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Chapter 11
The Development and Diversity of ILCs, NK 
Cells and Their Relevance in Health 
and Diseases

Yuxia Zhang and Bing Huang

Abstract  Next to T and B cells, natural killer (NK) cells are the third largest lym-
phocyte population. They are recently re-categorized as innate lymphocytes (ILCs), 
which also include ILC1, ILC2, ILC3, and the lymphoid tissue inducer (LTi) cells. 
Both NK cells and ILC1 cells are designated as group 1 ILCs because they secrete 
interferon-γ (IFN-γ) and tumor necrosis factor (TNF). However, in contrast to ILC1 
and all other ILCs, NK cells possess potent cytolytic functions that resemble cyto-
toxic T lymphocytes (CTL). In addition, NK cells express, in a stochastic manner, 
an array of germ line-encoded activating and inhibitory receptors that recognize the 
polymorphic regions of major histocompatibility class I (MHC-I) molecules and 
self-proteins. Recognition of self renders NK cell tolerance to self-healthy tissues, 
but fail to recognize self (‘missing-self’) leads to activation to neoplastic transfor-
mation and infections of certain viruses. In this chapter, we will summarize the 
development of NK cells in the context of ILCs, describe the diversity of phenotype 
and function in blood and tissues, and discuss their involvement in health and dis-
eases in humans.
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Eomes	 Eomesodermin
Ets1	 ETS proto-oncogene 1
Gata3	 GATA-binding protein 3
ID2	 Inhibitor of DNA binding 2
IFN-γ	 Interferon gamma
ILC	 Innate lymphocyte
ILCP	 ILC progenitors
JAK1/3	 Janus kinase 1/3
LTi	 Lymphoid tissue inducer cells
MCMV	 Murine cytomegalovirus
Mef	 Myeloid elf-1-like factor
MHC-I	 Major histocompatibility class I
mTOR	 Mechanistic target of rapamycin
NFIL3	 Nuclear factor interleukin 3
NK	 Natural killer
PD-1	 Programmed cell death-1
PDK1	 3′-Phosphoinositide-dependent kinase 1
PLZF	 Promyelocytic leukemia zinc finger
S1P1	 Sphingosine-1-phosphate receptor 1
T-bet	 T-cell-specific T-box transcription factor
TCF-1	 T-cell factor 1
TNF	 Tumor necrosis factor
TOX	 Thymocyte selection-associated high-mobility group box
TRAIL	 TNF-related apoptosis ligand
Zeb2	 Zinc finger E-box-binding homeobox 2

11.1  �NK Cells Are a Group of Innate Lymphocytes that 
Secrete Adaptive Immune Cytokines

The innate immune system is constituted with granulocytes, monocytes, macro-
phages, and dendritic cells that secrete inflammatory cytokines, as well as innate 
lymphocytes that secrete adaptive cytokines such as IFN-γ, interleukin (IL)-4, and 
IL-17. NK cells are the prototypic ILCs, and they were first described in 1975 as 
being able to naturally kill mouse leukemia cells [1]. Since 2008, the concept of 
ILCs [2] has been expanded and now includes the related subsets of NK, ILC1, 
ILC2, ILC3, and the lymphoid tissue inducer (LTi) cells [3]. ILCs are characterized 
as having lymphoid morphology but lack rearranged antigen-specific receptors and 
myeloid and dendritic cell phenotypical markers. ILCs develop initially from pro-
genitors in the fetal liver [4, 5] and, later, in the adult bone marrow [6–8]. They 
subsequently seed mucosal tissues, where they continue to proliferate and become 
tissue-resident cells and maintain tissue homeostasis. ILCs and T cells share similar 
transcription factors that govern their differentiation and produce similar key cyto-
kines [2, 9]. Thus, in analogy to T cells, ILCs are subdivided into cytotoxic (NK) 
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and all other “helper”-like subsets that resembles IFN-γ/Th1-, interleukin 4 (IL-4)/
Th2-, and IL-17/Th17-secreting CD4+ T helper cells [10].

11.2  �ILCs Are Generated from Progenitors Downstream 
of the Common Lymphoid Progenitor

All ILCs initially derive from the common lymphoid progenitor (CLP). The transi-
tion from CLP to ILC-specific transcriptional program is accompanied with differ-
ential expression of over 400 genes [4, 5, 11], with temporal requirements for Nfil3 
(nuclear factor interleukin 3, also known as E4bp4), TCF-1(T-cell factor 1, encoded 
by Tcf7), and ID2 (inhibitor of DNA binding 2). Nfil3 expression is essential for the 
development of ILC progenitors prior to their commitment, and it is induced by 
mesenchymal-derived IL-7 [12–14]. NFIL3 also directly activates ID2 [14, 15]. 
TCF-1 represses genes critical for stem cell (Hhex and Lmo2) and pro-B cell (Spib, 
Irf8, Ly6d) function [11], and its loss affects the differentiation of both NK and other 
ILC subsets [16–18]. ID2 induces a major regulatory shift with broad repression of 
progenitor cell transcription factor genes and upregulation of critical regulators 
including Tox (thymocyte selection-associated high-mobility group box) and Gata3 
(GATA-binding protein 3) [11]. Thus, immedicably downstream of the CLP, the 
earliest ILC progenitor (EILP) is TCF-1+ [17], which further becomes ID2hi com-
mon helper ILC precursor (CHILP) when NK cell potential is lost [6, 14, 19, 20]. 
After acquisition of promyelocytic leukemia zinc finger protein (PLZF, encoded by 
Zbtb16), ILC progenitor (ILCP) loses the capacity to differentiate into LTi cells [5, 
6]. Programmed cell death-1 (PD-1) is co-expressed with PLZF and can be used as 
a cell surface marker to identify ILCP [11] (Fig. 11.1).

11.3  �NK Cells Develop Through Immature and Mature 
Stages

In the adult mouse bone marrow, pre-NK cell progenitor (pre-NKP) downstream of 
CLP (Lin−Flt3+ CD27+CD244+ CD127+CD122−Ly6D−) has a Lin−Flt3−CD27+CD2
44+CD127+CD122− surface phenotype, which further develop into rNKP (recently 
re-defined NK progenitor) that expresses CD122 [21, 22]. CD122 couples with the 
common γ-chain (CD132) and forms the IL-2/IL-15 receptor, allowing NK cells to 
respond to IL-15 and activate JAK1/3 and STAT5 [23–25]. IL-15 also activates 
3′-phosphoinositide-dependent kinase 1 (PDK1)-mTOR and regulates Nfil3 and 
CD122 expression [26]. rNKP develops through an immature NK cell (iNK) stage 
to become mature NK (mNK) cells. iNK expresses NK1.1 but does not express 
CD49b (antigen to DX5). The expression of Ly49 receptors on the developing iNK 
cells is critical for NK cell education and maturation and for the detection of 
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invading pathogens, such as murine cytomegalovirus (MCMV) [27, 28]. The most 
iNK-cell-proximal mNK cells are CD27+CD11b−, produce IFN-γ and TNF-α when 
activated, but are not yet fully cytotoxic effector cells. Cytotoxic capacity improves 
with NK cell maturation by type I interferons (IFN-α or IFN-β) or proinflammatory 
cytokines IL-2, IL-15, IL-12, and IL-18, which upregulate CD11b through T-bet 
and zinc finger E-box-binding homeobox 2 (Zeb2) [29, 30]. Of note, iNK cells in 
the bone marrow differentiate through four stages sequentially as CD27−CD11b−, 
CD27+CD11b−, CD27+CD11b+, and CD27−CD11b+ [31, 32]. Besides CD11b and 
Dx5, mature NK cells also highly express KLRG1, CD62L, and CD43 [32].

CLP

EILP

Nfil3
Tcf7
Tox

CHILP
ID2+

Tbx21
Tcf7
IL-15

ILC1 LTi

rNKP

mNK NCR-
ILC3

Tbx21
Notch2

NCR+
ILC3

ILC2

T
B

TNFSF11 (RANKL)
LTa
LTb
IL-22
IL-17

IL-4,5,13, 9
Amphiregulin

IFN-γ
IL-22
Ahr+

CD127+ IL-25
IL-33
TSLP

Tbx21
IL-12exILC3

IL-12

IFN-γ
granzyme
perforin

IFN-γ
TNFa

IL-12

IL-1β, IL-23
T-bet
IL-12

CCR6+

IL-1β
IL-23
IL-6

TCF1-

ID2-

PLZF-

PD1-

TCF1+

ID2-/low

PLZF-

PD1-

ILCP
PLZF+

TCF1+

ID2high

PLZF-

PD1-

TCF1+

ID2high

PLZF+

PD1+

α4β7-Flt3+c-Kit+Sca-1loCD244+CD27+CD93+CD122-

CD127lo

CD25-

Notch

RORγt+
T-bet-
Eomes-

GATA3int

RORγ t+
T-bet+
Eomes-

GATA3int

RORγ t-
T-bet-

Eomes-

GATA3high

RORγt-

T-bet+

Eomes-

GATA3int

α4β7+Flt3loc-KitloSca-1lo

CD127-/low

Nfil3+

Tox+

Id2-/low

α4β7+

CD127+

α4β7+Flt3-c-Kit+Sca-1loCD244+CD27+CD93-CD122-

CD127+

CD25-

KLRG-1+

Sca-1+

ICOS+

IL1rl1+

NK1.1+

NKp46+

CD49b-

Flt3-c-Kit+CD244+CD27+

CD127+

CD122-

IL-17+
GM-CSF

iNK

CD244+CD27+

NK1.1+, NKp46+

Ly49+/-

CD127-

CD122+

Id2
Tox
Eomes

T-bet

Nfil3
Ets1

Id2
Tox
Eomes

T-bet

Nfil3
Ets1

Id2
Tox
Eomes

T-bet

Nfil3
Ets1

E2A CD244+CD27+

NK1.1+, NKp46+

Ly49+

CD49b+

CD127-

CD122+

mNKId2
Tox
Eomes
T-bet

Nfil3
Ets1

E2A

Zeb2

CD244+CD27+

NK1.1+, NKp46+

Ly49+

CD49b+

CD127-

CD122+

CD11b+

RORγt-

T-bet+

Eomes+

GATA3int

CCR6+

CD4+

pre-NKP

Flt3-c-Kit+CD244+CD27+

CD127+

CD122+

Fig. 11.1  NK and helper ILCs development in mice
T, B, NK and all other helper ILCs develop from common lymphoid progenitor (CLP). NK and 
ILCs development accompany with sequential differential acquirement of hundreds of transcrip-
tion factors: Nfil3 and Tcf1 are required for the development and commitment of early ILC pro-
genitors (EILP). Expression of ID2 leads to the commitment of common helper ILC precursor 
(CHILP), which is not able to further develop into NK cells. When PLZF is expressed, ILC pro-
genitor (ILCP) is formed and its LTi potential is lost. Downstream of EILP, pre-NK progenitor 
(pre-NKP) develops into re-defined NK progenitor (rNKP) that expresses CD122, which couples 
with CD132 to form the IL-2/IL-15 receptor, allowing NK cells to respond to IL-15. rNKP then 
develops through an immature stage (iNK) to become mature NK cells (mNK). Nfil3, Tcf1, Ets1, 
Id2, Eomes, T-bet and Zeb2 governs NK cell development from EILP to mNK cells
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Apart from Tcf1 and Nfil3 [8, 13–15, 17, 33] required for EILP commitment, 
Ets1, Id2, Eomes, and T-bet are transcription factors essential for NK cell develop-
ment. Ets1, required for early NK cell lineage commitment, induces Id2, Tbx21, and 
Il2rb (CD122) expression [34–36]. Id2 suppresses E protein target genes (e.g., 
Socs3, Tcf7, Cxcr5), and the suppression of Socs3 promotes NK cell response to 
IL-15 [37, 38]. IL-15 is crucial for NK cell survival through the induction of the 
anti-apoptotic protein Bcl-2 [39, 40]. Eomesodermin (Eomes) and T-bet are mem-
bers of the T-box family of transcription factors and are required by iNK and mNK 
cells [41]. However, tissue-resident NK cells may exhibit different developmental 
reliance on T-bet and Eomes [42].

NK cell maturation and function are regulated by an additional group of tran-
scription factors. These include the Ets family protein myeloid elf-1-like factor 
(Mef, also known as ELF4) [43] and PU.1 (encoded by Spi1) [44], which respec-
tively regulate perforin expression and NK cell proliferation in response to IL-2 and 
IL-12. PR domain zinc finger protein 1 (Blimp1, encoded by Prdm1), induced by 
IL-15  in a T-bet-dependent manner during early NK cell development, promotes 
granzyme B expression but inhibits NK cell maturation and proliferation to low 
concentrations of IL-15 [45]. Tox regulates mNK development partially through the 
induction of Id2 [46]. The Ikaros family member Aiolos (encoded by Ikzf3) pro-
motes IFN-γ expression; however, its absence enhances the ability of NK cells to 
control tumor cells [47]. Kruppel-like factor 2 (Klf2) restricts iNK cell proliferation 
but is required for migration of NK cells toward IL-15-rich microenvironment [48]. 
IFN regulatory factor 2 (Irf2) is required for NK cell maturation in the periphery and 
survival in bone marrow. At homeostatic state, Gata3 is required for bone marrow 
NK cell maturation from CD27+CD11b− stage and for bone marrow egress, liver 
migration, and IFN-γ expression. In the face of infection, Gata3-deficient NK cells 
demonstrated inferior control of Listeria monocytogenes burden in the liver [49]. 
However, Gata3-deficient NK cells exhibited superior activity toward MCMV due 
to increased CD25 expression [50]. Discrepancies regarding forkhead box protein 
O1 (Foxo1) exist in the literature. In one report, Foxo1 was shown to be required for 
iNK cell survival by inducing autophagy that removes damaged mitochondria and 
intracellular reactive oxygen species (ROS) [51]. In another report, however, Foxo1 
inhibited late-stage NK cell maturation and function by downregulating Tbx21 
expression [52].

11.4  �Tissue-Resident NK Cells Acquire Unique Phenotype 
and May Have Distinct Developmental Pathways

Tissue-resident NK (trNK) cells often express CD69, CD103 (αE integrin), and 
CD49a (α1 integrin), which are involved in retaining NK cells in the tissues. CD69 
inhibits type I interferon-induced expression of sphingosine-1-phosphate receptor 1 
(S1P1). S1P1 and S1P5 on NK cells binds to sphingosine-1-phosphate (S1P), which 
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forms a gradient with the highest concentration in peripheral blood and, thereby, 
promotes egress of lymphocytes from tissues into the blood [53, 54]. CD103 forms 
a heterodimer with β7 integrin and binds to E-cadherin on epithelial cells [55]. 
CD49a forms a heterodimer with β1 integrin and binds to collagen [56]. The expres-
sion of both CD103 and CD49a is regulated by transforming growth factor-β (TGF-
β1) [57]. Development of trNK cells may be different from conventional blood NK 
cells. CD49a+ DX5− Trail+ trNK cells in the mouse liver express higher amount of 
TNF-α and GM-CSF than blood and spleen conventional NK cells, and they develop 
in a T-bet-dependent manner  in the absence of Nfil3 [41, 42]. CD49a+DX5− NK 
cells that resemble liver trNK cells are also observed in the mouse uterus and skin 
[42]. In contrast, salivary glands [58] and uterine NK cells [59–61] develop require 
Eomes in the absence of Nfil3. In addition, a population of CD127+ NK cells develop 
in Gata3- and IL-7-dependent manner independently from T-cell precursors in the 
mouse thymus, and thymic trNK cells demonstrate reduced granzyme B but 
increased IFN-γ, GM-CSF, and TNF expression [62, 63].

11.5  �NK Cell Diversity and Activity Are Regulated 
by Variegated Surface Receptors

The activities of NK cells are regulated by various germ line-encoded activating or 
inhibitory receptors (Table 11.1), many of which are expressed in stochastic pat-
terns, resulting in many subsets of functionally distinct NK cells [64–66]. The fami-
lies of NK receptors that recognize MHC class I include the murine Ly49 receptors, 
the primate killer cell immunoglobulin-like receptors (KIRs), and the CD94-NKG2 
receptors in both rodents and primates [65]. Inhibitory receptors in humans and 
rodents normally contain one or more intracellular immunoreceptor tyrosine-based 
inhibitory motifs (ITIM) that can activate downstream SHP-1, SHP-2, and SHIP 
phosphatase [67, 68]. Many of the activating receptors lack intracellular signaling 
motifs and transduce signals via the association with immunoreceptor tyrosine-
based activating motif (ITAM)-containing adapters DAP12, FcεRγ, and CD3ζ, 
which recruit and activate Syk or ZAP70 tyrosine kinases [69]. NKG2D ligands are 
self-proteins related to MHC class I molecules. They are generally absent on the cell 
surface of healthy cells but are frequently upregulated upon cellular stress [70]. 
NKG2D recruits DAP10 and mediates signaling through the activation of PI3K [71, 
72] and ERK [73]. Human KIRs contain either two (KIR2D) or three (KIR3D) 
extracellular immunoglobulin (Ig)-like domains. They are designated as KIR2DL or 
KIR3DL, respectively, if they possess a long cytoplasmic domain containing ITIM 
motif. KIR2DS and KIR3DS have short cytoplasmic domains lacking ITIM but 
associate through a charged residue in their transmembrane regions with DAP12 or 
FceRIγ, respectively. KIR2D receptors typically recognize human HLA-C alleles, 
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whereas KIR3D receptors recognize HLA-B or some HLA-A alleles [74, 75]. The 
NKG2 family contains one inhibitory NKG2A and two activating members NKG2C 
and NKG2E.  The CD94-NKG2 receptors recognize nonclassical MHC-I that is 
HLA-E in humans and its ortholog Qa-1 in mice [76–78]. A subset of human NK 
cells express KIR-related inhibitory receptor, LILRB1, which recognizes a shared 
epitope in all human MHC class I proteins [79].

NK cells also express activating and inhibitory receptors that recognize non-
MHC ligands [80]. For example, murine CD244 (2B4) recognizes CD48, an inter-
action essential for the IL-2-driven expansion and activation of NK cells [81]; 
human NKR-P1A (CD161) recognizes the lectin-like transcript-1 (LLT1, encoded 
by Clec2d), which is expressed on activated dendritic cells and B cells and inhibits 
NK cell cytotoxicity and IFN-γ expression [82, 83]; killer cell lectin-like receptor 
G1 (KLRG1) recognizes cadherins and mediates ‘missing-self’ education [84]; 
Gp49B1 recognizes αvβ3 integrin and inhibits IFN-γ expression [85, 86]. The acti-
vating DNAX accessory molecule-1 (DNAM-1, also known as CD226) [87–89] and 
the inhibiting T-cell immunoreceptor with Ig and ITIM domains (TIGIT) [90, 91] 
receptors both recognize poliovirus receptor (PVR, also known as CD155) and 
poliovirus receptor-related 2 (PVRL2, also known as nectin-2 and CD112), which 
are frequently expressed on transformed or stressed cells.

During NK cell development, the expression of self-MHC class I-reactive inhibi-
tory receptors ‘licenses’ NK cells. Under physiological conditions, licensed NK 
cells engage through the Ly49 and KIR inhibitory receptors with MHC class I and 
prevent NK cells from attacking self, and this self-tolerance is mediated through the 
recruitment of SHP-1, SHP-2, and SHIP phosphatase [67, 68]. Interestingly, 
licensed NK cells are more potent in their cytotoxicity toward MHC class I-deficient 
target cells and secrete more IFN-γ and TNF-a under noninflammatory conditions 
[92, 93]. During infection, however, inhibitory receptor engagement impairs the 
ability of licensed NK cells to control cytomegalovirus (CMV) infection [93]. The 
absence of inhibitory receptors on NK cells can have a beneficiary effect in human 
leukemia patients receiving irradiation therapy followed by bone marrow transplan-
tation. The absence or mismatch of donor NK inhibitory KIR receptors with recipi-
ent MHC-I was associated with better leukemic cell clearance and graft acceptance 
[94].

Activating receptors have the ability to recognize ‘altered-self’, which is often 
induced on malignant or stressed cells [95], and trigger NK cells to kill their tar-
gets. NK cells mediate target-cell killing by a number of mechanisms, including (1) 
the secretion of cytokines, (2) exocytosis of cytoplasmic granules containing per-
forin and enzyme, (3) FAS ligand and TNF-related apoptosis ligand (TRAIL)-
mediated induction of apoptosis, and (4) CD16 cross-linking and antibody-dependent 
cell-mediated cytotoxicity (ADCC) [94]. However, when NK cells are chronically 
exposed to endogenous, as well as foreign ligands recognized by their activating 
receptors, they are tolerated through either receptor downregulation or hypore-
sponsiveness [65]. NK cell tolerance mediated by activating receptors is reversible 
and can be broken in the presence of inflammatory cytokines or infection. For 
instance, in C57BL/6 mice receiving MCMV infection, initially both licensed and 

11  The Development and Diversity of ILCs, NK Cells and Their Relevance in Health…



234

unlicensed NK cells expressed CD69 and upregulated IFN-γ and granzyme B at 
similar level, but, subsequently unlicensed NK cells predominated in numbers and 
were the main mediators of viral clearance. The engagement of the activating 
Ly49H receptor with MCMV-encoded glycoprotein m157 on infected cells pro-
moted unlicensed NK cells to undergo a proliferative burst, but the inhibitory 
receptors on licensed NK cells restrained the proliferation through SHP-1 phospha-
tase signaling [68, 93] (Fig. 11.2).

11.6  �NK Cells Participate in Tissue Remodeling in Humans 
and Undergo Clonal-Like Expansion During Viral 
Infection

A mouse analog of human NK progenitor has been defined as Lin−CD34+CD38+C
D123−CD45RA+CD7+CD10+CD127−, which selectively gives rise to NK cells in 
vitro and in vivo [96]. Circulating human NK cells are a diverse population. In any 
given individual, the diversity is generated by the developmentally distinct NK cell 
subsets, KIR gene content, polymorphisms, and copy number variations [64], with 
differentiation and reprogramming in response to tissue-specific environment and 
infections [97]. Transcriptional, telomere length, and transfer of human NK cells 
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Fig. 11.2  NK cell license, activation and inhibition
(a) NK cell license occurs with the expression of self-MHC class I-reactive inhibitory receptors, 
Ly49 in mice and KIR in man. This prevents NK cells from attacking self. In the absence of inhibi-
tory receptors, chronic exposure of activating receptors with their ligands can also render NK cell 
hyporesponsive. (b) NK cell activation takes place under instances of human leukemia patients 
receiving irradiation therapy followed by bone marrow transplantation. The absence or mismatch 
of donor inhibitory NK receptors with recipient MHC-class I promotes leukemic cell clearance by 
both licensed and unlicensed NK cells. (c) During viral infection, inhibitory receptors on licensed 
NK cells inhibit their proliferation burst, and under these circumstances, unlicensed NK cells are 
the main mediators of viral clearance
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into NOD/SCID/γc−/− mice have demonstrated that circulating NK cells in human 
blood display sequential CD56bright CD62L+, CD56dimCD62L+ CD94high

, and 
CD56dimCD62L− CD94low developing stages [98, 99]. CD56bright CD62L+ NK cells 
are mostly KIR− NKG2A+CD27dim CD57−CD16+/− but express CD127 and CD117 
(also known as KIT and SCFR), which are also hallmarks of non-NK ILCs [2, 100]. 
Upon stimulation with combinations of IL-12, IL-15, and IL-18, CD56bright CD62L+ 
and CD56dimCD62L+ NK cells strongly proliferate and produce significantly greater 
amount of IFN-γ than CD56dimCD62L− NK cells. However, engagement of the acti-
vating receptors evokes more prominent chemokine (MIP-1α, MIP-1β and 
RANTES) and cytokine (IFN-γ) expression and NK cell cytotoxicity in 
CD56dimCD62L+ and CD56dimCD62L− cells. [98, 101, 102]. CD56dim NK cells can 
further develop with the sequential loss of NKG2A and the acquisition of KIRs and 
CD57 [103]. CD56dimCD57+ NK cells have increased cytotoxic capacity than 
CD56dimCD57− NK when they are activated through CD16 [104].

In parallel to mice, human tissue-resident NK cells also express CD69, CD103, 
and CD49a, and they may derive directly from progenitors that reside within the 
tissues [97]. NK cells are found at high frequencies in the endometrium of human 
uterus and decidua in the first trimester of pregnancy. Throughout the second half of 
the menstrual cycle, progesterone from the ovaries acts on uterine stromal cells, 
which in turn secrete IL-15 and support uterine NK cell proliferation [105]. During 
pregnancy, a key role for CD56bright uNK cells is to promote trophoblast invasion 
and maternal spiral artery remodeling, which is mediated through the production of 
IL-8, interferon-inducible protein-10 (IP10), and an array of angiogenic factors 
including vascular endothelial growth factor A (VEGF-A), VEGF-C, and angiopoi-
etins [99, 106]. Critically, fetal trophoblasts, which come into direct contact with 
maternal blood and tissues during pregnancy, are exempt from uNK-mediated cell 
killing. Uterine CD56bright CD49a+CD103+CD9+ NK cells express perforin, gran-
zymes A and B, and the activating receptors NKp30, NKp44, NKp46, NKG2D but 
are unable to form mature activating synapses and thus are not cytotoxic [107, 108]. 
Furthermore, the high expression of inhibitory KIRs (KIR2DL1, KIR2DL2, 
KIR2DL3), the CD94-NKG2A receptor complex, and the LILRB1 inhibit NK cell 
activation through the recognition of HLA-C, HLA-E, and HLA-G expressed on the 
extravillous trophoblasts, respectively [107, 109]. Interestingly, primary villous tro-
phoblasts do not express HLA, and extravillous trophoblasts are devoid of HLA-A 
and HLA-B.

In liver sinusoids, NK cells represent up to 30–40% of all hepatic lymphocytes 
[110], and CD56bright and CD56dim cells are present in equal proportions [111, 112]. 
Hepatic CD56bright NK cells express CD69 and are tissue resident [113, 114]. Liver 
resident macrophages (Kupffer cells) interact with NK cells to keep immune 
tolerance to nonpathogenic antigens from food and LPS from gut commensal bac-
teria, but remain alert to infections by pathogens and viruses. In recognition of bac-
terial cell wall products via TLR2/4 -MyD88, Kupffer cells secrete IL-10 and blunt 
NK cell activation [115]. However, when DNA or RNA viruses activate the TLR3-
TRIF-IRF-3 [115] or TLR8 pathways [116], Kupffer cells elicit potent IFN-γ and 
TNF expression in CD56bright trNK cells. Intrahepatic NK cells also mediate target-
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cell killing through the expression of TRAIL, whose expression is correlated with 
the control of hepatitis C virus (HCV) infection [117]. But during HBV infection, 
TRAIL also causes liver damage and can eliminate antigen-specific T cells [118, 
119].

Clonal-like expansion and memory formation of NK cells have been observed in 
humans with cytomegalovirus (HCMV) [120–123], chikungunya virus (CHIKV) 
[124] and hantavirus [125] infections. Clonal-expanded cells are characterized by 
the expression of NKG2C, CD57, and activating KIRs (KIR2DS4, KIR2DS2, 
KIR3DS1), a general lack of the expression of inhibitory NKG2A and KIR3DL1 
receptors (in individuals expressing its HLA-Bw4 ligand), and the decreased expres-
sion of CD161 (also known as KLRB1), NKp30, NKp46, and CD7. A subset of 
clonal-expanded NK cells can further acquire adaptive phenotypes that resem-
bles  more with cytotoxic CD8+ T lymphocytes than conventional NK cells. The 
intronic region of ZBTB16 in adaptive NK cells is hypermethylated, which is cor-
related with the decreased expression of PLZF and its target genes encoding FcεRγ, 
SYK, and EAT-2. Adaptive PLZF-deficient NK cells are distinct from clonal-
expanded NK cells expressing CD57, NKG2C and PLZF, and produce less IFN-γ 
upon cytokine stimulation with IL-12 and IL-18 [126].

11.7  �Conclusion

NK cells are a heterogeneous population of innate lymphocytes that develop from 
the common lymphoid progenitors. Tissue-resident NK cells may have different 
developmental origins and are phenotypically distinct from their blood counter-
parts. NK cells employ both inhibiting and activating receptors for ‘missing-self’ 
education, activation, and terminal differentiation. In humans, NK cells are critical 
for the implantation of the embryos and for the control of neoplastic transformation 
and viral infections, but they may also induce collateral damages to the tissues. 
Despite lacking rearranged antigen-specific receptors, NK cells can acquire adap-
tive T-cell features by clonal-like expansion and alteration in their DNA methylation 
profiles during viral infections.
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