
Chapter 3

Entropy for the Complexity of Physiological
Signal Dynamics

Xiaohua Douglas Zhang

Abstract Recently, the rapid development of large data storage technologies, mobile

network technology, and portable medical devices makes it possible to measure,

record, store, and track analysis of biological dynamics. Portable noninvasive medical

devices are crucial to capture individual characteristics of biological dynamics. The

wearable noninvasive medical devices and the analysis/management of related digital

medical data will revolutionize the management and treatment of diseases, subse-

quently resulting in the establishment of a new healthcare system. One of the key

features that can be extracted from the data obtained bywearable noninvasivemedical

device is the complexity of physiological signals, which can be represented by entropy

of biological dynamics contained in the physiological signals measured by these

continuous monitoring medical devices. Thus, in this chapter I present the major

concepts of entropy that are commonly used to measure the complexity of biological

dynamics. The concepts include Shannon entropy, Kolmogorov entropy, Renyi

entropy, approximate entropy, sample entropy, and multiscale entropy. I also dem-

onstrate an example of using entropy for the complexity of glucose dynamics.

Keywords High-throughput phenotyping • Entropy • Complexity • Wearable

medical device • Continuous monitoring

3.1 Introduction

In this century, the rapid development of genomics biotechnologies, large data

storage technologies, mobile network technology, and portable medical devices

makes it possible to measure, record, store, and track analysis of the genome,

physiological dynamics, and living environment and subsequently to reveal the

differences and uniqueness of an individual. These technologies may allow us to

reclassify the diseases for making diagnostic and therapeutic strategies more

precisely tailored to individual patients, leading the birth of precision medicine

and personalized medicine. Portable noninvasive medical devices are crucial to
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capture individual characteristics of biological dynamics. In fact, the rapid devel-

opment of wearable, mobile, automatic, continuous, high-throughput medical

device for measuring human biological parameters heralds a new era [5] – high

throughput phenotyping era. In this new era, the wearable noninvasive m5edical

devices and the analysis/management of related digital medical data will revolu-

tionize the management and treatment of diseases, subsequently resulting in the

establishment of a new healthcare system including those for the treatment and care

of respiratory patients.

One of the key features that can be extracted from the data obtained by the high-

throughput medical device is the complexity of physiological signals. Thus, com-

plexity studies in various major diseases including respiratory diseases are arising

as an important method to analyze these continuous monitoring data measured by

the noninvasive medical devices. The complexity of physiological signals can be

represented by entropy of biological dynamics contained in the physiological

signals measured by continuous monitoring medical devices.

The initial entropy is derived from and applied to the physics of thermodynamics

and statistical physics. Clausius introduced the concept of entropy in the 1850s [1]

and was the first one to enunciate the second law of thermodynamics by saying that

“entropy always increases.” Boltzmann was the first to state the logarithmic con-

nection between entropy and probability in 1886. In 1948, Shannon [12] proposed

an entropy (later known as Shannon entropy) and a large number of applications in

information science. The Kolmogorov entropy [8] and Renyi entropy [10], which

are developed on the basis of Shannon’s entropy, are widely used in the nonlinear

dynamics of the physical system. The entropy can be applied to the experimental

data of biological dynamics, such as approximate entropy [9], sample entropy [11],

and multiscale entropy [2, 14], to quantify the physiological signals in the physi-

ological dynamic system, such as heart rate, airflow, pressure in airway, signal

sound, and so on. Hence, in this chapter, I should describe the above major concepts

of entropy, show their connections, and demonstrate an example of using entropy.

The original concepts of entropy proposed by Clausius and Boltzmann are rarely

used for biological dynamics directly. Thus, I start with Shannon entropy.

3.2 Shannon Entropy

For a discrete random variable Y with a probability mass function p(Y), the entropy
is defined as the expectation of a function of Y, I(Y ), where I(Y )¼ � log( p(Y )).
That is,

H Yð Þ ¼ E I Yð Þf g ¼ E �log p Yð Þð Þf g ð3:1Þ

In information science, I(Y ) is the information content of Y, which is also a random
variable. Suppose that the random variable Y has possible values {y1, y2, . . . , yn}
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and a corresponding probability mass function of pi¼ Pr(Y¼ yi). The entropy can

be expanded as [12]

H Yð Þ ¼ E I Yð Þf g ¼ E �log p Yð Þð Þf g ¼
Xn
i¼1

pi � �log pið Þð Þð Þ

¼ �
Xn
i¼1

pilogpið Þ ð3:2Þ

This definition of entropy can be extended to a continuous random variable with a

probability density function f(Y ) as follows:

H Yð Þ ¼ E I Yð Þf g ¼ E �log f Yð Þð Þf g ¼ �
Z

f Yð Þ � log f Yð Þð ÞdY ð3:3Þ

The entropy defined on the discrete variable is most commonly used. Hence, we

focus on the entropy defined on a discrete variable. The concept of entropy can be

easily extended to multidimensional random variable.

Suppose there are two events, X and Y, in question with I possibilities for the first
and J for the second. Let p(xi, yj) be the probability of the joint occurrence of xi for
the first and yj for the second. The marginal mass density functions of X and Y are

pX xið Þ ¼
X J

j¼1
p xi; yj

� �
and pY yj

� �
¼
X I

i¼1
p xi; yj

� �
, respectively. The entropy

of the joint event is [12]

H X; Yð Þ ¼ EX,Y I X; Yð Þf g ¼ EX,Y �log p X; Yð Þð Þf g

¼ �
XI
i¼1

XJ
j¼1

p xi; yj

� �
log p xi; yj

� �� �� �
ð3:4Þ

The entropy of X and Y are, respectively,

H Xð Þ ¼ EX �log p Xð Þð Þf g ¼ �
XI
i¼1

pX xið Þlog pX xið Þð Þð Þ

¼ �
XI
i¼1

XJ
j¼1

p xi; yj

� �
log pX xið Þð Þ

� �
¼ �

XI
i¼1

XJ
j¼1

p xi; yj

� �
log

XJ
j¼1

p xi; yj

� � ! !

H Yð Þ ¼ EY �log p Yð Þð Þf g ¼ �
XJ
j¼1

pY yj

� �
log pY yj

� �� �� �

¼ �
XJ
j¼1

XI
i¼1

p xi; yj

� �
log pY yj

� �� �� �
¼ �

XI
i¼1

XJ
j¼1

p xi; yj

� �
log pY yj

� �� �� �

¼ �
XI
i¼1

XJ
j¼1

p xi; yj

� �
log

XI
i¼1

p xi; yj

� � ! !
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The conditional probability of Y¼ yj given X ¼ xi is p YjXð Þ ¼ pðxiyjÞPn
j¼1 pðxiyjÞ

¼ pðxiyjÞ
pX xið Þ

The conditional entropy of two discrete random variables X and Y is defined as [12]

HX Yð Þ ¼ EX,Y I YjXð Þf g ¼ EX,Y �log p YjXð Þð Þf g

¼ �
XI
i¼1

XJ
j¼1

p xi; yj

� �
log

p xi; yj

� �
Pn

j¼1 p xi; yj

� �
0
@

1
A ð3:5Þ

Based on Shannon [12], the entropy has the following major properties for serving

as a measure of choice or information:

(i) H ¼ 0 if and only if all the pi but one are zero, this one having the value unity.
Thus only when we are certain of the outcome does H vanish. Otherwise H is

positive.

(ii) For a given n, H is a maximum and equal to logn when all the pi are equal (i.e.,
1
n). This is also intuitively the most uncertain situation.

(iii) Any change toward equalization of the probabilities p1 , p2 , . . . , pn increases
H. Thus if p1< p2and we increase p1, decreasing p2 an equal amount so that p1
and p2 are more nearly equal, then H increases. More generally, if we perform

any “averaging” operation on the pi of the form p0i ¼
Xn

j
aijpj where

Xn

j
aij

¼
Xn

i
aij ¼ 1 and all aij� 0, then H increases (except in the special case

where this transformation amounts to no more than a permutation of the pi
with H of course remaining the same).

(iv) It is easily shown that H(X,Y )�H(X)þH(Y) because p(xi, yj)� pX(xi)pY(yj).
The equality holds only if the events are independent (i.e., p(xi, yj)¼ pX(xi)
pY(yj)). The uncertainty of a joint event is less than or equal to the sum of the

individual uncertainties.

(v) It is easily shown that H(X,Y )¼H(X)þHX(Y ). The uncertainty (or entropy)

of the joint event X and Y is the uncertainty of X plus the uncertainty of Y given

X is known.

(vi) H(Y )�HX(Y ) because H(X)þH(Y )�H(X,Y )¼H(X)þHX(Y ). The uncer-

tainty of Y is never increased by knowledge of X. It will be decreased unless

X and Y are independent events, in which case it is not changed.

3.3 Conditional Entropy

From Shannon’s definition [12] leading to the relationship of H(X,Y )¼H(X)þH

(Y|X), i.e.,
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H X; Yð Þ ¼ �
Xm
i¼1

Xn
j¼1

p xi; yj

� �
log p xi; yj

� �� �� �

¼ �
Xm
i¼1

Xn
j¼1

p xi; yj

� �
log

Xn
j¼1

p xi; yj

� �
�

p xi; yj

� �
Pn

j¼1 p xi; yj

� �
0
@

1
A

0
@

1
A

¼ �
Xm
i¼1

Xn
j¼1

p xi; yj

� �
log

Xn
j¼1

p xi; yj

� � ! !

�
Xm
i¼1

Xn
j¼1

p xi; yj

� �
log

p xi; yj

� �
Pn

j¼1 p xi; yj

� �
0
@

1
A

0
@

1
A ¼ H Xð Þ þ HX Yð Þ

we know that X is not fixed at xi when the conditional entropy H(Y|X) is not for one
fixed xi.

It is interesting to see that, if Zi¼ Y|(X¼ xi)is treated as a random variable, the

entropy defined on Zi will be

H Zið Þ ¼ H YjX ¼ xið Þ ¼ EZi
I Zið Þf g ¼ EZi

�log p Zið Þð Þf g
¼ �

Xn
j¼1

p yj
��xi

� �
log p yj

��xi
� �� �� �

¼ �
Xn
j¼1

p xi; yj

� �
Pn

j¼1 p xi; yj

� � log p xi; yj

� �
Pn

j¼1 p xi; yj

� �
0
@

1
A

0
@

1
A

which differs from the conditional entropy of two discrete random variable. Note,

here X is fixed at xi. In another word, the conditional entropy differs from the

entropy of a conditional probability or event. The conditional entropy of Y given

X measures the uncertainty of Y given we know X regardless of what the value of

X is, whereas the entropy of Y given Xmeasures the uncertainty of Y given X equals

one of its specific values. Their relationship can be shown below:

HX Yð Þ ¼ �
Xm
i¼1

Xn
j¼1

p xi; yj

� �
log p yj

��xi
� �� �� �

¼ �
Xm
i¼1

Xn
j¼1

p xið Þp yjjxi
� �

logp yjjxi
� �� �

¼ �
Xm
i¼1

p xið Þ
Xn
j¼1

p yj
��xi

� �
logp yj

��xi
� � !

¼ �
Xm
i¼1

p xið ÞH Zið Þð Þ
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That is,

HX Yð Þ ¼ �
Xm
i¼1

p xið ÞH Zið Þð Þ ð3:6Þ

Hence, the conditional entropy is a weighted or average entropy of conditional

probabilities or events.

3.4 Renyi Entropy

In mathematics, Shannon entropy can be seen as a special case of Renyi entropy

[10] which is introduced here. In general, for a discrete random variable Y with a

probability mass function pi¼ Pr(Y¼ yi), the Renyi entropy of order q, where
q� 0 , q 6¼ 1, is

Rq Yð Þ ¼ � 1

q� 1
log
Xn
i¼1

pq
i ð3:7Þ

The limit of Renyi entropy for q!1 is the Shannon entropy, that is,

lim
q!1

Rq Yð Þ ¼ � lim
q!1

1

q� 1
log
Xn
i¼1

pq
i ¼ �

Xn
i¼1

pilog pið Þ ð3:8Þ

Consequently, it can be defined Rq¼1 Yð Þ ¼ lim
q!1

Rq Yð Þ. In such a case, the Shannon

entropy is a special case of Renyi entropy with q ¼ 1. It can be demonstrated that

Rq1 Yð Þ > Rq2 Yð Þwhen q1 > q2 ð3:9Þ

3.5 Kolmogorov Entropy

Kolmogorov entropy (also known as metric entropy) is originated from the field of

dynamical systems, which is defined as follows [8]. Consider a dynamical system

with a phase space. Divide the phase space into a set N(E) of disjoint D-dimensional

hypercubes of content ED. Let p(i0, i1, i2, . . . , iN) be the probability that a trajectory

is in hypercube i0 at t ¼ 0, hypercube i1 at t ¼ τ, hypercube i2 at t ¼ 2τ . . .,
hypercube iN at t ¼ Nτ.
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Kolmogorov entropy is then defined as

K ¼ � lim
τ!0

lim
E!0þ

lim
N!1

1

Nτ

X
i0, i1, i2, ..., iN

p i0; i1; i2; . . . ; iNð Þlog p i0; i1; i2; . . . ; iNð Þð Þ
 !

ð3:10Þ

The above definition relies on quite some jargons such as phase space, hypercube,

content, trajectory, and so on in physics that a statistician is usually unfamiliar.

A dynamical system is a description of a physical system that evolves over time.

The system has many states, and all states are represented in the state space of the

system. The state space is also termed as phase space. A path in the state space

describes the dynamics of the dynamical system. The path is termed as trajectory.

Kolmogorov entropy is the theoretical basis for approximate entropy, sample

entropy, and multiscale entropy that are commonly used in time series, which relies

on the concept that Kolmogorov entropy is the rate of change of Shannon entropy of

a system. The Kolmogorov-Sinai entropy measures unpredictability of a dynamical

system. The higher the unpredictability, the higher the entropy. A higher Kolmo-

gorov entropy value means a higher rate of change of the internal structure and of

the information content and thus the faster development of complexity. The fol-

lowing paragraph should help us to understand why Kolmogorov entropy is the rate

of change of Shannon entropy of a system.

Based on the setting for Eq. 3.13, Shannon entropy for a fix n is

Kn ¼ �
X

i0, i1, i2, ..., in

p i0; i1; i2; . . . ; inð Þlog p i0; i1; i2; . . . ; inð Þð Þ ð3:11Þ

Then, Knþ 1�Kn is the increment of Shannon entropy from time nτ to (nþ1)τ,
which can be seen as the information needed to predict the status at (nþ1)τ given
the status at up to nτ is known. The overall rate of change H0 of Shannon entropy is

thus

H0 ¼ lim
τ!0

lim
E!0þ

lim
N!1

1

Nτ

XN�1

n¼0

Knþ1 � Knð Þ ð3:12Þ

Consider

XN�1

n¼0

Knþ1 � Knð Þ ¼ K1 � K0ð Þ þ K2 � K1ð Þ þ K3 � K2ð Þ þ . . .þ KN � KN�1ð Þ

¼ KN � K0

and K0 ¼
P

i0
p i0ð Þlog p i0ð Þð Þ ¼ 0 because status at t ¼ 0 is always known and p

(i0)¼ 1, we have
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H0 ¼ lim
τ!0

lim
E!0þ

lim
N!1

1

Nτ

XN�1

n¼0

Knþ1 � Knð Þ ¼ lim
τ!0

lim
E!0þ

lim
N!1

1

Nτ
KN � K0ð Þ ¼ lim

τ!0
lim
E!0þ

lim
N!1

1

Nτ
KN

¼ � lim
τ!0

lim
E!0þ

lim
N!1

1

Nτ

X
i0, i1, i2, ..., iN

p i0; i1; i2; . . . ; iNð Þlogp i0; i1; i2; . . . ; iNð Þð Þ
 !

¼ K

That is, K ¼ H0, which shows that Kolmogorov entropy is the rate of change of

Shannon entropy of a system.

The application of Kolmogorov entropy in time series commonly goes through

another quantity R2, which is a special case of the rate of change of Renyi entropy

Rq.

For the setting for Eq. 3.9, the rate of change of Renyi entropy is

Rq ¼ � lim
τ!0

lim
E!0

lim
N!1

1

Nτ

1

q� 1
log

X
i0, i1, i2, ..., iN

pq i0; i1; i2; . . . ; iNð Þ ð3:13Þ

From Eqs. 3.7 and 3.8, we have that R1is the Kolmogorov entropy and R2 is the

lower bound of Kolmogorov entropy.

Grassberger and Procaccia [6] demonstrated that for typical cases, R2 is numer-

ically close to K. More importantly, R2 can be extracted fairly easily from an

experimental signal as follows.

Let Xi¼ (yi, yiþ 1, . . . , yi + d� 1) (where i is from 1 to N-dþ1) be a sequence of

Y starting at yiwith a length of d. That is, we have a sequence of N-dþ1 vectors, X1 ,

X2 , . . . ,XN� dþ 1.

Consider

Cd Eð Þ ¼ lim
N!1

1

N2
� number of pairs n;mð Þwith

Xd
i¼1

Xnþi � Xmþið Þ2
 !1=2

< E

8<
:

9=
;

K2,d Eð Þ ¼ 1

τ
log

Cd Eð Þ
Cdþ1 Eð Þ

Grassberger and Procaccia [6] proved that

lim
d ! 1
E ! 0

K2,d Eð Þ ¼ K2, i:e:, lim
d ! 1
E ! 0

1

τ
log

Cd Eð Þ
Cdþ1 Eð Þ ¼ K2 ð3:14Þ

The Euclidean distance in Cd(E) may be replaced by the maximum norm [13].
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3.6 Approximate Entropy

Consider a time series of data with length of N ,Y¼ (y1, y2, . . . , yN), from measure-

ments equally spaced in time. Let Xi¼ (yi, yiþ 1, . . . , yi+m� 1) (where i is from 1 to

N-mþ1) be a sequence of Y starting at yi with a length of m. That is, we have a

sequence of N-mþ1 vectors, X1 ,X2 , . . . ,XN�mþ 1. For each pair of sequences, Xi

and Xj, we may define a distance between them. One commonly used distance is the

maximum absolute difference of their corresponding elements, namely,

d Xi;Xj

� � ¼ max Xi � Xj

�� ��� � ¼ max
k¼1, 2, ...,m

yiþk�1 � yjþk�1

�� ��

For a sequence Xi, a sequence Xj that has a distance from Xi less than or equal to

r (i.e., d(Xi,Xj)� r) is defined as within the r of Xi and count it as a match with Xi.

We may count the number of Xj that matches with Xi with respect to (w.r.t.) r and
denote it as Cm

i rð Þ. The proportion of Xj matching with Xi w.r.t. r is then

Pm
i rð Þ ¼ Cm

i rð Þ= N � mþ 1ð Þ

When N is large, Pm
i rð Þ represents the probability that any Xj matching with Xi

w.r.t. r.
The average proportion of matches for all sequences Xi (1� i�N�mþ 1) is

thus

Pm rð Þ ¼ 1

N � mþ 1

XN�mþ1

i¼1

Pm
i rð Þ

Define Φm(r) as

Φm rð Þ ¼ 1

N � mþ 1

XN�mþ1

i¼1

log im
P rð Þ

Then, Eckmann-Ruelle (ER) entropy [4] is

ER entropy ¼ lim
r!0

lim
m!1 lim

N!1
Φm rð Þ �Φmþ1 rð Þ� �

¼ lim
r!0

lim
m!1 lim

N!1
1

N � mþ 1

XN�mþ1

i¼1

logPm
i rð Þ � 1

N � m

XN�m

i¼1

logPmþ1
i rð Þ

 !

The approximate entropy for fixed m and r [9] is
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ApEn m; rð Þ ¼ lim
N!1

Φm rð Þ �Φmþ1 rð Þ� �

¼ lim
N!1

1

N � mþ 1

XN�mþ1

i¼1

logPm
i rð Þ � 1

N � m

XN�m

i¼1

logPmþ1
i rð Þ

 !

Given N data points

ApEn m; r;Nð Þ ¼ Φm rð Þ �Φmþ1 rð Þ

¼ 1

N � mþ 1

XN�mþ1

i¼1

logPm
i rð Þ � 1

N � m

XN�m

i¼1

logPmþ1
i rð Þ

The theoretical framework for approximate entropy is based on the following

theorems [9].

Assume a stationary process u(i) with continuous state space. Let (X, Y) be the

joint stationary probability measure on a two-dimensional space for this process

(assuming uniqueness), and πX be the equilibrium probability of X. Then a.s.

Theorem 1

ApEn 1; rð Þ ¼ �
Z

u x; yð Þlog
Z yþr

z¼y�r

Z xþr

w¼x�r

u w; zð Þdw dz

�Z xþr

w¼x�r

π wð Þdw
� 	

dx dy

Theorem 2 For an i.i.d. process with density function, a.s. (for any m� 1)

ApEn m; rð Þ ¼ �
Z

π yð Þlog
Z yþr

z¼y�r

π zð Þdz
� 	

dy

Theorem 3 In the first-order stationary Markov chain (discrete state space values)

case, with r<min(|x� y|, x 6¼ y, x and y state space values X), a.s. for any m

ApEn m; rð Þ ¼ �
X
x2X

X
y2Y

π xð Þpxylog pxy

Pincus [9] considers ApEn(m, r) as a family of formulas and ApEn(m, r, N) as a
family of statistics; system comparisons are intended with fixed m and r. This
family of statistics is rooted in the work of Grassberger and Procaccia (1983) [6, 7]

and Eckmann and Ruelle [4]. The above theory and method for a measure of

regularity proposed by Pincus [9] are closely related to the Kolmogorov entropy,

the rate of generation of new information, which can be applied to the typically

short and noisy time series of clinical data [11].
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3.7 Sample Entropy

Like approximate entropy, sample entropy is also defined on the count Cm
i rð Þ and

proportion Pm
i rð Þ of a sequence Xj matching with another sequence Xi w.r.t. r but

with two alterations [11]. First, self-matches are counted in the calculation of Cm
i

rð Þ for approximate entropy, whereas self-matches are excluded in the calculation

ofCm
i rð Þ for sample entropy. Second, for a fixedm, only the first N –m sequences Xj

of length m are used for calculating Cm
i rð Þ to ensure that the number of sequences

used for Cm
i rð Þ is the same as the number of sequences available for Cmþ1

i rð Þ. To
avoid confusion, in the altered setting as contrasted to the unaltered sitting, we may

use Cm
i rð Þ∗ to denote the number of matches with the ith sequence Xi of length m,

i.e.,Cm
i rð Þ∗ ¼ Cm

i rð Þ; i ¼ 1; 2; i� 1; iþ 1;N � m

 �

, and to useCm
i rð Þ∗∗

to denote

the number of matches with the ith sequence Xi sequence of length mþ 1, i.e.,
Cm
i rð Þ∗∗ ¼ Cmþ1

i rð Þ; i ¼ 1; 2; i� 1; iþ 1;N � m

 �

. Similar to the proportion Pm
i

rð Þ of matches for approximate entropy, we have the proportions, Pm
i rð Þ∗ and

Pm
i rð Þ∗∗

, of matches for sample entropy as follows:

Pm
i rð Þ∗ ¼ Cm

i rð Þ∗= N � mð Þ

Pm
i rð Þ∗∗ ¼ Cm

i rð Þ∗∗= N � m� 1ð Þ

Similar to the average proportion Pm(r) of matches for all sequences Xi for approx-

imate entropy, we have the average proportions, Pm(r)* and Pm(r)**, of matches for

sample entropy as follows:

Pm rð Þ∗ ¼ 1

N � m

XN�m

i¼1

Pm
i rð Þ∗

Pm rð Þ∗∗ ¼ 1

N � m� 1

XN�m�1

i¼1

Pm
i rð Þ∗∗

Clearly, Pm(r)* is an estimate for the probability that two different sequences will

match for m points, whereas Pm(r)** is an estimate for the probability that two

different sequences will match for mþ 1 points.

The sample entropy for fixed m and r [11] is defined as

SampEn m; rð Þ ¼ lim
N!1

�log
Pm rð Þ∗∗

Pm rð Þ∗
� 	

Given N data points
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SampEn m; r;Nð Þ ¼ �log
Pm rð Þ∗∗

Pm rð Þ∗

From the above definition, sample entropy is essentially the negative logarithm of

the ratio of the probability that any two different sequences in a time series match

for m points to the probability that any two different sequences in the time series

match for mþ 1 points.

The theoretical framework for sample entropy is based on Grassberger and

Procaccia’s (1983) work as concluded in Eq. 3.14.

3.8 Multiscale Entropy Analysis

Kolmogorov entropy, approximate entropy, and sample entropy described above

are based on a single scale, reflecting the uncertainty of the next point given the past

history of the series as their calculation depends on a function’s one step difference
(e.g., Kn+1�Kn). Hence, they do not account for features related to structure on

scales other than the shortest one [2]. To address this issue, Zhang [14] introduced

multiscale entropy to the analysis of the physical time series. Costa et al. [2] further

extended the multiscale entropy technique applicable to the analysis of the biolog-

ical time series.

The basic idea for calculating multiscale entropy is to first generate a new time

series consisting of the means of consecutive nonoverlap segments each with fixed

length k of observed data points and then to calculate Kolmogorov entropy,

approximate entropy, or sample entropy based on the newly generated time series.

Specifically, we first divide the original signal ({yi}, 1� i�N ) into nonoverlapping

segments of equal length (k) and calculating the mean value of the data points in

each of these segments [14]. This process is called coarse graining, and the newly

generated time series is called coarse-grained time series. The length k is called a

scale factor (or simply a scale).The coarse-graining process is repeated for a range

of the scale factor. As the scale factor k changes, we will construct different coarse-
grained time series, and subsequently we will calculate corresponding entropy

values on the newly coarse-grained time series. We may now plot the entropy of

coarse-grained time series against the scale factor k. This procedure is called

multiscale analysis (MSE) [2].

The coarse-graining process can be applied to not only the mean of a divided

segment but also its variance and any moments in statistics [3]. Costa and

Goldberger [3] termed the MSE on mean-based coarse-grained time series as

MSEμ, MSE on variance-based coarse-grained time series as MSEσ
2, and MSE

on any moment-based coarse-grained time series as MSEn. Note, in statistics, the

mean is the first central moment, and the variance is the second central moment.
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3.9 Demonstration of an Example

Diabetes is a major disease in human being. It is a group of metabolic diseases in

which the patients’ blood sugar level is high over a prolonged period. The key index
for monitoring diabetes is blood glucose level in a person. The left panel of Fig. 3.1

shows the glucose levels of a healthy person (black points) and a patient with type II

diabetes (gray points), measured once every 3 min in 2 days. I calculate the

multiscale sample entropy based on the data shown in the left panel of Fig. 3.1

and obtain the results shown in the right panel of Fig. 3.1.

The average value and standard deviation of the glucose levels are 5.16 and 1.00,

respectively, in the healthy person and insulin and 12.45 and 3.08, respectively, in

the patient with type II diabetes. The diabetes patient has sample entropy values

lower than the healthy person at each scale (the right panel of Fig. 3.1). The change

of direction in entropy is different from that in the average value (or variability),

which may indicate that entropy contains information that the average value cannot

be disclosed.
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Fig. 3.1 Human glucose dynamics and its analysis using multiscale sample entropy. Left Panel,
value of glucose levels in a healthy person (black points) and in a patient with type II diabetes

(gray points) measured once in every 3 min in 2 days. Right Panel, multiscale sample entropy

values in a healthy person (black points and line) and in a patient with type II diabetes (gray points)
calculated based on the glucose levels shown in the left panel
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3.10 Discussion and Conclusion

Based on the description of various concepts of entropy for biological dynamics,

the Shannon entropy is a measurement of the disorder (or uncertainty) of a system.

Shannon entropy is a special case (with q ¼ 1) of more broad entropy called Renyi

entropy. Kolmogorov entropy is the rate of change of Shannon entropy. The low

bound of Kolmogorov entropy is the rate of change of Renyi entropy with q ¼ 2.

This low bound can be approximated by an entropy that can be calculated using

time series data from biological dynamics. This entropy is called approximate

entropy. Sample entropy is an improved version of approximate entropy that

corrects unpleased self-matching effect. Both sample entropy and approximate

entropy can be calculated in different layers of data, resulting in multiscale entropy

(MSE). Sample entropy, approximate entropy, and/or their corresponding MSE

have now been broadly used to assess the complexity of biological dynamics in

various diseases measured by noninvasive medical device.

As demonstrated in the diabetes example, entropy analysis for the dynamics of

physiological signals can disclose information that is not contained in the average

value or variability of the physiological signals. Thus, entropy analysis could be

used to differentiate the major diseases such as diabetes into different sub-diseases

on the top of existing approach (such as using the average value in the diabetes

case). It could also be used to reclassify the major diseases so that more specific and

more effective drugs or treatment can be developed. All these will help to the

development of precision medicine in which the right drug at the right dosage can

be prescribed to treat the right person at the right time.
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