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Abstract

Despite significant advances in surgery, chemotherapy, radiotherapy, 
endocrine therapy, and molecular-targeted therapy, breast cancer remains 
the leading cause of death from malignant tumors among women. 
Immunotherapy has recently become a critical component of breast cancer 
treatment with encouraging activity and mild safety profiles. CAR-T ther-
apy using genetically modifying T cells with chimeric antigen receptors 
(CAR) is the most commonly used approach to generate tumor-specific T 
cells. It has shown good curative effect for a variety of malignant diseases, 
especially for hematological malignancies. In this review, we briefly intro-
duce the history and the present state of CAR research. Then we discuss 
the barriers of solid tumors for CARs application and possible strategies to 
improve therapeutic response with a focus on breast cancer. At last, we 
outlook the future directions of CAR-T therapy including managing tox-
icities and developing universal CAR-T cells.
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17.1	 �Introduction

Breast cancer is the most diagnosed cancer in 
women. Despite significant advances in surgery, 
chemotherapy, radiotherapy, endocrine therapy, 
and now molecular-targeted therapy, breast can-
cer remains the leading cause of death from 
malignant tumors among women [1, 2]. After 
decades of researches and trials, it seems that 
manipulation and utilization of antitumor proper-
ties of the immune system have begun to show 
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promise for a variety of tumors [3, 4]. Through 
the years, many advances have been made in the 
immunotherapy of breast cancer. Immunotherapy 
has become an important part of breast cancer 
treatment, along with encouraging activity and 
mild safety.

Immunotherapy for breast cancer involves a 
wide range of therapies including monoclonal 
antibodies (mAbs), vaccinations, immune check-
point inhibition, and adoptive T-cell transfer 
immunotherapy. HER-2/neu monoclonal anti-
body has been successfully used in treatment for 
breast cancer patients. However, overexpression 
of HER-2/neu accounts for only 25–30% of 
breast cancer patients. Vaccinations induce spe-
cific antitumor immunity, but objective tumor 
regression is rarely observed in clinic [5]. 
Cytotoxic T cells play a key role in immune-
mediated control of cancer [6–12]. Plenty of 
studies have proved that the extent of cytotoxic T 
cell-infiltrating tumors is a key factor in deter-
mining the natural progression of a variety of 
cancers [6–9, 13–15]. Over the past two decades, 
T-cell-based immune therapy has gained general 
acceptance with its curative potency for several 
types of malignant diseases [16]. Current T-cell-
based immune therapies are generally based on 
two methods. The first involves the isolation of 
antitumor T lymphocytes from the primary tumor 
tissues of the patients, which is called tumor-
infiltrating lymphocytes (TILs). However, due to 
the difficulties of TIL isolation and culture, TIL 
therapy is limited to a few types of tumors with 
high number of TIL [17]. Another way is to gen-
erate T cells with a predetermined antitumor 
specificity via gene therapy-based approaches. 
There are two gene modification strategies, 
including TCR gene transfer and chimeric anti-
gen receptor (CAR) gene transfer, which are used 
to endow polyclonal T cells with an antigen spec-
ificity of choice. We highlight the CAR-T cell 
therapy in this review.

17.2	 �Present State of CAR-T 
Therapy

Genetically modifying T cells with CARs is the 
most common method of producing tumor-
specific T cells. CARs usually consist of an extra-
cellular ligand-binding domain of a single-chain 
antibody (scFv), a hinge, a transmembrane 
domain, a cytoplasmic signaling chain, and/or 
costimulatory molecules. CAR-engineered T 
cells combine the specificity of mAbs with the 
homing and killing capacity of T cells. 
Specifically, CAR-T cell therapy is considered to 
have several advantages when compared with 
other cellular immunotherapies. Firstly, CAR-T 
cells are generated using nonspecifically acti-
vated polyclonal T cells. Therefore, they over-
come the difficulty of isolation and amplification 
of natural tumor-specific CD4+ and CD8+ T 
cells [18, 19]. Secondly, CAR-T cells recognize 
the target antigens in a MHC-independent man-
ner. This property enables CAR-T cells to recog-
nize target cells with reduced HLA expression or 
antigen processing, which are considered as an 
important factor in tumor immunological escape 
[20–22]. Thirdly, CAR-T cells can home to tumor 
sites actively and specifically and possess the 
capacity to expand and persist over a long term 
after tumor recognition in  vivo. Therefore, 
CAR-T cells targeted to tumor-associated anti-
gens (TAAs) may be more effective than mAbs in 
producing long-lasting tumor responses [23]. 
Another particular advantage of CAR-T cells is 
the capacity to cross the blood–brain barrier [24]. 
This characteristic is highly useful for treating 
malignant tumors that involve in or have been 
transferred to the central nervous system, though 
adverse reactions relevant to central nervous sys-
tem must be considered as well.

The concept of the CAR was put forward by 
Gross and colleagues in 1989, who fused the anti-
body-binding domain Fab with the TCR signaling 
domain CD3ζ and named it as T body. Since then, 
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different generations of CAR-T cells have been 
claimed with confusing definition. In our opinion, 
based on the three signals required for T-cell acti-
vation, which are TCR, costimulation, and cyto-
kine, CAR-T cells could be divided into three 
generations (Fig.  17.1). The first generation of 
CARs contained scFv and only a single signaling 
domain derived from CD3ζ [25]. However, the 
effect of the first-generation CAR trials was dis-
appointing. Both complete T-cell activation and 
prevention of apoptosis required a costimulatory 
signal [26]. The second-generation CARs were 
subsequently developed, which contained two or 
three costimulatory signal domains of CD28 and/
or 4-1BB, or other costimulatory molecules, to 
complete the activation signal of the CAR-T cells 
[27, 28]. The third-generation CARs were embed-
ded into a cytokine cassette which endowed the 
CAR-T cells with a better function or survival 
environment. Other features such as migration, 
homeostatic proliferation, suppression resistance, 
etc. were subsequently embedded into CAR-T 
cells, which were described as TRUCK CAR-T 
cells [29, 30]. For example, the transgenic cyto-
kine IL-12 produced by TRUCK T cells not only 
improves T-cell activation and modulates the 
immunological environment but also recruits 
other immune cells for the fight against those anti-
gen-negative cancer cells that are not recognized 
by CAR-T cells. Other cytokines like IL-23, 
IL-27, and IL-15 are alternative payload for 
TRUCK T cells. In treatment for solid cancer, 

such TRUCK T cells might have an advantage to 
modulate the tumor environment, thus enhancing 
the T-cell antitumor response [31, 32].

T cells engrafted with CAR recognize a wide 
variety of TAAs expressed on a broad range of 
tumors, representing both solid and hematologic 
malignancies. One of the most impressive clinical 
results ever achieved by CAR-T cells is that poly-
clonal T cells express CD19-specific CARs with 
CD28-CD3ζ or 41BB-CD3ζ as signaling domains 
[24, 33–37]. Complete responses were achieved 
after infusion of 2nd generation CAR-T cells in 
patients with CD19+ hematological malignancies 
including NHL, acute lymphoblastic leukemia 
(ALL) and chronic lymphocytic leukemia (CLL). 
There are also clinical studies with 2nd generation 
CAR-T cells specific for the κ-light chain of 
human immunoglobulin or for CD30. Clinical 
responses including CRs have been observed [38, 
39]. In contrast to B-cell malignancies, clinical 
experiences of CARs in treatment of T-cell or 
myeloid-derived malignancies are limited.

17.3	 �CAR-T Therapy for Breast 
Cancer: Problems 
and Solutions

CAR-based therapy for solid tumors involves the 
use of CARs targeting colorectal cancer [40, 41], 
ovarian cancer [42], prostate cancer [43], 
metastatic renal cell carcinoma, and so on [44]. 

1° VH VL TM CD3ζ

2° VH VL TM CD3ζCO

3° VH VL TM CO CD3ζ Cytokine

Fig. 17.1  The evolution of chimeric antigen receptors 
(CARs). CARs are classified into first-generation (one), 
second-generation (two), or third-generation (three) 

CARs. Abbreviation: VH heavy chain variable region, VL 
light chain variable region, TM transmembrane domain, 
CO costimulatory signaling domain
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There are also studies targeting HER-2, Lewis Y, 
mesothelin, folate receptor alpha (FR-α), and 
Muc1 for breast cancer in  vitro and in animal 
models [28, 40, 45–55]. HER-2 expression is 
known to impact breast cancer recurrence and 
ultimately survival [56]. The use of anti-HER2 
mAbs has significantly improved breast cancer 
prognosis. HER-2-targeted therapies are now a 
main component of HER-2 overexpressing breast 
cancer treatment [57, 58]. There are several clini-
cal trials of CAR-T cells targeting HER-2  in 
progress, such as a phase I/II study of HER-2-
targeted CAR-T cells in chemotherapy or HER-2 
antibody inhibitor therapy for refractory HER-2-
advanced breast cancer (NCT01935843) and a 
phase II study of anti-CD3 x anti-HER2/Neu-
armed activated T cells after second-line chemo-
therapy in women with HER2/Neu (0, 1+ or 2+) 
metastatic breast cancer (NCT01022138). 
Moreover, clinical trials of CAR-T-cell therapy 
targeting other antigens for patients with breast 
cancer are ongoing, including a phase I study of 
CAR-T cells targeting cMet, which is aberrant 
activation in cancer and correlates with poor 
prognosis, in metastatic breast cancer refractory 
to at least one standard treatment or newly diag-
nosed patients with operable triple-negative 
breast cancer (TNBC) (NCT03060356), and a 

phase I study of CAR-T cells targeting mesothe-
lin, a tumor antigen associated with TNBC, in 
metastatic HER2-negative breast cancer 
(NCT02580747). Despite the successes in treat-
ing hematological malignancies, CAR-T cells 
have encountered significant challenges for treat-
ment of solid tumors [44, 59–62]. Some of the 
key problems are the rarity of target antigens, 
limited persistence of the CAR-T cells, ineffi-
cient homing of T cells to tumor sites, and less 
cytotoxicity in the local tumor immunosuppres-
sive microenvironment [63]. The preclinical and 
clinical studies on treatment for breast cancer 
with CAR-T therapy are summarized in 
Table 17.1.

17.3.1	 �Target Antigen

Antigens currently targeted in clinical studies 
include HER2, mesothelin, CEA, carbonic 
anhydrase IX (CAIX), FR-α, CD171, GD2, 
EGFRvIII, fibroblast activation protein (FAP), 
and vascular endothelial growth factor receptor 
2 (VEGF-R2) [64]. Like other forms of cancer 
immunotherapy, CARs should ideally target 
antigens that are expressed only on cancer cells 
but not on normal tissues. Besides, unlike the 

Table 17.1  Preclinical and clinical studies on treatment for breast cancer with CAR-T therapy

Antigen Gene transfer
Signaling 
domain Clinical trial identifier Phase References

ERBB2 γ-retrovirus CD28, 
4-1BB, CD3ζ

– – [31]

ErbB Retrovirus CD28, CD3ζ – – [36]

ErbB2 Retrovirus CD28, 
4-1BB, CD3ζ

– – [37]

ErbB2 Retrovirus CD28, CD3ζ – – [38]

Mesothelin Lentivirus 4-1BB, CD3ζ – – [51]

Lewis-Y Retrovirus CD28, CD3ζ – – [43]

MUCI Retrovirus CD28, OX40, 
CD3ζ

– – [55]

FRα Lentivirus CD27, CD3ζ – – [46]

Her-2 4-1BB, CD3ζ NCT01935843 I/II –

CD3 × HER2 NCT01022138 II –

cMet RNA electroporated 4-1BB, CD3ζ NCT03060356 I –

Mesothelin Retrovirus 4-1BB, CD3ζ NCT02580747 I –

J. Wang and P. Zhou



375

native TCR, the CARs containing scFv only rec-
ognize target antigens expressed on the cell sur-
face, rather than internal antigens which are 
processed and rendered by the cells’ 
MHC. Consequently, only few solid tumor anti-
gens are available, though numerous antigens 
are being actively explored for CAR-T cell ther-
apy. An alternative approach is to target antigen-
MHC complex, which could make intracellular 
antigens available, though the generation of this 
kind of antibody is quite difficult. Conventional 
T cells only recognize single antigens, but 
CAR-T cells could be genetically modified to 
recognize multiple antigens, which should allow 
the recognition of unique antigen expression 
patterns on tumor cells. One example is the 
“split signal CARs,” which limit full T-cell acti-
vation to tumors that express multiple antigens 
[43, 65, 66]. Other strategies for recognizing 
multiple antigens include tandem CARs, 
ectodomains of which are 2 scFvs [67], and so-
called universal ectodomain CARs that incorpo-
rate avidin or a fluorescein isothiocyanate-specific 
scFv to identify tumor cells incubated with 
labeled monoclonal antibodies [43, 65, 68, 69]. 
Another possible concern is immune escape. 
Antigenic shift may cause tumor cells to pro-
duce new tumor antigens that may not be identi-
fied by the original CAR-T cells. Such escape 
variants are not rare because most of the cancer 
cells are genetically unstable [70]. Immune 
escape, previously described as a drug resis-
tance mechanism in chemotherapy, may become 
a dilemma in cell-based therapies. The risk of 
immune escape can be reduced by targeting 
multiple antigens. Another solution is to target 
antigens that are expressed on the tumor stroma. 
The tumor stromal compartment supports tumor 
growth directly by secreting cytokines and 
growth factors, providing nutrients, and contrib-
uting to tumor-induced immunosuppression 
[71]. Moreover, tumor stroma is demonstrated 
to be genetically more stable by studies target-
ing FAP expressed on cancer-associated fibro-
blasts or VEGFR-2 expressed on the endothelial 
cells of the tumor vasculature [72–75].

17.3.2	 �Persistence

It is important to achieve high levels of CAR-T 
cells persisting in the peripheral circulation of 
patients, in order to ensure sufficient cells are 
available to penetrate into tumor sites. Early trials 
using the first generation of CAR-T cells target-
ing ovarian [76] and renal cell antigens [44] indi-
cated that the lack of persistence might be 
induced by lack of patient preconditioning or 
anti-CAR immune responses. CARs were then 
added with costimulatory signals to improve per-
sistence in vivo, particularly when administered 
to lymphodepleted hosts [36, 77, 78]. Another 
effort to improve the persistence of CAR-T cells 
focuses on the range of cytokines that are used to 
culture the T cells. IL-2 has been selected as an 
essential cytokine to drive the expansion of T 
cells in vitro. There are other cytokines including 
IL-15, IL-7, and IL-21 that can result in cultured 
T cells preferential to IL-2-expanded T cells. 
Studies show that IL-15 can promote the prolif-
eration of T lymphocytes, prevent apoptosis and 
exhaustion [79, 80], reverse anergy [79], stimu-
late long-lasting antigen-experienced memory 
cells [81], and overcome Treg-mediated inhibi-
tion [82–85]. IL-7 plays an important role in 
maintaining the homeostasis of mature T cells 
and the maintenance of memory T cells [86]. 
Meanwhile, CAR-T cells can be genetically 
modified to produce cytokines to improve the 
expansion and persistence in vivo while avoiding 
systemic toxicity [30, 82, 84, 87]. The function of 
CAR-T cells may be enhanced not only by add-
ing stimulatory signals (costimulation, cytokines/
cytokine receptors) but also by blocking down 
regulatory signals. Antibodies that block the pro-
grammed death-1 (PD-1) receptor or the PD-L1 
ligand or the cytotoxic T-lymphocyte-associated 
antigen 4 (CTLA-4) have produced encouraging 
clinical results as single agents [3, 88]. 
Convincing evidence also demonstrates their 
benefit for triple-negative breast cancer [89]. The 
combination of these antibodies with CAR-T 
cells prolongs the effector function of CAR-T 
cells at tumor sites, which is a logical evolution 
of current clinical strategies.
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Besides, the source and phenotype of T cells 
used to generate CAR-T cells will affect the lat-
ter’s persistence. Selecting T cells that express 
naive markers such as CD62L before the genetic 
modification may produce CAR-T cells that 
possess better persistence ability than effector 
or more differentiated T cells [90]. Alternatively, 
virus-specific cytotoxic T lymphocytes (CTLs) 
have the potential for life-long persistence, and 
the CTLs contain both CD4+ and CD8+ subsets, 
with the latter being a critical compartment for 
the former’s long-term persistence [91, 92]. 
Virus-specific CTLs also feature expression of 
homing/chemokines receptors commensurate 
with their capacity for trafficking to and resid-
ing in the designated lymphoid or non-lymphoid 
tissues [93]. Memory T-stem cell could differ-
entiate into memory T cells, leading to a con-
tinuous supply of CAR-T cells. On the other 
hand, hematopoietic stem cells could be engi-
neered with CARs to produce CAR-T cells in a 
sustained way [94].

17.3.3	 �Homing

Since the direct binding of tumor antigen is the 
primary condition of CAR to display its func-
tion, the efficient migration of CAR-T cells into 
tumor sites is essential to the success of the 
CAR-based therapeutic approach. The success 
of CAR-T cell therapy for B-cell malignancies 
is probably caused by the fact that the target B 
cells are readily accessible to CAR-T cells and 
express a variety of costimulatory receptor 
ligands that can promote CAR-T cell function 
[95]. Chemokines play an important role in the 
migration of lymphocytes [96], as typified by 
recent studies [97–99]. However, the chemokine 
system is complex. Therefore, it is important to 
develop a strategy to make use of the important 
homing chemokines and avoid the potential reg-
ulatory effect of other tumor-expressed chemo-
kines, in order to achieve efficient targeting of 
CAR-T cells [17].

17.3.4	 �Tumor Microenvironment

The tumor microenvironment possesses a variety 
of pro-tumorigenic and immunosuppressive 
qualities that are consistent with supporting 
tumor growth and proliferation and with prevent-
ing the antitumor effects of the immune system. 
The tumor microenvironment comprises several 
factors such as immunosuppressive cytokines, 
regulatory modulators, and coinhibitory recep-
tors [100]. The immunosuppressive cell popula-
tions include regulatory T cells, immature 
myeloid cell populations, and tumor-associated 
macrophages [9, 101–103]. As highly complex 
interactions among different components in the 
tumor microenvironment contribute to clinical 
outcomes, CAR-T cells must be armed and thrive 
in the environment. Genetically engineering of 
the CAR vector to include dominant negative 
TGFβ receptors to overcome the adverse effects 
of tumor-derived TGFβ [104], and to adopt 
knockdown strategies to avoid apoptosis medi-
ated by Fas/Fas ligand [105] or the expression of 
survival genes such as BCL-XL [106], may pro-
tect the CAR-T cells against the tumor immuno-
suppressive microenvironment. Besides, 
transgenic expression of cytokines such as IL-15 
or IL-12 can reverse the immunosuppressive 
tumor environment. In an alternate strategy, 
silencing of genes that inhibit the function of T 
cells in the tumor microenvironment or the trans-
genic expression of constitutively active signal-
ing molecules may improve CAR-T cell function 
[105, 107]. Lastly, a combined treatment of 
agents that propagate cell-based immunothera-
pies and agents that circumvent antitumor mech-
anisms may be beneficial for CAR-T cells to 
overcome the tumor microenvironment.

17.4	 �Toxicities and Management

As the potency of CARs was enhanced, toxicity 
induced by this immunotherapeutic approach 
was unfortunately observed. The continued 
expansion of CAR-T cells implies that the 
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associated toxicities may show corresponding 
persistence and deterioration with time. “On tar-
get, off tumor” toxicity is currently a major con-
cern, which results from the activation of CAR-T 
cells by targeting antigen within healthy tissues. 
This is a well-recognized phenomenon and has 
led to several different side effects. Prevention of 
on-target toxicity requires accurate selection of 
antigens that are more restricted in their expres-
sion. Another approach is to infuse CAR-T cells 
with transient expression of the CARs only. Thus, 
the expression level decreases with the cell divi-
sion, and the transcription becomes diluted grad-
ually [108–110]. Another well-documented 
clinical side effect is systemic inflammatory 
response syndrome (SIRS) or cytokine storm, 
which is driven by a variety of cytokines, includ-
ing IFN-γ, TNF-α, IL-2 [33, 77], and the most 
important IL-6 [24]. To reduce the onset or sever-
ity of SIRS, researchers are modifying the dose 
escalation of T cells and have introduced the 
prompt use of antibodies that block the effects of 
IL-6. In addition, there are genetically modified 
T cells expressing a suicide or safety switch 
along with the CAR.  These cells would retain 
their long-term expansion and expression capac-
ity, but could be eliminated by activating the sui-
cide genes once toxicity occurs [111–113]. 
Although the expression of multiple CARs in T 
cells is likely to increase safety [43, 65, 66], it 
remains to be proved whether the benefits can be 
summarized within heterogeneous human malig-
nancies, as the patterns and levels of antigen 
expression may vary between different 
malignancies.

17.5	 �Universal CAR-T Cells

The current standard CAR-T cell therapy requires 
autologous adoptive cell transfer, which is expen-
sive and time-consuming. For newborns and 
elder patients, it is often difficult to obtain enough 
T cells with good quality to generate patient-
specific CAR-T cells. To make CAR-T therapy 
more accessible, it is highly desirable to develop 
an allogeneic adoptive transfer strategy, in which 

universal CAR-T cells derived from healthy 
donors can be applied to treat multiple patients 
circumventing the inherent variability of individ-
ualized patient. For this strategy to work, human 
leukocyte antigens class I (HLA-Is) on CAR-T 
cells need to be removed to minimize their immu-
nogenicity, and the T-cell receptor (TCR) on allo-
geneic CAR-T cells needs to be eliminated to 
avoid graft-versus-host disease (GVHD) [114]. 
There have been studies to efficiently generate 
CAR-T cells with TCRα subunit constant 
(TRAC) and beta-2 microglobulin (β2M) genes 
disrupted. However, these TRAC/β2M-negative 
CAR-T cells need to be further tested for their 
efficacy and safety in clinical studies [114–116].

17.6	 �Combinatorial CAR-T Cell 
Therapy

It may be better to fight a war with a well-
orchestrated army than a “single bullet,” so com-
bining CAR-T cells with other therapies offers 
the potential to improve antitumor effects. For 
example, combining blocking antibodies (CTLA-
4, PD-1, and PD-L1) to the coinhibitory recep-
tors, epigenetic modifiers that upregulate the 
expression of TAA [117], or targeted therapies 
that inhibit tumor cell growth without impairing 
T cells may be beneficial [118]. In the future, 
experimental treatment will be needed to deter-
mine how the CAR-T cell approach will be com-
bined with other therapies for solid tumors, such 
as breast cancer.

17.7	 �Conclusions

The general concept of CAR-T cell was invented 
about 20  years ago. CAR-T cells are changing 
from being simply “promising” to being “effec-
tive” regimens for treating hematological malig-
nancies. As we continue to improve the function 
of CAR-T cells in tumor microenvironment, 
broader application can be expected beyond 
hematological tumors and into solid tumors. 
Clinical trials comparing different genetic modi-
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fication strategies will be important in the future 
for optimizing CAR-T cell therapy, which would 
be a potentially effective method to cure breast 
cancer disease.
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