solution
parameters (Zhang et al. 2005) and processing conditions (Deitzel et al. 2001).

The conventional electrospun method forms 3D tightly packed structures, and
studies indicate that cells can only grow and migrate on the superficial surface,
resulting in a 2D membrane rather than a 3D structure. Additionally, these scaffolds
restrict cell infiltration and limit nutrient exchange. This effect results in loss of cells
and the unsuccessful or partial regeneration of tissues (Li et al. 2014). To overcome
this issue, the control of fiber packing is important when designing the structure for
tissue engineering culture. One strategy is to increase the pore size and porous
structure of these scaffolds (Baker et al. 2008; Kim et al. 2008). Various techniques
to increase the porosity and pore sizes have been developed such as increasing the
diameter of nanofibers (Rnjak-Kovacina and Weiss 2011), evaporating constituents
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of a mixed polymer after electrospun process (Wu et al. 2014). These allow a low
packing density of nanofibers which helps the cells to infiltrate the scaffold.

Researchers are trying to obtain oriented fibers since the extracellular matrix in
tissues of human body has anisotropic architectures, so the scaffold needs to display
the same anisotropic behavior for the tissue application intended (Li et al. 2014). In
addition, cell migration and extension are improved when nanofibers are oriented to
a single-axis direction, such as neural cells, in which oriented nanofibers help direct
the growth of axons in healing process on neural tissue engineering. However,
random orientation is typical in electrospun fibers which are attributed to the
bending instability related to the spinning jet. To overcome this, fiber orientation
can be produced on electrospun fibers by using two grounded rods (Li et al. 2003)
or a rotating drum (Kim and Reneker 1999). A rotating drum at high speed can be
used to obtain aligned fibers, but their orientation is not perfect, and disk collectors
have also been used (Xu et al. 2004). Usually, on this configuration the electric field
is higher at the disk edge and the fibers are well aligned along the edge of the
collector. Another technique is the use of two conductive strips separated by a void
gap, and due to this void gap, which acts as an insulated region, it results in
electrostatic interactions on the nanofibers, and they are stretched to form a parallel
array across the gap.

Since then, different designs have been developed to improve this system such as
conductive coil for the collector (Lee et al. 2016) and addition offinite-length hollow
cylindrical electrode along the jet trajectory, to suppress the coil formation.
Parallel-plate electrodes in between the collector and a cylindrical electrode to ori-
entate the nanofiber scaffold at the collector have also been used (Karatay et al. 2014).

Furthermore, research is ongoing to produce fibers with similar morphologies and
characteristics of the native tissue ECM. As an example, a nanotubular scaffold—
that simulates the muscle layer of blood vessel while mimicking elasticity,
mechanical strength, and high surface area—is possible to be obtained through
electrospinning. Tubular electrospinning structures give aligned fibrous scaffolds
with a high surface area that can induce the proliferation and adhesion of loads of
cells for a faster and complete healing of tissues (Wang et al. 2014). In addition,
recent studies have shown that patterned nanofibers in 3D tubular scaffolds can be
produced easily, using designed collector templates. The collector template can be
designed based on varying nanopatterns with different shapes, producing various
nanofiber structures that can be tailored by the collector template (Daming and Jiang
2008). These specific controlling parameters tend to be important for specific tissue
engineering.

3.2.1 Control of Fibers for Neural Tissue Engineering

Neural cells are affected by the 3D shape of electrospun membranes (Christopherson
et al. 2009; He et al. 2010; Wang et al. 2010a), and its fiber diameter affects
adhesion, proliferation, migration of rat hippocampus-derived adult neural stem cells
(rNSC) (Christopherson et al. 2009; He et al. 2010; Li et al. 2014). Studies
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performed by (Meng et al. 2015) tried to simulate the ectoplasm of nerve (polyan-
ionic nanofibrous cortical layer) by producing a tubular-shape PAA nanofiber
hydrogels. The results from Meng et al. concludes that PAA fibrilar structure could
be a potential candidate for aligned fibers that can mimic the cortical layer structure.

The effect of alignment was reported by several authors (He et al. 2010; Wang
et al. 2010a; Hu et al. 2016b), and aligned fibers appear to enhance Schwann cell
maturation more than randomly oriented fibers (Wang et al. 2010a).

Finally, hydrogels seem to affect the neural tissue. In the innovative work of
Hodde et al. (2015), layers of oriented PCL nanofibers were embedded with fibrin
hydrogel. Fibrin was selected because it could act as targeting tissue healing,
depositing fibrin at the site of the injury and acting as extracellular matrix for
migration and proliferation of perineural fibroblasts, Schwann cells, and regener-
ating axons during nerve healing (Weis et al. 1994). The hydrogel fibrin nanofiber
structure was similar to the ECM of peripheral nerves. In addition, the fiber
hydrogel on 2D structures retained the deficient simple flattened, unipolar mor-
phologies of Schwann cells, where the 3D construct had a complex, highly bran-
ched morphology similar to neuron-like morphology, and the maximum outgrowth
was observed after one day of incubation. In addition, Schwann cells were oriented
to the direction of PCL fibers (Hodde et al. 2015).

3.2.2 Control of Fibers for Vascular Tissue Engineering

Alignment of fibers seems to improve the proliferation of vascular cells (Del Gaudio
et al. 2009; Ma et al. 2012; Li et al. 2014; Shalumon et al. 2015; Ercolani et al.
2015). Shalumon et al. (2015) studied PLLA/gelatin electrospun aligned fibers in
smooth muscle cells (SMCs), and its results indicate that aligned fibers support
SMCs cells and improve the proliferation (Shalumon et al. 2015).

3D shape of electrospun fibers also seems to strongly affect vascular tissue cells
(Ma et al. 2012; Merkle et al. 2015) with a preferable tubular shapes for the reason
that it mimics the natural blood vessels (Stitzel et al. 2006).

Electrospun fibers produced in a core–shell design promote NIH 3T3 fibroblasts
(FBs) and rat smooth muscle cells (rSMC) viability (Merkle et al. 2014, 2015). In
addition, the packing of fibers impacts on the overall effect, and according to Zilla
et al. (2007), tubular scaffolds must possess a porous structure with pore diameter of
10 lm in average and 20–80 lm2 minimum area to allow penetration of cells so as
to obtain a fast regeneration of vascular tissues (Zilla et al. 2007). Vascular tissue
grafts also need to possess proper mechanical properties and a confluent endothe-
lialized lumen to resist thrombosis (Lin 2011). Hydrogel-based systems such as
hydrogel nanofiber scaffolds are generally more biocompatible in the peritoneum
than hydrophobic polymeric devices (Yeo et al. 2007). Stefani et al. produced a
novel hydrogel nanofiber with PCL with copolymer of acrylated poly
((l-lactide-co-trimethylene carbonate), aPLA-co-TMC, the mixing of the two
incompatible polymers as melts with UV-cross-link produced core–shell tubular
fibers and the scaffolds supported the migration, alignment, and proliferation of
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human mesenchymal stem cells (hMSCs). In addition, cells followed the fiber
alignment; random fibers give raise to diverse migration and adhesion, and more
spread and disorganized cell orientation, while aligned fibers promoted cell elon-
gation with high organized and oriented pattern (Stefani and Cooper-White 2016).

3.2.3 Control of Fibers for Bone Tissue Engineering

Diameter of fibers influence bone forming cell behavior, Badami et al., investigated
the use of electrospun mats on MC3T3-E1 cells and found that the optimum range
of fibers diameters for cell proliferation is usually between 0.14 and 2.1 lm and
they are likely to reproduce on larger diameter fibers; optimization of the fiber
dimension helped in the regeneration of bone tissues (Badami et al. 2006). The fiber
packing also affects bone tissue, and enhanced porosities significantly improve the
cell penetration and distribution (Baker et al. 2008; Vaquette and Cooper-White
2011). The alignment of fibers takes an important place in bone tissue because the
bone ECM is oriented in the same direction of the collagen nanofibers in basic
structures of the bone (Cai et al. 2012). The orientation and pattern of the fibrous
scaffold have to resemble the fibrous structure of the natural extracellular matrix
(ECM) because it can improve osteoblast cell migration, proliferation and simulate
the ECM structure (Wang et al. 2009a, 2010b).

Hydrogel nanofibers with PVA/gelatin followed by cross-linking based on
methanol, for the improvement in the mechanical structure, show a well-spaced 3D
structure with growth and proliferation of MG-63 (human osteosarcoma cells) (Linh
and Lee 2012). Recently, Pangon et al. (2016) developed a chitosan/chitin whisker
with HAp hydrogel nanofiber for the objective of promote bone cell response, and
the results indicate that after the simulated body fluid (SBF) the samples were
randomly mineralized with Ca-deficient HAp. In addition, the hydrogel presented
non-toxicity to osteoblast cells with proliferation and viability enhanced by
increasing the chitin whisker (Pangon et al. 2016).

3.2.4 Control of Fibers for Ligament and Tendon

Alignment of electrospun nanofibers structure is important on ligaments and ten-
dons because it mimics the dimensionality of collagen fibrils that comprise native
tendons and ligaments (Li et al. 2007; Choi et al. 2008). In this case, it is extremely
important that the orientation of the nanofibers is optimized with the mechanical
properties, since it has to mimic the native tissue structure. Deepthi et al. aligned
PCL nanofibers coated with a hydrogel chitosan-hyaluronic acid in a cross-link of
N,N-(3-dimethylaminopropyl)-N-ethyl carbodiimide (EDC) and lyophized by
stacking multiple nanofiber mats. The cell results with rabbit ligament fibroblasts
exhibited better migration, attachment, and proliferation along the direction of
alignment of fibers with elongation in comparison with PCL random ones where
cells just spread onto the fibers (Deepthi et al. 2015). However, the results from
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Deepthi et al. (2015) showed that PCL fibers with random orientation infiltrated
more onto the scaffolds owing to the increased porosity. However, ligament tissues
require strong scaffolds and the random PCL fibers exhibit poor mechanical
properties. In addition, cell arrangement along the direction of the acting force is a
prerequisite for ligament tissue engineering and the mechanical strengths of most of
the scaffolds presented in the literature are yet inferior compared to the ligament
tissue (ACL) (Liu et al. 2012; Deepthi et al. 2015).

3.2.5 Control of Fibers for Skin Tissue Engineering

Skin tissue consists of multilayers categorized in terms of the epidermis, dermis,
and hypodermis. These diverse tissue layers comprised of diverse cells and diverse
functions, so complex structured scaffolds are needed for this tissue engineering.
The effect of electrospun nanofibers has been extensively studied (Cui et al. 2008;
Huang and Fu 2010). Studies have been showed that fibroblasts proliferated best at
350–1100 nm. Few results have been reported on the parameters for fiber orien-
tation and fiber packing on skin regeneration (Li et al. 2014). Hydrogel nanofibers
containing gellan/PVA and its effects on human dermal fibroblast (3T3L1) cells
were investigated showing positive results (Vashisth and Pruthi 2016). Various
similar results have been reported (Cui et al. 2008; Loh et al. 2010).

3.2.6 Control of Fibers for Cartilage Tissue Engineering

Cartilage wounds can advance to osteoarthritis and are acute challenges for
regenerative medicine (McCullen et al. 2012; Steele et al. 2014). One of the unique
features of cartilage tissues is that they have anisotropic mechanical properties due
to differences in density and structural arrangements (Becerra et al. 2010). This
leads to three distinct zones with collagen fibers varying their orientation, devel-
oping from aligned in the surface regions, to random and orientating perpendicular
to deep zones (Steele et al. 2014). These profiles for cartilage zones contribute in
terms of mechanical properties (Klein et al. 2009; Becerra et al. 2010).

Authors tried to mimic this cartilage unique zone behavior. Steele et al. devel-
oped trilayered electrospun fibers (Fig. 5) with scaffold nanofibers regions by using
the same polymer with varying the alignment, packing, and diameter of fibers. The
combination of the two distinct zones is designed to yield an anisotropic scaffold
with a smooth articulating surface and a more porous region for ECM deposition.
The morphological changes were able to provide desired functionality, in terms of
mechanical stability, while impacting both chondrocyte gene expression and ECM
accumulation. Hydrogels with PLA and chitosan have also been successfully
reported for the regeneration of cartilage tissue (Mallick et al. 2016). The water
adsorption of hydrogel nanofiber is a significant parameter during the chondrocyte
culture and cartilage regeneration (Mallick et al. 2016). Chitosan has a similar
structure than of glycosaminoglycan (GAG)—a natural biopolymer found in tissues
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and ECM. Results from Mallick et al. (2016) using nanofiber scaffolds for cartilage
engineering show that rabbit chondrocytes can attach well and proliferate
throughout the nanofibers. In addition, the glycosaminoglycan values resulted from
chondrocyte culture from a specific design scaffold exhibited a desired enhance-
ment in the GAG release, which the authors suggest it might be due to suitable
modulation and maturation of the chondrocytes (Mallick et al. 2016).

3.3 Dressings for Wound Healing

Wounds, if exposed and untreated, are susceptible to water loss, toxins, and bac-
terial infections and could promote unnecessary and continued inflammatory
response that limits the regeneration process. In this way, wound dressing materials
are used for regeneration and repair of the dermal tissues, protecting it mainly
against microorganism (Mogoşanu and Grumezescu 2014).

Ideal dressings must contain certain characteristics, including absorption ability
of wound exudates, bacterial barrier, functional adhesion—which can adhere to
healthy tissue but not adhere to wound tissue, ease of removal, and low cost
(Thomas 1990; Bhardwaj and Kundu 2010).

Hydrogel nanofibers for wound dressing applications meet most of the
requirements as dressing material due to their microfibrous and/or nanofibrous
structure related to the electrospinning, producing a moist environment and helping
the regeneration of skin with no scar (Alvarez et al. 1983). In addition, hydrogels
have great ventilation ability and it can be suitable and efficient on absorption of

Fig. 5 Bilayered cartilage scaffold schematic. a A diagram illustrating the electrospun fiber zone
(FZ) and a porous zone (PZ). b SEM images of (top) the aligned fiber zone that is shared between
both scaffold varieties, (middle) the complete bilayered scaffolds with 0.03 mm3 (left) and
1.0 mm3 (right) pores and (bottom) the sodium chloride porogens used to produce higher porous
zones. Reprinted from Steele et al. (2014)
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contaminated exudates (Dumville et al. 2013). Furthermore, electrospun nanofibers
can prevent and control microbial biofilms, cleanse the injured tissue, and eliminate/
minimalize pain (Lee et al. 2003; Mogoşanu and Grumezescu 2014).

Xu et al. (2016) electrospun a mixture of chitosan/PLA and PEG, and the formed
nanofibers were evaporated to remove the solvent at 60 °C. The cross-link of
nanofibers was done with Glutaraldehyde vapor at room temperature followed by
0.1 M glycine aqueous solution to block unreacted aldehyde groups. These fibers
demonstrated high wicking rates and equilibrium water absorptions. These fibers
can hold excess exudates and create a wet wound healing environment for the
wound. The swollen fibers reduced the size of the pores and permeability of air, but
the cross-linked reaction allowed the ingress of oxygen and carbon dioxide. Finally,
Xu et al. demonstrated that these hydrogel nanofiber mats showed good antibac-
terial activities (Xu et al. 2016).

3.3.1 Choice of Polymer for Wound Healing

Natural polymers are widely used for wound and burn dressing due to their bio-
compatible properties and similarity to ECM. Natural polymers can stimulate the
healing process and repair the damaged tissues and skin regeneration (Huang and Fu
2010). Between the natural polymers, the most common used are cellulose—used in
chronic wound dressing (Hunt et al. 1984; Montesano and Orci 1988), chitin and
chitosan—anti-inflammatory and wound healing properties (Anitha et al. 2014;
Mogoşanu and Grumezescu 2014), alginates—hemostatic properties in exudation/
bleeding wounds and burns (Wang et al. 2002; Paul and Sharma 2004). Numerous
hydrophilic polymers such as polyethylene glycol (PEG) have the potential hydrogel
properties. Due to the 3D cross-linked networks, polymeric hydrogels are extensively
used in pharmaceutical and biomedical area, tissue engineering, drug delivery (Peppas
and Sahlin 1996; Peppas 2000; Samchenko et al. 2011). Therefore, hydrogels
cross-linked natural polymers can be used for wound and burn dressings (Mogoşanu
and Grumezescu 2014; Wolf et al. 2015). Synthetic polymers on the other hand are
usually selected as carriers for drugs (Peppas 2000; Chaterji et al. 2007; Nguyen and
Alsberg 2014; de Lima et al. 2015a, b) and can be designated for the choice as
hydrogel blend.

3.4 Drug Delivery Applications

3.4.1 Methods of Drug Loading unto Electrospun fibers

Several methods can be used in order to incorporate antibacterial drugs into
nanofibers.

1. One of the most common methods is to mix the drug with the polymer solution
directly following the electrospun fibers. This method does not require any
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additional steps and is one of the simplest systems to obtain effective nanofibers
as long as the drug and the polymer lipophilic or hydrophilic interactions are
considered (Zeng et al. 2005).

2. The drug is mixed with the polymer solution, as per method 1, and another
polymer electrospun layer is added to encapsulate the drug and act as a shell.
This method is particularly useful for sensitive drugs. In addition, shell layers
improve the sustainable release of the drug and overcome the initial rush initial
release typical on drug delivery systems of nanofibers produced with electro-
spinning. This method is effective for the delivery of active pharmaceutical
ingredients and permits a biphasic drug release (Miao and Liu 2015). The
effective prolonged release of core–shell structure is demonstrated by Zhang
et al. (2006b), and core–shell nanofibers BSA loaded onto PEG slow the release
of BSA for one month. In addition, this technique shows improved adhesion to
fibers allowing uniform fiber structure and the protection of the drug in the early
activity with the biological ambient (Miao and Liu 2015).

3. Another method is where nanoparticles of drug are loaded onto the polymer and
finally electrospun forming the fiber matrix. Due to the specific properties that
are obtained by some materials at nanoscale, such as silver nanoparticles (Zhao
et al. 2012) and bioactive europium-doped hydroxyapatite (Hap:Eu3 +) (Hou
et al. 2009), it is necessary to process these materials to obtain nanoparticles
before processing the electrospinning.

4. Adsorption of the drug by immersing the fiber mats into a required amount of
drug. This method can be achieved by using nanofiber mats that have a high
surface, resulting in greater drug loading amount. This method allows imme-
diate release of drugs from the surface of the scaffold and allows facile dosage
control (Yoo et al. 2009). Chen et al. (2007) developed a PLA nanofiber
immersed in TiO2 nanoparticles. Subsequently, the authors immersed these
nanofiber mats in daunorubicin drug, for the treatment of cancer. The AFM
results show that after immersed in daunorubicin, the TiO2 nanoparticles and
drug packed together and formed spherical particles on PLA nanofibers. This
surface incorporated with anticancer drug can adhere to the surface of the tar-
geted cancer cells and approach the damaged cell surface slightly improving the
metabolic system.

5. Immobilization of the drug using surface activation on the polymer mats and
following immersion in a required amount of drug (Yoo et al. 2009).
Immobilization of bioactive molecules on the exterior of electrospinning nanofi-
bers is also performed to produce reactive functional groups. Owing to benefits of
polymers process, greater selection of molecules with distinct biological features
can be immobilized onto the nanofiber mat without compromising the bulk
properties. Chemical immobilization reduces release rate of the biomolecule, but
also allows a precise control (Goonoo et al. 2014). The immobilization can be
performed either by physical and chemical methods (Yoo et al. 2009); however, it
is usually done with chemical method since the drugs are covalently attached to
nanofibers and they are not easily removed from this modified nanofiber
mat when incubated over long periods of time. Zomer Volpato et al. (2012)
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tested chitosan nanofiber mats where it was surface activated and coated with
heparin-containing polyelectrolyte complex nanoparticles (PCN) which presents
basic fibroblast growth factor (FGF-2). The PCN helps protect FGF-S for over 30
days, and it could be modulated.

6. Drug nanoparticles and the polymer solutions are electrospun in a side-by-side
method to form a biphasic layer of fiber mats. In this method, two liquids
(polymer and drug solutions) are loaded in two parallel metal capillaries. These
form an interesting morphology behavior (Liu et al. 2007). Such fibers are also
called Janus fibers (Yu et al. 2016). However, with different nozzles, the fiber is
formed with the junction of the drug and the polymer. In addition, the drug is
trapped between each fiber connection.

Yu et al. (2016) tested a new design of using a Teflon barrier between the
nozzles in the side-by-side method, and it was possible to observe for the same fiber
two different morphologies with a poorly soluble drug amorphously distributed,
with biphasic controlled release and achieving an initial burst and a slower sus-
tained release phase.

All these methods are different approaches that can be used to incorporate
various active pharmaceutical ingredients (API) in electrospun fibers that can
control the release profile through changes in the fibers morphology, porosity, and
composition.

3.4.2 Choice of Polymer/Hydrogels for Nanofibers
in Drug Delivery Systems

Target-drug delivery nanofibers can be produced by using matrices with either
biodegradable or non-degradable polymers. The drug release mechanism may vary
depending of the type of polymer, diffusion for non-degradable and matrix erosion
for biodegradable (Pillay et al. 2013). The attainable delivery of the drug can be
achieved depending on the polymer used. However, the parameters polymer type,
solvent, and drug compatibility are important process variables when designing
stable nanofibers (Zeng et al. 2005; Pillay et al. 2013). However, recent studies have
shown that it is possible to design hydrophobic drug in electrospun carriers (Laha
et al. 2016) without losing the properties of the polymer matrix.

The release of drug in nanofibers produced by electrospinning is controlled by
diffusion of drug and/or degradation of the polymer matrix (Cui et al. 2006; Loh
et al. 2010; Laha et al. 2016). However, Laha et al. (2016) tested the effect of
cross-link on hydrophobic drug-loaded gelatin nanofibers. Laha et al. (2016) found
that nanofibers in the polymer matrix, without cross-linking, usually led to deficient
exchanges with the poorly water-soluble drug molecules and as such, the hydro-
philic nanofiber mat result in rapid release of drug within few hours. When
cross-link was achieved on the nanofiber mats, their swelling nature and osmotic
behavior provided the principal mechanism for delivery of the hydrophobic drug in
the medium and consequently, even at longer periods of time, and there was
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sustained release of drug as it diffused to the release medium through the carrier
gradually (Laha et al. 2016).

3.4.3 Electrospun Nanofibers that Contain Natural Products for Drug
Delivery Systems and Tissue Engineering Applications

Recently, blended nanofibers with plant-derived natural biomaterials have gathered
great interest since it is possible to incorporate the curative, regenerative, antimi-
crobial, and anti-inflammatory properties of plants with the incorporation of good
mechanical properties and slow biodegradation of synthetic polymers. One of the
advantages of blending plant-derived materials into polymers is that plants have
usually large molecular sizes and most compounds are unable to cross the lipid
membranes of the cells which results in poor adsorption and loss of bioavailability
and efficacy (Venugopal et al. 2014). Electrospun fibers deliver the active ingre-
dients of the plants at sufficient concentration during the entire treatment period to
the host site (Venugopal et al. 2014).

Many plants have been tested in electrospun nanofibers for drug delivery, and as
example there is Aloe vera—antioxidant having good medicinal properties for
tissue engineering. Nanofibers with Aloe vera show that human dermal fibroblasts
can have better and faster attachment, proliferation, and guided growth (Tam et al.
2014). Moreover, it can accelerate the healing of open wounds in type 2 diabetic
radiation-exposed rats (Venugopal et al. 2014).

Asian ginseng (Panax ginseng root) has numerous applications for central ner-
vous systems, cardiovascular and human skin applications (Lee et al. 2007). Panax
ginseng extracts can also promote collagen in human dermal fibroblast cells (Lee
et al. 2007; Pajoumshariati et al. 2015) and positive effect on osteogenesis and cell
proliferation. On nanofiber scaffolds, (Pajoumshariati et al. 2015) results indicate
that ginseng extracts show an improvement in cell attachment and proliferation, and
it also enhanced the MSCs osteogenic differentiation with high level of calcium
content deposited on the surface of fibers which shows a potential candidate for
bone tissue engineering.

The range of nanofibers medicinal plant is vast, and this field has enormous
potential.

3.4.4 Electrospun Nanofibers with Drugs for Tissue Engineering
Applications

In addition to bone regeneration that nanofibers can induce, drug loading can be
added. This is of interest since the number of patients with infections is rising
owing to the risk of bacterial contamination on the implant (Zimmerli et al. 2004).
Infections associated with guided tissue regeneration (GTR) and guided bone
regeneration (GBR) implants are mainly caused by anaerobic bacterial infections
(Ulubayram et al. 2015). In this way, nanofiber scaffolds have been currently used
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as an anti-infection barrier with loadings of various different drugs such as
metronidazole (MNA) and silver nanoparticles, and since the barrier had a sus-
tainable release of those drugs, the membranes maintained its antibacterial effect for
a long term (Xue et al. 2014). In addition, recent studies have shown that it is also
possible to obtain a biphasic release kinetics with good antibiotic encapsulation
(*75–100%) on PLGA electrospun fibers; the researchers used 10% (w;w) fusidic
acid and 5% (w;w) rifampicin which help reduce the number of adherent bacteria
by 99.9% in an in vivo rodent model of implant associated infection (Gilchrist et al.
2013; Ulubayram et al. 2015).

3.4.5 Drug-Encapsulated Nanofibers for Wound Recovery

Nanofiber scaffolds and hydrogel nanofibers have been successfully employed as
vehicles for antibacterial agents for wound recovery (Lee and Yoo 2008; Choi et al.
2015; Vashisth et al. 2016). Antimicrobial agents are preferred to tailor the role in
the wound healing process, and preferably such products usually must protect
against gram-negative, gram-positive, and antibiotic-resistant bacteria. One natural
product that has protection from gram-negative and gram-positive is propolis (de
Lima et al. 2015b), and from our knowledge, it has not been overlooked as
nanofiber scaffolds. On the other hand, strong antibiotics have been encapsulated
into the nanofiber scaffolds, such as neomycin (Nitanan et al. 2013), ampicillin
(Sabitha and Rajiv 2015), ciprofloxacin (Canillas et al. 2015). Cefixime is a very
effective antibactericidal antibiotic for Escherichia coli and Staphylococcus aureus
bacterial strains, which are very common in wound infections (Bergeron and
Turcotte 1986; Arshad et al. 2012). Shahzad et al. produced nanofiber mats of
chitosan, PVA, and HAp with Cefixime for wound healing, and the nanofibers were
cross-linked via freeze-thawed method, freezing the mats at −80 °C for 24 h; freeze
dried to form porous scaffolds and finally heat treated at 80 °C for 10 min. Shahzad
et al. demonstrated that heat treatment affects the structure of the mats, has excellent
interconnected porous structure, high swelling capabilities with sustained release of
Cefixime, inhibition against S. aureus and E. coli and cytocompatibility with VERO
cell line (Shahzad et al. 2015). Ciprofloxacin has also been studied with PVA and
PVA/PAA hydrogel structures for the objective of reducing infection against
osteomyelitis (Canillas et al. 2015); however, its investigation still needs to be
analyzed for nanofibers.

4 Recent Strategy Developments in Electrospinning
for Drug Delivery

Although many works have been described in terms of drug delivery on wound
healing and tissue engineering, it still needs more investigation in terms of poorly
water-soluble drugs and localized targeting delivery. The effect of initial burst
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release also needs to be improved, so the next session describes innovations on
recent fronts of targeting and poorly water-soluble drugs.

4.1 Multilayered Nanofibers

The ability to engineer drug release produced by nanofibers can also be improved or
modified by the polymers matrix. If the drug is incorporated in separate nanofiber
matrix, the diffusion is different and can promote a controlled release of the drug
(Wang et al. 2010d; Huang et al. 2012). In this manner, complex nanofiber mats can
be produced with various polymers to attain multiphased drug delivery. In this
configuration, after the first layer of electrospun is deposited with the first polymer,
another polymer is sequentially deposited on the same collector. This process can
be repeated multiple times to produce meshes of multilayered fibers with ordered
structure and different kinds of polymer. Recently, controlled release systems for
oral delivery of poorly water-soluble drug have been studied with multilayered
nanofibers, such as ketoprofen (KET) incorporated in a trilayered electrospun with
two different polymers (Huang et al. 2012).

In addition, a recently new triaxial electrospinning strategy has been adopted
with a gradual layered structure mesh that is dependent on the various working
fluids containing varied concentrations of the drug which was designed to incre-
mentally increase the content of drug moving from the exterior of the fibers inwards
resulting in a gradient distribution of the drug—linear release of KET. By incor-
porating this formulation into an enteric-coated capsule, a linear release
colon-targeted oral drug delivery system can be produced as shown in Fig. 6.

4.2 Hollow and Core–Shell Electrospun Fibers

In contrast to solid nanofibers, the hollow cores have interesting advantages in
terms of higher specific surface area, lower density, and multiphase interfaces (Wu
et al. 2011). Hollow spheres as compared to normal nanoscaffolds have gathered
interest as drug delivery systems owing to this hollow core can encapsulate large
amounts of drugs. In addition, it also controls the release rate, to prevent the initial
burst and short-term release that occurs in solid nanofibers (Wang et al. 2010c). Wu
et al. created a hollow hydroxyapatite fiber for protein delivery systems, the
hydroxyapatite nanofibers produced an ultrafine fiber diameter with interconnected
pores providing large specific surface area and demonstrated great protein
adsorption ability with long-term sustained release. However, hollow fibers have
poor mechanical properties (Kang et al. 2015). To overcome the deficiencies of this
technique, core–shell nanofibers have been formed on the exterior of the hollow
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fibers (Kang et al. 2015). The principle behind using core–shell fibers as a layer on
hollow fibers was that since large quantities of drugs can be encapsulated onto the
hollow fibers, it might be useful to protect them, in which the core–shell technique
preserves the biological activity of the drug (Su et al. 2012; Zhang et al. 2013).

Fig. 6 a In vitro dissolution test results for KET incorporated in each monolithic nanofibers and
b the tri-layer nanofibers, c a schematic of the triaxial electrospinning process d FESEM images of
the tri-layer nanofibers after release of all the KET loading, and e a diagram explaining how the
gradient drug distribution can yield a linear release profile. Adapted with permission from Yu et al.
(2015). Copyright (2016) American Chemical Society
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4.3 Patterned and Alignment Structures of Nanofibers

There are several methods to produce nanofibers with controllable patterns (Zhang
and Chang 2007), and as a simple method, it is based on the theory that the
orientation of nanofibers is affected by the topography of the collector, so a pat-
terned nanofibrous scaffold can be generated by using a patterned conductive
collector (Zhang and Chang 2007; Li et al. 2014). Alternating the patterned col-
lector and distribution, nanofibers can be assembled into well-ordered nanofiber
meshes with both types of topographies, random and parallel alignment existing in
the same mesh (Daming and Jiang 2008; Wang et al. 2009b).

The orientation effect and pattern on nanofiber have also been investigating for
drug delivery applications. Results show that the drug delivery comportment can be
adjusted by the surface wettability of the drug carrier. Meng et al. (2011) showed
that aligned scaffolds of nanofibers had a lower release rate compared to radon
orientation, suggesting that alignment of fibers could also influence the drug release.

5 Conclusion and Future Perspective

Nanofibers produced by electrospinning are versatile materials that can have many
applications in the biomedical field. Nevertheless, polymer jets are relatively
unstable, so controlling the solution and electrospinning parameters is vitally
important to obtain uniform nanofibers.

The electrospun nanofiber scaffolds mimic the natural ECM, and this feature
suggests that the materials are ideal candidates for tissue engineering. Presently, the
focus and specific knowledge on different tissues of the body is helping for further
progression in this field immensely. Such knowledge is helping to achieve regen-
eration of tissues at a relatively fast rate. Nonetheless, the designed scaffold needs
appropriate properties for the application intended, so a deep understanding of the
nanofibrous scaffold material is crucial to application of the technologies. Currently,
the blend of natural with synthetic polymers offers the appropriate properties for
biomedical applications. Furthermore, the incorporation of nanofibers with hydro-
gels seems to be a solution for the current problems and challenges in this particular
field.

The control of the nanofiber diameter, packing, orientation, and 3D shape
impacts on different tissues environment. This will direct effect cell behaviors such
as attachment, orientation, proliferation, and migration. For example, cartilage has
three different layers and requires a complex nanofibrous scaffold with varying
porosities and alignment. However, this field still needs further investigation for
better understanding on how tissue regeneration is impacted by physiological
signals.
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Nanofibers can also incorporate drugs by different methods, and it can not only
help in terms of tissue engineering by creating antimicrobial barriers (Huang et al.
2012; Xue et al. 2014) but also help on wound healing. Hydrogel nanofibers are
suitable candidates for wound healing applications, and their swelling ability
coupled with permeability for gaseous transfers can promote a perfect condition for
healing environment. In this manner, the ability to encapsulate drugs and control the
release rate can reduce infections. As technology advances and studies progress,
novel techniques for incorporation of drugs in specific target delivery will be at the
forefront. The field of drug delivery on nanofibers impacts on the main current
problems on biomedical field such as poorly water-soluble drugs and biofilms of
bacteria (Ahire et al. 2015; Paaver et al. 2015).
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