
Chapter 5

Data Analysis for Gut Microbiota and Health

Xingpeng Jiang and Xiaohua Hu

Abstract In recent years, data mining and analysis of high-throughput sequencing

of microbiomes and metagenomic data enable researchers to discover biological

knowledge by characterizing the composition and variation of species across

environmental samples and to accumulate a huge amount of data, making it feasible

to infer the complex principle of species interactions. The interactions of microbes

in a microbial community play an important role in microbial ecological system.

Data mining provides diverse approachs to identify the correlations between dis-

ease and microbes and how microbial species coexist and interact in a host-

associated or natural environment. This is not only important to advance basic

microbiology science and other related fields but also important to understand the

impacts of microbial communities on human health and diseases.

Keywords Microbiome • Data mining • Data analysis • Microbiota • Microbes •

Diseases

5.1 Introduction

There are more and more evidences to confirm that human “microbiome” –

microbes living in intimate association with us – forms a vital part of our biology

and plays an important role in both health and sickness [1]. Metagenomics methods

which sequence DNA without directly identifying [2] which organisms they come

from and 16s rRNA sequencing [3] which sequence tag DNA for identifying the

composition of organisms are two basic way of microbiome analysis.

Recently, huge amount of data are generated from plenty of microbiome projects

such as Human Microbiome Project (HMP) [4, 5] and Metagenomics of the Human

Intestinal Tract (MetaHIT) [6]. These datasets provide great opportunities to study
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the unknown world of microbes. Analyzing and mining these data will help us to

better understand the function and structure of microbial community of the human

body, thus the relationships to our health [7, 8].

However, the huge data volume, the complexity of microbial community, and

the intricate data properties have introduced challenges for microbiome data anal-

ysis and mining [9, 10]. Bioinformaticians including computer scientist, mathema-

tician, and microbiologist work together to develop computational approaches to

tackle these challenging issues, roughly focusing on the following computational

tasks: (1) dimension reduction and visualization approaches to explore and visual-

ize microbiome data, (2) statistical methods to infer true correlations and relation-

ships between microbes and diseases, (3) computational methods to identify and

extract microbial interactions from microbiome datasets, and (4) dynamic modeling

and time series analysis to model the ecological system in a holistic way.

Metagenomic data analysis is a timely topic; there is great need for better

algorithms to analyze complex microbiome datasets. These efforts undoubtedly

will lead to biological insights on how microbes impact human health. We will

breifly introduce the current advances in four aspects mentioned above in

microbiome data analysis and mining.

5.2 Dimension Reduction and Pattern Identification

After the preprocessing of the metagenomic data, DNA of metagenomic or 16s

rRNA sequencing technologies could be summarized by metagenomic profiles [11]

which summarize the abundance of functional or taxonomic categorizations in

metagenomic sequences. A metagenomic profile matrix typically has hundreds of

metabolic pathways, thousands of species or tens of thousands of protein families

[12]. Machine learning and multivariate statistics have been employed on the profile

matrix to explore and extract the complex patterns and correlations [13]. After

dimension reduction, metagenomic profiles are usually represented by several

“components” which may facilitate biological interpretation and discovery [14].

For example, PCA has been used frequently in metagenomic profiles to charac-

terize the relationship of metagenomic samples [15]. Another method – MDS –

which is based on the dissimilarities of data instead of similarity in PCA has been

adopted as a standard technology for visualizing the taxonomic relationships in

microbial communities [15]. Recently, a nonnegative matrix factorization (NMF)

framework has been used in analyzing metagenomic profiles to gain a different and

complementary perspective on relationships between functions, environment, and

biogeography of global ocean and soil environment [16–18].

Microbiome datasets can be represented by metabolic paths, taxonomic assign-

ment, or gene families [19]. To integrate information from multiple views, data

integration approaches can be used to combine multi-view information simulta-

neously to obtain a comprehensive view which reveals the underlying data structure

shared by multiple views [20]. A novel variant of symmetric nonnegative matrix

factorization (SNMF) [21], called Laplacian regularized joint symmetric
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nonnegative matrix factorization (LJ-SNMF) has been proposed for this purpose.

We conduct extensive experiments on several realistic datasets including Human

Microbiome Project (HMP) data [4, 5]. The experimental results show that the

proposed method outperforms other variants of NMF, which suggests the potential

application of LJ-SNMF in clustering multi-view datasets.

Furthermore, linear correlation or regression methods are also employed to

investigate the relationships among taxa or functions and their relationships to

existing environmental or physiological data (metadata) such as Pearson Correla-

tion and Canonical Correlation Analysis (CCA) [22]. CCA has been proposed for

investigating the linear relationships of environmental factors and functional cate-

gorizations in global ocean [23].

The vast majority of methods employed in current metagenomics analysis are

under the hypothesis that structures and relationships in a microbial community are

linear. However, the interactions among microbiota are most likely nonlinear, and

the mathematical spaces of microbiota are most likely in a manifold [24] or

probabilistic space [25, 26] instead of Euclidean space. We could visualize and

explore these structures using only several components which are the intrinsic

dimensions discovered by manifold and probabilistic models. This provides a

mechanistic understanding of how a microbial community is generated by proba-

bilistic mixing of microbial components as well as a powerful tool for exploring the

temporal dynamics of microbiome composition.

Finally, many kinds of nonlinear relationships such as taxa-taxa patterns and

function-environment correlations could be investigated using the nonlinear statis-

tical methods. We summarize these steps in a computational framework (see

Fig. 5.1). The computational framework is based on our current understanding of

metagenomic data, and we will integrate the advanced nonlinear dimension reduc-

tion methods and statistical methods to discover novel relationships.

5.3 Relationship and Correlation

Another important problem in microbiome analysis is to identify the biomarkers

(i.e., bacterial taxa, microbial genes, or pathways) that are associated with disease,

where the microbiome data are summarized as the composition of the bacterial taxa,

protein families, or metabolic pathways at different levels [27]. To discover bio-

markers for diseases or environmental factors, the most common approaches focus

on regression techniques incorporating the complex interaction patterns among

species (or gene functions). We have developed a new regression framework called

“manifold-constrained regularization” (McRe) [28], which inherits the strength of

manifold embedding for regularization of linear regression. This method can incor-

porate species interaction network as prior information to infer novel relationships.

Several studies consider the regression analysis of microbiome compositional

data, where the goal is to identify the biomarkers that are associated with a

continuous response such as the body mass index (BMI) [9]. Compositional data

are strictly positive and multivariate that are constrained to have a unit sum. Lin
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et al. [29] proposed a variable selection procedure for such models in high-

dimensional settings and derived the weak oracle property of the resulting estimates

[29]. Shi et al. [30] proposed a penalized estimation procedure for estimating the

regression coefficients and for selecting variables under the linear constraints which

Fig. 5.1 Nonlinear analysis framework for metagenomic profiles
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is developed [30]. This provides valid confidence intervals of the regression

coefficients and can be used to obtain the p-values which could be used to measure

statistical significance [30]. Randolph et al. have formulated a family of regression

models that naturally extends the dimension-reduced graphical explorations com-

mon to microbiome studies; the method could be viewed as a penalized version of

the low-dimensional linear model for compositions [31].

5.4 Networking Microbiome

A network perspective provides unprecedented opportunities for integrating and

analyzing big microbiome data for studying the structure and the function of

microbial communities [32]. A microbial interaction network (MIN, e.g., species-

species interaction network) shapes the structure of a microbial community and

forms its ecosystem function and principle, i.e., the regulation of microbe-mediated

biogeochemical processes [33]. Deciphering interspecies interaction is challenging

in the wet lab due to the difficulties of coculture experiments and the complicated

patterns of species interactions [34]. The knowledge of these small-scale microbial

interactions such as pairwise competitions is often distributed widely in various

media including PubMed literatures, biological databases, Wikipedia documents,

etc., making it difficult to integrate and analyze [35]. Researchers have started to

infer pairwise interspecies interactions such as competitive and cooperative inter-

actions leveraging to heterogeneous microbial data including metagenomes, micro-

bial genomes, and literature data. These efforts have facilitated the discovery of

previously unknown principles of MIN, verified the consistency, and resolved the

contradiction of the application of macroscopic ecological theory in microscopic

ecology [36].

Species interact in a complex style with many types of interactions unknown.

Previous works on species inference based on metabolic methods are based on the

following two approaches. Bornstein proposed a computational method for infer-

ring pairwise interactions from reconstructed metabolic network of species with

whole-genome sequences available publicly [37]. The method can identify pairwise

competitive and cooperative interactions. Another way is using flux balance anal-
ysis (FBA) models [38] to infer species interaction when the metabolic model of a

species (or strain) is available [39].

More than 100 genome-scale metabolic network models were published.

Constraint-based modeling (CBM) was already used for the inference of three

potential interactions [40]: negative, where two species compete for shared

resources; positive, where metabolites produced by one species are consumed by

another producing a synergistic co-growth benefit; and neutral, where co-growth

has no net effect. By using the FBA simulation community metabolic network, we

can find key enzymes and reactions in the metabolic network, thus acting as a

potential environmental and physiological fingerprint. In a two species system, the

CBM solver aims to explore the type of interactions by comparing the total biomass
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production rate (denoted AB) in the pairwise system to the sum of corresponding

individual rates recorded in their individual growth (denoted AþB). The CBM

model is defined in Fig. 5.2, where VBM,m is the maximal biomass production rate

in a system m, corresponding to species A and B. When AB &amp;lt;&amp;lt;

AþB, A and B have a competitive relationship.

5.5 Dynamics and Time Series Analysis

Microbial abundance dynamics along the time axis can be used to explore complex

interactions among microorganisms [41]. It is important to use time series data for

understanding the structure and function of a microbial community and its dynamic

characteristics with the perturbations of the external environment and physiology

[42]. Current studies usually use time sequence similarity [43], or clustering time

series data for discover dynamic microbial interactions; these methods often do not

take the full advantage of the time sequences. Thus the interactions among micro-

organisms cannot be accurately predicted. We have explored a vector

autoregression (VAR) model [44] to lift the limitations of traditional methods.

VAR models and interaction inference: Due to the high-dimensional nature of

microbiomics data, the number of samples is far greater than the number of

microorganisms; direct interaction inference by VAR is not feasible. In our previ-

ous studies, we have designed several graph regularization-based VAR (GVAR)

methods for analyzing the human microbiome. We found that our approach

improves the modeling performance significantly on several microbiome dataset.

The experimental results indicate that graph regularization achieves better perfor-

mance than other sparse VAR model based on elastic net regularization. However,

the interpretation of the inference results is hard and far from complete. Further-

more, graph regularization, despite a classic manifold regularization method, suf-

fers some problems because of its weak extrapolating ability. A novel

regularization – Hessian regularization [45] – which fits the data perfectly and

extrapolates nicely to unseen data will be utilized to overcome the issue.

In the future, state-space model [46] or probabilistic Boolean network model

[47] could be used for modeling large-scale microbiome data for application. We

will extend these methods by integrating specific information of the microbiomics

data. The state-space model is a powerful method for simulation of dynamical

Fig. 5.2 A constraint-

based modeling to model

pairwise interaction
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systems, and it is widely used in engineering control systems which is a dynamic

time-domain model to imply time as the independent variable. It is possible to

extend the state-space model by considering the species delay in the regulatory

network of relationships, not just describe the level of species richness’ impact on

the internal state, and assume that the internal state can independently evolve.

Species with time delay regulatory network of relationships are better suitable for

microbial interactions, because the regulation between microorganisms is often a

slow process with delay, rather than an instantaneous process.

5.6 Conclusion

The data from Human Microbiome Project (HMP) [4, 5], which includes more than

5000 samples with profiles of hundreds of taxonomic or functional categorizations,

are constructed from 15 or 18 distinct body sites of 242 individuals. Methodological

development is still in its infancy for effectively analyzing and mining the data.

Many microbiome dataset are also from various studies focusing on disease, diets,

and other investigations. These data have created a great opportunity for under-

standing and also a tremendous computational and theoretical challenge. There is a

great need to develop novel mathematical and computational methods for finding

nonlinear signal and patterns in human-associated microbial metagenomes.

The identification of complex structures and patterns of microbial communities

is at the essential part of studies in microbial ecology. The expected method helps

shed light on discovering the complex relationships among microbes. In the future,

nonlinear methods should be considered as an important tool in analyzing

metagenomics, not only because microbial function can be viewed at multi-scales,

from individual genomes to communities to global cycles, but also the complex

interaction across scales.
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