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Abstract

Breast cancer is the most common cancer in women worldwide. Treatment 
is chosen according to its hormone receptor status and human epidermal 
growth factor receptor 2 (HER2) status. Among the four main clinically 
set subtypes, hormone receptor-negative/HER2-negative subtype, also 
called triple-negative subtype (TNBC), is the most aggressive type with 
limited choices of therapy. However, recent research has provided impor-
tant new insights into effective treatments for this subtype. One molecular 
target that has gained attention is the BRCA gene. BRCA proteins are 
involved in the maintenance of genomic integrity, therefore playing an 
important role as a “caretaker” DNA repair protein. Approximately 5% of 
all breast cancer patients are BRCA mutation carriers, and among the 
patients with BRCA mutations, 57.1% have the clinical TNBC subtype, 
showing a high association between BRCA mutations and TNBCs. When 
cells lack either BRCA1 or BRCA2, all types of homology-directed 
repairs are compromised, and poly(ADP-ribose) (PAR) polymerase 
(PARP) acts as a backup system to maintain the genome, consequently 
making the cells highly sensitive to PARP1 inhibitors. PARP inhibitors 
have shown promising activity in preclinical and early clinical trials, and 
today, phase III trials are ongoing. In this chapter, we discuss the mecha-
nism and the role of PARP inhibitors in BRCA-mutated breast cancers and 
further elaborate the clinical potential of PARP inhibitors as well as their 
barriers.
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13.1	 �Introduction

Recent researches have provided new insights 
into the effective treatments for breast cancer, 
which is the most common cancer in women 
worldwide. Clinically treated according to its 
subtype, breast cancer has four subtypes identi-
fied as follows: (1) hormone receptor positive/
human epidermal growth factor receptor 2 
(HER2) negative, (2) hormone receptor positive/
HER2 positive, (3) hormone receptor negative/
HER2 negative, and (4) hormone receptor nega-
tive/HER2 negative. The last subtype is also 
called triple-negative breast cancer (TNBC), one 
of the most aggressive types of breast cancer. 
Unlike hormone receptor-positive (luminal-like) 
subtypes, there are no targeted therapies available 
for patients with TNBC, which shows aggressive 
behaviors. Therefore, many researchers are 
investigating the molecular background of 
TNBCs, with a particular focus on BRCA1/
BRCA2 mutations.

In this chapter, we will discuss TNBC and the 
effects of BRCA mutations in this type of cancer. 
The roles of poly(ADP-ribose) polymerase 
(PARP) inhibitors in breast cancer treatment will 
also be elucidated.

13.2	 �TNBC

TNBC is defined based on immunohistochemical 
staining criteria. In the clinical setting, TNBC is 
defined to be estrogen receptor (ER) negative, pro-
gesterone receptor (PgR) negative, and human epi-
dermal growth factor receptor 2 (HER2) negative. 
However, TNBC remains a heterogeneous disease 
that includes several intrinsic subtypes. Moreover, 
TNBC is known for its highly aggressive behavior 
and poor prognosis compared with other breast 

cancer subtypes [1], such as ER-positive, PgR-
positive, and/or HER2-positive diseases.

13.2.1	 �Molecular Biological Features 
of TNBC

TNBC accounts for approximately 15% of all 
breast cancers. Compared with other subtypes, 
TNBC tends to occur in younger patients and 
exhibit large tumor burden, high nuclear grade, 
low BCL-2 expression, and high p53 and/or 
Ki-67 expression.

In 2000, Perou et al. performed a complemen-
tary DNA microarray gene profiling analysis in 
breast cancer and identified different molecular 
patterns, called “molecular portraits,” among 
breast cancers [2]. In this analysis, they classified 
breast cancers into five different intrinsic sub-
types: luminal A, luminal B, HER2-enriched, 
basal-like, and normal. Seventy-five percent of 
clinically proven TNBC can be classified into the 
basal-like subtype. In a later publication, 
researchers confirmed that among TNBCs, 80% 
were the basal-like subtype, 3% were the luminal 
subtype, and 9% were the HER2-enriched sub-
type [3].

Among basal-like subtypes, molecules such as 
cytokeratin 5/6, vimentin, and laminin have been 
shown to be highly expressed, whereas Bcl-2 has 
been shown to exhibit low expression [4]. 
Moreover, loss of phosphatase and tensin homo-
log (PTEN) and the disappearance of 
phosphatidylinositol-4,5-bisphosphate 3-kinase 
catalytic subunit alpha (PIK3CA) expression, 
retinoblastoma (RB) 1 mutations, or KRAS 
mutations are commonly observed in basal-like 
TNBC [5, 6].

Mutations or deletions in the BRCA gene 
(BRCA1 and BRCA2) are also found in TNBCs. 
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Among basal-like subtypes, 75% have been 
reported to be BRCA1-associated breast cancers 
[7], whereas 19.5% of all TNBCs show BRCA 
germ line mutations [8].

13.2.2	 �Optimal Strategies 
for Treatment with Currently 
Approved Agents

Despite the findings of molecular subtypes 
among TNBC, no predictive values of the molec-
ular subtypes have been established. Treatment is 
therefore selected from currently recommended 
agents that are approved in general breast cancer 
population.

Anthracyclines and taxanes remain the pri-
mary therapeutic approaches for TNBC, although 
there is limited evidence of success in patients 
treated with anthracycline- and/or taxane-
containing regimens in the perioperative setting 
[9]. Patients who show primary or acquired resis-
tance to key drugs may be given further chemo-
therapeutic agents that are not crossresistant, 
such as capecitabine, eribulin, gemcitabine, or 
vinorelbine [10–12]. The use of multidrug regi-
mens in patients with metastatic cancer is contro-
versial, and guidelines, such as those issued by 
European Breast Cancer Conference [13], rec-
ommend sequential monotherapy for advanced 
breast cancer. In cases where the aggressive 
nature of the disease calls for the need to stabilize 
the symptoms and reduce the risk of inner organ 
dysfunction, which is often noted in patients with 
TNBC, a multidrug regimen may be recom-
mended rather than a single-drug regimen. Other 
agents that are sometimes used in TNBC therapy 
include platinum-based regimens [14–16] and 
PARP inhibitors (which are being investigated). 
The use of these agents has been supported by the 
strong association of TNBC with germ line 
BRCA1 mutations.

Nonetheless, TNBC shows an aggressive 
behavior and very poor prognosis with limited 
treatment options. A biomarker-based under-
standing of molecular targets is required to facili-
tate further improvements in treatment strategies 
for TNBC.

13.3	 �BRCA Mutations

13.3.1	 �Functions and Mechanisms 
of BRCA

BRCA was first discovered in the 1990s and has 
been one of the most notorious and well-known 
cancer-related genes identified to date. It was 
originally considered as a tumor-suppressor gene 
[17]. However, further evidence shows that 
BRCA proteins are involved in the maintenance 
of genomic integrity. Therefore, instead of func-
tioning as “gatekeeper” proteins of tumor sup-
pressor, the BRCA family of proteins acts as 
“caretaker” proteins of DNA repair. Moreover, 
BRCA proteins are known to function in concert 
with other proteins, such as RAD50/Mre11 and 
RAD51, which play important roles in repairing 
DNA breaks caused by ionizing radiation [18].

During DNA replication, DNA molecules are 
particularly vulnerable to breakage in the single-
stranded molecule portions that have not yet 
undergone replication near the replication fork. 
When an accidental breakage of the still unrepli-
cated single-stranded DNA occurs at the replica-
tion forks, the resulting breaks are functionally 
equivalent to double-stranded breaks occurring in 
an already formed double helix. These double-
stranded breaks are usually fixed by homology-
directed repair (HDR). At sites of stalled 
replication forks where double-stranded breaks 
are observed, BRCA1 is located along with pro-
liferating cell nuclear antigen (PCNA) and other 
DNA repair proteins, including RAD50 and 
RAD51 [19]. BRCA2 protein is also found at the 
same location, providing evidence of its collabo-
ration in the DNA repair process [20]. When cells 
lack either BRCA1 or BRCA2, all types of HDR 
are compromised.

In mice, genetic disruption of BRCA1 func-
tion causes death during early embryogenesis, 
whereas mutant germ line alleles of BRCA2 
cause only partial loss of function, which results 
in susceptibility to lymphoid malignancies and 
unusual chromosomal aberrations [18]. In 
humans, mutant germ line alleles of either 
BRCA1 or BRCA2 lead to a natural susceptibility 
to breast and ovarian carcinomas [21]. In ovarian 
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cancer, an estimated 70–80% of cases are caused 
by BRCA mutations. Some somatic mutations in 
BRCA2 are associated with prostate and colon 
carcinomas. Additionally, female cells lacking 
BRCA1 function cannot properly inactivate one 
of the two X chromosomes. The mechanism of 
X-inactivation is essential in cells of early female 
embryos and must persist in all linear descen-
dants. How this loss of BRCA function intersects 
with its DNA repair functions and how BRCA1 
mutation inclines to generate cancer primarily in 
women remain unknown.

13.3.2	 �BRCA Mutations in TNBCs

According to an analysis published by the 
International Breast Cancer Linkage Consortium, 
0.12% of the general population carries BRCA1 
germ line mutations [22]. In patients with breast 
cancer, approximately 5% of patients are BRCA 
mutation carriers. According to a retrospective 
study, among patients with BRCA mutations, 
57.1% have the clinical TNBC subtype [23]. 
Additionally, 19.5% of TNBCs have been shown 
to have germ line BRCA mutations [8]. When the 
population is narrowed down to those who have 
familial breast cancers, defined as breast cancer 
with a family history of one or more first- or 
second-degree relatives with breast cancer that 
does not fit the hereditary breast cancer defini-
tion, almost half of cancers are associated with 
germ line transmission of BRCA1 or BRCA2 
mutations. In addition to germ line mutations, 
methylation of BRCA1 is also known to be fre-
quently found in TNBCs [24]. In all, the findings 
have shown that BRCA mutations are highly 
associated with TNBCs.

13.4	 �Function of PARP1

Among the many backup mechanisms required 
for proper repair or maintenance of the genome, 
poly(ADP-ribose) (PAR) synthesis is one of the 
earliest responses to DNA strand breakage. 
PARP1 is an abundant and stable component of 
chromatin and facilitates DNA repair by binding 

to DNA breaks and attracting other repairing pro-
teins [25–29]. It is comprised of three functional 
domains: the amino-terminal DNA-binding 
domain which is important for binding of PARP1 
to DNA breaks, the central automodification 
domain which allows the enzyme to PARate 
itself, and the C-terminal catalytic domain which 
transfers ADP-ribose subunits from NAD+ to 
protein acceptors (Fig.  13.1) [30]. Among the 
seven main pathways used for DNA repair, PARP 
plays an important role in base excision repair 
(BER). At sites of single-stranded DNA breaks in 
which PARP binds to the DNA, PARP is acti-
vated and converts nicotinamide adenine dinucle-
otide (NAD) into ADP-ribose polymers (PAR) 
by attracting XRCC1, a scaffold protein that 
interacts with and recruits, stabilizes, or stimu-
lates multiple enzymatic components involved in 
single-stranded breakage. For short patch repair 
and long patch repair at lesions that are more dif-
ficult to repair, the breakage goes through a 
single-stranded break intermediate and then 
arrives at a ligation stage to yield repaired 
DNA.  PARP1 and PARP3 are among the 17 
PARP isoforms that are also involved in double-
stranded break repair [31].

For cells that lack BRCA1 or BRCA2 func-
tion, PARP acts as a backup system to maintain 
the genome and plays a critical role following 
accidental breaks that occur at replication forks 
during the S phase. Consequently, the cells 
become highly sensitive to killing by pharmaco-
logic inhibitors of PARP1 [32]. However, 
Parp−/− mice are viable and fertile, which 
explains the redundant DNA repair systems. 
Therefore, PARP inhibition has little if any effect 
on normal tissues.

13.5	 �PARP Inhibitors and Their 
Effects on Cancer

PARP inhibitors exhibit competitive inhibition 
with NAD by blocking the catalytic PARP 
domain. PARP inhibitors show single-stranded 
DNA breakage repair activity, inducing apoptosis 
through accumulation of damaged DNA in the 
cells. By inhibiting PARP1, the repair 
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phenomenon can be trapped at the single-stranded 
intermediate state, thereby blocking ligation. 
PARP inhibitors bind to the catalytic site and pre-
vent the release of PARP1 from DNA by 

“trapping” PARP1 at the site and removing 
PARP1 from the normal catalytic cycle [27, 28, 
33]. When BER does not function properly, sin-
gle-stranded breaks are left unrepaired, leading to 
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Fig. 13.1  Function of PARP1 in DNA repair (Reprinted 
by permission from Macmillan Publishers Ltd: Nat Rev 
Cancer. (10(4): 293–301), copyright (2010))
Abbreviations: ATM, ataxia telangiectasia mutated; BER, 
base excision repair; BRCT, BRCA1 carboxy-terminal 

repeat motif; DNA-PKcs, DNA-protein kinase catalytic 
subunit; DSB, double-stranded break; HR, homologous 
recombination; NHEJ, nonhomologous end joining; NLS, 
nuclear localization signal; PPi, inorganic pyrophosphate; 
SSB, single-stranded break; Zn, zinc finger [30]
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the formation of double-stranded breaks due to 
stalling of the replication fork. Since double-
stranded breaks are repaired by either nonhomol-
ogous end joining or homologous recombination, 
inhibition of PARP alone does not lead to effi-
cient cell death. Therefore, for PARP inhibitors 
to exert beneficial effects on DNA repair, another 
repair pathway other than BER must be function-
ally damaged by PARP inhibition.

13.5.1	 �Synthetic Lethality

Synthetic lethality was introduced nearly a cen-
tury ago by geneticists. It involves the com-
bined knockout of two genes, which leads to a 
lethal form of genetic interactions that can 
selectively kill cancer cells while sparing nor-
mal cells [34]. The concept of synthetic lethal-
ity involving PARP and BRCA is related to the 
observation that both proteins are normally 
nonessential but critical for the survival of can-
cer cells. The most striking evidence of syn-
thetic lethality is the use of PARP inhibitors in 
homologous recombination-defective tumors 
[32, 35]. As BRCA1 and BRCA2 are associated 
with homologous recombination, PARP inhibi-
tors have been used for monotherapy in treating 
patients with BRCA1- or BRCA2-mutated can-
cers. Other genes associated with homologous 
recombination are RAD51, RAD54, DSS1, 
PRA1, NBS, ATR, ATM, CHK1, CHK2, 
FANCD2, FANCA, and FANCC. Cells with a 
deficiency in one of these genes show sensitiv-
ity to PARP inhibitors, confirming the concept 
of synthetic lethality [33].

13.6	 �Clinical Application of PARP 
Inhibitors in Cancer

In PARP1-knockout mice, deficiencies in 
PARP1 function result in impaired DNA repair, 
which consequently leads to a higher sensitivity 
to anticancer agents. It indicates that PARP1 
inhibition may induce sensitivity to DNA dam-
age by anticancer agents and therefore act as a 

radiosensitizer or chemosensitizer in the treat-
ment of cancers. PARP1 is also known for its 
strong activation by radiotherapy or DNA meth-
ylating anticancer agents. Based on available 
evidence, along with the development of PARP 
inhibitors in patients with germ line BRCA 
mutations, new therapeutic approaches using 
PARP inhibitors combined with DNA-damaging 
anticancer agents have been evaluated. 
Approximately 30  years ago, small-molecule 
nicotinamide analogs were found to enhance the 
cytotoxicity of dimethyl sulfate, a DNA-
damaging agent, by inhibiting PARylation [36–
38]. Subsequently, clinical PARP inhibitors, 
including veliparib, rucaparib, olaparib, and 
niraparib, were developed. A more potent sec-
ond-generation PARP inhibitor, talazoparib, has 
also been developed [39]. The difference among 
these agents is the ability to “trap” PARP1, an 
essential mechanism of PARP inhibitors. 
Talazoparib is approximately 100 times more 
potent than niraparib and is therefore more 
potent than olaparib and rucaparib [40]. The 
chemical structures of clinical PARP inhibitors 
and the ability of each PARP inhibitor to “trap” 
PARP1 is thought to broadly correlate with its 
cytotoxic potency [33]. Among currently avail-
able PARP inhibitors, olaparib (Lynparza) was 
the first to be approved by the US Food and 
Drug Administration (FDA) for treating patients 
with germ line BRCA mutations in advanced 
ovarian cancer in February 2014. The develop-
ment of olaparib in breast cancer will be further 
discussed in this chapter.

13.7	 �PARP Inhibitors in the Field 
of Breast Cancer

During clinical development, PARP inhibitors 
have been investigated in combination with 
DNA-damaging anticancer agents or radiother-
apy, or as monotherapy, in cancers that show 
decreased BRCA1 or BRCA2 functions, mainly 
TNBC. In the field of breast cancer, BSI-201 was 
the first PARP1 inhibitor to be reported [41]. In a 
phase I (and Ib) trial, this compound showed 
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safety and effectiveness and was later tested in a 
randomized phase II trial, which compared com-
bined treatment of gemcitabine plus carboplatin 
(GC) plus BSI-201 and GC alone in patients with 
metastatic TNBC with two or less prior regimens 
[42, 43]. The progression-free survival (PFS) was 
6.9  months versus 3.3  months, and overall sur-
vival was 9.2 months versus 5.7 months, indicat-
ing a statistically longer survival for the GC plus 
BSI-201 arm. The overall response rate was also 
higher in the GC plus BSI-201 arm (48% versus 
16%, p = 0.002). There were high expectations 
for the phase III trial, but the primary endpoint 
was not achieved.

Alternatively, olaparib has been developed as 
another promising PARP inhibitor for the treat-
ment of breast cancer, which will be discussed 
below.

13.8	 �Development of Olaparib 
(Lynparza) in Breast Cancer

Olaparib is a PARP1 inhibitor first discovered 
during a screening test for agents that induce sen-
sitivity of cells to cytotoxic agents, such as topoi-
somerase I inhibitors and alkylating agents. It has 
showed antitumor activity in cells with homolo-
gous recombination deficiency, which implies its 
role as a promising agent for the treatment of 
BRCA-mutated cancer. Moreover, olaparib was 
first approved by the FDA for treatment of BRCA-
mutated ovarian cancers. In this section, we will 
discuss the development of olaparib studies in the 
field of breast cancer.

13.8.1	 �Preclinical Study

Through an in vitro study, olaparib monother-
apy demonstrated strong antitumor activity in 
breast cancer cells with BRCA1 mutations [44]. 
In an in vivo study of BRCA1−/− tumor-bear-
ing mice, olaparib inhibited tumor growth with-
out signs of toxicity, which significantly 
increased the survival rate. In a similar analysis 
with BRCA2−/− murine mammary epithelium, 

daily exposure to olaparib for 28  days caused 
significant regression or growth inhibition in 46 
of 52 tumors [45]. The same analysis was 
conducted with olaparib in combination with 
carboplatin. Although no advantage over carbo-
platin monotherapy was observed, a significant 
increase in time to tumor relapse or death was 
observed if PARP inhibitors were continuously 
administered [46]. In combination therapy, 
temozolomide or dacarbazine plus olaparib was 
shown to have antitumor activity. Similarly, 
olaparib with topoisomerase I inhibitors or 
platinum agents also showed activity in  vitro 
and in vivo.

13.8.2	 �Clinical Phase I Monotherapy 
Trials

Olaparib was first tested in early phase clinical 
trials for advanced solid tumors with no further 
standard therapy [47]. However, as the activity 
of this agent against BRCA-mutated cancers 
became clearer, the protocol was amended to 
include patients with BRCA mutations. Later, 
during the expansion phase, patients with BRCA 
mutations were specifically enrolled, and a total 
of 60 patients were eventually included. The 
dose of oral administration started at 10  mg 
either once daily or twice daily for 14 consecu-
tive days in a 21-day cycle. During the higher 
dose phase, the drug was taken twice daily for 28 
consecutive days. Dose-limiting toxicity was 
confirmed at doses of 400 and 600  mg twice 
daily. In the cohort receiving 400 mg, one patient 
experienced grade 3 agitation and grade 3 
fatigue, and in the cohort receiving 600 mg, one 
patient experienced grade 4 thrombocytopenia 
and another patient experienced grade 3 somno-
lence. Overall, 21 patients with BRCA mutations 
were enrolled, and among the 19 patients with 
breast, ovarian, or prostate cancers, nine patients 
(47%) achieved a partial response, and 12 
patients (63%) achieved a clinical benefit (par-
tial response or stable disease). This was a sur-
prisingly high response rate for a cohort that 
included patients with relapsed breast, ovarian, 
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or prostate cancer. Furthermore, patients with 
BRCA mutations did not show higher incidences 
of adverse events than patients having wild-type 
BRCA.

13.8.3	 �Clinical Phase II Monotherapy 
Trials

To date, three phase II trials of olaparib mono-
therapy have been published in the field of breast 
cancer. The first trial was an international collab-
orative trial undertaken in six countries. This trial 
included patients with advanced breast cancer 
with BRCA1 or BRCA2 mutations who had been 
given at least one prior chemotherapy regimen 
[48]. The study was comprised of two different 
dosage cohorts: 400 mg twice daily (phase I max-
imum tolerated dose) and 100 mg twice daily (a 
dose that showed activity in the phase I trial). 
Objective responses were observed in 11 of 27 
patients (41%; 95% confidence interval [CI]: 
25–59) in the first cohort and 6 of 27 patients 
(22%; 95% CI: 11–41) in the latter cohort. The 
toxicities were mainly at low grade. Therefore, 
these results provided positive evidence for the 
concept of PARP inhibition in BRCA-deficient 
breast cancers. The second trial was a multicenter 
trial conducted in Canada and included patients 

with recurrent high-grade serous or poorly differ-
entiated ovarian carcinoma or TNBC, regardless 
of BRCA1 or BRCA2 mutation status [49]. 
Patients received olaparib 400  mg twice daily. 
Ninety-one patients were enrolled (65 with ovar-
ian cancer and 26 with breast cancer), and among 
the 63 evaluable patients, objective responses 
were observed in 7 of 17 patients (41%; 95% CI: 
22–64) with BRCA1 or BRCA2 mutations and 11 
of 46 patients (24%; 95% CI: 14–38) without 
mutations. Although no objective responses were 
reported in patients with breast cancer, 30% of 
patients achieved stable disease for at least 
8 weeks, with a median PFS of 54 days. The third 
phase II trial was an international collaborative 
trial that enrolled patients with germ line BRCA1 
or BRCA2 mutations with recurrent breast, ovar-
ian, pancreatic, or prostate cancer [50]. Patients 
with breast cancer had to have at least three prior-
chemotherapy regimens for metastatic disease. 
Olaparib was administered at 400 mg twice daily. 
Among the 298 patients treated and evaluated, an 
objective response was achieved in 78 of 298 
patients (26.2%; 95% CI: 21.3–31.6) and in eight 
of 62 patients (12.9%; 95% CI: 5.7–23.9) with 
breast cancer. Stable disease was observed in 
47% (95% CI: 34.0–59.9) of patients with breast 
cancer. Table 13.1 summarizes the phase II trials 
that included patients with breast cancer.

Table 13.1  Clinical phase II studies of olaparib monotherapy in breast cancer

Published 
year Author Eligibility

Olaparib
dose
(twice daily) N

Response 
rate PFS Notes

2010 Tutt et al. Advanced, 
BRCA mutation

400 mg 27 41% 5.7 months

100 mg 27 22% 3.8 months

2011 Gelmon
et al.

Advanced, 
BRCA mutation
or TNBC

400 mg 23 0% 54 days Stable disease of 
over 8 weeks: 30%

2015 Kaufman
et al.

Advanced, 
BRCA mutation

400 mg 62 13% 3.7 months Partial response + 
stable disease of over 
8 weeks: 60%

PFS progression-free survival
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13.8.4	 �Clinical Phase III Monotherapy 
Trials

Three phase III trials of olaparib monotherapy 
have been initiated in patients with germ line 
BRCA mutation-positive breast cancer. They 
are OlympiA (NCT02032823), Neo-Olympia 
(D081EC00005), and OlympiAD (NCT0000622). 
OlympiA is a randomized double-blind study 
which assesses the efficacy of olaparib at a dose 
of 300 mg twice daily. In this study, olaparib was 
administered with and without placebo as adju-
vant treatment in patients with BRCA1/BRCA2 
mutations and high-risk HER2-negative breast 
cancer. The patients were divided into two 
groups, with one completing definitive local 
treatment and the other undergoing either neoad-
juvant or adjuvant chemotherapy. Neo-Olympia 
is a randomized three-arm trial comparing olapa-
rib monotherapy at a dose of 300 mg twice daily, 
placebo therapy plus weekly paclitaxel (80 mg/
m2), and olaparib therapy at a dose of 100 mg 
twice daily plus weekly paclitaxel (80 mg/m2) in 
the neoadjuvant setting in patients with BRCA1/
BRCA2 mutations and operable, locally advanced, 
or inflammatory breast cancer. OlympiAD is a 
randomized open-label trial which assesses the 
efficacy of olaparib at a dose of 300  mg twice 
daily. It compares olaparib monotherapy with 
treatment of physician’s choice (TPC) of 
capecitabine, vinorelbine, or eribulin in patients 
with BRCA1/BRCA2 mutations and metastatic 
breast cancer. Two of the trials began enrolment 
in 2014, and findings from the OlympiAD trial 
were recently reported at the 2017 ASCO Annual 
Meeting [51]. At 77% data maturity, PFS was 
significantly longer in the olaparib arm [7.0 vs 
4.2  months, hazard ratio (HR) 0.58; 95% CI: 
0.43–0.80; p  =  0.0009] with a higher objective 
response rate of 59.9% in the olaparib arm com-
pared to 28.8% in the TPC arm (HR 0.57; 95CI: 
0.40–0.83). The safety profile of olaparib was 
consistent with prior studies. These promising 
results were the first to demonstrate improved 
outcomes with a PARP inhibitor in breast cancer. 
Table  13.2 summarizes the phase III trials that 
included patients with breast cancer.

13.8.5	 �Combination Therapy

Olaparib has been tested with several other 
agents, such as paclitaxel, temozolomide, dacar-
bazine, topotecan, bevacizumab, paclitaxel plus 
carboplatin, and newer agents (e.g., phosphoino-
sitol 3-kinase [PI3K] inhibitors).

13.8.5.1	 �Paclitaxel Plus Olaparib
In a phase I/II trial, patients with advanced 
TNBC were treated with olaparib at a dose of 
200 mg twice daily in combination with pacli-
taxel (90 mg/m2, days 1, 8, and 15) on a 28-day 
cycle [52]. Patients were treated with either first-
line or second-line chemotherapy. The response 
rate was high, with seven (37%) out of 19 
patients achieving an objective response. 
Although the toxicities were relatively well tol-
erated, severe neutropenia was observed at a 
greater frequency than expected. In the second 
cohort, the dose intensity of paclitaxel was not 
retained, even with the use of prophylactic gran-
ulocyte colony-stimulating factor.

13.8.5.2	 �Paclitaxel Plus Carboplatin 
Plus Olaparib

In a cohort of patients with advanced solid tumors 
including breast cancer, a phase I study was con-
ducted to investigate the treatment of olaparib 
with either paclitaxel (80 mg/m2, days 1, 8, and 
15) or carboplatin (AUC 4–5, day 1) or both 
paclitaxel (90–175 mg/m2, day 1) plus carbopla-
tin (AUC 4–5, day 1; TC). Olaparib was given at 
a dose of 50–200 mg twice a day every day or 
200–400 mg twice a day for 5 or 10 consecutive 
days [53]. The hematological toxicities were too 
strong to maintain the dose in the cohorts taking 
olaparib every day plus carboplatin or taking 
olaparib everyday plus TC.  However, olaparib 
given at a dose of 100 mg twice a day every day 
in combination with PTX was well tolerated, as 
was olaparib given at 200 mg twice a day for 10 
consecutive days plus TC. The overall objective 
response rate was 16.1% (14/87 patients), 
whereas the response rate in patients with 
BRCA1/BRCA2 mutations was 50% (6/12 
patients).
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13.8.5.3	 �Eribulin Plus Olaparib
Eribulin mesylate is a nontaxane inhibitor of 
microtubule dynamics of the halichondrin class 
of antitumor agents. Eribulin is currently recog-
nized as a global standard treatment for meta-
static or recurrent breast cancer following the 
use of anthracyclines and taxanes. Pooled analy-
ses of two phase III trials of eribulin monother-
apy in patients with metastatic or recurrent breast 
cancer suggested favorable survival benefits, 
particularly in patients with TNBC [11, 12]. In a 
cohort of patients with TNBC, a phase I/II trial 
was conducted in Japan to investigate the safety 
profiles and efficacy of olaparib in combination 
with eribulin under the assumption that this 
combination may be a favorable regimen for 
patients with metastatic or recurrent TNBC [54]. 
Patients who had received both anthracycline- 
and taxane-containing regimens were enrolled to 
be treated with eribulin at a dose of 1.4 mg/m2 
(days 1 and 8) plus olaparib twice daily every 
day at a dose of 25–300 mg. The recommended 
phase II dose of olaparib was 300 mg twice daily. 
Pharmacokinetic (PK)/pharmacodynamic (PD) 
analysis also showed that the Cmax and area under 
the curve (AUC) of olaparib were dose depen-
dent and that both parameters of eribulin and 
olaparib were not influenced by each other. An 
objective response was observed in seven of the 

18 evaluable patients, indicating a relatively high 
response rate of 38.9% (95% CI: 17.3–64.3). Six 
patients maintained their responses for over a 
year, and the median PFS was 4.22 months (95% 
CI: 2.99–7.36). The most frequent adverse events 
were the occurrences of neutropenia (grade 3 or 
more: 83.3%), but the drug was overall well 
tolerated.

13.9	 �Development of Other PARP 
Inhibitors: Talazoparib

Talazoparib has a much higher potency for 
“trapping” PARP inhibitors than olaparib. In a 
recent phase I study, talazoparib has shown 
some promise in treating 13 early-stage patients 
with germ line BRCA1 or BRCA2 mutations. 
The patients were treated for 2 months with tal-
azoparib before neoadjuvant chemotherapy and 
surgery [55]. Decreased tumor volume was 
observed in all 13 patients following the 
2-month treatment with talazoparib, and the 
average volume reduction was 78% (range: 
30–98%). The toxicity of this drug also proved 
to be well tolerated, as no grade 4 toxicities 
were observed, and only one patient required 
dose reduction due to grade 3 neutropenia. The 
study is ongoing, and researchers will next 

Table 13.2  Clinical phase III studies of olaparib monotherapy in breast cancer

Trial Eligibility Setting
Olaparib 
monotherapy arm Comparator arm(s) Primary endpoint

OlympiA High-risk after 
definitive local 
treatment, 
BRCA 
mutation

Adjuvant 300 mg twice 
daily

Placebo Invasive 
disease-free 
survival

Neo-Olympia Operable, 
BRCA 
mutation

Neoadjuvant 300 mg twice 
daily (arm A)

Placebo + weekly 
PTX (arm B)

Pathological 
complete 
responseOlaparib 100 mg 

twice daily + weekly 
PTX (arm C)

OlympiAD Advanced, 
BRCA 
mutation

Metastatic 300 mg twice 
daily

Capecitabine or 
vinorelbine or 
eribulin (physician’s 
choice)

PFS

PTX paclitaxel, PFS progression-free survival
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investigate the pathological response to tala-
zoparib alone for 4–6 months.

Although talazoparib can kill BRCA-mutated 
cells in  vitro at a 200-fold lower dose than 
olaparib or rucaparib, the in  vitro therapeutic 
ratio achieved in BRCA1-/BRCA2-defective 
cells is similar with that in wild-type cells for all 

three PARP inhibitors. Therefore, it is still too 
early to draw any conclusion regarding which 
PARP inhibitor is most effective. Table  13.3 
shows the clinical trials conducted with PARP 
inhibitors in patients with breast cancer (exclud-
ing the clinical trial of olaparib monotherapy 
discussed above).

Table 13.3  Clinical studies of PARP inhibitors including breast cancer

Drug Phase Eligibility Concomitant therapy Notes

Olaparib I Breast cancer or 
ovarian cancer

Carboplatin BRCA1 or BRCA2 
mutation

I Breast cancer or 
women’s cancer

Carboplatin

I TNBC or ovarian 
cancer

BKM120

I Solid tumors, 
including TNBC

Carboplatin and/or PTX

I/II TNBC PTX

I/II TNBC or ovarian 
cancer

Cediranib

Iniparib II TNBC with brain 
lesion

Irinotecan

II TNBC Gemcitabine and carboplatin Iniparib twice weekly 
versus weekly

II TNBC PTX Neoadjuvant

Veliparib I Solid tumors TMZ BRCA1- or 
BRCA2-mutated 
breast cancer

I TNBC or 
gynecologic cancer

Pegylated liposomal 
doxorubicin

I Breast cancer Radiation therapy Loco-regionally 
recurrent

II Breast cancer TMZ BRCA1- or 
BRCA2-mutated 
breast cancer

II TNBC or ovarian or 
non-Hodgkin’s 
lymphoma

Cyclophosphamide

Talazoparib I Solid tumors

III Breast cancer BRCA1 or BRCA2 
mutation (versus 
physician’s choice)

Rucaparib II TNBC Cisplatin BRCA1 or BRCA2 
mutation (versus 
cisplatin)

E7449 I/II Solid tumors, 
including TNBC

Alone or plus TMZ or plus 
carboplatin and PTX

TNBC triple-negative breast cancer, PTX paclitaxel, TMZ temozolomide
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13.10	 �Acquired Resistance to PARP 
Inhibitors

Multiple potential mechanisms of resistance 
have been identified through in  vitro experi-
ments. Even though homologous recombination 
repair is defective, the restoration of homolo-
gous recombination repair in BRCA1-mutant 
tumor cells has been identified through loss of 
53BP1 and REV7 proteins [56, 57]. Moreover, 
the loss of PARP1 [58] has been proposed to 
cause resistance, as with other proteins that are 
important for maintaining replication fork stabil-
ity [59]. Secondary mutations in BRCA1 or 
BRCA2 can also occur, leading to restoration of 
sufficient homologous recombination repair 
function and resulting in PARP inhibitor resis-
tance [60, 61]. Additionally, this secondary 
mutation is known to cause clinical resistance to 
platinum-based chemotherapy [62, 63].

13.10.1	 �Genetic Deficiencies Other 
Than BRCA1/BRCA2

Not long after the discovery that BRCA1 and 
BRCA2 mutant cells were highly susceptible to 
PARP inhibitors, deficiencies in a number of 
tumor-suppressor genes, such as ATM, ATR, 
PALB2, and FANC, which are all involved in 
homologous recombination repair, have been 
shown to confer sensitivity to PARP inhibitors 
[63, 64].

In an in vitro experiment, wild-type BRCA1/
BRCA2 breast cancer cells (i.e., MCF-7 and 
ZR-75–1 cells) that were genetically manipulated 
to knockdown ATM expression were treated with 
olaparib [65]. ATM depletion sensitized both cell 
lines, as assessed by short- and long-term sur-
vival assays. These data indicated that ATM 
depletion could sensitize breast cancer cells to 
PARP inhibitors and that cancers, such as those 
arising in mutant ATM heterozygous carriers, 
may be potential targets for PARP inhibitors. A 
similar phenomenon has been discovered for 
other tumor cells, such as gastric cancer cell lines 
and colorectal cell lines, and studies have high-
lighted the clinical utility of ATM expression as a 

predictive marker for the sensitivity of gastric 
cancer cells to PARP inhibitors [66].

The Fanconi anemia (FA) repair pathway is 
also known to play a collaborative role with 
BRCA genes. Patients with FA have a high inci-
dence of malignancies, and their cells show 
hypersensitivity to DNA cross-linking agents, 
such as mitomycin C (MMC) and cisplatin. 
Cancers with defective FA/BRCA pathways are 
likely to be more sensitive to these types of ther-
apy or to treatments in which an additional repair 
mechanism is targeted, such as treatment with 
PARP inhibitors. In a recent study, researchers 
developed a new assay to identify patients with 
FA functional defects using FA triple-stain 
immunofluorescence (FATSI, FancD2/DAPI/
Ki67) [67]. The study was also conducted to ver-
ify the safety and feasibility of veliparib as mono-
therapy and in combination with MMC. According 
to FATSI screening, 28.7% (185/643) of patients 
were FATSI-negative, demonstrating that a sub-
stantial number of tumors exhibited FA func-
tional deficiency. Among the 61 FATSI-negative 
patients who received treatment, six antitumor 
responses were observed with five in the combi-
nation arm. However, some clinical benefits were 
observed, and a better understanding of this 
mechanism is needed.

13.11	 �Concluding Remarks 
and Future Perspectives

Many studies have investigated the use of PARP 
inhibitors in breast cancer, with a particular focus 
on TNBC with BRCA mutations. So far, one trial 
of olaparib monotherapy has shown promising 
results for breast cancer. However, given the rela-
tively small size of the study, it is difficult to tell 
which subset of patients would benefit the most 
from olaparib. Determining the optimal use of 
PARP inhibitors within drug combinations has 
been challenging, and new biomarkers may be 
needed to identify appropriate populations who 
may benefit most from PARP inhibitors. In addi-
tion, resistance to PARP inhibitors can arise in 
advanced disease, and further studies are needed 
to elucidate the related mechanisms.
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