Developing Small Size Low-Cost
Software-Defined Networking Switch
Using Raspberry Pi

Vipin Gupta, Karamjeet Kaur and Sukhveer Kaur

Abstract Software-defined networking (SDN) is a new emerging technology for
networking that separates the forwarding and control plane. With SDN static,
inflexible and complex network are replaced by dynamic, scalable, and innovative
networks. The motivation of developing low-cost portable SDN switch arose when
we were developing load balancing and stateful firewall SDN applications during
our research work. To test and measure the performance of our applications, we
needed low-cost SDN testbed. Existing solutions were utilizing special hardware
such as NetFPGA or real switches. But these were not suitable due to high costs and
complexity involved. We could have tested these applications using Mininet
emulator but there are performance issues. In this paper, we created a small size,
low cost, portable SDN switch for testing our SDN applications using Raspberry Pi.
Our low-cost switch supports OpenFlow Specification 1.0-1.4. Raspberry Pi is
Linux-based small size low-cost device which can be used as a personal computer
as well as for making low-cost portable SDN switch.

Keywords Open vSwitch - OpenFlow - Raspberry Pi -+ SDN - Controller

1 Introduction

Computer network consists of a large number of network devices such as routers,
switches, and various middleboxes such as firewalls, load balancers, network
address translators having complex protocols on them. Network operators are

V. Gupta
U-Net Solutions, Moga, Punjab, India
e-mail: vipin2411@gmail.com

K. Kaur () - S. Kaur
AD College, Dharamkot, Punjab, India
e-mail: bhullar1991 @ gmail.com

S. Kaur
e-mail: bhullarsukh96 @ gmail.com

© Springer Nature Singapore Pte Ltd. 2018 147
D.K. Lobiyal et al. (eds.), Next-Generation Networks, Advances in Intelligent
Systems and Computing 638, https://doi.org/10.1007/978-981-10-6005-2_16

148 V. Gupta et al.

responsible for configuring individual network devices using configuration
interface.

Software-defined networking is a new networking concept in which the data plane
is decoupled from control decision plane [1]. Data planes are actually dumb merchant
silicon boxes. We can turn them into a simple hub, learning switch, or a router by
creating flow entries in flow tables. SDN in part represents logically centralized
network intelligence in control plane and data plane become simple packet for-
warding device that can be programmed via open interface. OpenFlow is a prominent
example of such an interface [2, 3]. OpenFlow switch has flow tables that contain
packet handling rules. When a rule matches with the incoming traffic, then corre-
sponding action such as dropping, forwarding, and flooding is taken. According to the
flow table rules, OpenFlow switch behaves like a switch, router, hub, or firewall [4].

SDN is getting a lot of attention from research community as well as industry
[5]. Open network foundation (ONF) has been created for promoting SDN and
standardizes the OpenFlow (Fig. 1).

Il

SDN Controller

Software Layer

OpenFlow Firmware/Client Add/Delate flow entries

Hardware Layer (Flow Table)

MAC | MAC P P TCP |TCP |Action |Statistics
sre dst src dst sport |dport
* ¥ . 1234 " * port1 340
Rule Action |Statistics
Rule Action |Statistics
port 1 port 2 port 3 port 4 port 5

Packet @ut

HEEE

OpenFlﬂw Switch

1234

Fig. 1 SDN architecture

Developing Small Size Low-Cost Software ... 149

2 Related Work

Mininet [6, 7] is a emulator software that enables you in creating large networks on
a simple laptop or virtual machine (VM). It allows you to create simple as well
complex networking consisting of switches, controllers, hosts, and links. It provides
a simple, robust mechanism for testing OpenFlow applications. But there are
scalability issues and resource constraints when we run Mininet on a single system.
Many other researchers use special devices such as NetFPGA for creating testbeds.
But these SDN testbeds are not suitable due to higher cost and complexity [8].
Earlier work supported OpenFlow specification 1.0 [9], while in case of our work, it
supports OpenFlow Specification 1.0-1.4.

Raspberry Pi is small size low-cost device which can be used as personal
computer as well as for making low-cost SDN switch. Raspberry Pi is basically a
device using embedded Linux.

3 Steps for Developing SDN Switch

Our switch was made using Raspberry Pi which comes preloaded with Raspbian
operating system. For our switch, we used latest Raspberry Pi model B+ which also
comes with 1 GB Ram instead of 512 MB Ram in earlier versions. The Raspberry
Pi is a small, powerful, and lightweight ARM-based computer [9]. We loaded the
latest Ubuntu MATE 15.04 on Raspberry Pi. Raspberry Pi contains only one LAN
card. Since we wanted four ports SDN switch, so we ordered three USB-based
low-cost LAN cards online. The following are the steps for converting our
Raspberry Pi system to a SDN switch.

1. Attached three USB LAN cards to our Raspberry Pi system thus making total
number of LAN cards available to four.

2. We downloaded a pre-built image of Ubuntu MATE which is available on the
Internet [10]. We unzipped that image file and wrote the Ubuntu MATE image
file on MicroSD card that comes along with Raspberry Pi system. It removed the
default Raspbian image on MicroSD. We removed the Raspbian OS because it
does not support the latest version of OpenFlow switch (Fig. 2).

3. We used the ‘apt-get install’ for installing the Open vSwitch packages on
Raspberry Pi.

4. We used the ‘Ovs-vsctl’ for making our Raspberry Pi as SDN switch and added
four LAN cards as four ports of our SDN switch.

5. We attached four laptops to four ports of our Raspberry Pi SDN switch. One
laptop was used as client system, one laptop as POX/RYU controller and two
other laptops as servers.

6. First, we tested our load balancing application using POX controller [11, 12].
Our Raspberry Pi switch was properly working as a load balancer.

150 V. Gupta et al.

N
Raspberry-pi =7

SDN Switch [
; ‘% Host02

Fig. 2 Raspberry Pi-based SDN laboratory

7. Secondly, we tested our firewall application using RYU controller [13, 14]. Our
Raspberry Pi switch was now properly working as firewall.

4 Laboratory Setup

For testing our switch, we created the laboratory as shown figure. Our switch ports
were named ethQ, ethl, eth2, eth3. We attached our POX controller on ethO and
hosts on ethl, eth2, and eth3 ports. We tested our Raspberry Pi-based SDN switch
using load balancing application and firewall application (Fig. 3).

The load balancing architecture consists of OpenFlow switch network with a
POX controller and multiple servers connected to the ports of the OpenFlow switch.
Each server is assigned static IP address, and the POX controller maintains a list of
live servers that are connected to the OpenFlow switch. Web service is running on
each server on a well-known port 80.

A firewall allows or rejects a specific type of data. Our firewall application
allows or restricts the traffic based on MAC addresses (Layer 2), source and des-
tination IP addresses (Layer 3), ports (Layer 4). When a packet enters into the
switch, the packet header is matched against the firewall rules.

Developing Small Size Low-Cost Software ... 151

Fig. 3 Laboratory setup IP:172.24.0.10/16
Host03

eth

Raspberry Pi ethl

SDN Switch

SDN Controller

1P:172.24.0.81/16
eth2 eth3 POX Controller
RYU Controller

Host01 Host02
1P:172.16.0.31/16 1P:172.16.0.1/16
Fig. 4 Switch ports for root@sdn-raspberry-pi:~# ovs-vsctl show
connecting hosts 11a26b40-ae15-4a50-98a0-601b?bad8aSe

Bridge "suw0"
Controller “tcp:172.24.0.81:6633"
fail_mode: standalone
Port “eth2"
Interface “ethz2"
Port “su®"
Interface “suw0"
type: internal
Port “eth3"
Interface “eth3”
Port “ethl"
Interface “ethl”
Bridge br-int
fail_mode: secure
Port br-int
Interface br-int
type: internal
ovs_version: “2.3.1"
root@sdn-raspberry-pi:™# _

We tested our load balancing application using POX controller installed on
‘172.24.0.81" host. Firewall application was tested using Ryu controller installed on
‘172.24.0.81°. Raspberry Pi SDN switch was configured to use remote controller as
shown in figure. Both of these applications are working properly on Raspberry
Pi-based SDN switch (Fig. 4).

152 V. Gupta et al.

5 Conclusion

Here we have successfully developed a SDN switch using Raspberry Pi by
installing Ubuntu MATE Linux and other open source softwares. We were able to
successfully test our load balancing and firewall applications. This switch is very
low cost and portable as compared to other available alternatives in the market.
Future work can involve creating a SDN testbed consisting of Raspberry-based
switches and hosts.

References

1. Mendonca, M., Nunes, B.A.A., Nguyen, X.N., Obraczka, K., Turletti, T.: A Survey of
Software-Defined Networking: Past, Present, and Future of Programmable Networks (2013)

2. McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J.,
Shenker, S., Turner, J.: OpenFlow: enabling innovation in campus networks.
ACM SIGCOMM Comput. Commun. Rev. 38(2), 69-74 (2008)

3. Hegr, T., Bohac, L., Uhlir, V., Chlumsky, P.: OpenFlow deployment and concept analysis.
Adv. Electr. Electron. Eng. 11(5), 327-335 (2013)

4. Lara, A., Kolasani, A., Ramamurthy, B.: Network Innovation Using Openflow: A Survey,
pp. 1-20 (2013)

5. Feamster, N., Rexford, J., Zegura, E.: The road to SDN: an intellectual history of
programmable networks. ACM SIGCOMM Comput. Commun. Rev. 44(2), 87-98 (2014)

6. Handigol, N., Heller, B., Jeyakumar, V., Lantz, B., McKeown, N.: Reproducible network
experiments using container-based emulation. In: Proceedings of the 8th International
Conference on Emerging Networking Experiments and Technologies, pp. 253-264. ACM
(2012)

7. Lantz, B., Heller, B., McKeown, N.: A network in a laptop: rapid prototyping for
software-defined networks. In: Proceedings of the 9th ACM SIGCOMM Workshop on Hot
Topics in Networks, p. 19. ACM (2010)

8. Naous, J., Erickson, D., Adam Covington, G., Appenzeller, G., McKeown, N.: Implementing
an OpenFlow switch on the NetFPGA platform. In: Proceedings of the 4th ACM/IEEE
Symposium on Architectures for Networking and Communications Systems, pp. 1-9. ACM
(2008)

9. Kim, H., Kim, J., Ko, Y.-B.: Developing a cost-effective OpenFlow testbed for small-scale
software defined networking. In: 2014 16th International Conference on Advanced
Communication Technology (ICACT), pp. 758-761. IEEE (2014)

10. https://ubuntu-mate.org/raspberry-pi/

11. Kaur, S., Singh, J., Ghumman, N.S.: Network Programmability Using POX Controller

12. POX at https://openflow.stanford.edu/display/ONL/POX+Wiki

13. Shalimov, A., Zuikov, D., Zimarina, D., Pashkov, V., Smeliansky, R.: Advanced study of
SDN/OpenFlow controllers. In: Proceedings of the 9th Central & Eastern European Software
Engineering Conference in Russia, p. 1. ACM (2013)

14. Lin, T., Kang, J.-M., Bannazadeh, H., Leon-Garcia, A.: Enabling SDN applications on
software-defined infrastructure. In: Network Operations and Management Symposium
(NOMS), 2014 IEEE, pp. 1-7. IEEE (2014)

https://ubuntu-mate.org/raspberry-pi/
https://openflow.stanford.edu/display/ONL/POX%2bWiki

	16 Developing Small Size Low-Cost Software-Defined Networking Switch Using Raspberry Pi
	Abstract
	1 Introduction
	2 Related Work
	3 Steps for Developing SDN Switch
	4 Laboratory Setup
	5 Conclusion
	References

