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Preface

The innate immune system provides immediate defense against invading microbial 
pathogens and is found in all classes of living organisms, whereas the adaptive 
immune system is found only in vertebrates. This book covers recent research in 
innate immunity that has revealed a large number of receptors that sense the pres-
ence of microorganisms or cellular damage in tissues. In complex tissues, many of 
these sensing events occur simultaneously. Thus, downstream signaling pathways 
need to be integrated so that an appropriate inflammatory response can be 
initiated.

Current key concepts in innate immunity are discussed, including the formation 
of signalosomes, inflammasome formation and pyroptosis, methods of extrinsic cell 
communication, and examples of receptor cooperation. There is an overview of 
posttranslational modifications in different inflammatory signaling pathways and 
their essential roles in the regulation of inflammation. Emerging evidence suggests 
that epigenetic mechanisms play an important role in fine tuning the innate immune 
response. An understanding of epigenetic regulation of innate immune cell identity 
and function will enable elucidation of the relationship between gene-specific host 
defense and inflammatory diseases, as well as innate immune memory in health and 
disease. Inflammasomes determine the molecular and cellular processes of inflam-
mation in response to microbial infection. Current data suggest that inflammasomes 
also have antimicrobial functions. Microbial factors are involved in regulating host 
inflammatory signaling pathways, the composition and load of the gut microbiota, 
the co-metabolism of the host and the microbiota, and the host immune system and 
physiology.

Novel aspects of functional genomics, epigenomics, transcriptomics, posttrans-
lational modifications, the microbiome, and immunometabolism are reviewed in 
relation to inflammatory signaling and responses. Study of the inflammation that 
occurs in response to host-pathogen interactions is essential for the development of 
new therapies to improve human health. Here we review recent findings on the 
mechanisms underlying the regulation of inflammatory responses to pathogens, 
dysregulation of these responses in inflammatory disease, and the use of such mech-
anisms to boost or subdue the inflammatory response. Such as TLR agonists as 
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adjuvants for cancer vaccines, small-molecule HDAC inhibitors and other epigen-
etic regulators as drug targets in inflammatory diseases, and the potential role of 
miR-155 as a diagnostic, prognostic, and therapeutic target in the treatment of mul-
tiple sclerosis.

The cGAS–STING pathway detects the presence of cytosolic DNA and triggers 
the expression of inflammatory genes in response to DNA damage. It is also linked 
to the tumor microenvironment, where it is paramount to immune clearance of 
tumors. To date, little attention has been paid to the aging-associated alteration in 
intercellular communication known as “inflammaging,” a proinflammatory pheno-
type in organs that occurs with aging, suggesting an alternative senescence- 
associated secretory phenotype. Telomere attrition induces not only epithelial stem 
cell senescence, but also low-grade inflammation in lungs.

We also review crosstalk between the innate and adaptive immune systems, in 
particular in relation to the newly emerged innate lymphoid cells (ILCs). Innate 
lymphoid cells are involved in both innate and adaptive immunity, and contribute to 
tissue homeostasis, as well as defense against pathogens and inflammatory 
disorders.

Finally, I thank all the authors for their valuable contributions. It is my hope that 
this book will stimulate scientists and clinicians to continue to explore this fascinat-
ing field. Bridging the gaps in understanding between the fields of human and 
mouse immunology will provide new insights into inflammatory-mediated disease 
and immune defense. These innovative perspectives in basic and clinical research 
will aid in the translation of knowledge to the clinic.

Shanghai, China� Dakang Xu

Preface
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Chapter 1
Activation of the Innate Immune Receptors: 
Guardians of the Micro Galaxy

Activation and Functions of the Innate Immune 
Receptors

Dominic De Nardo

Abstract  The families of innate immune receptors are the frontline responders to 
danger. These superheroes of the host immune systems populate innate immune 
cells, surveying the extracellular environment and the intracellular endolysosomal 
compartments and cytosol for exogenous and endogenous danger signals. As a col-
lective the innate immune receptors recognise a wide array of stimuli, and in 
response they initiate specific signalling pathways leading to activation of transcrip-
tional or proteolytic pathways and the production of inflammatory molecules to 
destroy foreign pathogens and/or resolve tissue injury. In this review, I will give an 
overview of the innate immune system and the activation and effector functions of 
the families of receptors it comprises. Current key concepts will be described 
throughout, including innate immune memory, formation of innate immune recep-
tor signalosomes, inflammasome formation and pyroptosis, methods of extrinsic 
cell communication and examples of receptor cooperation. Finally, several open 
questions and future directions in the field of innate immunity will be presented and 
discussed.

Keywords  Innate immunity • Innate immune receptors • Inflammasomes • 
Myddosome • PRRs • Innate immune memory • TLRs • NLRs • CLRs • RLRs

D. De Nardo (*) 
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1.1  �Inflammation and the Innate Immune Response

Inflammation is a complex biological process critical for the host that mediates 
numerous pathological and physiological responses [1]. In response to microbial 
infection or the introduction of environmental irritants, the innate immune system 
acts to protect the host via the rapid detection and removal of foreign threats and the 
removal of dead/dying cells through inflammatory processes. Imbalances in homeo-
static processes, such as during metabolic dysfunction or tissue injury, can also 
trigger sterile inflammatory responses. There are five classical signs used in the 
clinical description of inflammation: swelling, heat, pain, redness and loss of func-
tion [2]. On a cellular level, these symptoms reflect the actions of specialised tissue-
resident innate immune cells (e.g. macrophages and dendritic cells) that send out 
signals (cytokines, chemokines and interferons) to mediate increased blood flow, 
allowing access to plasma proteins as well as infiltration of additional circulating 
white blood cells (e.g. neutrophils and monocytes/macrophages) to the tissue site of 
inflammation. Once the immune stimulus is removed, repair processes are initiated 
to restore tissue homeostasis. An effective inflammatory response is therefore acute 
and rapidly resolved following the removal of the stimuli. Low-level inflammation 
is also critical for physiological processes; for instance, the balance between the 
commensal microflora and the host immune system is necessary to maintain a 
healthy intestinal environment [3], as well as small systemic concentrations of type 
I IFNs under homeostatic conditions, which is important for priming immune cells 
for rapid responses to microbial insults [4, 5]. Controlled inflammation in the con-
text of protection, repair and physiology is therefore beneficial for the host. In con-
trast, chronic inflammation can have detrimental outcomes for the host, often 
resulting from persistent infection or in response to sterile inflammation driven by 
metabolic abnormalities or the inability to remove environmental irritants [1]. 
Chronic inflammation is a hallmark of autoimmune and monogenic autoinflamma-
tory diseases where, often, the proverbial innate immune receptor heroes are turned 
villains. Whilst the enduring inflammation in autoimmune disease results from con-
tinual activation of the immune system by endogenous stimuli, autoinflammatory 
diseases stem from specific gain-of-function genetic variations in single innate 
immune genes leading to unwarranted inflammation [6–8]. Some recent examples 
of autoinflammatory diseases include those stemming from genetic variations in 
genes encoding innate immune receptors, such as stimulator of interferon genes 
(STING)-associated vasculopathy with onset in infancy (SAVI) [9] and pyrin-
associated autoinflammation with neutrophilic dermatosis (PAAND) [10]. 
Identification of such genetic variants has given molecular insights into the mecha-
nisms of innate immune activation and signalling and may lead to better treatment 
options for affected patients.

The innate immune system is typically described as a non-specific form of host 
defence due to its rapid induction and apparent lack of any immunological memory. 
Recently, this conventional model was contested by findings that even in the absence 
of the adaptive immune response, myeloid cells (predominantly monocytes and 

D. De Nardo
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macrophages) can adopt long-term inflammatory phenotypes via epigenetic repro-
gramming [11]. This so-called innate immunological memory likely evolved prior 
to the adaptive immune system to confer protection upon secondary infections. 
Indeed, even in Drosophila phagocytosis of apoptotic debris was found to repro-
gramme macrophages, priming them to rapidly respond to future infections or tis-
sue injury [12]. This system is also active in both murine and human myeloid cells. 
An emerging body of work shows priming myeloid cells, such as monocytes, with 
the potent bacterial agent lipopolysaccharide (LPS), and results in mature macro-
phages displaying a sustained immunosuppressive phenotype (known as ‘toler-
ance’). In contrast, a primary infection with Candida albicans increases subsequent 
immune responses against secondary exposures with the same or different patho-
gens (termed ‘trained immunity’) [13]. These findings highlight an intriguing new 
capability to the innate immune response.

In order to better understand the inflammatory response, the mechanisms mediat-
ing the activation and functions of the innate immune system receptors central to the 
inflammatory process must be understood.

1.2  �Triggering the Innate Immune System

All living organisms possess some form of physiological response to danger. Innate 
immune receptors, also known as pattern recognition receptors (PRRs), are highly 
conserved germ-line proteins, present throughout evolution to mediate host defence 
via the recognition of foreign and host-derived danger signals. This evolutionary 
conservation is best exemplified by the expression of numerous families of PRRs in 
sponges [14, 15], the most primitive of multicellular organisms. Collectively, PRRs 
recognise a wide variety of danger signals arising from both exogenous and endog-
enous sources (see Table 1.1). Exogenous danger signals are represented predomi-
nantly by highly conserved components of microbes, termed pathogen-associated 
molecular patterns (PAMPs). This includes structural elements found within bacte-
rial and fungal cell walls, such as LPS (Gram-negative bacteria), peptidoglycans 
(Gram-positive bacteria) and ß-glucans (fungi), as well as forms of viral and bacte-
rial nucleic acids. In addition, some PRRs respond uniquely to viability-associated 
PAMPs of the microbes encountered (e.g. prokaryotic mRNA), termed vita-PAMPs 
[16, 17]. In addition to pathogen-derived molecules, some exogenous environmen-
tal irritants (e.g. silica crystals) can also activate PRRs. Host-derived molecules that 
accumulate or become modified following tissue injury, metabolic dysfunction and 
uncontrolled cell death, and those that mediate sterile inflammatory responses via 
PRRs, represent danger-associated molecular patterns (DAMPs). A classic example 
is uric acid, which is soluble and innocuous in blood under physiological condi-
tions; however, following drastic increases in levels of circulating uric acid (hyper-
uricaemia) results in a chemical-phase transition of soluble uric acid into 
immunoreactive monosodium urate crystals that deposit within joints and periar-
ticular tissues driving the inflammation seen in gout [18]. Another DAMP that is 
increasingly implicated in mediating sterile inflammation is DNA leaked from 

1  Activation of the Innate Immune Receptors: Guardians of the Micro Galaxy
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membrane-compromised mitochondria, i.e. mitochondrial-derived DNA (mtDNA), 
which is linked to the activation of several PRRs [19]. Rather than responding to 
specific signals, some PRRs are activated more generally in response to perturba-
tions in cellular homeostasis, recently coined homeostasis-altering molecular pro-
cesses (HAMPs) [20]. Alterations to the normal cellular environment can be sensed 
following pathogen infection, for instance, modification to the actin cytoskeleton by 
bacterial toxins, as well as via induction of endogenous mechanisms, such as the 
alteration of intracellular ion levels.

1.3  �Detecting Danger

The vertebrate innate immune system comprises families of PRRs expressed pri-
marily on highly specialised immune cell such as monocytes, macrophages, den-
dritic cells (DCs) and natural killer (NK) cells. PRRs are also expressed in other cell 
types that commonly encounter potential danger signals, including epithelial cells. 
The PRR families can be broadly classified according to their localisation on either 
the plasma and endolysosomal membranes or within the cytosolic compartment. 
Whilst Toll-like receptors (TLRs) and C-type lectin receptors (CLRs) represent the 
membrane-bound receptors, retinoic acid-inducible gene I (RIG-I)-like receptors 
(RLRs), nucleotide-binding oligomerisation domain (NOD)-like receptors (NLRs) 
and several cytosolic DNA receptors (CDRs) represent those expressed in the cyto-
sol. An overview of the major PRR families is presented in Fig. 1.1. Conceptually, 
the PRRs act as sensor proteins, which engage an adaptor(s) molecule, mediating 
the activity of downstream effectors, which results in production of inflammatory 
signals. Activation of most PRRs leads to precise intracellular signalling cascades 
culminating in specific transcriptional responses driven primarily through nuclear 
factor-kappa B (NF-κB) and the interferon regulatory factor (IRF) families of tran-
scription factors, ultimately resulting in the production of inflammatory cytokines 
(e.g. TNF, IL-6), chemokines and type I interferons (IFNs). In contrast, rather than 
initiating transcription, some PRRs are able to form oligomeric protein structures, 
termed inflammasomes, that instigate proteolytic maturation of members of the 
IL-1 family of cytokines (i.e. IL-1ß and IL-18), as well as mediate the inflammatory 
form of programmed cell death termed pyroptosis. The eventual secretion of inflam-
matory mediators downstream of innate immune pathways mobilises recruitment of 
an army of host immune cells and facilitates acute inflammatory processes.

D. De Nardo
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Fig. 1.1  Activation of the innate immune receptors and their signalling pathways (see text for 
details)
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1.4  �Innate Immune Signalosomes

An interesting concept emerging in innate immunity is the prerequisite for some 
PRRs to assemble into higher-order signalosomes in order to transduce their down-
stream signalling pathways [21, 22]. A feature common to these innate immune 
signalling platforms is the presence of molecules containing specialised protein–
protein binding domains of the death domain (DD) superfamily comprising DDs, 
death effector domains (DEDs), pyrin domains (PYDs) and caspase recruitment 
domains (CARDs) [23]. These domains are found within the protein structures of 
PRR adaptor and effector molecules of several innate immune signalling 
complexes.

The first evidence for this phenomenon was presented in 2002 when the late Jürg 
Tschopp and colleagues found that in the cytosol of activated immune cells, the 
senor NLRP1, the adaptor ASC and the effector caspase-1 formed large protein 
complexes observed as significant shifts in the elution profiles of these proteins dur-
ing size exclusion chromatography [24]. This sizeable inflammatory signalling 
complex was coined the ‘inflammasome’ and has subsequently been demonstrated 
to be a requirement downstream of a number of PRRs, which to date includes the 
NLR family members, NLRP1, NLRP3 and NLRC4, as well as the pyrin and HIN 
domain-containing protein (PYHIN) family member, the absence in melanoma 2 
(AIM2) and the PYRIN receptor. Whether other PRRs, namely, NLRP6, NLRP7, 
NLRP12, RIG-I and IFN-γ-inducible protein 16 (IFI16), can also form genuine 
inflammasome complexes remains to be established. Upon activation, inflammasome-
forming sensors oligomerise creating a seed for subsequent recruitment of the adap-
tor protein, apoptosis-associated speck-like protein containing a CARD (ASC), 
which forms large PYD-dependent filamentous structures [25]. This recruitment 
results in the majority of cytosolic ASC being relocalised to a single perinuclear 
polymer protein aggregate known as the ASC speck [26]. Formation of the ASC 
speck facilitates recruitment and autocatalytic activation of the effector inflamma-
tory caspase, caspase-1 via homotypic CARD–CARD interactions to initiate cleav-
age and maturation (via cleavage) of IL-1ß and IL-18 and instigate pyroptosis. 
Although it was long recognised that pyroptotic cell death was entirely dependent 
upon caspase-1 activity, the exact molecular mechanisms leading to cellular rupture 
remained a mystery. The major breakthrough came when Gasdermin-D (GSDMD) 
was identified as the executioner protein in pyroptosis, by several groups in parallel, 
using independent screening approaches [27, 28]. These studies revealed that in 
addition to the pro-forms of IL-1ß and IL-18, GSDMD is also a caspase-1 substrate 
following inflammasome activation. Caspase-1 cleavage of GSDMD results in the 
release of an active amino (N)-terminal fragment termed Gasdermin-N that specifi-
cally binds to lipids (phosphoinositide and cardiolipin) of the inner leaflet of the 
plasma membrane. The binding of the Gasdermin-N fragment generates cytotoxic 
oligomeric pores that perforate the cellular membrane leading to cell swelling and 
lysis [29]. The specific lipid-binding preferences of Gasdermin-N to the inner leaflet 
of the plasma membrane ensure the intrinsic destruction of infected cells whilst 
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limiting damage to surrounding tissue and other host cells. Interestingly, 
Gasdermin-N reportedly displays some bactericidal activity, which is likely 
explained by the presence of cardiolipin as a component of bacterial outer mem-
branes. It is conceivable that Gasdermin-N released following cellular lysis of 
infected cells could subsequently insert into extracellular bacterial membranes to 
cause cell lysis.

Several members of the RLR family also form higher-order signalosome plat-
forms upon activation [30]. Following binding of ssRNA in the cytosol, monomers 
of RIG-I or melanoma differentiation-associated gene 5 (MDA-5) interact via tan-
dem N-terminal CARD (2CARD) interactions forming tetrameric structures. This 
oligomerisation seeds the recruitment of the adaptor protein mitochondrial antiviral 
signalling (MAVS) [31], which subsequently forms CARD-dependent helical fila-
ment structures analogous to those of ASC formed upon inflammasome activation. 
Filamentous MAVS drives downstream signalling events leading to NF-κB and 
IRF3 transcriptional responses.

With the exception of TLR3, all the TLRs emit signals via engaging the adaptor 
molecule, myeloid differentiation primary response gene 88 (MyD88) upon activa-
tion. MyD88 contains two critical domains that fulfil its role as an adaptor: (1) a 
carboxyl (C)-terminal Toll/interleukin-1 (IL-1) receptor (TIR) domain that enables 
coupling to the intracellular region of TLRs or the IL-1R and (2) a DD at the 
N-terminus that facilitates protein–protein interactions with the four members of the 
IL-1 receptor-associated kinase (IRAK) family of serine/threonine effector kinases 
[32]. Although the key players and kinetics of TLR/IL-1R proximal events were 
identified some time ago, our understanding of the mechanisms controlling this 
process was greatly enhanced following the revelation that in solution the DDs of 
MyD88 form specific oligomeric complexes upon addition of IRAK4 DDs [33, 34]. 
This stable oligomeric complex was coined the Myddosome. The crystal structure 
of the complex revealed a tower-shaped oligomer of four layers: two upper layers 
comprising two and four MyD88 DDs, respectively, followed by a third layer com-
prising four IRAK4 DDs and a third and final layer of four IRAK2 DDs assembling 
as a left-handed helical structure [33]. Architecturally, the Myddosome is stabilised 
via specific type III DD–DD interactions, whilst the specificity of its formation is 
enhanced via complementary surface electrostatic charges and contour between 
adjacent layers. The finding that IRAK2 DDs only binds to stable MyD88–IRAK4 
DD complexes rather than with the individual DDs of either MyD88 or IRAK4 sug-
gests a sequential ordered assembly process of the Myddosome. Discovery of the 
Myddosome revealed new insights into mechanisms of IRAK activation, and more 
mechanistic intricacies of TLR signalling are sure to emerge [35–37].

1  Activation of the Innate Immune Receptors: Guardians of the Micro Galaxy
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1.5  �The Families of Innate Immune Receptors

1.5.1  �Toll-Like Receptors (TLRs)

TLRs were the first family of innate immune receptors described. To date ten TLRs 
have been identified in humans (TLRs1–10) with twelve expressed in mice 
(TLRs1–9 and TLRs11–13, with TLR10 a pseudogene) [32]. The TLRs are type I 
transmembrane proteins anchored into either the plasma membrane or endolyso-
somal membranes. Their cellular localisation is indicative of the ligands they bind, 
with cell surface TLRs recognising typically bacterial outer membrane components, 
whilst microbial nucleic acids are sensed from TLRs localised within acidified 
endolysosomal compartments (see Table 1.1). Most of the TLRs are well character-
ised, however the ligand and precise function of TLR10 remains in question with 
some reports suggesting that it signals as a heterodimer with TLR2 and upstream of 
MyD88 to induce signals in response to influenza infection, whilst others have 
shown that it plays an inhibitory role [38–42]. Structurally, the TLRs consist of 
three major domains: (1) a ligand recognition domain consisting of folded leucine-
rich repeats (LRRs) at the amino (N)-terminus, (2) a central transmembrane region 
and (3) a cytoplasmic TIR domain at the carboxyl (C)-terminus [43]. Variations in 
the LRRs of the different TLRs are thought to give specificity to the ligands they 
sense. Ligand binding induces the dimerisation of most TLRs, whilst TLR7, TLR8 
and TLR9 have been shown to exist as preformed homodimers. As well as forming 
homodimers, some TLRs can recognise additional ligands via the formation of het-
erodimers or in cooperation with co-receptors or accessory proteins. Whilst TLR2/
TLR1 heterodimers specifically recognise triacylated lipoproteins, TLR2/TLR6 
dimers sense diacylated lipoproteins [44–46]. TLR2 is also thought to act synergis-
tically with Dectin-1 (see below) in response to fungal ß-glucans leading to robust 
production of pro-inflammatory cytokines [47, 48]. In mice TLR11/TLR12 dimers 
were shown to be responsible for engaging profilin from the outer membrane of 
Toxoplasma gondii [49]. Additionally, TLR4/TLR6 heterodimers in concert with 
the scavenger receptor, CD36 can form a trimeric complex able to recognise oxi-
dised low-density lipoproteins and amyloid-ß to elicit sterile inflammatory responses 
[50].

In the presence of a ligand, TLR dimers undergo conformational changes that 
enable the intracellular TIR domains to engage specific adaptor molecules for initi-
ating downstream signal transduction pathways. Four adaptors have been identified 
that induce positive signalling: MyD88, MAL (also known as TIRAP), TRIF and 
TRAM. Broadly, MyD88-depedent pathways predominantly trigger production of 
inflammatory cytokines, whilst TRIF-mediated signalling elicits secretion of type I 
IFNs. Whilst all TLRs, excluding TLR3, utilise MyD88 for signalling [51, 52], 
TLRs 2, 4, 7 and 9 have been shown to require the addition of MAL as a bridging 
adaptor [53–57]. MAL is thought to facilitate stronger binding between MyD88 and 
TIR domains that have incompatible electrostatic surface charges [58]. Formation 
of the Myddosome (see above) allows transient recruitment of the E3 ubiquitin (Ub) 

D. De Nardo



13

ligase and TNFR-associated factor 6 (TRAF6) to the receptor complex through 
interactions with IRAK1/IRAK2 via C-terminal TRAF6-binding motifs [59]. 
TRAF6 is subsequently activated and released into the cytosol where it mediates 
activation of the NF-kappa B inhibitor (IκB) kinase (IKK) and mitogen-activated 
protein kinase (MAPK) signalling complexes leading to translocation of the major 
transcription factors, NF-κB, cyclic AMP-responsive element-binding protein 
(CREB), activator protein 1 (AP1) and IRF5 for induction of pro-inflammatory 
cytokines. In plasmacytoid dendritic cells (pDCs) specifically, MyD88 signalling 
can also lead to type I IFN production via IRAK1-dependent IRF7 activation 
[60–62].

A role for the TIR adaptor TRIF has been demonstrated downstream of both 
TLR3 and TLR4 [63–65]. Whilst TLR3 signals exclusively via TRIF, TLR4 requires 
the bridging adaptor TRAM to facilitate TRIF-dependent signalling [66]. 
Interestingly, activation of TLR4 induces signalling via MAL/MyD88 at the plasma 
membrane; however, the TRAM/TRIF pathway is only initiated following CD14-
dependent endocytosis of the receptor complex [67, 68]. TRIF signals primarily 
through TRAF3 enabling TANK-binding kinase 1 (TBK-1) activity and successive 
IRF3-medaited transcription of type I IFNs [69]. In addition, TRAF6 is recruited, 
mediating a modest NF-κB response via receptor-interacting serine/threonine-
protein kinase 1 (RIPK1) [70].

1.5.2  �NOD-Like Receptors (NLRs)

The NLRs comprise the largest family of cytosolic receptors with a common central 
nucleotide oligomerisation domain (NOD), C-terminal LRRs of variable lengths 
and variable N-terminal protein-interacting domains that further classify the NLRs 
into four subfamilies [71]: (1) NLRAs have an acidic transactivating domain and 
contains class II major histocompatibility complex transactivator (CITTA); (2) 
NLRBs express a baculovirus inhibitor of apoptosis protein repeat (BIR) domain 
and is composed of NLR family apoptosis inhibitory proteins (NAIPs); (3) NLRCs 
harbour a CARD and include NOD1, NOD2, NLRC3, NLRC4 and NLRC5; and 
(iv) NLRPs with a PYD represent the biggest subgroup with NLRP1–14. Major 
structural differences within the NLRP family include NLRP10, which lacks the 
C-terminal LRRs and NLRP1 that contains an extended C-terminus with additional 
‘function to find’ domain (FIIND) and CARD. Finally, NLRX1 is an orphan recep-
tor that unlike the other cytosolic NLRs is anchored into the mitochondrial outer 
membrane via a unique N-terminal mitochondrial targeting sequence. The NLRs 
play various immune functions including response to infection, formation of inflam-
masomes (NLRP1, NLRP3, NLRC4) [72], regulation of antigen presentation 
(NLRC5, CIITA) [73, 74], regulation of microbiota homeostasis (NLRP6) [75–77] 
as well as modulatory roles in NF-κB (NLRP6, NLRP12, NLRC3), MAVS (NLRX1) 
[78] and STING (NLRC3, NLRX1) [79, 80] responses. Below, I will summarise the 
known roles for NLRs in activation of innate immune pathways.
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NOD1 and NOD2 receptors sense specific motifs within the peptidoglycan 
(PGN) carbohydrate components of bacterial outer membranes within the cytosol. 
NOD1 recognises PGN containing the D-glutamyl-meso-diaminopimelic acid (iE-
DAP) moiety most commonly present in Gram-negative bacteria [81, 82], whilst 
NOD2 detects the PGN muramyl dipeptide (MDP) structure found in almost all 
Gram-negative and Gram-positive bacteria [83]. Ligand binding to either NOD1 or 
NOD2 causes auto-oligomerisation of receptor molecules leading to CARD–CARD 
interactions with the kinase, RIPK2 that recruits the ubiquitin ligases, X-linked 
inhibitor of apoptosis protein (XIAP), baculoviral IAP repeat containing 2 and 3 
(BIRC2, BIRC3) and the linear ubiquitin chain assembly complex (LUBAC) [84]. 
This induces subsequent activation of AP1- and NF-κB-dependent transcription 
downstream of the MAPK and IKK complexes, respectively, for the production of 
pro-inflammatory cytokines [84, 85].

NLRP1 is expressed as a single protein in humans, whilst mice express three 
paralogs due to multiple gene duplication events: NLRP1a, NLRP1b and NLRP1c 
[86]. Physiological activation has only been demonstrated for murine NLRP1b in 
response to anthrax lethal toxin from Bacillus anthracis and effector proteins from 
Toxoplasma gondii [87]. However, in mice deficiency of NLRP1 is associated with 
spontaneous obesity [88], whilst SNPs in human NLRP1 have led to implications in 
several autoimmune and autoinflammatory diseases, including vitiligo as well as 
inflammatory skin disorders relating to carcinoma [89–92]. A unique feature of the 
NLRP1 structure is the presence of both a FIIND and CARD at the C-terminus. In 
humans, the PYD is thought to structurally auto-inhibit NLRP1 via physically 
blocking accessibility to the CARD. However, following activation of NLRP1, the 
FIIND undergoes spontaneous proteolysis liberating a smaller C-terminal fragment 
containing the partial FIIND and the exposed CARD [92]. This cleavage fragment 
is therefore free to bind ASC via atypical CARD–CARD interactions to form a 
functional inflammasome.

NLRP3 is activated by a diverse array of stimuli (see Table 1.1), including endog-
enous and environmental crystals (e.g. cholesterol crystals), particulates (nanopar-
ticles) and protein aggregates (amyloid-ß), as well as extracellular ATP, specific 
influenza viral components and the bacterial pore-forming toxin nigericin from 
Streptomyces hygroscopicus [93]. Hence, it is generally accepted that NLRP3 is 
activated downstream of a more generalised form of cellular stress. The suggested 
models to date include mitochondria dysfunction, intracellular ROS production, 
lysosomal rupture and changes to intracellular ion levels [94]. The most reproduc-
ible and consistent finding suggests that efflux of potassium leading to reduced 
intracellular levels is upstream of NLRP3 activation. This unified view is strength-
ened by the observations that addition of culture medium with reduced potassium 
alone is sufficient to activate immune cells and, conversely, high-level potassium 
medium can inhibit NLRP3 activation [95–97]. Additionally, potassium efflux 
appears to be associated with most NLRP3 activators [96]. Activation of the NLRP3 
inflammasome is dependent upon a prerequisite priming step (e.g. via TLR activa-
tion) that enables both a transcriptional induction of NLRP3 expression and post-
translational modifications that license its inflammasome activation [93].
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NLRC4 is an indirect sensor of cytosolic bacterial flagellin, as well as the needle 
and rod subunits of the type 3 secretion system (T3SS). Direct binding of these 
DAMPs is to NAIPs that subsequently recruit and activate the NLRC4 inflamma-
some. In humans, only one NAIP exists that recognises Salmonella flagellin and the 
bacterial T3SS needle protein, whilst in mice multiple NAIPs are able to recognise 
flagellin (NAIP4 or NAIP5) plus the T3SS needle (NAIP1) and rod (NAIP2) com-
ponents [98–100]. Upon recruitment to a single NAIP, NLRC4 undergoes signifi-
cant conformational change leading to oligomerisation of 10–12 monomers of 
NLRC4 into a circular structure [101, 102]. NLRC4 is thought to require a specific 
serine phosphorylation event at residue 533 for its activation [103, 104]. Although 
the precise mechanistic details remain unclear, the NAIP/NLRC4 oligomeric com-
plex then recruits ASC via CARD–CARD interactions and subsequently activates 
caspase-1 and its downstream effector functions.

Activation of NLRP7 and NLRP12 inflammasomes is implicated in bacterial 
infection. NLRP7 appears to be required for cytoplasmic detection of bacterial lipo-
peptides [105, 106], whilst NLRP12 may recognise T3SS components during 
Yersinia pestis infection [107]. However, more work is required to determine if 
these receptors play other roles in bacterial detection and indeed form a physiologi-
cal inflammasomes upon activation.

1.5.3  �PYRIN

Structurally, PYRIN is related to the tripartite motif (TRIM)-containing family of 
proteins due to the presence of two central B-box zinc finger domains and a coiled-
coil domain, as well as a C-terminal B30.2 PRY-SPRY domain (absent from murine 
PYRIN). However, unlike other TRIM proteins, PYRIN expresses an N-terminal 
PYD domain enabling assembly of a functional ASC-dependent inflammasome 
[108]. The activation of the PYRIN inflammasome is triggered in response to spe-
cific bacterial toxins and effectors (see Table 1.1), such as toxin B from Clostridium 
difficile (TcdB) and Vibrio parahaemolyticus VopS [109]. Interestingly, rather than 
direct sensing of these bacterial proteins, PYRIN is triggered downstream of their 
ability to inactivate Rho GTPase, thereby inducing actin depolymerisation [109]. 
Mechanistically, PYRIN is held in the cytoplasm in an inactive state bound by 
14-3-3 molecules to a specific motif containing a constitutively phosphorylated ser-
ine residue at position 242 [10, 110]. Serine phosphorylation is mediated via RhoA-
dependent activation of the protein kinase C-family members, PKN1 and PKN2 
[110]. Hence, RhoA inactivation results in loss of PKN kinase activity, dephos-
phorylation of serine 242, removal of 14-3-3 and activation of the PYRIN 
inflammasome.
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1.5.4  �RIG-I-Like Receptors (RLRs)

The family of RLRs consists of RIG-I, MDA5 and laboratory of genetics and physi-
ology 2 (LGP2) that survey the cytosolic compartment for viral dsRNA [111–113]. 
RIG-I and MDA5 recognise specific RNA from different viral infections [114], and 
whilst RIG-I senses short dsRNA (up to ~1 kb), MDA5 binds larger dsRNA frag-
ments (>2 kb) [115]. RIG-I sensing of dsRNA is enhanced by the presence of a 5′ 
triphosphate (PPP) moiety leading to increased type I IFN-inducing activity [116]. 
Both RIG-I and MDA5 are structurally similar, expressing two N-terminal CARD 
domains, a central helicase/ATP domain and a regulatory domain (RD) at the 
C-terminus. LGP2 also contains the helicase domain and the RD but lacks the 
2CARD that is required to trigger downstream signalling. Hence, LGP2 was ini-
tially thought to act as a negative regulator by sequestering dsRNA and/or binding 
to RIG-I [117]; however, later studies suggested that LGP2 may act in concert with 
RIG-I and MDA5 to induce positive signalling [112]. RIG-I and MDA5 signal via 
the adaptor molecule MAVS (see above) [118–121], which recruits the E3 ubiquitin 
ligases TRAF3 and TRAF6, which elicit activation of TBK-1/IRF3 and NF-κB, 
respectively, culminating in a strong type I IFN antiviral response [122].

1.5.5  �C-Type Lectin Receptors (CLRs)

CLRs comprise a large family of calcium-dependent carbohydrate-binding recep-
tors. To date, only activation of the type II CLRs, namely, Dectin-1, Dectin-2 and 
Mincle (also known as Clec4e), is implicated in antifungal immune responses. 
These CLRs are transmembrane proteins expressed on the surface of immune cells 
containing a single N-terminal extracellular carbohydrate-recognition domain 
allowing detection of ß-glucans and α-mannose components of fungi by Dectin-1 
and Dectin-2, respectively [123, 124] and, in the case of Mincle, an immunostimu-
latory factor from Mycobacterium tuberculosis [125] (see Table 1.1). Upon activa-
tion, these receptors engage spleen tyrosine kinase (Syk) via an immunoreceptor 
tyrosine-based activation motif (ITAM). This occurs directly in the case of Dectin-1 
which contains this motif within its intracellular region, whilst Dectin-2 and Mincle 
must associate with the ITAM-containing adaptor FcRγ [126]. The recruitment and 
activation of Syk lead to signalling via the CARD9/Bcl-10/MALT-1 complex and 
downstream activity of NF-κB, resulting in production of pro-inflammatory cyto-
kines [127, 128].
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1.5.6  �Cytosolic DNA Receptors (CDRs)

Two major cytoplasmic signalling pathways exist within the innate immune system 
downstream of dsDNA sensing: the cyclic GMP–AMP synthase (cGAS)/STING 
pathway and the AIM2 inflammasome pathway. Several other receptors have also 
been implicated in sensing intracellular DNA, such as IFI16- and DNA-dependent 
activator of IRFs (DAI); however, their precise functions remain unclear.

AIM2 is a member of the PYHIN family containing two major structural 
domains, a C-terminal HIN-200 DNA-binding domain and an N-terminal PYD to 
mediate protein–protein interactions with the adaptor molecule ASC. Several groups 
concurrently identified AIM2 as an inflammasome-forming sensor in response to 
cytosolic dsDNA [129–132], which occurs most prominently following bacterial 
infection [133]. Interestingly, AIM2 was recently shown to recognise 
radiation-induced DNA damage from within the nucleus [134]. Unlike the 
inflammasome-forming NLRs that can undergo self-oligomerisation by virtue of 
their NODs, AIM2 forms filaments along dsDNA via regular HIN domain binding, 
leading to assembly of PYDs from multiple AIM2 molecules and the polymerisa-
tion of ASC into filaments that eventually aggregate into ASC specks [135, 136]. 
This process facilitates the effector functions of caspase-1, maturation of IL-1β and 
IL-18 and pyroptotic cell death.

cGAS is a cytosolic sensor of dsDNA most commonly in the context of viral 
infection [137]. However, rather than directly inducing a downstream signalling 
cascade in response to DNA, the enzymatic activity of cGAS produces an endoge-
nous second messenger that engages STING to elicit a strong antiviral immune 
response [138, 139]. Upon binding cytosolic DNA, cGAS forms dimers and under-
goes structural changes facilitating the recruitment and catalysis of GTP and ATP 
into the cyclic dinucleotide (CDN) [140, 141], cyclic guanosine monophosphate–
adenosine monophosphate (cyclic GMP–AMP or 2′3′-cGAMP) [142–146]. 
Interestingly, unlike other PRRs cGAS is not able to discriminate between the ori-
gins of dsDNA it encounters. Hence, cGAS can also produce cGAMP in response 
to host-derived DNA, such as from the mitochondria, nucleus or oxidised DNA 
[147, 148]. Not surprisingly, the cGAS/STING pathway is implicated in a number 
of autoimmune disorders including Aicardi–Goutières syndrome and systemic 
lupus erythematosus [149–152]. In addition to microbial and host dsDNA, cGAS 
activity has been reported in response to other forms of DNA, such as RNA/DNA 
hybrids and specific HIV-1-derived Y-DNA [153, 154] (see Table 1.1).

Preformed STING dimers reside within the endoplasmic reticulum (ER) mem-
brane by virtue of four transmembrane domains at the N-terminus of each STING 
monomer [138]. STING dimers contain a V-shaped pocket that enables the binding 
of CDNs [155, 156]. In addition to endogenous 2′3′-cGAMP, STING was originally 
shown to bind CDNs of bacterial origin, such as 3′5′-cGAMP produced upon 
Listeria monocytogenes infection [157]. The binding of CDNs to STING leads to 
recruitment of TANK-binding kinase-1 (TBK-1) and trafficking of the dimeric 
STING/TBK-1 complex to perinuclear Golgi compartments. TBK-1 then phosphor-
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ylates the transcription factor IRF3, leading to nuclear translocation and strong 
induction of type I IFN genes [158]. In addition, STING activation also results in 
downstream NF-κB activation to further promote maximal transcription of IFNβ 
and for the production of pro-inflammatory cytokines.

1.6  �Spreading Inflammatory Signals

An effective innate immune response is dependent upon the transfer of inflamma-
tory signals between an activated host cell and neighbouring immune cells. This 
occurs most notably via production of cytokines, chemokines and type I IFNs upon 
their transcription and subsequent secretion into the extracellular environment. 
These inflammatory signals can act on the host cell themselves (autocrine), on prox-
imal cells (paracrine) and occasionally even on distal cells (endocrine). As their 
name suggests, chemokines act to induce directed chemotaxis of neighbouring 
immune cells to sites of inflammation. Whilst pro- and anti-inflammatory cytokines 
orchestrate the magnitude and specificity of general responses to microbial infec-
tions, type I IFNs, such as IFNα and IFNβ, are particularly important for mounting 
an immediate and effective antiviral response. Type I IFNs mediate their effects by 
binding to the IFNα/β receptor (IFNAR), which is comprised of an IFNAR1/
IFNAR2 heterodimer and results in the transcription of numerous IFN-stimulated 
genes (ISGs) encoding proteins with diverse antiviral functions [159, 160]. Although 
effective, this form of cell-to-cell communication is often dependent upon transcrip-
tion, translation and secretion of new proteins, which takes time. In addition, initia-
tion of innate immune pathways in infected cells is commonly targeted by the 
invading pathogens that have evolved immune evasion strategies to escape detec-
tion. Hence, more rapid methods of host cell-to-cell communication have evolved to 
initiate and amplify inflammatory signals in uninfected cells. For instance, the 
transfer of messages packaged within exosomes can be an effective means of com-
munication between cells. However, perhaps the most rapid form of intercellular 
communication is the transfer of ions and signalling molecules through gap junc-
tions, which are small channels directly connecting the cytoplasm of two adjacent 
cells. Such a mechanism has been noted to propagate both NF-κB- and IFN-
dependent responses [161, 162]. Recently, it was demonstrated that the endogenous 
cGAS-derived second messenger, 2′3′-cGAMP, is efficiently trafficked through gap 
junctions from activated immune cells to neighbouring cells to directly engage and 
activate STING, thereby propagating the antiviral response [163]. A similar mecha-
nism exists whereby transfer of cGAMP from HIV-infected host cells to recipient 
cells via HIV envelope membrane fusion sites results in an antiviral response in 
target cells and protection from HIV infection [164]. Interestingly, in other studies, 
infected immune cells were also shown to transmit an antiviral state to bystander 
cells through packaging of cGAMP into progeny virus particles that subsequently 
go on to infect surrounding cells and elicit STING-dependent responses [165, 166]. 
Mechanisms involving the transfer of cGAMP may be of particular relevance for 
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cells that express no or low amount of cGAS but have sufficient STING levels, such 
as in certain epithelial cell populations.

Following inflammasome activation, plasma membrane integrity is severely 
compromised via the pore-forming activity of GSDMD, which ultimately results in 
cell lysis and leakage of its contents into the peripheral environment. This includes 
the release of preformed ASC specks, which were recently demonstrated to retain 
their activity in the extracellular space leading to further activation of caspase-1 and 
IL-1ß, thus promoting an inflammatory environment [167, 168]. Furthermore, in a 
similar manner to other large protein aggregates, extracellular ASC specks were 
shown to be taken up by macrophages acting as DAMPs to trigger subsequent acti-
vation of the NLRP3 inflammasome via lysosomal rupture [168]. Of note, ASC 
specks were observed in the bronchial lavage fluid of chronic obstructive pulmonary 
disease patients and the serum of autoinflammatory disease patients with cryopyrin-
associated periodic syndromes (CAPS) [167, 168]. These findings suggest that 
whilst release of ASC specks represents a rapid way for cells to signal danger to 
their local microenvironment, in cases of chronic inflammation, ASC specks may 
contribute to a sustained inflammatory response.

1.7  �Receptor Cooperation

Innate immune responses to pathogenic infection must be finely orchestrated in 
order to provoke a suitable reaction. This can include the cooperation between mul-
tiple PRRs to distinct stimuli and multiple PRRs to the same stimuli from distinct 
locations (Fig. 1.2). Through in vitro cell stimulation assays with synthetic or puri-
fied PRR ligands, we have learnt a great deal about the mechanisms and function of 
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the innate immune system. These assays are often performed using singular ligands 
in order to reduce the influence of other factors and reveal specific mechanisms of 
regulation and activation. However, this often leads us to think of the activation of 
PRRs in isolation, when in fact pathogens invariably carry numerous ligands that 
can potentially activate multiple PRRs simultaneously and/or sequentially during 
infection (Fig. 1.3 and Table 1.1). For instance, Gram-negative bacteria can harbour 
multiple ligands, including LPS on the outer cell membrane detected by TLR4, 
flagella recognised by TLR5, dsDNA sensed in endolysosomes via TLR9 or in the 
cytosol via cGAS as well as prokaryotic CDNs (e.g. cyclic di-GMP), directly acti-
vating STING. Hence, coordinating multiple PRR responses must be tightly regu-
lated in order to induce an effective and specific immune response. For instance, it 
is well documented that a prerequisite step for maturation of IL-1ß by the inflamma-
some is an NF-κB transcriptional response to induce the expression of the pro-form 
of IL-1ß. This is likely mediated via initial detection of pathogens by TLRs at the 
cell surface or in endosomal compartments prior to secondary activation of 
inflammasome-forming receptors in the cytosol. One example is the Gram-positive 
bacterium, Listeria monocytogenes, which triggers TLR2 activation at the cell sur-
face and subsequently NLRP3, AIM2 and NLRC4 responses within the cytosol 
[169–172].

In addition to multiple danger signals provoking activation of several PRRs upon 
infection, some singular ligands can also engage multiple PRRs from differing cel-
lular locations in order to effectively destroy the foreign threat. An excellent exam-
ple of this is during the detection of the potent immunogenic agent, LPS (also 
known as endotoxin) from multiple locations. LPS accounts for the majority of the 
structure of outer cell walls of Gram-negative bacteria and as such is detected in the 
extracellular environment via TLR4 in concert with the co-receptor CD14 and MD2 
during infection. This recognition triggers a strong inflammatory response via acti-
vation of both NF-κB and type I IFN responses. Interestingly, LPS leakage into the 
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host cytosol also elicits a more drastic all or nothing inflammasome response via 
activation of the so-called ‘noncanonical’ inflammasome pathway following direct 
binding of LPS to caspase-11 (caspase-4 and caspase-5 in humans) [173–180]. This 
process was shown to be dependent upon lysis of intracellular vacuoles by the IFN-
inducible GTPases, guanylate-binding proteins (GBPs), thus exposing bacteria to 
the cytosol for activation of caspase-11 [181]. Activation of caspase-11 or caspase-
4/caspase-5 mediates GSDMD cleavage and pore formation driving two separate 
intracellular pathways within the host cell: (1) pyroptosis and (2) activation of the 
NLRP3 inflammasome driving caspase-1-depedent IL-1ß release. The activation of 
NLRP3 downstream of caspase-11 or caspase-4/caspase-5 appears to be mediated 
via the efflux of intracellular potassium through GSDMD-dependent pore forma-
tion as was recently demonstrated for NLRP3 activation downstream of the activity 
of plasma membrane pore-forming MLKL [95]. Another fantastic example of effec-
tive PRR crosstalk is in response to infection by the Gram-positive bacterium, 
Francisella novicida. Upon entry into the cytosolic compartment, F. novicida acti-
vates a type I IFN response via cGAS/STING (potentially via low levels of dsDNA 
release), inducing IRF1-dependent expression of the IFN-inducible GBPs and 
IRGB10, which target the bacterial cell membrane to allow significant levels of 
dsDNA access into the cytosol [182–184]. Cytosolic F. novicida DNA then binds 
and activates the AIM2 inflammasome. Interestingly, the bacteriolysis activity of 
GBPs and IRGB10 also facilitates LPS-induced caspase-11 activation and subse-
quent NLRP3 inflammasome formation [183].

1.8  �Open Questions and Future Directions

In this review, I have presented an overview of the activation of the PRRs in the 
context of innate immune function. The innate immune system is infinitely com-
plex, and this review merely scratches the surface of the precise mechanisms con-
trolling these processes and the exciting and emerging concepts in this fundamental 
and rapidly developing field of research. Below, I will discuss some of the pertinent 
open questions relating to this review.

Innate immunological memory is a recent and interesting concept shown to pro-
vide important protection against bacterial and fungal infection. Importantly, innate 
immune memory has also been linked to atherosclerosis progression [185]. Hence, 
understanding the exact mechanisms of innate immune memory in specific contexts 
is of therapeutic interest and begs the question: can innate immune memory be 
exploited for clinical benefits? Recently, innate immune memory was found to form 
the molecular basis for protection provided by various vaccines, suggesting that 
manipulating this process could provide benefit in other therapeutic settings [186]. 
In atherosclerosis, oxidised low-density lipoprotein particles, which drive damaging 
local inflammation, have been shown to induce a long-term pro-inflammatory phe-
notype in human monocyte-derived macrophages in vitro [185]. Meanwhile, high-
density lipoproteins (HDLs) are well characterised to be anti-inflammatory in 
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human and murine myeloid cells via instigating epigenetic down-modulation of the 
pro-inflammatory transcriptional landscape [187, 188]. Hence, understanding if 
HDL can instal counteractive anti-inflammatory innate immune memory in 
monocyte-derived macrophages of the heart would give great therapeutic power to 
HDL-based therapies and potential modulators of this process.

Another concept that has recently regained significance is the relationship 
between inflammasome-mediated cytokine release and cell death: is the release of 
IL-1 cytokines downstream of inflammasome activation merely cellular cargo pas-
sively lost from activated cells undergoing GSDMD-mediated pyroptosis? Or is this 
cytokine release an active cellular process? IL-1ß lacks a conventional secretory 
signal sequence, and, indeed, in the majority of studies on inflammasome activation 
in innate immune cells, it appears these events are intrinsically linked. However, it 
was recently shown that neutrophils are able to secrete IL-1ß upon activation of 
NLRP3 or NLRC4 without undergoing pyroptosis [189]. Additionally, in response 
to LPS stimulation, human monocytes can secrete IL-1ß in the absence of pyropto-
sis via an alternative caspase-8-induced NLRP3 inflammasome [190]. These find-
ings are supported by recent work in which a direct caspase-1 dimerisation system 
(inflammasome independent), in combination with single-cell cytokine and viabil-
ity measurements, was used to demonstrate that IL-1ß is released from live cells 
following caspase-1 activation, in the absence of cell death [191]. Further work is 
required to understand if these processes are indeed independent events or if this 
uncoupling is merely cell type and/or context specific.

The requirement for some PRRs to form large oligomeric signalosomes to induce 
downstream signalling is an interesting theme. ASC- and MAV-dependent protein 
aggregation is well established and readily reported upon physiological activation 
of either the inflammasome or RIG-I/MDA5, respectively. However, formation of 
the Myddosome structure has only been resolved during crystallisation studies of 
the MyD88, IRAK4 and IRAK2 DDs in vitro and as such raises the question of 
whether or not the Myddosome holds any physiological relevance for TLR activa-
tion. To date, the only evidence to suggest the biological existence of the Myddosome 
is the occurrence of natural MyD88 variants expressing amino acid changes within 
the DD that would disrupt the specific interaction required for Myddosome assem-
bly. Endogenous interactions between Myddosome components are commonly 
reported using standard biochemical techniques [57, 192]; however, direct visual 
evidence of Myddosome formation in living cells remains to be achieved. This may 
be due to the potentially small size of the Myddosome complex, whilst ASC and 
MAVS aggregates form to sizes of up to ~0.4–1 μm and are readily visible by cur-
rent confocal imaging techniques. Visual confirmation of physiological Myddosome 
assembly may be more feasible in the near future with the rapid advances being 
made in high-resolution imaging techniques, such as lattice light sheet technology.

An open question in the field remains: what is the precise mechanism and 
interactor(s) that mediate activation of the NLRP3 inflammasome? This seemly 
simple question has been a persistent thorn in the side of inflammasome researchers, 
despite a plethora of published examinations on the topic. Although activators of 
NLRP3 seem to converge upstream of potassium efflux, what directly binds or con-
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trols activation of NLRP3  in response to potassium efflux remains a mystery. 
Several post-translational modifications have been proposed in NLRP3 activation, 
suggesting that this could be indirectly mediated by potassium efflux. To date, fully 
understanding what the genuine mechanism of NLRP3 activation entails is still 
being significantly pursued by researchers.
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Chapter 2
Posttranslational Modification Control 
of Inflammatory Signaling

Yibo Si, Yunlu Zhang, Zijuan Chen, Ruixue Zhou, Yihua Zhang, 
Doudou Hao, and Dapeng Yan

Abstract  Inflammation is usually the defensive reaction of the immune system to 
the invasion of pathogen and the exogenous objects. The activation of inflammation 
helps our body to eliminate pathogenic microbe, virus, and parasite harming our 
health, while under many circumstances inflammation is the direct cause of the 
pathological damage in tissues and dysfunction of organs. The posttranslational 
modification (PTM) of the inflammatory pathways, such as TLR pathways, RLR 
pathways, NLR pathway, intracellular DNA sensors, intracellular RNA sensors, and 
inflammasomes, is crucial in the regulation of these signaling trails. Ubiquitination, 
phosphorylation, polyubiquitination, methylation, and acetylation are the main 
forms of the PTM, and they respectively play different roles in signaling regulation. 
The effects of the PTM range from the production of pro-inflammatory factors and 
the interaction between adaptors and receptors to cell translocation in response to 
the infectious or other dangerous factors. In this chapter, we will have an overview 
of the different ways of the posttranslational modifications in different inflamma-
tory signaling pathways and their essential roles in regulation of inflammation.
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2.1  �Introduction

The definition of inflammatory signaling pathways is the mechanism of how inflam-
matory signals transduce and activate relative cells and thus induce inflammation. 
The innate immune system contributes a broad range of inflammatory signaling 
pathways with its pattern recognition receptors (PRRs). The PRRs represent many 
receptors that are able to recognize pathogen-associated molecular patterns (PAMPs) 
encoded by the pathogenic microbe, virus, and parasites living in the nature. The 
formation of the pairing PAMPs and PRRs is the result of the fight between our bod-
ies and pathogens through the evolution. Besides PAMPs, the PRRs can also recog-
nize the danger-associated molecular patterns (DAMPs) released from damaged 
cells in our bodies, the most important mechanism of pathological injury in tissues 
and organs when diseases happen. When PAMPs or DAMPs are derived and 
detected by PRRs, downstream molecular interaction occurs and eventually acti-
vates the inflammatory pathways. The best-known PRRs are Toll-like receptors, 
which are well studied these years. The classic TLR pathways include the interac-
tion between myeloid differentiation primary response protein 88 (MyD88) adaptor-
like (Mal) and MyD88, thus activating TNF receptor-associated factor 6 (TRAF6) 
and eventually activating the translocation of nuclear factor-κB (NF-κB), while 
there is an exception when it comes to TLR3. Other PRRs, such as retinoic acid-
inducible gene I-like receptors (RIG-I-like receptors, RLRs) and nucleotide-binding 
oligomerization domain-containing protein I-like receptors (NLRs), also play 
essential roles in the recognition and elimination of pathogens attacking our body. 
RLR pathways are likely to recruit melanoma differentiation-associated proten-5 
(MAV5) and caspase activation and recruitment domain-containing protein 9 
(CARD9) that eventually activates the IRF3 and NF-κB, respectively; NLR path-
ways function as inflammatory signaling pathways using NOD-1/NOD-2 and 
receptor-interacting protein 2 (RIP2) to initiate NF-κB and cause inflammation. The 
receptors mentioned above are the initiators of their own inflammatory signaling 
pathways, and once they have detected the PAMPs or DAMPs that can be recog-
nized and bind to them, they can recruit and activate downstream molecules (pep-
tide, protein, or enzyme) which are responsible for the inflammation formation. 
Recently, more attentions are paid to other PRRs. Cytoplasmic sensors including 
cyclic GMP-AMP synthase (cGAS), DNA-dependent activator of IRFs(DAI), and 
IFN-inducible protein-16 (IFI16) are a series of molecules that are able to detect 
ds-DNA produced by pathogens, and all downstream molecular of them is stimula-
tor of interferon genes (STING) which eventually trigger interferon production; 
cytoplasmic RNA sensors including RIG-I and MAVS are molecules monitoring 
abnormal cytoplasmic RNA and consequently activating IRF3. Also, inflamma-
some signaling via NLR family pyrin domain-containing protein 3 (NLRP3), NLR 
family CARD domain-containing protein 4 (NLRC4), AIM2, and so on can activate 
the assembly of inflammasomes, which eventually activate caspase-1 and accord-
ingly produce inflammatory factors.
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Posttranslational modification (PTM) is a process that is operating (adding or 
cutting) proteins, enzymes, or peptides with different functional chemical groups 
with the help of specific enzymes, which happens after the translation of these pro-
teins. There are diverse PTMs, among which phosphorylation and ubiquitination are 
the two most prevalent modification forms involved in many signaling pathway 
regulations. Besides phosphorylation and ubiquitination, polyubiquitination, meth-
ylation, acetylation, sumoylation, and succinylation also participate in some protein 
modifications. PTM exerts profound influence on the fate of proteins. Different 
PTM types have different roles to different proteins, such as translocation, secre-
tion, function, and elimination. These effects control a group of cells whose proteins 
are modified by PTM mechanism, and the response of these cells ranges from divi-
sion, differentiation, and migration to apoptosis.

2.2  �The PTM in TLR Pathways

The Toll-like receptor (TLR) pathways constitute an important mechanism in the 
activation of innate immune cells including monocytes, macrophages, and dendritic 
cells, and the activation of these cells can result in the formation of inflammation. 
PTMs are broadly and essentially involved in signal regulating of TLR pathways.

2.2.1  �The Overview of TLR Pathways

Toll-like receptors (TLRs) are type I transmembrane glycoproteins which play an 
important role in recognizing infectious factors as well as the DAMPs released by 
the apoptotic cells and damaged cells. Ten TLRs have been found up to date termed 
as TLR1–10. TLRs 1, 2, 4, 5, 6, and 10 are located in the cell surface, while TLRs 3, 
7, 8, and 9 have an endosomal localization [1]. The signaling pathways initialized by 
Mal (MyD88 adaptor-like) are called MyD88-dependent pathways which trigger 
TLR2/4 receptor-related pathways. While TLR3 and endosomal TLR4 receptor-
related TLR pathways are resulted from TRAM/TRIF complex, so-called TRIF 
pathways. In MyD88-dependent pathways, after TLR2/4 activated by PAMP/DAMP, 
Mal is recruited to the endosomal parts of TLRs and sequentially recruits the TNF-
receptor-associated factor 6 (TRAF6). TRAF6 then dissociates from the receptor 
and forms a complex with TAK1 (transforming growth factor β-activating kinase), 
TAB1 (TAK1-binding protein 1), and TAB2 (TAK1-binding protein) at the plasma 
membrane, which induces the phosphorylation of TAB2 and TAK1 [2]. After that, 
the complex TRAF6/TAK1/TAB1/TAB2 translocates to the cytosol from cell mem-
brane leading to the ubiquitination of TRAF6 and activation of TAK1. Activated 
TAK1 mediates the phosphorylation of IκB kinase (IKK) composed of IKKα, IKKβ, 
and the modulating part IKKγ/NEMO. Phosphorylated IKK complex is activated 
and thus phosphorylates the IκBs, which triggers the polyubiquitination of IκBs 
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causing its degradation. Eventually, degraded IκBs result in the activation of NF-κB 
which activates the pro-inflammatory genes and causes the production of inflamma-
tory factors such as IL-6. TAK1 also activates the MAP kinase kinase 3 MKK3/6-p38 
signaling cascade, leading to the activation of cAMP response element binding 
(CREB) nuclear transcription factor and the MKK4/7-Jun N-terminal kinase (JNK) 
mediating the activation of the transcription factor activator protein-1 (AP-1) [2] 
which triggers the production of pro-inflammatory factors cooperatively with 
NF-κB. In TRIF pathways lacking the existence of MyD88, activated TLR3/endo-
somal TLR4 recruits TRAM and TRIF to their TIR domain to form a complex. Then 
the complex continuously recruits TRAF3 and TBK-1 (TANK-binding kinase 1). 
Activated TBK-1 can phosphorylate IRF3 to initiate its translocation to the nucleus 
and thus triggers the production of interferon, which plays a crucial role in antiviral 
response and local inflammation.

2.2.2  �The PTMs in TLR Pathways

In the two main signaling pathways of TLRs, PTMs take the responsibility as the 
molecular mechanism in cascading signal transduction in the cells (Fig. 2.1). The 
phosphorylation of NF-κB inhibitor (IκB) kinase a (IKKa), IKKb, IκBa, and IRF3 is 
indispensable to their normal function. Additionally, phosphorylation occurring at a 
conserved pLxIS motif of TRIF is necessary for the translocation of IRF3 as well as 
IFN production [3]. Autophosphorylation of TBK1 modified by glycogen synthase 
kinase 3b (GSK3b) is essential of IRF3 activation [4]. Numbers of proteins are dem-
onstrated that they act as the enzymes involved in phosphorylation-modification, 

Fig. 2.1  Inflammatory signaling transduction and PTMs of TLR pathways
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such as Src homology-containing protein tyrosine phosphatase-1(SHP1) [5] and 
mammalian STE20-like protein kinase 4(MST4) [6]. For example, the kinase MST4 
can phosphorylate the TRAF6 molecules that plays an important role in TLR-
MyD88-dependent pathways causing its dysfunction in oligomerization and autou-
biquitination, thus causing the repression of the TLR pathway. MST4 knockdown 
mice show severe inflammation and death in septic shock, which can be restored by 
heterozygous deletion of Traf6 [6]. Moreover, in the NF-κB signaling pathway, 
NEMO, an adaptor protein involved in the activation of the IKK, is phosphorylated 
by GSK-3β (glycogen synthase kinase-3β) at S (8, 17, 31, 43), which facilitates the 
NF-κB activity [7]. The ubiquitination also participates in the regulation of TLR 
pathways. The form of lysine 63(K63)-linked ubiquitination/polyubiquitination is 
related to the signal transduction, while it is known that K48-linked ubiquitination is 
responsible for proteasomal degradation [8]. In the TLR pathways, K63-linked poly-
ubiquitination of TRAF6, TAB2/3, NEMO, and TRAF3 is required for NF-κB and 
IRF3 activation [9, 10]. K48-linked ubiquitination of IκB leads to the proteasomal 
degradation of IκB and thus activates the NF-κB. Linear ubiquitination of NEMO 
(NF-κB essential modulator) is involved in the activation of NF-κB. The LUBAC 
ligase composed of the two RING finger proteins HOIL-1 L and HOIP activates the 
canonical NF-κB pathway by binding to NEMO and conjugates linear polyubiquitin 
chains onto specific Lys residues in the CC2-LZ domain of NEMO.  In HOIL-1 
knockout mice and cells derived from these mice, NF-κB signaling induced by pro-
inflammatory cytokines such as TNF-α and IL-1β was suppressed [11]. NEMO is 
able to bind many types of ubiquitin chains including K63, K48, K27, and linear-
linked ubiquitin chains [8]. Additionally, TLR pathways can be inhibited via ubiqui-
tination modification: Mal can be inhibited by suppressor of cytokine signaling 1 
(SOCS1) [12]. MyD88 can be inhibited by neuroregulin receptor degradation protein 
1 (Nrdp1) [13] and smad ubiquitin regulator factor proteins (Smurf). Another exam-
ple for the suppression effect of ubiquitination in TLR pathways is that PDK1 inhib-
its tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6) ubiquitination 
by interrupting the complex between transforming growth factor beta-activated 
kinase 1 (TAK1) and TAK1-binding protein 2 (TAB2), which negatively regulates 
TAK1 activity [14]. TRAF6 can be inhibited by A20 [15], TRAF family member-
associated NF-κB activator (TANK) [16], β-arrestin [17], SHP [18], MHC-1, and 
NLRC3 [19]. To some other special PTM forms, SUMO-specific protease 6 (SENP6) 
inhibits TLR inflammatory responses by catalyzing the de-SUMOylation of IKKγ/
NEMO [20].

2.3  �The PTMs in RLR Pathways

The RLR pathways (retinoic acid-inducible gene I-like receptors) are PRRs that 
detect RNA and DNA produced by intruding virus locating in cytoplasm. Basically, 
the triggered cellular RLRs include two members termed as RIG-I (retinoic acid-
inducible gene I) and MDA5 (melanoma differentiation-associated protein 5). 
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While the regulation of RLR pathways is dominated by a load of factors, PTM is 
indispensable.

2.3.1  �The Overview of RLR Pathways

The sensors belonging to the RLR family are intracellular localized. Within the 
RLR pathways, RIG-I recognizes RNA produced by virus with short double-
stranded RNA (dsRNA) stretches and a 5′-triphosphate or 5′-diphosphate moiety, 
while MDA5 detects longer dsRNA or viral RNA. RIG-I and MDA5 are DExD/H--
box-containing RNA helicases with similar structures: both possess two N-terminal 
caspase activation and recruitment domains (CARDs) for initiating downstream 
signaling and a central helicase domain and carboxyl-terminal domain (CTD), 
which are both required for RNA binding [21]. Binding with RNA, RIG-I/MDA5 is 
activated and thus binds to the mitochondrial antiviral-signaling protein (MAVS). 
MAVS then recruits the TBK1 (TANK-binding kinase 1) and IKKε which respec-
tively phosphorylates the IRF3/7 and aggregates IKKα-IKKβ-IKKγ complex. 
Sequentially, phosphorylated IRF and NF-κB are translocated into the nucleus, trig-
gering the transcription of antiviral genes and inflammatory genes. Besides RLR 
pathways, proteins of RLRs play their roles in many other signal transduction trails, 
such as RNA sensor-mediated inflammation formation. Among them, reversible 
Ser/Thr phosphorylation and K63- and K48-linked polyubiquitination are critical 
signals to control pro-inflammatory cytokine induction triggered by RLRs [21].

2.3.2  �The PTM Involved in RLR Pathways

2.3.2.1  �Phosphorylation

Phosphorylation of the relevant proteins in RIG-1 signaling pathway plays a critical 
role not only in recruiting and activating downstream proteins but also in activation 
of other PTM like ubiquitination. Siglec-G, a member of the immunoglobulin-like 
lectin family, binds to activated RIG-I and recruits tyrosine phosphatase SHP2 
(phosphatase Src homology 2) which in turn phosphorylates Siglec-G leading to the 
promotion of interaction between Siglec-G and RIG-1. Then Siglec-G/SHP2/RIG-I 
complex recruits and phosphorylates c-Cbl (Casitas B-lineage lymphoma, a E3 
ligase), which induces the K48-linked ubiquitination and degradation of RIG-1 at 
K813 and IRF3 in a dose-dependent manner [22] (Fig. 2.2). Lyn, a member of STKs 
(Src-family-tyrosine kinases) family, interacts with the helicase domain of RIG-I by 
its SH2/SH3 domain forming Lyn-RIG-I-MAVS trimolecular complex, which acti-
vates the signaling pathway by phosphorylation. Lyn itself is also activated by phos-
phorylation at T396 [23]. In addition, the Thr-170 phosphorylation, a phosphorylation 
closely located in proximity to Lys-172 which regulates the RLRs pathways by 
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promoting the ubiquitination of RIG-I, antagonizes the Lys-172 ubiquitination and 
leads to the suppression of RLR activation [24]. Phosphorylation of Ser-8 of RIG-I 
is displayed in uninfected cells and decreases in virus-infected cells, serving as an 
inhibitory modification of RLRs to prevent cells from unwanted inflammatory 
response via RLRs [25].

In expect of RIG-I itself, the phosphorylation of other molecules in the RIG-I 
signaling pathway also effectively regulates the on-off of the pathway.

MAVS  MAVS is located in the outer mitochondrial membrane. The interaction with 
it is indispensable for the phosphorylation and activation of IRF3 and TBK1, while 
both MAVS polymerization and phosphorylation are required for MAVS-IRF3 
interaction. Phosphorylation of MAVS at S442 depending on its polymerization and 
TRAF-mediated polyubiquitin synthesis is critical for IRF3 activation but dispens-
able for TBK1 and IKK activation [3]. PC, a member of biotin-containing enzyme 
family, interacts with MAVS/TRAF6, which promotes phosphorylation of IKK 
(IκB kinase complex) and IκBα and induces the redistribution in nucleus of NF-κB 
[26].

TBK1  As a key kinase in both RNA and DNA sensing pathway, TBK1 is attenuated 
by diverse molecules with different mechanisms. Negative regulation of the activity 
of TBK1 is critical to avoid excessive generation of IFH-β and other inflammatory 
cytokines. PPM1B (protein phosphatase Mg2+-/Mn2+-dependent 1B) dephosphory-
lates TBK1 at S172 and decreases the IRF3 activation [27]. Moreover, SHP-2 inter-
acts with TBK1 kinase domain to block its activity as a kinase [28]. In zebra fish, 
STAT6 also negatively regulates the phosphorylation of TBK1, which was not found 
in mammalian cells [29]. TRIM9s (TRIM9 short) interacts with TBK1 to facilitate 
phosphorylation of TBK1 via the RING domain of TRIM9s. In addition, TRIM9s, 
bridging GSK3β and TBK1, also initiates TBK1 oligomerization which is critical to 
its activation [30].

Fig. 2.2  Inflammatory signaling transduction and PTMs of RLR pathways
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IRF3  MAVS also recruits TBK1 to phosphorylate IRF3 typically at 5T/S cluster 
(396–405) and S385–386. Then phosphorylated mono-IRF3s dissociate from 
MAVS to form dimers with a C-terminus-C-terminus interaction [22]and translo-
cate to the nucleus. PPI, one of the most abundant phosphatases in eukaryotic, regu-
lates the RIG-I signaling pathway by dephosphorylating IRF3 [31]. HSP60 (heat 
shock protein 60, also known as HSPD1) interacting with IRF3 by directly phos-
phorylating IRF3 that triggers its dimerization [32].

2.3.2.2  �Ubiquitination

Modification of RIG-I 2CARD with K63-linked ubiquitination is important for sig-
naling activity. The tetrameric architecture of 2CARD mentioned above binds to six 
Ub molecules in the asymmetric unit. Both the activation and degradation of RIG-I 
are attenuated by several host molecules.

RNF Family  RNF125, a RING-type E3 ubiquitin ligase, polyubiquitylates RIG-I at 
K181 and leads to K48-linked proteasome-dependent degradation, which impedes 
the RIG-I signaling pathway as a negative feedback regulation [33]. Similarly, the 
TM domain of RNF122 directly binds to the 2CARD domain of RIG-I which medi-
ates K48-linked ubiquitination at K115/K146 of 2CARD domain of RIG-I. Located 
on ER membrane, RNF122 can also mediate self-ubiquitin degradation [34]. 
Conversely, RNF135, also called REUL, positively regulates the RIG-I pathway via 
facilitating the K63-linked polyubiquitination of RIG-I [35]. In addition, RNf121 
facilitates the proteasomal degradation of IκBα, whose degradation is critical for 
NF-κB to translocate into the nucleus and trigger IFN-β expression [36]. Moreover, 
RNF5 promotes the K48-linked polyubiquitination that degrades MAVS and STING 
on L150 [37].

TRIM Family  RLR-MAVS-dependent signal pathways are under strict control of 
PTM including polyubiquitination and phosphorylation. The ubiquitin E3 ligase 
TRIM25 modifies RIG-I with K63-linked polyubiquitination [38]. TRIM25 (tripar-
tite motif 25) composed of a RING domain at N-terminal, one or two B-box 
domains, a coiled-coil dimerization domain, and a C-terminal SPRY domain bind-
ing to 2CARD domain, catalyzes RIG-I at K172 via K63-linked polyubiquitination. 
Furthermore, the coiled-coil domain of TRIM25 is a stable, antiparallel dimer pos-
sessing two catalytic RING domains on opposite ends of an elongated rod. RING 
dimerization is required for catalysis, TRIM25-mediated RIG-I ubiquitination, 
interferon induction, and antiviral activity [39]. The interaction between TRIM25 
and RIG-I delivering the Lys 63-linked ubiquitin moiety to the N-terminal CARDs 
of RIG-I results in an increase in RIG-I downstream signaling activity. The ubiqui-
tination of RIG-I enables its oligomerization and thus induces RIG-I interacting 
with MAVS. Mutations of conserved residues of RIG-I that disrupt its ubiquitin 
binding also abrogate its ability to activate IRF3 demonstrating that CARD domain 
of RIG-I is the structural basis for the IRF-inducing ability of RLRs [40]. NS1 (non-
structural protein 1), a virulence factor of influenza A virus, not only binds to 
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TRIM25 directly impeding the K63-linked ubiquitination of RIG-I but also prevents 
RIG-I from sensing the viral dsRNAs [41]. In addition, TRIM56 and TRIM32, both 
positive modulators in STING-dependent IRF3 activation, facilitate the K63-linked 
ubiquitination of STING required for recruitment and activation of TBK 1 [42, 43]. 
Conversely, TRIM23 interacts with NEMO and catalyzes the conjugation of K27-
linked polyubiquitin chain onto NEMO, leading to its proteasome-dependent degra-
dation [44]. TRIM21, bound to K63 E2 conjugating enzyme UBC13, facilitates 
TAK1-TAB1-TAB2, IKKα-IKKβ-NEMO, and IRF3/5/7 complex activation via 
K63-linked ubiquitination [45]. Additionally, TRIM4 is another E3 ligases identi-
fied as enzymes modifying RIG-I with K63-polyubiquitin chains [46].

Other Protein Families  MEX3C interacts with RIG-I directly via its 382–599 
domain, while its RING domain ubiquitylates RIG-I at K99/K169 causing the acti-
vation of RIG-I [47]. STAT4, in spite of a classical kinase, blocks the degradation of 
RIG-I via interacting with CHIP and disrupts the association between RIG-I and 
CHIP, which induces K48-linked ubiquitination and degradation of RIG-I [48]. 
LUBAC (linear ubiquitin chain assembly complex) natively regulates RIG-I signal-
ing pathway in two ways. One is that LUBAC, directly bound to TRIM25 which 
facilitates the K63 ubiquitination of RIG-I (mentioned above), catalyzes the K48-
linked polyubiquitination of TRIM25 resulting in the degradation of TRIM25 [49]. 
The other is that LUBAC catalyzes the linear ubiquitination of NEMO which plays 
a critical role in the activation of NF-κB signaling pathway, while the linear-
ubiquitinated NEMO impedes the interaction between MAVS and TRAF3 [50]. 
C-Cbl, an E3 ligase, promotes the K48-linked polyubiquitination and proteasomal 
degradation of RIG-I [51], which is phosphorylated by Siglec-G. USP21 functions 
in few ways. It blocks the K63-linked ubiquitination of RIG-I, promotes the deubiq-
uitination of RIG-I and MAVS, and also inhibits TRIM25- and RNF135-mediated 
RIG-I polyubiquitination and activation [52]. USP15 interacts with the CARD 
domain and C-terminal of RIG-I by its UCH domain while deubiquitinates the 
USP15 by its active sites, His862 [53]. P97, forming Np14-Ufd1-p97 complex, pro-
motes the K48-linked ubiquitination of RIG-I by facilitating RNF125. Though 
Np14 binds to RIG-I at CARD of non-ubiquitination RIG-I to promote the K63-
linked ubiquitination of RIG-I at K172/K170, then the activation of K63-linked 
progress triggers the interaction among Np14, Ufd1, and p97, which functions as a 
negative feedback regulation [54]. Smurf 2(Smad ubiquitin regulatory factor 2), 
another E3 ubiquitin ligase, physically interacts with MAVS and triggers the K48-
linked ubiquitination and degradation of MAVS [55]. Similarly, PCBP1 or PCBP2 
recruits AIP4, a HECT domain-containing E3 ligase, which induces the K48-linked 
polyubiquitylation and degradation of MAVS [56]. RAUL, a HECT domain E3 
ubiquitin ligase, induces the K48-linked polyubiquitination of IRF3/7 that blocks 
the RIG-I signaling pathway [57].
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2.3.2.3  �Others

Besides phosphorylation and ubiquitination, there are other special PTMs required 
for the regulation of IRG-I signaling pathway. FAT10 negatively regulates the path-
way by preventing RIG-I from ubiquitin-dependent activation and interaction with 
IRF3. Also excessive FAT10, bound to the CARD domain of RIG-I directly, seques-
ters the active form of RIG-I into insoluble precipitate [58]. What’s more, several 
DUBs removing K63-linked polyubiquitin from RIG-I to balance pro-inflammatory 
responses are identified, including USP3 (ubiquitin-specific protease 3) [59], CYLD 
[60], and USP21 [52]. In addition, it is reported that ISG15-modified RIG-I displays 
lower activity to trigger the downstream response [61]. Similar to ubiquitylation, 
SUMOylation is a multistep reaction that covalently conjugates a 12-kDa small 
ubiquitin-like modifier (SUMO) to target proteins by a single E1-activating enzyme 
(Aos1/Uba2), a unique E2-conjugating enzyme (Ubc9), and an array of different E3 
ligases [62]. The direct interaction between UBC9 and target proteins is required for 
SUMOylation to transfer SUMO from E1. Therefore, when UBC9 binds to RIG-I 
directly, activated SUMOylation of RIG-I alters the protein folding to assist RIG-I 
ubiquitylation and enhances the interaction with MAVS [63]. IRTKS (insulin recep-
tor tyrosine kinase substrate) can also recruit Ubc9 to SUMOylate PCBP2 (a nega-
tive regulator of MAVS) by SUMO2 at K37 of PCBP2, which is required for 
cytoplasmic translocation of PCBP2 then leading to MAVS degradation [64]. 
Similarly, Ndfip1 promotes the degradation of MAVS by triggering the autoubiqui-
tination of Smurf1, an E3 ubiquitin ligase with multiple HECT domains, which then 
interacts with and finally degrades MAVS [65]. When it comes to IRF family, α-LA 
(LA, lipoic acid, 1,2-dithiolano-3-pentanoic acid; C8H14O2S2) promotes 
SUMOylation of IRF-1 by SUMO1 which negatively regulates its transcription 
activity [66]. Both of IRF-3 and IRF-7 can be SUMOylated by SUMO 1/2/3 at 
K152 of IRF3 and K406 of IRF7, which induces a lower level of IFN mRNA [67]. 
In addition, amidation of RIG-I inhibits IFN induction, so the deamidation cata-
lyzed by phosphoribosylformyglycinamide synthase (PFAS) of RIG-I at Q10, 
N245, and N445 residues converts the suppression. Upon viral RNA stimuli, the 
CARD domain of RIG-I interacts with the GAT domain of vGAT (glutamine ami-
notransferase); the latter was a pseudo enzyme recruiting PFAS to RIG-I which 
triggers the downstream pathway [68]. Moreover, as in uninfected cells, RIG-I is 
acetylated which restricts not only RIG-I translocation to intracellular membrane 
for interaction with MAVS but also the oligomerization of RIG-I, in infected cells, 
HDAC6 (histone deacetylase 6) deacetylates RIG-I to activate RIG-I depending 
IRF3 activation [69, 70].
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2.4  �The PTMs of NLR Pathways

NLR pathways refer to nucleotide-binding oligomerization domain containing pro-
tein 1-like receptor-related signaling pathways. NLR proteins are cytosolically 
located detecting PAMPs invading into the host cells. Up to now, more than 20 
genes are identified in human genome [71], and certain roles of several NLR pro-
teins including NOD1, NOD2, NLRP3, and NLRC4 are studied. Among different 
signaling transduction ways, PTM displays its roles in them.

2.4.1  �The Overview of NLR

NLR proteins include NOD1/2, Nalps, Ipaf, and Naip. The essential N-terminal 
domains of NLR can be identified as characters of different proteins, NOD1/2 and 
Ipaf with CARD, Nalps with PYD (pyrin domain), and Naip with BIR (baculovirus 
inhibitor of apoptosis protein repeat domain) [72]. NOD1/2 are responsible for 
detecting microbe-derived peptidoglycan [73], and once activated, they can recruit 
a serine-threonine kinase called RIP2 (receptor-interacting protein 2) via CRAD-
CARD interactions [74].Then, RIP2 directly interacts with the IKKγ (NEMO) and 
promotes its ubiquitylation; thus IκBα is degraded, and NF-κB is able to translocate 
into nuclear to promote pro-inflammatory chemokine production.

2.4.2  �The PTMs Involved in NLR Pathways

Since RIP2 is the key protein linking NOD and NF-κB activation, RIP2 itself arises 
a lot of attentions for its capacity in regulating NLR pathways (Fig. 2.3). It has been 
proved that RIP2 undergoes autophosphorylation at Tyr 474 via tyrosine kinase 
activity in RIP2 itself, and this phosphorylation is necessary for effective NOD-
related NLR signaling transduction [75]. Other phosphorylation sites identified 
include S168/176 in RIP2 kinase domain [76, 77], S363/393 in interdomain region 
of RIP2 [77], and S527/529/531/539 in the flexible C-terminal region of RIP2 [78, 
79]. Additionally, RIP2 is also related to the ubiquitination of NEMO (IKKγ), 
important for sequent IκBα degradation and NF-κB activation [80]. Pellino3-
mediated K63-linked polyubiquitination of RIP2 plays a positive role in NOD2-
RIP2-NF-κB pathway [81]. Ubiquitination of RIP2 mediated by clAPs (cellular 
inhibitors of apoptosis) is a promotive factor of NLR-related NF-κB and JNK path-
ways [82]. Similarly, XIAP mediating the ubiquitination of RIP2 also increases the 
activation of RIP2-mediated NF-κB [83].

While some PTMs are responsible for enabling and increasing NLR pathway 
activation, some others negatively regulate them. RIP2 is polyubiquitinated by 
ITCH, an E3 ubiquitin ligase, which inhibits the NF-κB activation and JNK 
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activation via phosphorylation of JNK and MAPK [84]. For NODs, SOCS3 and 
TRIM27 induce polyubiquitination and proteasomal degradation of NOD2 [85, 86] 
and thus attenuate the whole signal transduction mediated by NOD2.

2.5  �Intracellular DNA Sensors

2.5.1  �Overview of Cytosol DNA Sensor

Intracellular DNA sensors recognize the dsDNA and ssDNA of virus that invade 
into the cytoplasm, which then mediate a type I IFN response and other inflamma-
tory cytokines such as TNF-α and IL-6 through recruitment and activation of their 
adaptor proteins, like cGAMP, STING, TBK1, and so on. One of critical DNA sen-
sors that we have investigated most is cGAS (cyclic GMP-AMP synthase). In addi-
tion, many other DNA sensors in the cytoplasm have been identified, including 
IFI16 (interferon-inducible protein 16), AIM2 (absent in melanoma 2) inflamma-
somes, and so on.

2.5.2  �PTM of cGAS Signaling Pathways

Triggered by viral dsDNA, the mammalian cGAS enzyme with a single active site 
converts GTP and ATP into a mixed dinucleotide species G[2′-5′]pA[3′-5′]p 
(cGAMP) containing a 2′-5′ phosphodiester bond [87]. cGAMP then binds to 
STING resulting in the translocation of the adaptor protein from the endoplasmic 

Fig. 2.3  Inflammatory signaling transduction and PTMs of NLR pathways
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reticulum to the Golgi and perinuclear sites, where activated STING dimerizes and 
binds to TBK1 and IRF3 and the STING-TBK1-IRF3 complex that finally triggers 
the IFN and ISG gene expression [21]. Here we introduce the posttranslational 
modification (PTM) of the relevant molecules in this pathway (Fig. 2.4).

2.5.2.1  �Phosphorylation

Phosphorylation is one of the most common modifications to regulate the target 
protein functions by inducing their conformational changes or recruiting of other 
proteins. Akt kinase, one of the most critical and versatile protein kinases in higher 
eukaryotes, negatively regulates cGAS by phosphorylating cGAS at S291 of mouse 
and S305 of human [21]. Phosphorylation is also critical for activation and translo-
cation of STING. ULK1/ATG (UCN-51-like kinase) can phosphorylate STING at 
S366 that suppresses the IRF3 function, while ULK1/ATG itself is activated via 
dissociation from unphosphorylated AMPK which is typically elicited by cGAMP 
[88]. In addition, viral interferon regulatory factor (vIRF1) of Kaposi’s sarcoma-
associated herpesvirus (KSHV/HHV8) inhibits the phosphorylation and activation 
of STING by inhibiting its interaction with TBK1 [89].

2.5.2.2  �Ubiquitination

Protein ubiquitination is inversely regulated by E1, E2, and E3 enzymes or DUB 
which regulates degradation and activation of a wide variety of molecules in differ-
ent immunological processes. TRIM (tripartite motif) is one of the most dominant 
E3 ligases families. TRIM14 not only recruits USP14 (ubiquitin-specific protease 

Fig. 2.4  Inflammatory signaling transduction and PTMs of intracellular DNA sensor 
pathways
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14) that cleaves K48-linked ubiquitin chains of cGAS at K414 to prevent it from 
degradation but also blocks p62-mediated selective autophagic degradation of 
cGAS [43]. Moreover, STING is also a target for ubiquitination, of which K48-
linked ubiquitination leading to degradation while K11-linked and K63-linked 
ubiquitination facilitating activation [43].

2.5.2.3  �Others

Besides phosphorylation and ubiquitination, there are also other essential modifica-
tions that regulate the cGAS signaling pathway. Glutamylation of the cGAS sup-
presses its activation via two ways, in one is polyglutamylated at Glu272 by TTLL6 
(tubulin tyrosine ligase-like glutamylases 6) and the other one is monoglutamylated 
at Glu302 by TTLL4. Conversely, CCP inverses this progress by CCP6 (cytosolic 
carboxypeptidases 6) via removing the polyglutamylation of cGAS whereas CCP5 
hydrolyzing the monoglutamylation of cGAS [90]. What’s more, sumoylation of 
cGAS at K217 and K464 and of STING at K337 by TRIM38 promotes their protein 
stability and prevents their ubiquitination and degradation, while in the late phase of 
viral infection, desumoylation of both cGAS and STING mediated by SENP2 
avoids the sustained inflammatory response, and SENP2 is recruited by phosphory-
lated STING at S365 [91].

2.5.3  �PTM of IFI16 Signaling Pathways

Interferon-inducible protein 16 (IFI16) is a critical DNA sensor binding to ssDNA, 
albeit more weakly than to dsDNA in the cytoplasm [92]. After triggered by viral 
DNA, IFI16 interacts with other adaptor proteins to form BRCAI-IFI16-ASC-
procaspase-1 complex, which induces IL-1β and IFN-β production and STING acti-
vation. Acetylation of IFI16 complex by H2B, a histone acetyltransferase, enhances 
its interaction with STING that induces the redistribution of STING from cytoplasm 
to nucleus and the interaction with cGAS promoting cGAMP production and gen-
eration of IL-1β and IFN-β [93].

2.5.4  �PTM of AIM2 Signaling Pathway

Located in the cytoplasm, absent in melanoma 2 (AIM2) inflammasome directly 
interacts with dsDNA driving activation of caspase 1, which promotes pyroptosis 
and the release of the pro-inflammatory cytokines. This progress requires the type I 
IFN-potentiated expression of GBPs (guanylate-binding proteins) via the transcrip-
tional factor IRF1 [94]. AIM2 indirectly inhibits the phosphorylation of STAT1 (the 
signal transducers and activators of transcription 1) which impedes the 

Y. Si et al.



51

phosphorylation of NF-κB p65 at S536 and acetylation of it at L310, the modifica-
tion facilitating NF-κB translocation and activation, while deacetylation of it by 
SIRT1/HDAC3 blocks the activation pathway [95].

2.6  �Intracellular RNA Sensors

RNA sensors sense atypical RNAs associated with virus infection, recognizing the 
555p’ RNA and 55p’ RNA not protected by a 5′-cap. The typical RNA sensors 
RIG-1 and MDA5 share the similar functional domains including CARD domain of 
N-terminal that not only recruits downstream proteins like MAVS, IRF3, and TBK1 
but also functions in polyubiquitination and C-terminal domain (CTD) binding to 
exogenous RNA, consistent with their similarity in immune response. PTM plays an 
important role in regulation of RNA sensor signaling pathway (Fig. 2.2).

2.6.1  �PTM of RIG-I Signaling Pathways

As mentioned in Sect. 2.3

2.6.2  �PTM of MDA5 Signaling Pathways

MDA5 with 2CARD domains in high degree of heterogeneity can self-assemble 
into a defined oligomeric arrangement, while CARD domains form discrete patches 
of oligomers along MDA5 filament about 11 monomers per patch [96]. The phos-
phorylation of MDA5 at S88 in the first CARD and S828 in the CTD dampen its 
ability to interact with MAVS in uninfected cells [97, 98]. TRIM13, one member of 
the TRIM family, an E3 ligase family, inhibits the activation of MDA5 and the sub-
sequent MDA5-mediated production of IFN-β but regulates RIG-I pathway in a 
positive way, whose role in the RNA-sensing signaling network needs to be further 
investigated [99]. In addition, RNF125 also facilitates the K48-linked polyubiquiti-
nation as the proteasome-dependent degradation of MDA5. What’s more, PIAS2β, 
an E3 ligase of SUMOylation, SUMOylates at the C-terminal region of MDA5, 
which promotes the MDA5-mediated IFN induction, while the SUMOylation has 
no influence on the K48-linked ubiquitination of MDA5 [100].
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2.7  �Inflammasomes

Inflammasomes are protein complexes assemble on recognition of exogenous and 
endogenous danger signals and serve as platforms for activation of canonical cas-
pase 1 or noncanonical caspase11 and secretion of pro-inflammatory cytokines: 
such as IL-1β, IL-18, and HMGB1 (high-mobility group box 1). Different types of 
inflammasomes vary in types of activation and downstream molecules. The most 
widely studied inflammasome up to now is the NLRP3 inflammasome, while 
NLRC4, AIM2, NLRP1, and other inflammasomes require more experimental 
investigations. As their effective influence on immune response, the activity of 
inflammasomes is tightly regulated to avoid from the generation of excessive inflam-
matory functions. Generally speaking, there are mainly two aspects of regulation in 
host cells. (A) The expression of inflammasome-relevant proteins is limited at a low 
level. For example, the level of NLRP3 in many cell types is particularly low with a 
priming signal to be triggered [101]. (B) The variants of inflammatory components 
alter in distinct, even controversial functions. Splice variants of ASC have been 
identified with different activities, with one variant even inhibiting the signaling 
pathway but not facilitating it as usual [102].

Adaptor protein ASC bridges the sensor protein (NLRP3 and AIM2) and caspase 
1 to form ternary inflammasome complexes by its PYD and CARD domains. Then 
NLRP3 or NLRC4 inflammasomes recruit ASC through their PYD domains, while 
ASC recruits caspase 1 by the CARD/CARD interaction. Activated ASC trends to 
form filament, of which the PYD domain is nuclear for ASCPYD forming filament, 
required for ASCPYD removing His-MBP from the fusion protein [103].

2.7.1  �PTM of NRLP3 Signaling Pathway

NLRP3 inflammasome senses a wide range of pathogens including bacteria, virus, 
fungi, and parasites through both DAMP and PAMP pathways. In addition, NLRP3 
can be also activated by the reactive oxygen species (ROS) and lysosome destabili-
zation [104]. In majority of cases, NLRP3 does not interact with pathogens directly. 
Excessive ROS are sensed by a complex of thioredoxin and thioredoxin-interacting 
protein (TXNIP), which leads to the dissociation of the complex. Then subsequent 
binding of TXNIP to NLRP3 triggers the recruitment of ASC and pro-caspase-1, 
together forming the active inflammasome complex. In addition, NLRP1, AIM2, 
NAIP, and NLRP4 that can bind to pathogens directly and proteases caused by lyso-
somal destruction facilitate the interaction between ASC, pro-caspase 1, and NLRP3 
[102]. PTM plays an important role in regulating the whole progress (Fig. 2.5).
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2.7.1.1  �Phosphorylation

PKR (double-stranded RNA-dependent protein kinase) physically binds to NLRP3 
as a PKR-NLRP3 complex and promotes the inflammasome formation. PKR also 
plays a critical role in activation of the NLRP1, AIM2, and NLRC4 [105]. Interacting 
with NLRP3 directly, PTPN22 interferes the tyrosine phosphorylation at Tyr86 of 
NLRP3, while phosphorylation of NLRP3 negatively regulates the activation of the 
complex. ASC is necessary for NLRP3 activation [106]. Ethanol inhibits NLRP3 
inflammasome by impeding the phosphorylation of ASC at Y146 of human [107]. 
Syk (spleen tyrosine kinase) interacts with ASC and NLRP3 directly by its kinase 
domain but without procaspase-1, which phosphorylates ASC at Y146 and Y187 to 
promote the NLRP3-dependent caspase-1 activation [108]. As downstream proteins 
of Syk, Pyk2 (proline-rich tyrosine kinase) and FAK (focal adhesion kinase) also 
phosphorylate ASC at Y146 required for ASC oligomerization, caspase-1 activa-
tion, and IL-1β secretion. And only the depletion of FAK leads to the significant 
inhibition of AIM2-mediated IL-1β secretion [109]. In addition, BTK (Bruton’s 
tyrosine kinase) phosphorylates ASC facilitating its oligomerization and distribu-
tion in macrophages required for NLRP3 activation, which also phosphorylates 
PLCγ to enhance Ca2+ influx as an assistant factor to NLRP3 inflammasome forma-
tion [110]. Conversely, AMPK (adenosine monophosphate-activated protein kinase) 
phosphorylation negatively regulates the activation of NLRP3 inflammasome [111]. 
Mechanism different from the kinases mentioned above, though Nek-7 interacts 
with NLRP3 by its NOD, LRRs and N-terminal (amino acid residues 34–212) 
directly, it does not function in phosphorylation but improves the K+ efflux to acti-
vate NLRP3 inflammasome [112].

Fig. 2.5  Inflammatory signaling transduction and PTMs of inflammasome pathways
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2.7.1.2  �Ubiquitination

LUBAC plays a critical role in ASC foci formation and NLRP3-ASC inflammatory 
assembly required for linear ubiquitination of ASC and ASC-dependent NLRP3 
inflammasome activation [113]. Two members of F-box protein as ubiquitin E3 
ligases with a RING domain, FBXO3 (f-box O3) and FBXL2 (f-box L2), function 
in regulating the ubiquitination of NLRP3. FBXL2 mediates directly degradation of 
NLRP3 at K689 which impedes the activation of the inflammasome, while FBXO3 
targeting on FBXL2 facilitates the ubiquitin-dependent degradation of FBXL2 pro-
moted by the increased level of intracellular LPS [114]. TRIM33 directly interacts 
with NLRP3 at PYD domain of NLRP3 by its second C-terminal coiled-coil domain 
to facilitate the K48-linked proteasomal degradation of formation and activation via 
binding to the HA2-DUF region of DHX33 which induces the K63-linked ubiquiti-
nation at K218 [115]. DUBs (deubiquitinases) like OTUB1, UCH-L1, USP7, or 
CYLD have been shown to play a crucial role in ubiquitin-mediated cellular pro-
cesses. It is also required for inflammasome-dependent IL-1β processing via pro-
moting oligomerization of ASC to improve the activation of AIM2/NLRP3 
inflammasomes; activation of the latter is more evident [116]. For example, UCH-
L5 (ubiquitin C-terminal hydrolase 37, UCH37) knockdown leads to decrease in 
inflammasome-dependent IL-1β release [117]. In addition, upon LPS stimulation, 
A20, a ubiquitin-modifying enzyme, binds to pro-IL-1β to restrict the K63-linked 
ubiquitination of pro-IL-1β at K133 that promotes its proteolytic processing [118]. 
Interestingly, a deacetylase mentioned before, HDAC6 negatively regulates the 
NLRP3 pathway independent of deacetylation but by facilitating the ubiquitin-
dependent degradation of NLRP3 with the Buz (binder of ubiquitin zinc finger) 
domain of HDAC6 [119].

2.7.1.3  �Others

JAK/STAT1 is required for LPS- and IFN-β-induced HMGB1 acetylation catalyzed 
by the two NLS (nuclear localization sequence) domains of the acetylase, key to 
efficient HMGB1 release [120]. In addition, UBC9, a sole SUMO-conjugating 
enzyme, mediates the SUMO-1 SUMOylation to prevent IkBα from degradation, 
which inhibits the activation of NF-κB. Upon LPS stimuli, CDK1 phosphorylates 
UBC9 that promotes this progress [121].

2.7.2  �PTM of Other Inflammasome Signaling Pathway

NLRC4  Different from NLRP3, NLRC4 is only activated by specific bacterial pro-
teins but not binding directly [122]. NAIP proteins sense bacterial proteins like S. 
typhimurium flagellin causing the recruitment of NLRC4 and assembly of the 
NLRC4 inflammasome [104]. PKCζ and PAK2 phosphorylate NLRC4 at S553, but 
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the depletion of PKCζ only reduces the phosphorylation of NLRC4 resulting in 
ASC focus formation, caspase-1 activation, and pyroptosis. Upon certain stimuli, 
PKCζ itself is activated via its phosphorylation at Y311 by PMA [123].

Pyrin  Encoded by MEFV gene, pyrin recognizes the Rho GTPases-modified bac-
terial toxins like C. difficile cytotoxin TcdA/B, rather than microbial products like 
other inflammasomes. After phosphorylated at both S205 and S241, pi-pyrin recruits 
14-3-3 protein which assists with the activation of pyrin upon specific Rho-
modifying toxin stimuli, which triggers the dephosphorylation, ASC recruitment, 
and assembly of pyrin inflammasome [124].

2.8  �PTM-Related Diseases and Immune Disorders

Since PTMs exert a wide range of influence on our immune system, any incapacity 
in regulations of posttranslational modifications can be enervating factors to immune 
homeostasis, which is responsible for a series of disease directly and indirectly. Up 
to now, several disorders in modulation of PTMs are identified and proved to be 
relative with certain diseases, such as Crohn’s disease, a disease caused mainly by 
immune disorders, as well as exogenous factors that are able to effect the PTM pat-
terns and lead to acquired disorders in immune systems, which cause the upregula-
tion or repression in inflammation. A clear study of the factors, whatever endogenous 
or exogenous, is helpful for a precise remedy against the diseases derived from 
them.

Several notorious diseases are actually relative with the profound influence 
caused by PTM disorders. The Crohn’s disease, marked by symptoms including 
severe stomachache, diarrhea, fever, and chronic anemia, is demonstrated related to 
the PTM disorders in the immune system. It is proved that NOD-2-involved inflam-
matory signal pathways are responsible for the onset of Crohn’s disease. The muta-
tion of NOD-2 including L1007fsinsC which removes the last 33 amino acids of its 
polypeptide is detected common in Crohn’s patients [125, 126], and this specific 
mutation results in the defect in inducing RIP2 tyrosine autophosphorylation, which 
is discussed above in NLR pathways that are crucial for the activation of NOD-2 
signaling pathways [75].With this certain deficiency, the immune systems of patients 
with Crohn’s diseases are failed to eliminate the infective microbe colonized in our 
intestines leading to the overbudden of bacteria in gut cells. Also, the ITCH can 
recognize the phosphorylated RIP2 and thus deactivates it for a moderate NF-κB 
activation, which serves as an inhibitory role of NOD-2 pathway. As a result, the 
antagonists, gefitinib and erlotinib, against the autophosphorylation of RIP2 are 
able to repress the overreaction of NOD-2 pathways downregulating the inflamma-
tory conditions [75].

Some pathogens are capable to induce enzymes responsible for PTMs that nega-
tively regulate our immune response in order to escape the elimination executed by 
inflammatory conditions. RIG-1, serving both as sensors in RLR pathways and 
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RNA sensors, is essential for RNA virus defense. However, it is reported that some 
RNA virus are able to recruit lectin family number Siglec-G which induces and E3 
ubiquitin ligase c-Cbl, and this enzyme is responsible for the degradation of RIG-I 
via K48-linked ubiquitination at Lys813. Sequentially, the degradation of RIG-I 
dampen the RNA sensor pathway activations as expected, and thus RNA virus 
makes their own escape [22]. Actually, this feedback-like relationship between virus 
and our immune systems represents a widespread rivalry.

Not all of PTMs that suppress the inflammatory signaling pathways are unwel-
comed. In fact, under most circumstances, our immune system remains inactivated 
state to avoid unexpected inflammation, which is harmful to tissues. In RLR path-
ways, K48-linked ubiquitination displays dual roles in regulation. While the K48-
linked ubiquitination modified by RNF135 is a positive regulation, those modified 
by RNF122/125 are responsible for degradation of RIG-I, MDA5, and MAVS, 
which abrogate the activation of RLR pathways [33, 34, 54]. Also, the K48-linked 
ubiquitination of TRIM25, a crucial modifier of RLR pathways, displays similar 
role of inducing degradation of TRIM25 [49]. For MAVS, Smurf1/2, RNF5, AIP4, 
and MARCH5 are responsible for its K48-linked ubiquitination. In NLR pathways, 
the ubiquitination modified by ITCH of the RIP2 is an inhibitory factor for activa-
tion, which serves as a negative feedback mechanism to limit the inflammation. 
Similarly, every negative modification mentioned in this article is set to protect cells 
from dysbiosis brought by improper or overrated inflammation.

To clinical aspect, PTMs that are involved in disease generating are new molecu-
lar sites for pharmaceutical design. Although the complete acknowledge of the 
PTMs is required for a more precise and safer remedy targeting specific disease, 
well-designed studies of such drugs are promising.
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Chapter 3
Emerging Roles for Epigenetic Programming 
in the Control of Inflammatory Signaling 
Integration in Heath and Disease

Yiqun Hu, Feng Yan, Le Ying, and Dakang Xu

Abstract  Macrophages and dendritic cells initiate the innate immune response to 
infection and injury and contribute to inflammatory signaling to maintain the 
homeostasis of various tissues, which includes resident macrophages for the elimi-
nation of invading microorganisms and tissue damage. Inappropriate inflammatory 
signaling can lead to persistent inflammation and further develop into autoimmune 
and inflammation-associated diseases. Inflammatory signaling pathways have been 
well characterized, but how these signaling pathways are converted into sustained 
and diverse patterns of expression of cytokines, chemokines, and other genes in 
response to environmental challenges is unclear. Emerging evidence suggests the 
important role of epigenetic mechanisms in finely tuning the outcome of the host 
innate immune response. An understanding of epigenetic regulation of innate 
immune cell identity and function will enable the identification of the mechanism 
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between gene-specific host defenses and inflammatory disease and will also allow 
for exploration of the program of innate immune memory in health and disease. 
This information could be used to develop therapeutic agents to enhance the host 
response, preventing chronic inflammation through preserving tissues and signaling 
integrity.

Keywords  Epigenetic • Inflammatory signaling • Innate immune memory • 
Inflammatory diseases

3.1  �Introduction

The immune system is composed of an innate (non-specific) system with the same 
protective response regardless of the initiating infection and an adaptive (specific) 
response with specificity that can generate immunological memory [1]. Innate 
immunity, which is constitutively present, is the first line of defense and is immedi-
ately mobilized following infection within a few minutes to hours in contrast to the 
adaptive immune system, which is slower and requires a few days to weeks to mount 
a response [2]. The primary component of innate immunity is inflammation [3]. 
Inflammation is part of the complex biological response of body tissues to harmful 
stimuli from pathogens and damaged cells that provide a protective process. The 
function of inflammation is to eliminate the initial cause of cell injury, clear out 
necrotic cells and tissues damaged by the original insult during the inflammatory 
process, and initiate tissue repair [4]. Injured cells release pro- and anti-inflammatory 
cytokines and other factors to limit the spread of infection and promote healing. At 
the same time, the innate response induces phagocytes and neutrophils that subse-
quently attract leukocytes and lymphocytes through these proinflammatory media-
tors [5]. Activation of the accompanying cascade enhances the innate response, 
which is an important consequence of complement cascade activation through 
inflammatory signaling, including Toll-like receptors (TLRs), RIG-I-like receptors 
(RLRs), and NOD-like receptors (NLRs). Through pattern recognition receptors 
(PRRs), these pathogen-associated molecular patterns (PAMPs) play a critical role 
in innate immune responses, and PAMP signaling prompts the induction of cyto-
kines and other subsets of genes, the ingestion of complement-tagged pathogens, 
and the destruction of microorganisms by phagocytes [6]. The innate response 
involves various cell types, including neutrophils, macrophages, and dendritic cells. 
TLRs recognize PAMPs in the extracellular milieu and endosomes, while NLRs 
patrol the cytoplasm. A set of Nod-like receptors that include NLRP1b, NLRP3, and 
NLRC4 assemble multi-protein complexes termed inflammasomes. Inflammasome 
assembly is critical for the activation of caspase-1, which ultimately cleaves 
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pro-IL-1β and pro-IL-18 into their mature bioactive forms, IL-1β and IL-18. Current 
studies have demonstrated inflammasome involvement during infection, autoim-
mune disease, and injury [7–15]. A comprehensive review of the inflammasome can 
be found in this book by Guangxun Meng. Another important function of the innate 
immune system is to stimulate the adaptive immune response via cross-presentation 
[16]. TLRs are one of the largest and best studied families of PRRs and are activated 
following recognition of specific, conserved PAMPs present in microbial proteins, 
bacteria, and nucleic acid variants that are normally associated with viruses, lipids, 
or carbohydrates. Recognition of these molecules by TLRs triggers signal transduc-
tion cascades that activate the transcription factors nuclear factor (NF-κB) and 
interferon-regulatory factors (IRFs), which induce the expression of proinflamma-
tory cytokines and interferons or interferon-stimulated gene (ISG) and dictate the 
outcome of innate immune responses [17, 18]. Activation of these pathways is con-
trolled by several molecular events, the basis of which depends on the interplay of a 
variety of elements, including transcription factors, epigenetic regulation, and post-
transcriptional control mechanisms [18]. A growing number of results have docu-
mented the control of signaling pathways by transcription factors and epigenetic 
factors/chromatin-based mechanisms, which have provided critical evidence for 
context-specific gene expression in diverse innate immune cell types and chronic 
inflammatory autoimmune disease [19–22]. Epigenetic regulation comprises the 
posttranslational modification (PTM) of histones (histone methylation and histone 
acetylation and deacetylation), DNA methylation, and noncoding RNA. Epigenetic 
regulation is not only coupled with transcription factor-mediated regulation but is 
also linked with upstream signaling pathways that connect external signals and gene 
function to shape the identity and function of innate immune cells. In light of the 
recent data from high-throughput epigenomic techniques and human macrophage 
biology [23, 24], we are able to build an understanding of these regulatory mecha-
nisms from detailed information to connect how innate immune cells develop func-
tions in association with epigenetic changes.

In this chapter, we will discuss the role of epigenetic regulation in innate immune 
cell functional responses to insulting stimuli, the inflammatory process, and disease. 
In particular, we focus on the prominent role of DNA demethylation, histone modi-
fications, promoter–enhancer interactions, and noncoding RNA-mediated regula-
tion. Finally, we will describe newly emerging data to emphasize the important role 
of epigenetic mechanisms in the control of memory-type responses in innate 
immune cells. We will also summarize the future of innate immunity in epigenetics 
and medical translation.
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3.2  �Epigenetic Control of Gene Expression

Epigenetic changes in gene activity or expression occur without alteration of the 
underlying DNA sequence, which results in a change in phenotype without a change 
in genotype [25]. Genomic DNA is packaged by histones to form protein/DNA 
complexes termed chromatin in eukaryotic cells; chromatin alterations include 
DNA methylation, histone modifications, promoter–enhancer interactions, and non-
coding RNA-mediated regulation. Epigenetic modulations are determined by the 
influence of chromatin organization/compaction and function and the critical regu-
lation of gene expression mechanisms at the molecular level through cellular, tissue, 
and organ levels [26, 27]. The coordinated actions of these multifaceted epigenetic 
modulations determine cell fate, cell cycle regulation, and development and ulti-
mately control responses in health and disease [28, 29].

In the genome, negatively charged, linear DNA is highly compacted and orga-
nized into three-dimensional (3D) chromosomes. DNA is coiled around histones 
(the main proteins of chromosomes) to form nucleosomes, the basic structural units 
of chromosomes. Histones are positively charged in the N-terminus with abundant 
lysine and arginine residues and can thus bind tightly to DNA to constrain its acces-
sibility [30]. Each nucleosome contains a histone octamer that consists of two of 
each histone monomer (H2A, H2B, H3, and H4) [31]. These highly regulated orga-
nization mechanisms not only compact linear DNA into chromosomes but also 
allow the selective accessibility of transcription machinery [e.g., transcription fac-
tors (TFs) and cofactors] to specific genomic elements, including enhancers (facili-
tate transcription), promoters (initiate transcription), gene body/open reading 
frames (transcribe and translate into proteins), silencers (suppress transcription), 
and dielectric (block promoter–enhancer interactions). Epigenetic mechanisms 
chemically or structurally alter chromatin through modifications of DNA and his-
tones or through chromatin remodeling and inter-/intrachromosomal DNA–DNA 
interaction, respectively [32] (Fig. 3.1). In DNA methylation, a methyl (CH3) group 
is enzymatically added onto the cytosine rings of DNA with temporal and spatial 
precision. In the human genome, DNA methylation occurs in most CpG dinucleo-
tides [33], mainly to form 5-methylcytosine (5-mC). Methylation was once thought 
to be a stable heritable genetic trait, but recent studies have indicated that methyl 
groups can be dynamically added or erased [34]. DNA methylation occurs in pro-
moter regions, such as transcription start sites (TSSs), and usually suppresses the 
expression of downstream genes through the recruitment of DNA-binding proteins 
and histone modifiers that repress transcription [35, 36]. Methylation of other 
genomic regions, such as enhancers and dielectric, has also been identified, but its 
functional importance remains to be investigated.

DNA methylation is a dynamic process in which methylation patterns with meth-
ylation marks in genomic regions can be synthesized de novo, maintained, or 
removed. DNA methylation is processed by an intricate balance between DNA 
methyltransferases (DNMTs) and DNA demethylases. The genome encodes three 
DNMTs (DNMT1, DNMT3A, and DNMT3B) to catalyze DNA methylation. 
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DNMT3A and DNMT3B play major roles in de novo DNA methylation [37]. The 
major pathway mediating DNA demethylation is catalyzed by 11 translocation 
methylcytosine dioxygenase (TET) family proteins, with the methyl group of 5-mC 
oxidized to yield 5-hydroxymethyl cytosine (5-hmC), which can be further oxidized 
to 5-formylcytosine and 5-carboxylcytosine [38]. These derivatives of 5-mC are 
novel epigenetic marks that are linked to further biological functions.

Histone modification is subjected to posttranslational modifications (PTMs), 
including acetylation, methylation, phosphorylation, sumoylation, and ubiquitina-
tion [39] (Fig.  3.1). Histone PTMs are widely distributed throughout the whole 
genome to form the histone code, which can control the accessibility of DNA and 
recruit transcription factors and coactivators/cosuppressors to result in active, 

Fig. 3.1  Chromatins can exist as euchromatin (open) or as heterochromatin (compact). The chro-
matin state is marked (open) by promoter DNA hypomethylation and various posttranslational 
histone (H) modifications, especially H3, including H3K4me3, H3K27ac, and H3K36me3. In this 
state, DNA is loosely wrapped around nucleosomes and enables active (on) transcription. The 
heterochromatin state is marked (compact) by promoter DNA hypermethylation, H3K27me3, and 
H3K9me3, where compact DNA nucleosomes repress (off) transcription
The on and off states of transcription can be switched by the epigenetic markers writers, readers, 
and erasers, for example, “writers” by DNA methyltransferases [(DNMTs), histone acetyltransfer-
ases (HATs), and histone methyltransferases (HMTs)] and epigenetic “erasers” by DNA demeth-
ylases [(TETs), histone deacetylases (HDACs), and histone-lysine demethylases (KDMs)]. 
“Readers” by epigenetic marks on DNA or histones appear in gray boxes
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poised, or silenced transcription [40–42]. In conjunction with DNA methylation, the 
histone code affects the transcriptional states of genomic regions of promoters, 
enhancers, and gene bodies, which can determine transcriptional programs. Distinct 
histone modifications can lead to activation or inactivation of adjacent genes by 
recruiting chromatin remodeling complexes, TFs, and transcriptional coactivators/
cosuppressors. In particular, H3K27ac [acetyl-histone H3 (Lys-27)], H3K4me3 
[trimethyl-histone H3 (Lys-4)], H3K4me1 [methyl-histone H3 (Lys-4)], and 
H3K36me3 [tri-methyl-histone H3 (Lys-36)] are associated with the active tran-
scription region. In contrast, H3K27me3 [tri-methyl-histone (Lys-27)] and 
H3K9me3 [tri-methyl-histone H3 (Lys-9)] are mainly distributed in the inactive 
gene locus [43, 44]. These histone PTMs are illustrated in Fig. 3.1. The three main 
classes of regulatory models are presented as follows: (1) “writers” that create cova-
lent modifications for DNA methylation and histone methyltransferases and acetyl-
transferases, (2)“erasers” that eliminate modifications for demethylases and histone 
deacetylases, and (3)“readers” that recognize modification through specific protein 
domains for bromodomain-containing proteins and mating-type switching (SWI) 
and sucrose fermentation (sucrose nonfermenting  – SNF) SWI/SNF nucleosome 
remodelers, which are the major players that govern dynamic changes in chromatin 
structure for development or response to environmental stimuli [45]. Histone modi-
fications can affect transcriptional activities by the two following major mecha-
nisms: (1) histone PTMs can alter chromatin structure and conformation. For 
example, H3K27 acetylation inhibits the positive charge of histones, thus decreas-
ing their binding to DNA and increasing their accessibility for positive regulation of 
gene expression [46]. (2) Histone PTMs can provide signals for the “reader” 
enzymes to further recruit transcriptional activators/suppressors. For instance, 
H3K27 trimethylation is recognized by the polycomb repressive complex, and it can 
ubiquitinate histone H2A, leading to transcriptional repression [47]. For each his-
tone PTM, there are specific enzymes that catalyze the dynamic “writing,” “read-
ing,” or “erasing” of these modifications (Fig. 3.1). The “writers” include histone 
acetyltransferase (HAT), histone methyltransferase (HMT), and protein arginine 
methyltransferase, whereas the “erasers” are histone deacetylase (HDAC) and 
lysine demethylase (KDM). The “reader” proteins containing bromodomain-
containing proteins or SWI/SNF nucleosome remodelers can recognize differen-
tially modified histones. These enzymes are also subjected to PTMs elicited by 
upstream signal transduction. A study has shown that sumoylation of HDAC1 
increases its transcriptional repression activity [48] and that phosphorylation of 
HDAC1/2 renders them enzymatically active [49].

Noncoding RNAs (ncRNAs) are RNAs that are not translated into proteins. 
Although 30% of the human genome can be transcribed, only a small portion of 
genes are translated into proteins [50]. ncRNAs can be classified on the basis of 
their size into small ncRNAs [small interfering RNAs (siRNAs), microRNAs (miR-
NAs), Piwi-interacting RNAs (piRNAs), transfer RNAs (tRNAs), and small nucleo-
lar RNAs (snRNAs)] and long ncRNAs (lncRNAs)]. According to their modes of 
function, lncRNAs have been divided into four major types (signals, decoys, guides, 
and scaffolds) [51]. lncRNAs with functions related to signals or decoys contribute 
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to gene activation or suppression, respectively. lncRNAs that act as guides recruit 
chromatin-modifying enzymes to regulate gene expression in cis or trans. lncRNAs 
act as scaffolds and recruit multiple proteins to assemble ribonucleoprotein com-
plexes, which usually function on chromatin and/or modulate histone marks.

Understanding the dynamic changes in the 3D conformation of chromatin is very 
challenging; thus, precise mapping of the epigenome, such as genome-wide epigen-
etic modifications that require high-throughput profiling technologies at nucleotide 
resolution, has been carried out. With the achievement of the Human Genome 
Project and the development of next-generation sequencing (NGS) at high-
throughput levels, a large number of RNA-seq profiling studies have been per-
formed in the past few years. FANTOM5 provides novel insights from a large 
network into human macrophage biology [52, 53], and with more advanced bioin-
formatics tools, we could build the foundation and principles to allow for investiga-
tions of epigenetics by different disciplines. Histone codes are comprehensibly 
presented in the Encyclopedia of DNA Elements (ENCODE), which was developed 
to identify all functional elements of the human genome [54, 55]. ENCODE has 
collected a large amount of data on epigenetic regulation from various cell types and 
tissues and made this information publicly accessible for us. The archived large-
scale data sets, including functional DNA elements, transcriptional machinery, and 
histone modifications, can be easily uploaded to the human genome browser, which 
allows us to perform further integrative analyses.

3.3  �DNA Methylation and Innate Immune Cell Responses

A growing number of data sets have shown that epigenetic modification mecha-
nisms, including DNA methylation, histone modifications, and noncoding RNAs, 
contribute to the regulation of inflammatory signaling for innate immune responses 
[18, 56] (Fig. 3.1). DNA methylation occurs in several regions, including intragenic, 
intergenic, and promoters with CpG islands in mammals [57]. Methylation of pro-
moters leads to gene expression silencing, while methylation of intragenic regions 
can result in alternative transcripts and expression, which may lead to tissue- and 
cell-specific changes [57]. DNA methylation of CpG islands impacts negative regu-
lation of gene expression. Previous research has reported that the switching of M1 
and M2 phenotypes occurs by inactivating state-specific signature genes through 
DNA methylation of CpG islands in gene promoters. The influence of global meth-
ylation on gene expression in macrophages is evidenced by numerous hypomethyl-
ated regions in intragenic and intergenic regions in genes [58]. DNA methylation is 
a heritable DNA modification, which refers to the addition of a methyl group to 
5-cytosine (C) to DNA catalyzed by DNA methyltransferase, such as DNMT3a and 
DNMT3b, to form 5-methylcytosine (5mC). DNA methylation, which is a tran-
scriptional repression mark, plays an important role in many biological processes, 
such as development, tumorigenesis, and immune responses [34]. In Dnmt1 and 
Dnmt3a double knockout (DKO) neurons, upregulation of MHC class I gene and 

3  Emerging Roles for Epigenetic Programming in the Control of Inflammatory…



70

transcription factor signal transducer and activator of transcription 1 (STAT1) was 
found to subsequently lead to the expression of ISGs that are known to contribute to 
synaptic plasticity, and this regulation was associated with a significant decrease in 
DNA methylation, indicating that ISGs are potential targets of DNMTs [59]. 
Hypermethylation of the suppressor of cytokine signaling 1 (SOSC1) promoter 
under DNMT1 silencing causes overproduction of the proinflammatory cytokines 
TNF- and IL-6 during lipopolysaccharide (LPS)-induced activation of macrophages 
[60]. DNMT3b expression was also significantly elevated in isolated tissue resident 
macrophages, specifically adipose tissue macrophages from ob/ob mice. In obesity, 
elevated saturated fatty acids enhance DNMT3b expression, leading to DNA meth-
ylation of CpG sites on the peroxisome proliferator-activated receptor γ1(PPARγ1) 
promoter, a key transcriptional factor that regulates adipose tissue macrophage 
polarization, inflammation, and insulin resistance [61]. Genome-wide DNA meth-
ylation sequencing with isolated tissue macrophages and endothelial cells from 
ischemic muscle of hyperlipidemic and type 2 diabetes mellitus mice demonstrated 
significant promoter hypomethylation of genes typical of active proinflammatory 
M1 macrophage gene promoters, including Cfb, Serping1, and Tnfsf15, and simul-
taneous hypermethylation of anti-inflammatory, alternatively activated M2-Mϕ 
gene promoters, including Nrp1, Cxcr4, Plxnd1, Arg1, Cdk18, and Fes. This alter-
native activation skewed macrophage phenotypes toward M1 lineage [62].

Epigenetic modifications triggered by environmental factors are an important 
mechanism that leads to altered gene expression. DNA methylation has an impor-
tant role in the regulation of inflammatory signaling, while aberrations in DNA 
methylation are involved in autoimmune and inflammatory diseases. Periodontitis is 
a common chronic inflammatory disease that poses significant global health and 
financial burdens; the initiation and maintenance of chronic inflammatory periodon-
titis occurs through a complex microbial biofilm in which the predominant patho-
gen is Porphyromonas gingivalis [63]. TLRs play an important role in periodontitis 
by recognizing Porphyromonas gingivalis pathogens and maintaining tissue homeo-
stasis [64]. In an analysis of the TLR2 promoter CpG island, increased DNA meth-
ylation was observed in the gingiva of mice infected with P. gingivalis in a 
periodontitis oral gavage model. Infection was correlated with higher CpG methyla-
tion in dysregulated gingiva. Furthermore, tissues obtained from periodontitis 
patients also exhibited differential TLR2 promoter methylation through bisulfite 
DNA sequencing analysis. TLR2 promoter DNA methylation creates innate immune 
dysbiosis [65, 66]. DNMTs may also affect innate immune signaling.

3.4  �Histone Methylation and Innate Immune Cell Responses

Increasingly, studies have indicated that histone methylation has an important role 
in the regulation of inflammatory triggered immune responses by controlling the 
transcriptional regulation of target-related genes [67]. Several histone 
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methyltransferases (HMTs) and demethylases have been listed as key regulators 
that control the innate immune response genes, which include transcription factors, 
cytokines, chemokine, IFNs, and encoding enzymes [68]. H3 histone-lysine 4 tri-
methylation (H3K4me3), a modification localized to the transcription start site of 
active genes, is controlled by mixed lineage leukemia (MLL) enzymes. MLL con-
tains a central zinc finger domain homologous to that of the Drosophila protein tri-
thorax (Trx) with transactivation activity and a carboxyl terminal SET domain 
homologous to regions of the suppression of variegation 3–9 [Su(var)3–9], enhancer 
of zeste [E(z)], and trithorax Drosophila proteins. Trx and E(z) are encoded by 
members of the trx and Polycomb groups (trx-G and Pc-G) of developmental regu-
latory genes, respectively [69–71]. SET and MLL proteins have been associated 
with a wide variety of diseases [72–75]. MLL4 (the mouse ortholog is Wbp7) has a 
key role in the innate immune response. Wbp7 is required for robust activation of 
pathogen-mediated gene responses. Severe response defects were observed in 
Wbp7-deficient macrophages after LPS challenge, resulting in dysregulation of a 
very specific subset of genes, such as Pigp. The H3K4me3 levels of phosphati-
dylinositol-glycan biosynthesis class P protein (PIGP) were directly downregulated 
by Wbp7 depletion. PIGP regulates the glycosylphosphatidylinositol (GPI)-anchor 
synthesis pathway, which directs CD14 to the extracellular membrane. Membrane-
tethered CD14 serves as an important accessory receptor for TLR4 and is critical for 
innate immune responses [76]. Nuclear translocation of another H3K4 methyltrans-
ferase, MLL1 (also known as KMT2A), to chromatin was found to function in 
innate immunity by selectively regulating the activation of genes downstream of 
NF-κB-mediated genes, such as interleukin-6 (IL-6) by tumor necrosis factor-α 
(TNF-α) and LPS. [77]. Ash1l with a SET (Su[var]3–9, E[z] and trithorax) domain, 
a H3K4 methyltransferase, suppressed IL-6 and TNF-α production in TLR-triggered 
macrophages, protecting mice from sepsis. The mechanism involved Ash1l promot-
ing A20 (Tnfaip3) expression by increasing H3K4 methylation at the Tnfaip3 pro-
moter that in turn facilitates A20-mediated deubiquitination of NF-κB signaling 
pathways and the production of proinflammatory cytokines. Ash1l-deficient mice 
were more susceptible to sepsis with Escherichia coli challenge. Ash11-deficient 
mice also had increased susceptibility to collagen-II-induced arthritis, and com-
pared with wild-type mice, more Ash11-deficient mice suffered from spontaneous 
systemic autoimmune disease [78]. In addition, Polycomb group (PcG) proteins 
mediate gene silencing and repress transdifferentiation in a manner dependent on 
histone H3 lysine 27 trimethylation (H3K27me3). JmjC-domain protein Jmjd3 
(also known as KDM6B) is a H3K27me3 demethylase expressed in macrophages; 
Jmjd3 binds PcG target genes and regulates their H3K27me3 levels and transcrip-
tional activity. Research has shown that macrophage terminal differentiation is asso-
ciated with a sharp drop in Jmjd3 occupancy of both HoxA7 and HoxA11, which 
correlated with an increase in H3K27me3 levels and gene inactivation. As an induc-
ible enzyme, Jmjd3 erases a histone mark that controls differentiation and cell iden-
tity, which provides a link between inflammation and reprogramming of the 
epigenome [79]. In previous experiments, interleukin-4 (IL-4) treatment led to 
upregulated Jmjd3 expression and decreased H3K27me3 at the promoter of M2 
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marker genes, such as Ym1 (Chi3l3), FIZZ1 (Retnla), and Arginase 1 (Arg1), and a 
concomitant increase in Jmjd3 expression. IL-4 stimulation leads to increased acti-
vated transcription factor STAT6 and binds to consensus sites at the Jmjd3 pro-
moter. Increased Jmjd3 contributes to the decrease in H3K27 dimethylation and 
trimethylation (H3K27me2/3) marks, as well as the transcriptional activation of 
specific M2 marker genes [80]. A later study also identified interferon-regulatory 
factor 4 (IRF4) as a key transcription factor that controls M2 macrophage polariza-
tion. Jmjd3-mediated H3K27 demethylation is crucial for regulating M2 macro-
phage polarization, and TLRs mediated innate immune responses against helminth 
infection by regulating the expression of Irf4 [79, 81]. In this study, Jmjd3 is 
recruited to transcription start sites with RNA polymerase II complex to bind Jmjd3 
to target genes by the presence of the activation marker H3K4me3; this action is a 
H3K27 demethylation-independent mechanism. This finding indicates that histone 
methylation state exchange in H3K4 and H3K27 methylation can be an important 
epigenetic process for the control of innate immune response genes [81]. The his-
tone-lysine N-methyltransferase, enhancer of zeste homologue 1 (EZH1), is another 
H3K27 methyltransferase. Ezh1 was the most upregulated HMT during DC matura-
tion, and silencing of Ezh1 significantly reduced TLR-triggered production of cyto-
kines, including IL-6, TNF-α, and IFN-β, in DCs and macrophages by suppressing 
the TLR negative regulator Toll-interacting protein (TOLLIP); the regulation mech-
anism directly targeted the proximal promoter of tollip and maintained the high 
level of H3K27 methylation for repression [82]. Furthermore, the H3K9 methyl-
transferase G9A (also known as EHMT2) with SET domain-containing histone-
lysine methyltransferase (HKMT), is crucial for the negative regulation of IFN and 
ISG for antiviral responses, genetic ablation, or pharmacological inactivation of 
lysine methyltransferase G9a, which is essential for the generation of H3K9me2, 
which resulted in highly potent IFN-producing cells and rendered these cells resis-
tant to pathogenic RNA viruses [83]. Interestingly, recent data show that methyl-
transferase Setdb2 was the only protein lysine methyltransferase induced during 
infection with influenza virus and repressed the expression of CXC-chemokine 
ligand 1 (Cxcl1), coinciding with occupancy by Setdb2 at the Cxcl1 promoter, 
which displayed diminished trimethylation of histone H3 Lys9 (H3K9me3) in 
setdb2 genetrap mice. Mice with a hypomorphic gene trap construct of Setdb2 
exhibited increased infiltration of neutrophils during sterile lung inflammation and 
were less sensitive to bacterial superinfection after infection with influenza virus. 
This finding indicated cross talk between virus-induced susceptibility and bacterial 
superinfections [84]. TET2, an enzyme that modifies the DNA base methylcytosine 
to 5-hydroxymethylcytosine (5HMC), is upregulated in macrophages after LPS 
stimulation, and TET2 and TET2-induced 5HMC have a feedback loop to prevent 
persistently high transcription of IL-6 during an innate immune response. In a previ-
ous study, the authors found that IkBζ targets TET2 to the IL-6 promoter to indi-
rectly recruit HDAC2, which deacetylates H3 and H4 histones and suppresses 
transcription [85]. Another recent study provides a unique glimpse of yet another 
aspect of coordinated DNA methylation and protein acetylation in the host response 
to pathogenic stimuli. Dnmt3a selectively impaired the production of type I 
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interferons triggered by PRRs through an epigenetic mechanism by maintaining 
high expression of HDAC9. HDAC9 directly maintained the deacetylation status of 
the key PRR signaling molecule TBK1 and enhanced its kinase activity. 
Understanding how the complex coordination between methyltransferases and his-
tones impacts signaling intermediates and transcriptional regulators at different lev-
els of gene expression is necessary [86]. Overall, these findings indicated that 
epigenetic modification enzymes are recruited by multi-protein transcriptional com-
plexes or corepressors with histone markers to target gene promoters, where they 
either directly or indirectly coordinate with DNA or histone modification for tran-
scriptional regulation control.

3.5  �Histone Acetylation, Deacetylation, and Innate Immune 
Cell Responses

The regulation of histone acetylation and deacetylation, which are essential pro-
cesses for gene regulation, is controlled by HDACs and HATs [87]. HATs are 
enzymes that transfer acetyl groups to core histones, which have subsequent effects 
on chromatin remodeling and gene expression. HATs have the two following fami-
lies [88]: (1) p300/CBP, Taf1, and nuclear receptor coactivators that also possess 
catalytic acetyltransferase activities and (2) Gcn5 N-acetyltransferases (GNATs) 
and Morf, Ybf2, Sas2, and Tip60 HATs. HATs are involved in initiating gene expres-
sion in macrophages during inflammation [89, 90]. However, we only understand 
global histone acetylation and its role in regulating gene expression. HATs may also 
interact with the opposing HDAC enzymes to enhance acetylation and eventually 
activation of antiviral gene promoters. HATs p300/CBP were recruited to the inac-
tive IFN promoter upon transcription factor interferon regulator factor 5 (IRF5) 
phosphorylation and displaced the SMRT/Sin3a repressive complexes. IRF5 is sub-
sequently acetylated by p300/CBP, facilitating H3 histone acetylation of target 
genes, histone phosphorylation by MAPK cascades, and recruitment of HATs p300/
CBP by signaling transcription factors such as NF-κB and STATs, but little is known 
about how TLR-induced signals are propagated to chromatin and histones, includ-
ing TNF-α and IL-6 [54]. A limited number of reports have shown that HATs cata-
lyze GNATs and Morf, Ybf2, Sas2, and Tip60 HATs in the regulation of the 
expression of specific M1- or M2-associated genes.

The enzymes that oppose HAT functions are HDACs. Histone deacetylation is a 
dynamic process and may be the result of other posttranslational modifications. 
HDAC functions may induce further epigenetic changes and alternative gene 
expression. Eighteen mammalian HDACs have been identified, which are classified 
into the five following groups: class I (HDAC1, HDAC2, HDAC3, and HDAC8), 
class IIa (HDAC4, HDAC5, HDAC7, and HDAC9), class IIb (HDAC6 and 
HDAC10), and class III (consists of the NAD + −dependent HDACs) and HDAC11, 
which constitutes a class of its own [118]. The effects of HDACs during macro-
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phage activation include HDAC sirtuin 6 repressing the transcription of NF-κB tar-
get genes through binding to NF-κB p65 and deacetylating H3K9 at the regulated 
gene promoters [91]. In addition, promyelocytic leukemia zinc finger (PLZF) pro-
tein, also known as Zbtb16 or Zfp145, suppressed the expression levels of inflam-
matory cytokines IL-6 and IL-12p40 by forming a corepressor complex that has 
HDAC activity to modify chromatin in a subset of transcription factor NF-κB regu-
latory elements [40, 92]. Using small-molecule inhibitors of HDAC classes I and II 
in several macrophage populations results in reduced levels of TLR receptors, cyto-
kines, and chemokines. These inhibitors also impact cellular processes, such as che-
motaxis, phagocytosis, apoptosis, and cellular metabolism [30, 55–57]. Inhibition 
of HDACs may also be beneficial in a complex inflammatory environment due to 
interactions between macrophage populations and other resident cells that occur for 
host defense. For example, HDAC inhibition rescued oligodendrocytes during trau-
matic brain injury via induction of the M2 phenotype in resident microglia [59]. 
There are many probable explanations for the HDAC class I and II effects on mac-
rophage activation status. It has been reported that HDAC inhibition increase the 
recruitment of the repressive complex to the promoters of M1 activation state genes 
like IL-6 [55]. Another possibility is that these effects are a result of the decline in 
PU.1 levels in macrophages treated with TSA; PU.1 transcription factor is known to 
be important for the transcriptional control of macrophage development and func-
tion [60, 61]. Interestingly, Serrat et  al. proposed that TSA induces acetylation-
mediated repression of C/EBP, which binds with lower efficiency to the Arg1 
promoter in macrophages [62]. A more comprehensive review of HDACs can be 
found in this book by Bandar Suliman.

3.6  �Noncoding RNA and Innate Immune Responses

3.6.1  �miRNAs

miRNAs are small noncoding RNAs of ~22 nucleotides in length that are produced 
by two RNases – Drosha and Dicer. The main function of miRNAs is RNA silenc-
ing by targeting protein coding transcripts. miRNAs regulate TLR signaling path-
ways at several levels, including regulation of TLR expression, TLR-associated 
signaling proteins and regulatory molecules, and TLR-induced transcription factors 
and functional cytokines [93, 94]. Therefore, miRNAs greatly contribute to inflam-
matory signaling and have been extensively studied. A comprehensive review of 
miRNAs can be found in this book by Claire McCoy.
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3.6.2  �lncRNAs

Thousands of lncRNAs have been discovered by high-throughput transcriptome 
sequencing [95, 96]. lncRNAs interact with small RNAs and RNA-binding protein 
and play important roles in controlling chromatin structure, gene expression, and 
mRNA translation via posttranscriptional mechanisms targeting splicing and stabil-
ity [97]. Hundreds of lncRNAs are induced by innate immune activation through 
TLR ligation stimulation experiments. lnc-DC was expressed exclusively in DCs, 
which has been recently identified as a requirement of LPS-induced functional mat-
uration and activation of DCs [98]. lnc-DC directly bound to STAT3 in the cyto-
plasm, which promoted STAT3 phosphorylation on tyrosine-705 by interfering with 
STAT3 binding and dephosphorylation by SHP1, which regulates DC differentia-
tion. RNA-seq analysis revealed that 72 lincRNAs were significantly upregulated in 
mouse bone marrow-derived macrophages after treatment with bacterial lipoprotein 
Pam3CSK4 (TLR2) [99]. One of these lincRNAs, (lincRNA)-Cox2, was shown to 
act as a regulator of a MYD88- and NF-κB-mediated program in macrophages, and 
both activate and repress distinct subsets of proinflammatory genes. A later study 
showed that lincRNA-Cox2 is assembled into the SWI/SNF complex after TLR 
treatment in macrophages. The lincRNA-Cox2/SWI/SNF complex can modulate 
the assembly of transcription factor NF-κB subunits p65/p50 to the SWI/SNF com-
plex, leading to chromatin remodeling and transactivation of the late primary 
inflammatory response genes in response to microbial challenge [100]. lincRNA-
Cox2 is highly induced by multiple inflammatory triggers, such as TLR ligands 
(LPS) and Pam3CSK4 and microbial pathogens (Sendai virus and Listeria monocy-
togenes) [101]. Lethe, a functional pseudogene (Rps15a-ps4) lncRNA, is also 
highly inducible by TNF-α and IL-1β treatment. In addition, after treatment with an 
anti-inflammatory glucocorticoid receptor agonist, dexamethasone, Lethe expres-
sion is induced and impacts IL6, IL-8, and superoxide dismutase 2 (SOD2) expres-
sion levels through inhibiting transcription factor p65 (RelA) occupancy at its target 
gene promoter [102]. Furthermore, THRIL is another immunoregulatory lincRNA 
(TNF- and HNRNPL-related immunoregulatory lincRNA) that is induced by TNF 
stimulation in the human monocyte-like THP-1 cell line. THRIL was also differen-
tially expressed in response to Pam3CSK4 (TLR2). Knockdown of nine lincRNAs, 
including THRIL, led to impairment of IL-6 and/or TNF-α induction [103]. 
lincRNA-Tnfaip3 is also required for the transactivation of NF-κB-regulated inflam-
matory response genes after LPS treatment. lincRNA-Tnfaip3 physically interacts 
with the high-mobility group box 1 (Hmgb1), assembling a NF-κB/Hmgb1/lin-
cRNA-Tnfaip3 complex after LPS treatment. The resulting NF-κB/Hmgb1/
lincRNA-Tnfaip3 complex can modulate Hmgb1-associated histone modification 
[104]. More recently, lincRNA-EPS was found to be regulated in macrophages and 
impacted control of the expression of immune response genes from transcriptome 
profiles of macrophages in lincRNA-EPS-deficient mice. Additionally, a gain-of-
function study and rescue experiments indicated that lincRNA-EPS can function-
ally restrain inflammatory gene expression, which occurs through lincRNA-EPS 
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interacting with heterogeneous nuclear ribonucleoprotein L through a CANACA 
motif located in its 3′ end [105]. Overall, lncRNA was highlighted as an emerging 
and important regulator that controls gene expression in the innate immune cell 
response.

3.7  �Epigenetic and Innate Immune Cell Memory

The innate immune defense through macrophages is tightly controlled by timing 
and space. Macrophages have the ability to respond readily and balance inflamma-
tory signaling for the host defense against pathogens through the process of resis-
tance and tolerance [106]. Resistance will reduce pathogens, whereas tolerance will 
limit tissue damage. These processes achieve effective host protection [107]. More 
recent evidence has shown that macrophages display long-term changes in their 
functional programs after infection or vaccination, and those changes affect its 
responsiveness to cytokines and inflammatory mediators to eliminate infection 
upon secondary pathogen stimulation [108]. This finding revealed the existence of 
innate immune cell memory in addition to classical adaptive immune system mem-
ory. Emerging studies have shown that chromatin structure and epigenetic modifica-
tions play an essential role in the behavior of trained immunity and endotoxin 
tolerance for the macrophage memory phenotype [109].

Priming macrophages with an initial infection or vaccine challenge results in 
enhanced macrophage responsiveness to a secondary challenge [110, 111]. Mice 
lacking functional T and B lymphocytes are protected against reinfection with non-
lethal infection with Candida albicans in a monocyte-dependent manner, which 
lead to enhanced cytokine production both in vivo and in vitro. C. albicans and 
fungal cell wall β-glucans can induce functional reprogramming of monocytes 
[112]. This finding also applies to human monocytes treated with C. albicans, which 
increased the inflammatory response following subsequent stimulation. Monocyte 
training by β-glucans was associated with H3K4me3, which suggests the involve-
ment of epigenetic mechanisms in this phenomenon [112]. H3K4 methylation 
(H3K4me3) and H3K27 acetylation (H3K27ac) occupied the regulatory element, 
which is in the promoter during the first infection stimulus in some cases. Recent 
studies have termed regulatory elements latent enhancers; after stimulation, tran-
scription is terminated, and H3K4 methylation and H3K27 acetylation also 
disappear, but H3K4 methylation persists at latent enhancers and constitutes the 
basal level occupying the region for a faster and enhanced response until restimula-
tion [113, 114] (Fig.  3.2). In β-glucan-trained macrophage cells, we can see the 
alteration of glycolysis enzymes, which form a link between metabolism and 
inflammation, and more detail has shown that increased glycolysis and suppressed 
oxidative phosphorylation under sufficient oxygen supply occur through the Akt-
mTOR-HIF-1α pathway [115]. After training with C. albicans-derived β-glucan, 
macrophages regulated TNF-α, IL-6, and IL-18 under stable changes in H3K4me3, 
showing that both histone methylation and acetylation patterns change with envi-
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ronmental challenges, which is most likely the metabolic switch for macrophage 
training and activation [109, 115].

Endotoxin tolerance is another form of memory that contrasts with trained mac-
rophages; the underlying mechanism first involves stimulation with TLR4 ligands 
that causes the cell refractory state, which leads to tolerization from gene expression 
after restimulation [116]. Tolerized genes will be diminished, and non-tolerized 
genes will be increased or unchanged. This pattern reflects clinical situations such 
as sepsis in which patients enter a suppressed response state [117] (Fig. 3.2). The 
transcription active mark H3K4 methylation disappears after first stimulation, 
which is associated with the re-induction of tolerized inflammatory cytokines [19, 
118]. The contribution of DNA methylation changes to macrophage memory has 
also shown that high levels of TET2 in cells have the ability to demethylate DNA; 
we would like to explore the regulatory mechanism of macrophage functional plas-

Fig. 3.2  The figure represents innate immune memory with endotoxin tolerance and trained 
immunity after pathogen-associated molecular patterns (PAMPs) challenge; innate immune cell 
recognition of pattern recognition receptors (PRRs) leads to functional reprogramming of the cell. 
The model of trained immunity with β-glucan stimuli from Candida albicans leads to metabolic 
changes with increased glycolysis and suppressed oxidative phosphorylation that links epigenetic 
reprogramming to the innate immune response through histone modifications (methylation and 
acetylation). Subsequent PRR stimulation may cause decreased or increased responsiveness of 
these cells, which depends on the initial type of stimulus. Initial PRR stimulation leads to H3K4me3 
and H3K27Ac on the promoters of proinflammatory genes. In the endotoxin tolerance model, the 
removal of the stimulus causes the disappearance of H3K4me, and gene expression returns to basal 
levels. Following subsequent stimulus, some tolerized genes will lose H3K4me3 or H3K27Ac and 
will remain silent in response to a second stimulation (top figure). In the trained immunity model, 
proinflammatory genes will maintain enhancers marked with H3K4me1. Subsequent stimulus will 
lead transcription factors to bind to both the enhancers and the promoters of innate immune 
response genes and recruit a chromatin modifier complex, including histone acetyltransferase p300 
and elevated H3K4me3, for enhancing the expression of a subset trained genes (middle figure). On 
the other hand, some genes will prevent H3K4me3 and have less gene expression induction (bot-
tom figure)
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ticity that depends on stimuli and restimuli. DNMT3B affects the control of inflam-
matory signaling, which impacts macrophage polarized phenotypes for M1-like and 
M2-like states. Therefore, DNA methylation is another factor that contributes to 
macrophage memory [61, 119]. A recent study has indicated that environmental 
factors, such as circulating glucose levels and gut microflora, may alter innate 
immune responsiveness through modification of the epigenetic states of peripheral 
blood monocytes and resident tissue macrophages. Increasing expression levels of 
TLR1, TLR2, and TLR4 by high glucose through circulating glucose and insulin 
levels have acute effects on peripheral blood mononuclear cell (PBMC) receptor 
levels, indicating a direct impact on innate immune receptor expression [120]. High 
glucose drives epigenetic changes in monocytes that result in increased expression 
of proinflammatory stressors, promoting epigenetic changes and facilitated binding 
of transcription factor NF-κB subunits in monocytes that result in increased expres-
sion of the inflammatory cytokines IL-6 and TNF-α [121]. Under high-glucose con-
ditions, enhanced binding of NF-κB to its target genes occurs through epigenetic 
changes with reduced HDAC2 and increased HAT activity [122].

Tissue macrophages are also regulated by environmental cues, and this relation-
ship is evidenced by disease phenotypes, such as colitis models. There are correla-
tions between gut microbiota and the immune responsiveness of resident 
macrophages; in humans, alteration of commensal bacteria populations is associ-
ated with inflammatory bowel disease (IBD), and in mice, enhanced cellular 
responses to dextran sodium sulfate (DSS)-induced colitis are observed in germ-free 
mice [123]. Regarding the deletion of TLR2 in multidrug resistance gene (MDR1/
ABCB1) deficiency, TLR2/MDR1A double-knockout mice exhibited a fulminant 
pancolitis phenotype with early expansion of CD11b(+) myeloid cells and rapid 
changes in Th1 immune responses in the lamina propria during colitis models [124]. 
The double-knockout CD11b(+) myeloid cells expressed MD-2/TLR4 and hyper-
responded to LPS or nonpathogenic Escherichia coli with reactive oxygen species 
and caspase-1 activation and release of proinflammatory IL-1β, leading to pyropto-
sis. Compared with active ulcerative colitis (US) with no polymorphisms, active 
ulcerative colitis (UC) with TLR2-R753Q and MDR1-C3435T polymorphisms was 
associated with increased expression of caspase-1 protein and cell death in acutely 
inflamed tissues. The results demonstrate that the restricted TLR signaling network 
is important in maintaining healthy intestinal homeostasis [125]. Interestingly, 
“training” mouse or human hematopoietic progenitor cells by prior exposure of 
differentiated macrophages to a TLR2 agonist (“tolerance”) suppress inflammatory 
cytokine production but elevate reactive oxygen species. Soluble factors produced 
following the exposure of progenitor cells to a TLR2 agonist can also act in a para-
crine manner to influence the function of macrophages [126].
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3.8  �Epigenetics in Host Defense and Inflammatory Disease

The majority of disease-associated single nucleotide polymorphisms (SNPs) that 
were identified by genome-wide association studies (GWAS) are localized to regu-
latory regions of the genome, and less than 10% of SNPs are located in protein 
coding genes [127]. Regulatory regions of the genome, including regulatory ele-
ments of promoters, enhancers, and intergenic regions of the genome, are rich in 
miRNAs and lncRNAs [128]. Those genetic variations could affect the expression 
and/or function of RNAs and impact human diseases. Dysregulated expression of 
enhancers, miRNAs, and lncRNAs could lead to several immune-related diseases, 
such as diabetes, multiple sclerosis, and IBD [129]. The important, highly specific 
miR-150 was found in leukocytes and was upregulated in mucosal tissue of patients 
with IBD for both ulcerative colitis and Crohn’s disease and murine models of 
experimental colitis; this upregulation may represent a colitis-associated increase in 
mucosal leukocyte infiltration as opposed to representing pathophysiological rele-
vance. Investigations into miRNA function in IBD will continue to be challenging 
given the high rate of inflammatory cell infiltration related to fibrosis and turnover 
of epithelial cells [130]. An atherosclerosis-associated SNP located in the intron of 
lncRNA LINC00305 was recently identified by a search of the GWAS database. 
LINC00305 expression is enriched in atherosclerotic plaques and monocytes. 
Overexpression of LINC00305 promoted the expression of inflammation-associated 
genes in THP-1 cells and reduced the expression of contractile markers in co-
cultured human aortic smooth muscle cells [131]. Higher mRNA expression levels 
of DNMT1 and MBD2 were found in PBMCs from rheumatoid arthritis (RA) 
patients who had lower levels of global DNA methylation, which indicated that 
DNA hypomethylation results in overexpression of autoimmune-related genes that 
contribute to RA [132]. The current challenge is to define the functional role of 
these regulators (miRNA, IncRNA, and SNPs in regulatory elements in genomic 
DNA) in the context of disease pathophysiology. Recent use of promoter capture 
high-throughput chromosome conformation capture (Hi-C) will enable identifica-
tion of novel candidate genes and complex long-range interactions with related 
autoimmune risk loci. Long-range interactions between regulatory elements and 
gene promoters are uncharted and will provide us with a complete picture of the link 
to understand genome control [133]. A study has identified interacting regions of 
31,253 promoters in 17 human primary immune cell types. The data show that pro-
moter interactions are highly cell type specific and enriched for links between epi-
genetically marked enhancers and active promoters [134]. The power of primary 
cell promoter interactomes to reveal insights into genomic regulatory mechanisms 
and rich resources to connect noncoding disease variants with putative target pro-
moters can help us understand disease pathways and screen candidate genes. 
Genetic variants that affect gene expression can be identified using expression 
quantitative trait loci (eQTLs), which is a novel approach to analyzing regions of the 
genome containing DNA sequence variants that influence the expression level of 
one or more genes. This approach is crucial to addressing genes examined in the 
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context of human inflammatory diseases. Performing eQTL mapping and parallel 
analysis in multiple leukocyte subsets from patients with active disease provides 
new insights into the genetic basis of immune-mediated diseases [135]. Overall, the 
aberrant expression of miRNA, IncRNA, and SNPs in promoter or enhancers may 
play a causal role or could be the consequence of disease pathology, which requires 
further investigation.

3.9  �Respective of Innate Immunity in Epigenetics

NGS technology offers unique ways to profile genome-wide epigenetic changes, 
including genome methylation and histone modifications. Three-dimensional 
genome architecture reveals chromatin topology, including ChIA-PET (Chromatin 
Interaction Analysis by Paired-End Tag Sequencing), which was designed to detect 
genome-wide chromatin interactions mediated by specific protein factors [136], 
whereas Hi-C was developed to capture all chromatin contacts [137]. Hi-C has been 
proven effective for mapping large-scale structures, such as topologically associated 
domains [138, 139], based on the methods described in the previous sections [24]. 
Bioinformatics tools have been developed for the analysis of these NGS data to 
infer precise methylation changes, TF binding, and topological interactions. Publicly 
accessible databases have been established to enable researchers. We can use vari-
ous methods to conduct profiling and analysis but can still limit the investigations to 
conduct epigenetic analyses with bioinformatics data and tools [140–142]. 
Understanding epigenetics requires a systems biology approach with concern 
regarding the kinetics of various processes, such as methylation, chromatin modifi-
cations, topological reorganization, TF activation, gene transcription, translation, 
and cellular processes, that span a range of timescales from milliseconds to hours. 
To understand how to uncover causal information, we have to analyze the sequence 
of time points, which provides a dynamic perspective of epigenetic changes. 
Therefore, we can ultimately build directed networks that regulate homeostasis and 
disease stage. There have been several recent reports of integrative analyses involv-
ing epigenetics, transcription, and, in some cases, cellular signaling. For example, 
we used TLR-induced macrophages as a model and combined time series transcrip-
tomic profiling, cluster analysis, ChIP-seq, and network modeling to identify a 
prominent role of activating transcription factor 3(ATF3) in high-density lipoprotein-
mediated reprogramming of macrophages in anti-inflammatory signaling on TLR 
responses [143].

Systems models provide a powerful way to guide designs for perturbation exper-
iments, as well as therapeutic interventions. Existing methods used in epigenetics 
research, including NGS, are largely bulk assays, which provide global information 
averaged from a large number of cells. However, current approaches are moving to 
studies at the single-cell level. For example, by using the methyl-CpG-binding 
domain of methyl-CpG-binding domain protein 1 tagged with enhanced green fluo-
rescent protein, we can achieve single-cell visualization of methylated DNA [144], 
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and FRET-based sensors have been used for single-cell detection of histone acetyla-
tion states [145]. Chromatin is a recently developed technique, which is a quantita-
tive high-resolution imaging approach combining fluorescence in situ hybridization, 
immunostaining, and array tomography imaging that enables us to investigate chro-
matin organization in tissue specimens at the cellular level [146]. This excellent 
novel real-time imaging technology can be used in living cells with high sensitivity 
and specificity at locus-level resolution. The CRISPR (clustered regularly inter-
spaced short palindromic repeats) bacterial immune system and derived Cas9 pro-
tein have provided unprecedented opportunities for genomic editing by introducing 
sequence-specific gene mutations [146]. Although CRISPR/Cas9 represents a valu-
able way to manipulate both the cis and trans elements involved in epigenetics both 
in vitro and in vivo, researchers are still improving undesirable off-target mutations, 
the lack of tissue specificity, and the efficacy of in  vivo delivery, which will be 
expected in the future.

A growing understanding of how epigenetic mechanisms control gene expres-
sion patterns has highlighted the potential for targeting epigenetic mechanisms for 
the treatment of inflammation and related diseases [147]. Numerous HDAC inhibi-
tors have been investigated for their effects on innate immune responses to PAMP 
stimulation. For example, vorinostat has been shown to reduce inflammatory cyto-
kine production elicited both by LPS stimulation of human PBMCs and after LPS 
injection into mice [148, 149]; HDAC inhibitors have also been tested for their 
effects on human disease tissues, with studies primarily focusing on RA.  In this 
context, TSA, vorinostat, and sodium phenylbutyrate were all shown to inhibit cyto-
kine production by macrophages derived from the inflamed joints of patients with 
RA and cytokine production from RA synovial explants [150]. In addition, TSA and 
an HDAC3 inhibitor (MI192) were reported to inhibit IL-6 production from RA 
PBMCs stimulated with LPS [151]. Bromodomain and extraterminal (BET) pro-
teins recognized acetylated lysine residues in the histone tail, which can also con-
tribute to the transcription of inflammatory cytokine gene expression by forming a 
complex with positive transcription elongation factor-b and RNA polymerase II at 
the transcription start site [152, 153]. BRD-containing proteins bound to chromatin 
loci such as enhancers are often deregulated in disease, leading to aberrant expres-
sion of proinflammatory cytokines and growth-promoting genes. Recent develop-
ments targeting the BET subset of BRD proteins demonstrated remarkable efficacy 
in murine models, providing a compelling rationale for drug development and 
translation to the clinic [154]. Using I-BET (a synthetic compound) to inhibit 
inflammatory cytokine genes in macrophages after treatment LPS, the mechanism 
of this drug appears to comprise interfering with the binding of BET to acetylated 
histones, which can prevent inflammatory disorders [155, 156]. Jmjd3 could be 
another therapeutic target for inflammatory diseases. Indeed, a selective jumonji 
H3K27 demethylase (catalytic site inhibitor) [157], GSK-J4 (GlaxoSmithKline cor-
porate compound collection), was recently reported to inhibit LPS-induced produc-
tion of inflammatory cytokines in human macrophages from healthy volunteers.

Epigenetic research has had a profound impact on personalized medicine. 
Advances in NGS technology have enabled the sequencing of the human genome 
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within days with reduced cost. Collectively, DNA-, RNA-, and ChIP-seq data are 
anticipated to provide genetic and epigenetic information regarding inflammatory 
signaling at the homeostasis stage or inflammatory disease stage, which will allow 
us to understand how epigenetic mechanisms finely tune the outcome of host innate 
immune response and will also provide valuable information or guidance on human 
inflammatory disease etiology, diagnosis, treatment, and prognosis. The integration 
of NGS technology and data analysis by bioinformaticians and immunologists, 
using clinical information from physicians, will revolutionize translational 
medicine.
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Chapter 4
Roles of HDACs in the Responses of Innate 
Immune Cells and as Targets in Inflammatory 
Diseases

Yiqun Hu and Bandar Ali Suliman

Abstract  Histone deacetylases (HDACs) are an emerging class of molecules 
involved in the epigenetic regulation of innate immune responses through Toll-like 
receptor (TLR) and interferon (IFN) signaling pathways. HDACs are also key driv-
ers of inflammatory diseases via epigenetic regulation through chromatin DNA and 
histone modification by methylation and acetylation, among other mechanisms, 
which control innate immune cell gene expression. Importantly, these epigenetic 
changes are reversible, and HDACs may also be targeted by small-molecule HDAC 
inhibitors, which have been used in clinical settings for cancer therapy. Here, we 
highlight HDACs as strong therapeutic molecules and explore HDAC-induced 
mechanisms regulating innate immune responses and inflammatory cytokine con-
trol, with the goal of developing personalized medicine for the treatment of human 
diseases, including inflammatory diseases and immune disorders. Currently, this 
novel class of immunomodulatory therapeutics is being evaluated in the laboratory, 
in preclinical models, and in the clinic.
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4.1  �Introduction

4.1.1  �The Innate Immune System

The innate immune system is a unique collection of immune cells and tissues that 
share a common goal: the nonspecific identification of pathogens [1]. Most innate 
immune cells are present at birth and harbor genetically conserved molecular recep-
tors that are capable of identifying self from nonself molecules. These innate 
immune receptors are called pattern recognition receptors (PRRs) and are used by 
the immune system to recognize genetically conserved molecular structures, called 
pathogen-associated molecular patterns (PAMPs), which are shared by many 
microbial species. PAMP structures consist of combinations of lipid, sugar, protein, 
and nucleic acid sequences and constitute the outward-facing biological compo-
nents of viruses, bacteria, fungi, and parasites. One of the hallmarks of the innate 
immune response is speed. The innate immune response is initiated by the interac-
tion of PRRs with their ligands (i.e., PAMPs). Despite the molecular diversity of 
PAMPs in many microbial species, the immune responses initiated by innate 
immune cells are rapid and occur within seconds of successful recognition [2]. 
Receptor-ligand interactions are functionally translated into two distinct pathways: 
phagocytosis and the inflammatory response. Phagocytosis is the biological process 
by which professional innate immune cells, such as neutrophils, macrophages, and 
dendritic cells, engulf and destroy pathogenic molecules to extract specific protein 
structures called epitopes, which activate the adaptive arm of the immune system 
[3]. The inflammatory response, in contrast, consists of the production and subse-
quent release of regulatory chemical molecules aimed at orchestrating the functions 
of other immune cells [4].

This dependency of the adaptive immune response on the innate arm of the 
immune system demonstrates the crucial and important role of innate immune cells 
[5]. The human body requires this general and nonspecific immune response to 
achieve the full spectrum of adaptive immune recognition, either by supplying 
specific epitopes that are targeted by the adaptive immune system or by providing 
the necessary chemical modulators required for successful immune signaling.

4.2  �Inflammatory Response Signaling

The immune system represents one of the largest signaling networks in the human 
body. Intertwined signaling cascades provide protection via millions of cells that 
circulate in the human body and defend it not only against external microorganisms 
but also internal defective and cancerous cells. There is an immaculate harmony 
between the two arms of the immune system. The innate immune cells, which are 
responsible for initiating the adaptive immune response, control the development 
and differentiation of adaptive immune cells. They also participate in the positive 
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and negative regulation of the inflammatory response to fine-tune the involvement 
of different immune cells in the overall immunological reaction [6].

Many studies have investigated the inflammatory response and how each and 
every molecule plays a part in its execution. Innate immune cells such as macro-
phages, fibroblasts, and dendritic cells recognize pathogens and pathogenic epit-
opes and subsequently initiate complex immune signaling cascades by which they 
communicate their findings, the scope of the inflammatory reaction, and the exact 
level of the adaptive immune system response required to eliminate the threat [7]. 
To achieve such a delicate outcome, stimulated innate immune cells control both the 
spectrum and scope of the inflammatory reaction by controlling intermediary lipid 
molecules and enzymes that work together at the transcriptional level for each spe-
cific cell. Although many pathogenic molecules are recognized by the antigen-
presenting cells of the innate immune system, genetic signatures at the level of 
transcriptional regulation are commonly shared among those cells.

Cytokine production is the hallmark and the ultimate outcome of the innate 
immune response [8]. When a macrophage encounters a virus, bacterium, or other 
microorganism, it produces cytokines known as interleukins that instruct other 
immune cells. The responses of these stimulated cells are not only directed toward 
other immune cells but also toward many other cells and tissues with essential roles 
in the immune system response to combat the infection. Some of the chemical 
mediators produced by innate immune cells control adjacent endothelial cells to 
enhance permeability, allowing necessary proteins to escape the blood circulation 
[9]. Other inflammatory mediators act on vascular smooth muscle cells to promote 
vasodilation, causing an increase in blood flow and helping other immune cells to 
enter the site of inflammation.

4.3  �Transcriptional Regulation

Immune cells, like any other cell type, encompass a vast amount of DNA, which is 
tightly packed inside the nucleus. This DNA contains all genetic information needed 
by the cells to produce the necessary molecular structures for pathogenic identifica-
tion, the enzymes and proteins involved in signal transduction, and the actual che-
mokines and cytokines produced as a result of immune activation. The DNA is 
contained in the nucleus in the form of supercoiled antiparallel strands of nucleo-
tides wrapped around core histone proteins, ensuring the tight packing of DNA into 
structures called nucleosomes. Each nucleosome contains 146 base pairs of DNA 
wrapped twice around eight histone molecules, such as H2A, H2B, H3, and H4 [10]. 
This growing chain of nucleosomes along the DNA fiber forms the chromatin. The 
chromatin is maintained by the negative charge of the DNA strands together with 
the positive charge of the histone proteins, forming strong bonds that preserve the 
supercoiled structure. The arrangement of the DNA and histones closely regulates 
transcription by either allowing RNA polymerase complexes (the transcriptional 
machinery) to access the DNA strand to search for promoter regions or blocking 
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DNA access and thus precluding transcription. Euchromatin is the DNA state char-
acterized by loose packaging because the core histone H1 has not yet been added; 
in contrast, heterochromatin is the DNA state characterized by tight packaging after 
the addition of H1 [10, 11]. Although transcriptional regulation involves many bio-
logical processes, modification of the chromatin state remains one of the most influ-
ential methods [12–14]. Many studies have established a direct link between 
transcriptional activation and altered chromatin states. Such alterations along DNA 
strands range from the simple addition of methyl groups to specific arrangements of 
the cytosine pyrimidine rings [15].

4.4  �Histone Deacetylases (HDACs) and Transcriptional 
Regulation

The regulation of histone acetylation and deacetylation is controlled by enzymes, 
specifically HDACs and histone acetyltransferases (HATs), which are essential for 
gene regulation [16]. HATs are enzymes that transfer acetyl groups to core histones, 
with subsequent effects on chromatin remodeling and gene expression. HATs com-
prise two families [17]: (1) p300/CBP, Taf1, and nuclear receptor coactivators that 
also possess catalytic acetyltransferase activities and (2) Gcn5 N-acetyltransferases 
(GNATs) and Morf, Ybf2, Sas2, and Tip60 HATs. HATs are involved in initiating 
gene expression in macrophages during inflammation [18, 19]. HDACs are enzymes 
that oppose HAT functions and exert dynamic effects that may derive from other 
posttranslational modifications. HDAC functions potentially induce further epigen-
etic changes and alternative gene expression. Eighteen mammalian HDACs have 
been identified and classified into five groups: class I (HDAC1, HDAC2, HDAC3, 
and HDAC8), class IIa (HDAC4, HDAC5, HDAC7, and HDAC9), class IIb (HDAC6 
and HDAC10), class III (consists of the NAD+-dependent HDACs), and HDAC11, 
which constitutes a class of its own (Fig. 4.1) [20]. A single DNA strand consists of 
a collection of histone molecules that bind to a long chain of nucleotides. The struc-
tural binding affinity used by histone molecules to control how tight the nucleotide 
chain is wrapped around them is dependent on the electrical charge difference 
between the phosphate groups in the DNA strand and the adjacent N-terminal tails 
of each histone molecule [21]. Since this electrical charge is manipulated by certain 
enzymes and chemicals, it is therefore possible to adjust the binding of histone 
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Fig. 4.1  Classification of 
the two common classes of 
HDACs
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molecules to the DNA strand in individual nucleosomes through the process of 
acetylation [22]. To maintain electrical balance, the addition of an acetyl group to 
lysine residues in histone molecules neutralizes their positive charge and thus 
relaxes their grip on the DNA strand, allowing the nucleosome to be accessed by the 
transcriptional machinery and all necessary transcription factors, ultimately upregu-
lating the transcription process and producing more mRNA transcripts. This process 
is very important for active genes for which the promoter regions are actively acces-
sible to the regulatory molecules required for transcription. Alternatively, removal 
of acetyl groups restores the positive charge of histone molecules, tightening their 
grip on the DNA strand and rendering the nucleosome inaccessible to the transcrip-
tional machinery. HDACs catalyze the removal of acetyl groups from histone mol-
ecules. Many cells harbor this powerful mechanism to regulate the expression of 
certain genes via specific, similar activities [23]. For example, the cell cycle, a uni-
versal biological process that is carried out by most cells in the human body, requires 
the availability and abundance of certain proteins in a specific time frame. To 
achieve this goal, cells employ different HDACs to alter the mRNA expression of 
genes of interest during different phases of the cell cycle [24].

Since the early days of experimental genetics, many scientists have performed 
experiments using Drosophila and Saccharomyces cerevisiae, which resulted in the 
discovery of a variety of biological activities that correlate with their human coun-
terparts [25]. Therefore, eukaryotic and human HDACs have been classified to rep-
resent structural homology and catalytic activity. Based on this system, HDACs in 
humans are classified as class I and class II. Class I HDACs have a closer relation-
ship with the transcriptional regulator RPD3 found in Saccharomyces cerevisiae, 
while class II HDACs share another domain that is more closely related to the 
HDAC1 protein in the same yeast [26]. Although this classification system has suc-
cessfully distinguished between closely related HDACs in mammals to date, the 
overall DNA sequence similarities between eukaryotic enzymes and their prokary-
otic counterparts are not sufficiently significant [27]. Eukaryotes are more complex 
and diverse, and therefore it is expected that different classes of enzymes have more 
prominent roles in specialized functions, such as cellular differentiation and basic 
developmental processes [28]. Consequently, some enzymes, such as class I 
HDACs, are found in almost all cells of the body, while class II HDACs are more 
restricted to a specialized set of cells [29]. In vivo experiments conducted in mouse 
models have shown that HDACs from both classes control the expression of specific 
subsets of DNA sequences in both a spatial and temporal manner. Thus, the func-
tional acetylation or deacetylation of only a subpopulation of histones is achieved 
through the function of members of class I and class II HDACs, either individually 
or collectively [30, 31].

A very simple representation of HDAC classes shows the members of both class 
I and class II HDACs. There are more subclasses for some members, such as 
HDAC9a and HDAC9b. For a detailed and in-depth differentiation of HDAC classes 
and isoforms, please consult the review by De Ruijter and his colleagues [32].
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4.5  �Role of HDACs in the Innate Immune System

The cells of the innate immune system are the most crucial line of defense against 
specific pathogenic invaders as well as cancer cells. Because of their importance in 
maintaining a healthy state, the regulatory mechanisms controlling the functions 
and cellular interactions within this system are among the most active areas of med-
ical research [33]. Cells of the innate immune system are controlled by several 
genetic and epigenetic mechanisms, in addition to external stimuli. This network of 
regulatory elements influences the overall inflammatory outcome and is essential 
for defining the epigenetic signatures of individual cells. For example, monozygotic 
twins may show variable susceptibility to pathological conditions, even while shar-
ing the same environment [34–36]. This finding supports the impact of epigenetic 
regulation in defining the scope and overall outcome of the inflammatory responses 
caused by different stimuli. Current studies are focused on HDAC regulation of 
TLR and type I IFN-mediated signaling pathways.

4.6  �HDAC Regulation of TLR-Mediated Signaling

TLRs comprise a very well-known group of genetically conserved receptors that are 
responsible for the identification of a wide range of pathogens. TLRs are found on 
the surfaces of many innate cells circulating in the bloodstream and are concen-
trated in various tissue types. Since their discovery in 2001, many molecular ligands 
have been identified for each specific TLR [7]. These ligands are molecular activa-
tors that are responsible for activating a particular TLR and initiating specific sig-
naling cascades to produce cytokines targeting the pathogen or microbe harboring 
the activating molecular pattern. Although the contributions of different molecules 
to the responses of innate cells to different ligands have been established, the actual 
mechanism underlying this type of regulation remains poorly understood.

As discussed earlier in this chapter, many inflammatory signals activate certain 
TLRs to produce a required cytokine profile. Cigarette smoking, for instance, 
increases the production of a mixed group of inflammatory mediators, including 
MCP-1, TNF-α, and IL-8, which are directly implicated in the development of the 
classical clinical features of chronic obstructive pulmonary disease (COPD) [37, 
38]. The continuous increase in the inflammatory signals that cause mucus accumu-
lation during destruction of the lung parenchyma and ultimately fibrosis and 
obstruction of the airways has recently been linked to both TLR2 and TLR4 activa-
tion [39]. Many of the downstream genes activated by both of these TLRs contain 
acetylation sites in their promoter regions that attract HDAC1 binding [40]. In 
another study, HDAC1 was successfully immunoprecipitated along with ATF-3 
from LPS-activated macrophages. ATF-3 is known for its function as a negative 
regulator of TLR4 activation that limits the production of IL-6 and IL-12 post-LPS 
treatment [41, 42]. The protein complex formed between ATF-3 and HDAC1 
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modifies histone structures and limits the accessibility of the transcriptional machin-
ery to the IL-6 and IL-12 promoters. HDAC2 forms regulatory complexes with 
multiple proteins, enabling it to regulate the transcriptional activities of various tar-
gets [43, 44]. HDAC2 binds MTA1, a known chromatin modifier implicated in 
nucleosome remodeling, to form a repressor complex targeting the MyD88 pro-
moter after TLR4 activation of macrophages. MyD88 is an adaptor protein that is 
responsible for transferring molecular signals from TLRs to a group of interacting 
proteins known as nuclear factor-kappa-B (NF-κB), which in turn exerts its effects 
on multiple genes to determine the scope and amplitude of the immune response 
and inflammatory reaction. HDAC3 was recently associated with the direct func-
tional inhibition of NF-κB.  Nuclear co-localization of HDAC3 with inhibitor of 
NF-κB-like (IKBL) was observed after TLR stimulation, resulting in a decrease in 
NF-κB activity [45]. Similarly, the transcriptional inhibitor PLZF recruits HDAC3 
to the promoter regions of many NF-κB target genes. These regions contain NF-κB-
binding motifs, allowing HDAC3 to modify chromatin and NF-κB to access these 
DNA regions, ultimately controlling transcriptional activity [46, 47].

Similar to other HDACs, HDAC6 is responsible for the recruitment of the 
MyD88-GyrB complex after TLR2 and TLR4 activation. HDAC6 negatively regu-
lates those TLR-activated pathways by inhibiting MyD88-TRAF6 formation and 
attenuating the resulting immune response [48]. HDAC7 is expressed at elevated 
levels in inflammatory macrophages (thioglycollate-elicited peritoneal macro-
phages) compared with its expression in bone marrow-derived macrophages and the 
RAW264 cell line. Overexpression of a specific, alternatively spliced isoform of 
HDAC7 lacking the N-terminal 22 amino acids promotes the LPS-inducible expres-
sion of HDAC-dependent genes (Edn1, IL-12p40, and IL-6) in RAW264 cells [49]. 
Such regulation is usually carried out by immune cells to limit the cytotoxic and 
destructive effects caused by strong stimulation of the signaling pathway under spe-
cific conditions [50, 51]. Although the exact effects of certain HDACs on various 
levels of immune signaling pathways have been dissected and elucidated, there is no 
clear understanding of how many HDACs control the final outcome of the immune 
response at the molecular level. For example, the effects of HDACs on the polariza-
tion and programming of CD4 T lymphocytes following TLR4 activation are not 
known. Both macrophages and dendritic cells are responsible for activating T lym-
phocytes to derive a specific adaptive immune response against certain pathogens. 
This activation may specify T-cell polarization: either Th1, which is pro-
inflammatory, or Th2, which is anti-inflammatory [52, 53]. Polarization requires the 
delicate temporal activation of certain mediators, such as CXCL9, CXCL10, IL-12, 
IL-15, and MCP-1, to skew the programming toward a certain phenotype. The inhi-
bition of HDAC activation and the subsequent modification of chromatin status 
change the molecular signatures of these mediators, leading to changes in the 
inflammatory environment [54].

Another example of how the modification of HDAC activity may influence the 
immune response against pathogens is seen in the ability of Candida albicans or 
Saccharomyces cerevisiae to regulate TLR1 and TLR6 downstream targets in the 
intestinal mucosa. Both of these fungal species are members of the normal 
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commensal flora residing in the healthy human intestine. They positively prime the 
innate immune response against pathogens through the production of IL-8, which 
exerts a favorable effect by protecting the mucosal surface from intestinal pathogens 
[55]. The inhibition of HDAC activity, however, causes a marked increase in IL-8, 
which disturbs the immune balance and leads to the destruction of the commensal 
flora, creating a niche for pathogenic and opportunistic species to cause further 
infections [56]. Similarly, chronic and persistent activation of MAP kinases causes 
articular chondrocyte hypertrophy through the direct stimulation of a group of cyto-
kines and chemokines that includes IL-8 and CXCL1 [57, 58]. Both of these cyto-
kines are upregulated through the induction of TLR1 and TLR6, which increase 
after treatment with butyric acid, a known class I HDAC inhibitor [59].

4.7  �HDAC Regulation of IFN-Mediated Signaling

When a virus infects a cell, the innate immune system employs a wide range of IFN 
molecules to prepare the surrounding tissues for viral invasion. During this viral 
invasion, innate immune cells respond in a general way to invading single-stranded 
or double-stranded DNA or RNA molecules. HDACs control this response by 
changing the genetic signature, either by amplifying or dampening the outcome. 
HDAC1 participates in the antiviral response by exerting its deacetylase activity to 
influence gene expression profiling. Its expression at both the transcriptional and 
translational levels is significantly reduced after influenza A viral infection. This 
decreased expression is accompanied by a decrease in the enzymatic activity of 
HDAC1 and subsequent downregulation of the expression of IFN-stimulated genes 
(ISGs) such as phosphorylated-STAT1 and IFITM3 [60]. Moreover, type I IFN 
stimulates the phosphorylation of STAT3, which in turn functions as a transcrip-
tional regulator for many ISGs. The transcriptional activity of STAT3 itself may be 
modulated by the acetylation of many lysine residues as a direct response to cyto-
kine stimulation [61, 62]. This cross talk between the regulation of STAT3 by IFN 
and the subsequent regulation of STAT3 by HDACs reveals the complicated regula-
tion of the transcriptional activity underlying a simple viral infection.

The endogenous protein expression levels of HDAC7 are constitutively main-
tained in cytotoxic T cells (CTLs). Continuous phosphorylation of HDAC7 is 
actively maintained by CTLs to guarantee the cytosolic accumulation of HDAC7 
[63]. Scientists investigating the cause of HDAC7 exclusion from the nucleus dis-
covered that activated CTLs control functional capacity through the genetic signa-
ture of many intrinsic pathways [64]. These pathways are the targets of HDAC7 
deacetylation [65]. Moreover, the expression of IFN-γ, which is an effector cytokine 
produced by CTLs in response to T-cell receptor activation, is hindered by the 
increased expression of nuclear HDAC7 [66] (Fig. 4.2).

The innate immune response is a rapid nonspecific response that is controlled by 
many molecules. HDACs play a crucial role in controlling the scope and amplitude 
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of the reaction, leading to the production of precise amounts of inflammatory cyto-
kines and interleukins.

4.8  �HDAC Regulation of Other Immune Mediators

To control infections and inflammatory reactions, the immune system not only mod-
ulates the functions of its own cells but also affects many functional and biological 
aspects of neighboring cells and tissues. Both HDAC1 and HDAC2 regulate the 
transcription of many genes that are important for cell junction integrity, the overall 
permeability of the intestinal epithelium and the amount of mucin produced by 
goblet cells. Both HDACs are also involved in limiting the phosphorylation of the 
transcription factor STAT3, a major regulator of the inflammatory reaction in the 
intestinal epithelium. The dysregulation of HDAC1 and HDAC2 functions not only 
to disrupt the physiological structure of the intestine but also to modify the micro-
bial environment through the effects of STAT3, causing major intestinal inflamma-
tory complications [67].

Earlier in this chapter, we described the cytokine profile following an innate 
immune response as a major force underlying the cellular response to different 
immunological stimuli. These cytokines are commonly expressed by many innate 
immune cells through the transcriptional activation of their respective genes by a 
transcription factor that is a key player in the immune reaction, NF-kB.  When 

Fig. 4.2  The most important innate immune functions modulated by HDACs
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NF-kB is activated, it binds to promoter regions containing specific kB motifs with 
downstream signaling targets. Both HDAC1 [68] and HDAC2 [69] control the acet-
ylation of the IL-6 promoter, which in turn controls the accessibility of the tran-
scriptional machinery to chromatin fibers when an immune cell, such as a 
macrophage, is instructed by internal signaling pathways that such a protein is 
needed [68]. IL-6 is a key pro-inflammatory cytokine responsible for the differentia-
tion of lymphocytes, monocytes, and B cells. It acts directly on fully mature B cells, 
T cells, hematopoietic progenitor cells, and many other tissues during inflammation 
[70]. Dysregulation of its expression during the immune response has been observed 
in many diseases, such as rheumatoid arthritis [71] and Kaposi’s sarcoma [72]. This 
type of regulation, which affects the immune response during later stages, is not the 
only way HDACs control immune reactions. HDAC3 deacetylates protein 65 of the 
NF-kB complex to downregulate the duration of its transcriptional response and its 
nuclear expression levels [73]. Conversely, HDAC2 is responsible for the deacety-
lation of class II transactivator, a transcription factor that regulates the expression of 
the MHC-II complex on the surface of antigen-presenting cells. MHC-II complexes 
are essential for the recognition and subsequent binding of pathogenic epitopes to 
innate immune receptors and professional antigen-presenting cells. The deregula-
tion of such proteins may affect the functional capacity of innate immune cells to 
execute their roles in the immune response [74].

4.9  �HDAC Inhibitors and Inflammatory Cytokines

HDAC inhibitors, abbreviated as HDACis, are a class of compounds that specifi-
cally target HDACs to functionally inactivate their enzymatic activity or action and 
therefore prevent histone deacetylation. The collective function of HDACis aug-
ments the buildup of nucleosomes with acetylated lysine residues in their core his-
tones, causing chromatin relaxation, attracting the transcriptional machinery, and 
promoting gene expression. The use of HDACis has been linked to the treatment of 
many tumors due to their ability to activate genes silenced by the oncogenic trans-
formation of targeted cells and tissues. Many cells in our body are in a constant state 
of equilibrium between transcriptional activation and inhibition. Cellular prolifera-
tion and DNA replication require numerous housekeeping genes that are similar 
among different tissue types. However, some specialized cells only require certain 
proteins for selected biological functions, such as inflammatory reactions, or precise 
amounts of certain proteins during a certain period of time. The ability to change the 
transcriptional signatures of immune cells is not without precedent [75]. Few stud-
ies have delineated the exact mechanisms employed by HDACis to alter the scope 
of inflammation [76]. Current studies evaluating anti-inflammatory treatments are 
focused on blocking the signaling pathways of common and nonspecific immuno-
regulatory proteins. Alternatively, HDACis usually target specific transcription fac-
tors or cytokines to control the amplitude of the inflammatory reaction. Several 
classes of HDACis have been reported to regulate cytokine expression and immuno-
logical effects (Table 4.1).
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Table 4.1  The functional effects of different HDACis on the activities of cytokines and immune 
cells

HDAC inhibitor Immunological effects Refs.

SAHA SAHA or vorinostat is a class I inhibitor that also inhibits 
HDAC5 by directly blocking substrate access to the catalytic site 
of the enzymes

[87, 88]

 � Inhibits the production of IL-6, TNF-α, IL-1-β, NO, and IFN-γ 
by macrophages in response to LPS stimulation in both mice 
and humans

 � Inhibits IFN-γ-dependent production of IL-18 and IL-12 by 
human PMNs

TSA TSA, or trichostatin A, is an antimicrobial gene that selectively 
inhibits class I and II HDACs through the removal of acetyl 
groups from core histones

[83]

 � Inhibits the activity of many TLRs, NODs, RIG-I, Mda-5, and 
C-type lectins, leading to diminished microbial sensing

 � Inhibits the activity of many immunoregulatory mediators 
involved in chemotaxis, inflammation, the cell cycle, and tissue 
repair

 � Inhibits the production of TNF-α, IL-6, and IL-12p40 by 
macrophages

LBH589 LBH589, or panobinostat, is a pan-HDAC inhibitor that was 
approved by the FDA as a treatment for patients with multiple 
myeloma

[89]

 � Inhibits the maturation and immunological activity of dendritic 
cells, which are required to activate inflammatory T cells and 
polarization

 � Inhibits the production of IL-12, IL-23, IL-6, IL-10, and TNF-α 
by activated dendritic cells

PXD-101 PDX-101, or belinostat, is a hydroxamic acid-type inhibitor that 
was approved by the FDA as a treatment for patients with 
peripheral T-cell lymphoma

[90]

 � Enhances plasma levels of specific cytokines, such as IL-6, in 
patients with solid tumors

MGCD0103 MGCD0103, or mocetinostat, is a selective class I and IV 
inhibitor that targets the programmed death ligand 1 (PD-L1) 
pathway (caspase cascade)

[91, 92]

 � Induces the cleavage and mitochondrial shuttling of Bax, 
which results in caspase-9-dependent activation

Sodium 
Butyrate

Sodium butyrate is a selective class I inhibitor that is naturally 
produced in the gut through the dietary consumption of legumes

[93–95]

 � Inhibits the IFN-γ-dependent transcriptional activation of 
NF-κB, which in turn diminishes the production of NO, iNOS, 
TNF-α, and IL-12p40

 � Inhibits the proliferation of T cells and the motility of 
macrophages in response to LPS stimulation

(continued)
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4.10  �HDACis and Inflammatory Disease

HDACis have been used to treat cancer in the clinic by functionally regulating anti-
proliferation, the cell cycle, and apoptosis through gene expression mechanisms. 
Recently, HDACis have been implemented as an exciting approach to treat inflam-
matory disease [77]. Additionally, two HDACis (TSA and SAHA) have shown 
promising results for the treatment of diabetes, which has a substantial inflamma-
tory component. TSA and SAHA suppress cytokines in pancreatic beta cells [78]. 

Table 4.1  (continued)

HDAC inhibitor Immunological effects Refs.

MS-275 MS-275, SNDX-275, or entinostat is a selective HDAC1 and 
HDAC3 inhibitor that is undergoing clinical trials for the 
treatment of Hodgkin’s lymphoma and breast cancer

[96, 97]

 � Downregulates CD1a, CD11c, and CD14 after IL-4 treatment, 
limiting the differentiation of monocytes into mature dendritic 
cells

 � Inhibits the functional activity of mature dendritic cells by 
decreasing their production of TNF-α, IL-6, and IL-12p40

 � Controls CD4+ T helper cell polarization through the 
downregulation of IL-13 and IL-4 expression and the 
upregulation of both CXCL10 and IL-12

FR276457 FR276457 is a selective class I inhibitor that exhibits inhibitory 
activity toward HDAC4

[98]

 � Inhibits T-cell proliferation and prevents the maturation of 
monocytes into functional macrophages

 � Prevents the differentiation of CD8+ cytotoxic T cells
Valproic acid Valproic acid, or Depakene, is a class I inhibitor that was 

approved by the FDA due to its ability to promote the 
differentiation of hematopoietic progenitor cells and leukemic 
blasts

[99, 100]

 � Inhibits the production of TNF-α and IL-6 in response to LPS 
stimulation through modulation of the p50 protein subunit that 
targets NF-κB activity

LAQ824 LAQ824, or dacinostat, is a pan class I and II inhibitor [54]
 � Inhibits CD4+ T helper polarization by controlling IL-12, 

IL-15, CXCL9, and CXCL10 expression by macrophages and 
dendritic cells

ITF2357 ITF2357, or givinostat, is a selective class I and II inhibitor [101, 
102]

 � Inhibits TNFα, IL-12, IL-1α, IL-1β, and IFN-γ production by 
PMNs in response to LPS stimulation

HDACis are a class of biological compounds that limit the activity of histone acetylation, leading 
to transcriptionally active chromatin. HDACis modulate the inflammatory response by regulating 
many cytokines and inflammatory mediators
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Trichostatin A (TSA) also reduces spinal cord inflammation, demyelination, and 
neuronal and axonal loss and ameliorates disability during the relapsing phase of 
experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis 
(MS) [79]. The anti-inflammatory activity of inhibitors targeting HDAC1, such as 
NW-21 and MS-275, reduces the expression of monocyte chemotactic protein 1 
(MCP-1), TNF-α, macrophage inflammatory protein 1α (MIP-1α), IL-1, and 
RANTES in human monocytes stimulated with either TNF-α or lipopolysaccharide 
for 24 h in vitro. Such inhibitors also reduce inflammation and bone loss in a model 
of arthritis [80]. As shown in animal models, HDACis may exert beneficial effects 
on colitis by boosting levels of Foxp3+ (forkhead box P3+) T-regulatory cells that 
dampen inflammation and may also have a potential role in the treatment of inflam-
matory bowel diseases (IBDs) [81]. Treatment with the HDACi SAHA improved 
survival by decreasing levels of the pro-inflammatory cytokine IL-6 and increasing 
levels of the anti-inflammatory cytokine IL-10  in an LPS-induced septic shock 
mouse model [82]. HDACis also impact host defenses against bacterial infections 
by reducing the levels of cytokines, chemokines, and, more importantly, microbial 
sensing molecules (c-type lectins, adhesion molecules) in the innate immune 
response to TLR treatment [83, 84]. The treatment of murine macrophages with the 
HDACis TSA or VPA resulted in the reduced killing of E. coli and S. aureus by 
impairing phagocytosis and reactive oxygen and nitrogen species generation [84].

Macrophage activation is tightly controlled by the reversible acetylation and 
deacetylation of histones, and the application of HDACis demonstrates therapeutic 
effects in animal models of chronic inflammatory disease, depressed macrophage 
HDAC activity in patients with asthma, chronic obstructive pulmonary (COPD) dis-
ease, and inflammatory-mediated rheumatoid arthritis (RA), potentially supporting 
the administration of therapeutic HDACis [85]. Some studies have directly exam-
ined the effects of HDACis on the activation of macrophages derived from the 
inflamed joints of patients with RA. The inhibition of class I/II HDACs or class III 
sirtuin HDACs potently blocked the production of IL-6 and TNF-a by macrophages 
from healthy donors and patients with RA [85]. Two HDACis, trichostatin A (TSA) 
and nicotinamide, selectively induced macrophage apoptosis by regulating the anti-
apoptotic protein Bfl-1/A1, and inflammatory stimuli increased the sensitivity of 
macrophages to HDACi-induced apoptosis. Importantly, inflammatory cytokine 
and angiogenic factor induction in RA synovial biopsy explants were also sup-
pressed by HDACis. Although studies have identified important roles for class I/II 
and sirtuin HDACs in promoting inflammation, angiogenesis, and cell survival in 
RA, potentially revealing some redundancy between class I and II HDACs, their 
therapeutic effects must be assessed.
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4.11  �HDACs and HDACis in Homeostasis and Inflammatory 
Diseases

Due to the dynamic nature of epigenetic programming, inflammatory signaling 
events may be reversed by targeting distinct epigenetic enzymes, including HDACs. 
To gain a better understanding of the roles of specific HDACs in inflammatory dis-
ease, we must define the molecular and biological consequences of HDAC inhibi-
tion. Although HDACis have been used for clinical trials in cancer, the effects of 
HDACis on immune regulation are also promising, and these compounds may be 
applied to treat inflammatory diseases in the future [77]. Various HDACi molecules 
define specific immune response signaling cascades in different disease models, 
from acute to chronic inflammation [86]. HDACi molecules primarily block the 
transcription of key inflammatory modulators to control the full capacity of the 
inflammatory response after TLR and IFN signaling. The inhibitory effects of 
HDACis prevent the activation and differentiation of many effector cells, including 
DCs and macrophages. Some pro-inflammatory cytokines, including TNF-α, IL-6, 
and IL-12p40, are suppressed by HDACi application. HDACi treatment also 
enhances the IFN-activated cascade via ISG induction to establish an antiviral state. 
This phenomenon reveals the potential anti-inflammatory functions of HDACi 
agents to control the inflammatory signals produced by M1 macrophages in a vari-
ety of inflammatory disease models, in addition to their antiviral potential. The suc-
cessful therapeutic use of HDACi molecules, however, still requires much work 
given the lack of knowledge regarding the distinct HDACi targeting of pro-
inflammatory cytokines or chemokines. Future HDACi therapeutic approaches 
should focus on the fundamental biological mechanisms underlying the HDACi-
mediated inhibition of pro-inflammatory mediators, how to use current sequence 
and structural information to develop novel HDACi molecules capable of targeting 
certain HDAC enzymes, and elucidating the regulatory cross talk between HDACis 
that affects the same class of HDACs. It will also be important to enhance the stra-
tegic use of HDACis in combination with biomarkers to assess the response and 
resistance to an HDACi treatment to demonstrate its effectiveness and rational clini-
cal application.
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Chapter 5
miR-155 Dysregulation and Therapeutic 
Intervention in Multiple Sclerosis

Claire E. McCoy

Abstract  microRNAs play a fundamental role in the immune system. One particu-
lar microRNA, miR-155 plays a critical role in hematopoietic cell development and 
tightly regulates innate and adaptive immune responses in response to infection. 
However, its dysregulation, more specifically its overexpression, is closely associ-
ated with various inflammatory disorders. The purpose of this review is to consoli-
date how miR-155 underpins a variety of processes that contribute to the pathology 
of multiple sclerosis (MS). In particular, the impact of miR-155 is discussed with 
respect to human pathology and animal models. How miR-155 contributes to the 
activation of pathogenic immune cells, the permeability of the blood-brain barrier, 
and neurodegeneration in relation to MS is described. Many environmental risk fac-
tors associated with MS susceptibility can cause upregulation of miR-155, while 
many of the current disease-modifying treatments may work by inhibiting miR-155. 
From this review, it is clear that miR-155 is a realistic and feasible diagnostic, prog-
nostic, and therapeutic target for the treatment of MS.
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5.1  �Introduction

microRNAs (miRNAs) play a fundamental role in cellular biology. They are critical 
modulators for a wide range of cellular processes including development, differen-
tiation, proliferation, metabolism, and apoptosis [2, 4]. miRNAs are small ~22 
nucleotide RNA sequences that regulate the expression of protein-coding mRNA 
sequences, often targeting multiple proteins within a particular network or pathway. 
miRNA targeting is achieved when they are guided to the 3′ untranslated region 
(UTR) of mRNA sequences, where partial or exact complementary base pairing of 
the miRNA results in degradation or translational inhibition of the target mRNA 
molecules. Each miRNA is predicted to bind to more than 200 mRNA target 
sequences, and as a result, overexpression and/or inhibition of a single miRNA can 
have a profound effect on cellular function [12, 127]. Major efforts have focused on 
understanding how miRNAs are induced in the cell, with an overall aim to uncover 
their specific mRNA target genes. In particular, attention is drawn to understanding 
which miRNAs or panels of miRNAs are dysregulated in disease. With this in mind, 
miRNAs are thus emerging as valuable therapeutic targets. Indeed, basic and applied 
miRNA research has already made a vast contribution in bench-to-bedside applica-
tion, where >10 miRNA inhibitors (antagomirs) are currently in clinical trials for 
the treatment of cancer, cardiovascular disease, and hepatitis C virus (HCV) infec-
tion [55].

Of significance, miRNAs are critical regulators of the immune system, and their 
dysregulation clearly impacts the pathogenesis of various inflammatory diseases 
[80, 81, 116]. One particular microRNA, miR-155, plays a remarkable role in the 
immune system [79]. In summary, it was first identified when the B-cell integration 
cluster (BIC) (the gene which encodes miR-155) was found to be highly overex-
pressed in B-cell-activated lymphomas [22, 52, 118]. Later studies illustrated that 
miR-155 was not restricted to B cells, and a large-scale sequencing study performed 
in 26 different organ systems identified that the expression of miR-155 is highly 
specific for hematopoietic cells [53]. Indeed, several groups noted that miR-155 is 
potently induced upon activation of both myeloid and lymphoid cells with hemato-
poietic origin and is critical for the functioning of a healthy immune response to 
infection [83, 97, 112, 113].

This was further corroborated when mice deficient in miR-155 displayed 
impaired dendritic cell (DC) and T- and B-cell responses, characterized by faulty 
antigen presentation, reduced pro-inflammatory cytokines, reduced serum antibody 
titers, and inappropriate class-switched immunoglobulins, when challenged with 
infection [97, 113, 121]. Whereas its transgenic overexpression in hematopoietic 
cells resulted in a myeloproliferative disorder characterized by the gross expansion 
of myeloid cells, while overexpression in B cells promoted the development of leu-
kemia and lymphoma in mice [15, 82]. Overall, this early data clearly indicates that 
miR-155 is essential for mounting an appropriate immune response to infection, yet 
its overexpression can contribute to immune-related disorders [84, 103, 120]. The 
purpose of this review is to consolidate the current literature with the aim to decode 
the impact of miR-155 dysregulation in the pathogenesis of multiple sclerosis (MS).
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5.2  �Multiple Sclerosis as an Inflammatory Disorder

Multiple sclerosis (MS) is the most common inflammatory disease to affect the 
central nervous system (CNS). It is a demyelinating disease in which the insulating 
myelin sheaths that surround nerve cells in the brain and spinal cord are damaged. 
Clinical manifestation is characterized by disturbances in sensory, motor, and cog-
nitive function, with symptoms of pain and fatigue, while the pathology is charac-
terized by lesions detected by magnetic resonance imaging (MRI) within the 
CNS. MS typically affects young adults where the average age of onset is 30 years 
old and affects two to three times more females than males [63, 92]. Its prevalence 
and incidence rate is increasing globally, especially in the northern hemisphere (140 
per 100,000) compared to the global prevalence (30 per 100,000) [63, 92]. As well 
as causing a major personal burden to young adults, diagnosis and treatment requires 
a highly integrated and complex multidisciplinary approach resulting in significant 
economic burdens.

Several subtypes of MS have been described and are important for understanding 
the prognosis and type of treatment decisions. Eighty-five percent of new diagnoses 
are relapsing-remitting MS (RRMS) which produces attacks followed by periods of 
remission that can last months or years. However, it usually tends to get worse over 
time and often progresses to a secondary progressive MS (SPMS) subtype which 
begins to decline without periods of remission. In primary progressive MS (PPMS), 
there is an initial attack with a steady decline in disability without any periods of 
remission [63].

Despite extensive research conducted worldwide, a cause for all subtypes of MS 
remains unknown but may possibly arise due to genetic predisposition and/or envi-
ronmental factors. With the advent of genome-wide association studies, 110 distinct 
genetic regions have been associated with MS [39]. However, only a handful of 
these gene variants such as human leukocyte antigen (HLA) class II genes (HLA-DQ, 
HLA-DR), IL-2RA, and IL-7RA have shown functional and correlative association 
with MS [32, 35, 73]. Environmental factors include a lack of vitamin D, human 
cytomegalovirus, and Epstein-Barr virus infection, and geographical latitude may 
have a role [5].

While the cause is not clear, the underlying mechanism is thought to be mediated 
by the immune system. Particularly in RRMS, it is extraordinarily conclusive that 
the symptoms and pathology of MS are due to an influx of immune cells crossing 
the blood-brain barrier (BBB) into the CNS. This immune cell infiltration results in 
chronic inflammation and the release of inflammatory cytokines and toxins that 
cause demyelination and neuroaxonal degeneration [21]. Considering the obvious 
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immunopathology of MS, it was a very natural progression that the impact of miR-
155 would be explored in MS.

5.3  �miR-155 in Human MS Samples

The first clear indication that miR-155 was dysregulated in MS came about when 
Meinl and colleagues isolated white matter lesions from paraffin and frozen multi-
ple sclerosis tissue samples. miR-155 was highly upregulated (11.9-fold) in active 
white matter lesions compared to healthy control white matter [45]. While another 
study demonstrated that miR-155 was increased in cerebral white matter juxtaposed 
to active lesions collected from a mixture of relapsing-remitting, primary progres-
sive, and secondary progressive patients [77]. Using laser capture microdissection, 
miR-155 expression was isolated from individual cell types, namely, myeloid-
derived macrophages, microglia, T/B lymphocytes, and astrocytes, suggesting that 
infiltrating immune cells as well as resident brain cells have the capacity to generate 
miR-155 ([45, [72]). Interestingly, miR-155 expression was also significantly 
increased in the neurovascular unit of active lesions from MS brain samples [59]. 
The neurovascular unit is a sub-anatomical region typically representative of blood-
brain barrier comprised of endothelial cells, astrocytes, and neurons and suggests 
that miR-155 expression is not solely restricted to hematopoietic cells.

Elevated miR-155 in peripheral blood mononuclear cells (PBMCs) isolated from 
MS patient blood samples has been confirmed in multiple studies [64, 86, 124]. The 
first of these demonstrated that compared to other miRNAs investigated, miR-155 
was remarkably upregulated (two- to threefold) in a cohort of patients with 
RRMS. Interestingly, the increase of miR-155, combined with miR-146a and miR-
142-3p, had an 88.0% specificity in predicting MS disease [124], while another 
study identified that a subset of (10/24) patients with RRMS had elevated miR-155 
expression [64]. Increased expression also correlated with increased IL-17, IFNγ, 
TNF, and IL-6 and suggests that miR-155 elevation may only occur when cells are 
in an inflammatory state. Enquiring further, certain studies have elucidated that 
miR-155 expression was specifically elevated in CD14+ monocytes when purified 
from PBMCs in a cohort of RRMS patients, while others have shown increased 
miR-155 in sera alone [72, 135].

From these studies, it is clearly evident that miR-155 is overexpressed in a range 
of human MS samples, yet many more questions remain. For example, what is the 
source of miR-155 upregulation in MS? Is its overexpression restricted to hemato-
poietic cells or do other cells play a role? Is it a consequence of inflammation or is 
it a trigger for the progression and pathology of MS? Can we realistically generate 
a feasible therapeutic for MS based on miR-155 targeting? Studies from animal 
models and in vitro studies have greatly contributed to our understanding and are 
discussed in the following sections.
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5.4  �miR-155 in MS Mouse Models

The experimental autoimmune encephalomyelitis (EAE) model is the most widely 
used experimental animal model for MS.  Although it is often criticized, it does 
resemble a model whereby peripheral activation of immune cells by a CNS-
originating peptide has the capacity to closely resemble the human MS disease. In 
this model, an emulsified CNS antigen, typically myelin basic protein (MBP) or 
myelin oligodendrocyte glycoprotein (MOG), is injected together with Freud’s 
adjuvant and pertussis toxin. The result is the activation and presentation of MBP or 
MOG by dendritic cells to CD4+ T cells in the lymph nodes, which together result 
in a massive infiltration of differentiated CD4+ T helper (Th1) and Th17 cells, B 
cells, CD8+ T cells, and innate immune cells infiltrating the CNS, leading to inflam-
mation and tissue damage.

The impact of miR-155 was first implicated when mice deficient in miR-155 
were shown to be highly resistant to MOG35-55 peptide-induced EAE. miR-155−/− 
mice displayed a delayed onset, decreased disease severity and paralysis compared 
to wild-type mice [74, 79]. Brain histological analysis revealed less inflammation 
and less demyelination consistent with their reduced disease severity [74, 79]. The 
beneficial prognosis in miR-155−/− mice was primarily associated with reduced 
numbers of peripheral Th1 and Th17  in the spleen and lymph nodes, as well as 
reduced numbers in the CNS [76, 79]. When cultured ex vivo, Th1 and Th17 cells 
had decreased proliferative responses and reduced capabilities to produce IFNγ and 
IL-17 upon stimulation, suggesting that they are functionally defective. The pro-
gression of EAE was intrinsically linked to CD4+ T cells, because the adoptive 
transfer of miR-155+/+ CD4+ T cells into RAG1−/− recipients (which lack mature 
T/B lymphocytes) had a substantially more severe and accelerated disease course 
compared to mice receiving miR-155−/− CD4+ T cells [79]. Moreover, CNS-
isolated CD4+ T cells from EAE-induced rats could be reactivated to produce more 
miR-155 upon reexposure to MBP in vitro, suggesting that CD4+ T cells have the 
capacity to further increase miR-155 upon contact with reactive antigens [44]. 
These studies predict that overexpression of miR-155, typically observed in EAE 
models and human MS samples, acts to promote a Th1/Th17 phenotype.

The contribution of miR-155 in driving Th1 and Th17 responses was consoli-
dated when wild-type mice were treated with a locked nucleic acid (LNA)-miR-155 
oligonucleotide (herein called “antagomir”) which reduced the clinical manifesta-
tion of disease when administered before or during EAE induction [74, 135]. The 
antagomir resulted in diminished proliferation and reduced IFNγ and IL-17 secre-
tion in CD4+ T cells isolated from the CNS [74]. In contrast, the intravenous injec-
tion of a miR-155 mimic aggravated EAE disease severity caused by the prominent 
inflammatory infiltration and demyelination in the spinal cord [135]. Additionally, 
increased frequencies of Th1 and Th17 cells, along with increased IL-17 and IFNγ 
cytokine production, were observed in the spleen, lymph nodes, and CNS of miR-
155 mimic administered mice [135].
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Further studies have illustrated how miR-155 mechanistically regulates Th1 and 
Th17 differentiation and function. For example, O’Connell and colleagues illus-
trated that miR-155 targets the transcription factor Ets1, a well-established negative 
regulator of Th17 differentiation [37]. Consistently, miR-155−/− Th17 cells had 
elevated Ets1 expression and lacked the expression of cytokines essential for Th17 
differentiation. Namely, the Ets1/miR-155 axis was necessary for IL-23 responsive-
ness and was critical for normal expansion of Th17 cells in vivo and during induc-
tion of EAE [37]. Escobar and colleagues elegantly demonstrated that miR-155 can 
regulate the chromatin structure and epigenetic changes in Th17 cells [23]. By per-
forming transcriptome analysis, they identified Jarid2, an RNA-binding protein, 
was upregulated in miR-155−/− differentiated Th17 cells. An increase in Jarid2 
reprograms the epigenome of Th17 cells via H3K27 methylation and results in the 
silencing of specific genes (such as IL-22) that are required for Th17 differentiation 
[23]. Defects in Th17 differentiation and cytokine expression in the absence of miR-
155 could be partially restored by Jarid2 deletion [23]. Another study demonstrated 
that miR-155 could control Th1 and Th17 proliferation and tissue migration by 
directly repressing the enzyme heme oxygenase-1 (HO-1) [136]. HO-1 catalyzes 
the oxidation of heme to generate carbon monoxide, biliverdin, and iron products 
and is essential for mediating important anti-inflammatory and antioxidant effects. 
Thus, when miR-155−/− animals, typically resistant to EAE, were injected with the 
HO-1 inhibitor ZnPP, disease severity increased [136]. In another study, miR-
155-3p was found to be more highly expressed in CNS-isolated CD4+ T cells at the 
peak of EAE, rather than the typical miR-155-5p variant [75]. In fact, miR-155-3p 
was shown to drive the upregulation of Th17 marker genes Rora and IL17 compared 
to miR-155-5p and could specifically promote Th17 differentiation [75].

Altogether, it is particularly evident that miR-155 is critical for driving patho-
genic Th1 and Th17 responses, whereas its deletion and/or inhibition results in 
reduced proliferative, functional responsiveness, and migration into the CNS during 
EAE. This is extremely important considering Th1 and Th17 cells are key drivers of 
the human disease [31]. Yet, it must also be emphasized that the contribution of 
miR-155 in myeloid cells, B cells, or brain-resident cells has not been thoroughly 
investigated in the context of EAE or other types of MS models. This is intriguing 
considering miR-155 expression has shown to be specifically elevated in PBMCs 
and tissue-resident brain cells (microglia and astrocytes) from human MS patient 
samples. It is critical that we delve deeper into understanding cellular origins of 
miR-155 in a more thorough manner.

5.5  �miR-155 in Peripheral Immune Cells

Intensive research has focused on pathogenic CD4+ T cells as the key participants 
in the pathogenesis of MS. However from as early as 1990, it was demonstrated that 
up to 50% of the immune cells that infiltrate the CNS in the EAE model are in fact 
peripheral myeloid-derived monocytes and macrophages [38]. Importantly, the 

C.E. McCoy



117

depletion of myeloid cells has been shown to completely prevent EAE disease pro-
gression [115]. During the early phase of MS, infiltrated monocytes/macrophages 
are immediately activated to become M1 macrophages, releasing pro-inflammatory 
cytokines, reactive oxygen species, and toxic metabolites that cause irreversible 
damage to neurons within the CNS. In fact, M1 polarized macrophages show pro-
longed periods of apposition within MS lesions, releasing reactive oxygen and 
nitrogen species that were shown to be particularly toxic to neurons and their axons 
[38, 44, 76]. During the later phase of disease and during periods of remission, 
macrophages are less activated and present as M2 or alternatively activated, releas-
ing anti-inflammatory cytokines accompanied by inflammation resolution and tis-
sue repair [96, 131]. For example, selective depletion of M2 macrophages inhibits 
experimental remyelination, whereas the transfer or enhancement of M2-polarized 
macrophages suppresses EAE [6, 71, 117]. M2 macrophages have huge capacity in 
therapeutics; however the molecular mechanisms which drive M2 polarization 
remain largely unknown. Evidence from the literature suggests that the levels of 
miR-155 expression in monocytes/macrophages are intimately associated with M1/
M2 polarization states.

For example, miR-155 is potently induced by M1 agonists, namely, LPS, IFNγ, 
TNF, and GM-CSF [83, 84]. The transcription factors required for M1 polarization, 
such as NF-κB, AP-1, HIF1α, and most recently by us ETS2, required for the suste-
nance of an M1 phenotype are also absolutely essential for the transcriptional induc-
tion of miR-155 [7, 94]. HIF1α has been shown to bind to the miR-155 promoter 
and enhance its expression [7]. Interestingly, HIF1α plays a central role in the meta-
bolic reprogramming of macrophages, acting to promote glycolysis essential for the 
maintenance and functional responses required by M1 macrophages [50]. 
Overexpression of miR-155  in monocytes and macrophages has been shown to 
increase reactive oxygen species, pro-inflammatory cytokines, and cell surface 
markers CD80 and CD86 [72, 78, 123, 139]. Furthermore, miR-155 transfected 
monocytes can enhance T-cell proliferation and IFNγ production [72].

Mechanistically, miR-155 contributes to pro-inflammatory signaling cascades 
and effector functions in macrophages by inhibiting numerous targets (SHIP1, 
FADD, SOCS1, IKK, IL13R1, CEBPβ, and SMAD2), which collectively result in 
the upregulation of the pro-inflammatory cytokines and release of reactive oxygen 
species [58, 60, 67, 91, 98]. Perhaps the most striking study illustrated that miR-155 
control is not restricted to the above cellular targets, when approximately 650 genes 
required for M1 polarization were shown to be dependent on miR-155 in a whole 
genome transcriptome array [41].

On the other hand, macrophages treated with M2-polarizing agonists IL4/IL-13 
fail to induce miR-155, while the anti-inflammatory cytokine IL-10 can potently 
inhibit LPS-induced miR-155 expression [68]. Moreover, miR-155−/− display ele-
vated M2-polarizing cytokines such as IL-10 and IL4 and their serum [97]. This 
suggests that the inhibition of miR-155 can promote an M2 phenotype. Indeed, 
IL-10 inhibits both the primary miR-155 transcript and mature form in a STAT3-
dependent manner [68]. Additionally, IL-10 reduced both ETS2 protein expression 
and its ability to bind to the miR-155 promoter, required for the transcriptional 
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induction of miR-155 [94]. Mechanistically, low miR-155 expression can promote 
the M2 phenotype, by reversing its repression on M2-associated genes, including 
IL-13R, SMAD2, and CEBPβ. SMAD2 is a transcription factor essential for medi-
ating the anti-inflammatory effects of TGFβ, while CEBPβ is important for the 
induction of the M2-associated genes Arg1, IL-10, IL-13R, and CD206 [60, 67, 98].

However, the direct implication of miR-155 on monocytes and macrophages dur-
ing EAE and MS is less established. In the earliest studies, dendritic cells isolated 
from mice undergoing EAE had reduced pro-inflammatory cytokines, namely, 
IL-12, IL-1β, IL-6, IL-23, and TNF, that are required for Th1 and Th17 polarization 
[74, 79]. In human samples, miR-155 expression is elevated in monocyte-derived 
macrophages within active MS lesions, and others have shown that miR-155 is spe-
cifically increased in CD14+ isolated monocytes from MS blood samples [72]. 
Notably, mice deficient in the M2 agonist, IL-10, have been shown to develop accel-
erated disease progression following active immunization with CNS autoantigens, 
whereas IL-10 transgenic mice are resistant to EAE [18, 100]. Gene transfer meth-
ods delivering sustained IL-10 expression ameliorated the disease [19, 87]. It would 
be interesting to determine if the beneficial effects of IL-10 are mediated by its 
capacity to downregulate miR-155 or whether the conditional deletion of miR-155 
can promote M2 macrophage accumulation in the CNS during EAE.

5.6  �miR-155 in Brain-Resident Cells

Although the role of miR-155  in microglia and astrocytes has not been directly 
assessed in EAE, there is overwhelming evidence from other disease models that 
miR-155 upregulation contributes to neuroinflammation and subsequent neurode-
generation, whereas its deletion has neuroprotective effects. In primary cultured 
microglia, miR-155 is the most significantly upregulated miRNA under inflamma-
tory M1-skewing conditions, similar to what has previously been shown in periph-
ery myeloid cells [10, 25, 72]. Inhibition of miR-155 decreased the release of 
pro-inflammatory cytokines and nitric oxide, while the conditioned medium from 
these microglia could decrease neuronal cell death [10]. One study has demon-
strated that IL-1/IFNγ can significantly upregulate miR-155-5p and miR-155-3p in 
astrocytes. Antagomirs to both isoforms dramatically reduced the production of 
TNF, IL-6, and IL-8, suggesting that miR-155 is required for polarization of astro-
cytes into an activated A1 phenotype [111]. This is interesting considering A1 astro-
cytes can induce the death of neurons and oligodendrocytes and are highly abundant 
in brain samples from MS, as well as other neurodegenerative disorders including 
Alzheimer’s, Huntington’s, Parkinson’s, and amyotrophic lateral sclerosis (ALS) 
[56].

In animal models, sustained transgenic overexpression of miR-155 resulted in 
aberrations in the proliferation, migration, and differentiation of neural stem cells in 
the hippocampus. Whereas genetic deletion of miR-155 could restore the 
neuroinflammation-induced damage [128]. A strong upregulation of miR-155 was 
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observed within the brain of the Alzheimer’s disease model, which occurred simul-
taneously with increased microglia and astrocyte activation and the appearance of 
β-amyloid aggregates [33]. miR-155 elevation was also observed in spinal cord 
microglia from mice with amyotrophic lateral sclerosis (ALS), whereby genetic 
deletion of miR-155 or treatment with miR-155 antagomirs dramatically increased 
the survival by 38% in these mice [9]. miR-155 deletion and antagomir treatment 
were similarly shown to promote the recovery of ischemic stroke as a result of 
decreased neuroinflammation [89, 125]. Primary miR-155−/− microglia cultures 
displayed reduced inflammatory responses when treated with α-synuclein, a wide-
spread aggregate found in Parkinson’s disease, while a striking neuroprotective 
effect was observed in miR-155−/− mice with α -synuclein-induced Parkinson’s 
disease [114].

5.7  �miR-155 and the Blood-Brain Barrier

The blood-brain barrier (BBB) is a highly selective barrier made up of endothelial 
cells connected by tight junction proteins. It acts to separate circulating blood from 
the brain architecture and plays an important role in restricting the diffusion of 
pathogens, leukocytes, and large molecular weight molecules into the CNS. However, 
dysregulation of the BBB and the trafficking of peripheral activated leukocytes are 
among the earliest features observed in MS brains [70]. Although the mechanisms 
are not fully understood, the release of pro-inflammatory cytokines such as IL-1 and 
TNF from activated leukocytes and/or activated brain-resident cells can alter the 
physiology of the endothelial cells that make up the BBB, causing them to increase 
their permeability and change the dynamics of their tight junctions.

Various studies have confirmed that human endothelial cells can produce miR-
155 under inflammatory conditions [51, 59, 93, 109, 130, 140]. Inhibition or over-
expression of miR-155 in endothelial cells could either decrease or increase vascular 
endothelial permeability, respectively [109, 138]. Perhaps the most conclusive data 
for miR-155  in relation to BBB permeability and its impact on MS was demon-
strated in Biozzi mice induced with EAE, an animal model with a predictable 
relapsing-remitting paralysis course associated with the loss BBB integrity at the 
spinal cord [59]. When FITC-dextran was injected into wild-type mice undergoing 
EAE, a high abundance of the marker was located in the spinal cord parenchyma. In 
contrast, there was a 50% reduction of the marker located in these tissues in miR-
155−/− animals [59]. Overexpression of miR-155 increased the leakage of fluores-
cent dextrans across cultured human brain endothelial cells when challenged with 
cytokines TNF and IFNγ, whereas miR-155 inhibition reversed this effect. 
Overexpression of miR-155 could increase the permeability of endothelial cells by 
targeting tight junction proteins annexin-2 and claudin-1, but also focal adhesion 
molecules such as DOCK-1 and syntenin-1. In fact, endothelial cells accepted 
exosome-delivered miR-155, an effect that was shown to destroy tight junctions and 
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the integrity of the endothelial barrier [138]. Furthermore, miR-155 could increase 
the adhesion of monocytes and T cells to endothelial cells under shear forces [11].

LPS activation of choroid plexus epithelium (CPE), a unique layer of epithelial 
cells that form a blood-brain barrier with cerebral spinal fluid (CSF), was shown to 
release miR-155-containing exosomes [3]. These exosomes were released into the 
CSF and taken up by astrocytes and microglia but not by neurons in an LPS-induced 
neuroinflammation model. Primary mixed cortical cultures incubated with miR-
155-containing exosomes could potently increase the secretion of pro-inflammatory 
cytokines IL-6, IL-1, and TNF [3]. This effect was also mimicked in the brain of 
LPS-injected mice and was blocked when an exosome inhibitor was injected intra-
cerebroventricularly. It is fascinating to consider that the peripheral activation of 
barrier cells such as endothelium and epithelium could be secreting miR-155-
containing exosomes as a form communication that can alter the behavior of cells in 
the brain.

5.8  �miR-155 and Environmental Risk Factors

Numerous large-scale epidemiology studies have been performed to search for MS 
environmental risk factors. Consistently, infection with EBV, infectious mononucle-
osis (caused by EBV), smoking, lack of vitamin D, and genetic risk alleles show the 
strongest correlation with MS susceptibility [5, 39, 102]. In particular, EBV infec-
tion has the strongest epidemiological credibility, and there is a large body of evi-
dence to suggest that it plays a major role in the pathogenesis of MS [5, 90]. 
Although the exact mechanisms are incompletely understood, EBV has been shown 
to affect multiple immune cell parameters including increased EBV-transformed 
peripheral B cells with a concomitant increase in EBV viral shedding and produc-
tion of anti-EBV antibodies, increased autoreactive CD4+ T cells in the CNS, 
impaired EBV-specific CD8+ T-cell immunity, and activation of innate immune 
cells in MS patients [90]. Intriguingly, early studies showed that BIC and mature 
miR-155 were strongly elevated in EBV-infected B lymphocytes [52, 95, 133]. The 
EBV latency membrane-associated protein (LMP1) is an important activator of 
NF-kB and the immortalization of B cells. LMP1 could induce BIC transcription 
and mature miR-155 primarily through the activation of NF-κB, p38, and AP1 tran-
scription factors [30, 95, 134]. Importantly, miR-155 antagomirs could reduce EBV 
nuclear antigen (EBNA) mRNA expression and EBV copy number in infected cells, 
as well as inhibit the growth of proliferating lymphoblastoid cell lines [57, 62]. 
Children with infectious mononucleosis caused by primary EBV infection also dis-
played elevated miR-155 expression in blood-isolated B cells [29]. Large-scale 
transcriptome analysis of both viral- and cellular-induced miRNA in EBV trans-
formed cells highlighted that BACH1 is a likely target for miR-155 [106]. In fact, 
BACH1 has been suggested to play a key regulatory role in EAE and MS [29, 107].
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The lack of vitamin D, especially in countries located in latitudes correlated with 
poor sunlight, has been associated with MS susceptibility. Intriguingly, dendritic 
cells treated with 1 alpha,25-dihydroxyvitamin D(3) (vitamin D) gave rise to an 
immature phenotype, characterized by low levels of miR-155 and IL-23 [88]. 
Subsequent studies showed vitamin D could strongly prevent miR-155 induction in 
human adipocytes and disrupt the formation of miR-155-containing exosomes in 
chronic lymphocytic leukemia monocytes [8, 46]. Vitamin D could attenuate LPS-
induced signaling through a mechanism that involved inhibition of miR-155 and an 
increase in the target, SOCS1 [13]. Moreover, the suppressive effect of vitamin D on 
miR-155 could not be achieved when Ago2, a key protein required for RNA- and 
miRNA-induced silencing complex, was deleted [40].

Of the 110 genetic risk variants identified from a cohort of 14,496 subjects with 
MS, 97 of these were associated with immunological function [39]. Although a SNP 
for miR-155 was not reported, five SNPs (TNFSF14, IL2RA, TNFSF1A, IL12A, 
and STAT4) accounted for more than 50% of the association. Interestingly, enforced 
expression of miR-155 in PBMCs could enhance IL-2 expression, while stimulated 
T cells from miR-155−/− mice have deficient IL-2 production [54, 97]. Similarly, 
miR-155 inhibition or overexpression could inhibit or promote IL-12 production in 
DCs [61]. Moreover we have shown that genetic deletion of Ets2 in myeloid cells, 
a critical transcription factor required for miR-155 induction, failed to produce 
IL-12 cytokine [94]. It is plausible to consider that hyper-expression of miR-155 in 
MS patients contributes to the dysregulation of signaling pathways controlled by 
these risk variants. In fact, in an Italian cohort of 360 MS patients, 4 SNPs were 
located in close proximity to the BIC gene. Three of these formed a unique haplo-
type (rs2829803, rs2282471, rs2829806) that was overrepresented in MS patients 
(13.5%) compared to controls (10.3%) and conferred a 1.36-fold increased genetic 
risk of developing MS [86]. It will be interesting to see if larger-scale studies can 
recapitulate this result and find an association of the BIC/miR-155 haplotype with 
MS.

5.9  �miR-155 and Disease-Modifying Treatments

There is no cure for MS. However, there are currently >10 FDA-approved disease-
modifying treatments (DMF) for RRMS [20]. Early intervention and treatment with 
these DMFs significantly slows the progression of the disease, as well as lowering 
the relapse rate and the formation of new lesions. These medications predominantly 
act on the immune system as immunosuppressants and can be broadly divided based 
on their ability to block immune cell infiltration into the CNS (natalizumab, fingo-
limod, mitoxantrone), to reduce immune cell activity (interferon-β, glatiramer ace-
tate, dimethyl fumarate), or to inhibit immune cell proliferation (teriflunomide, 
alemtuzumab, ocrelizumab) [17]. Considering miR-155 is elevated in MS patients 
and in animal models undergoing EAE, it is worth understanding the impact of 
these treatments on miR-155 expression.
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IFNβ and glatiramer acetate were the earliest drugs to be approved for MS and 
are often used as first-line treatment options [20]. IFNβ helps regulate the immune 
system, decreasing the amount of immune cells infiltrating the CNS, particularly 
Th1/Th17 subsets and their respective cytokines. Glatiramer acetate is a synthetic 
amino acid polymer that mimics myelin basic protein and has been shown to divert 
the generation of Th1 cells to Th2 cells which can suppress the inflammatory 
response. In two separate studies, whole blood and PBMC samples isolated from 
MS patients treated with IFNβ and glatiramer acetate failed to demonstrate any 
effect on miR-155 expression, whereas other miRNAs were found to be reduced 
significantly [49, 124]. However, glatiramer acetate did reduce miR-155 expression 
in urine-isolated exosomes from EAE-induced mice at peak disease [105]. In some 
respects, the lack of repression on miR-155 in IFNβ-treated patients is not surpris-
ing considering IFNβ is an established agonist for miR-155 induction in macro-
phages [83].

Dimethyl fumarate (DMF) is a methyl ester of fumaric acid and was approved by 
the FDA as an effective oral treatment for RRMS [20]. Although we still do not fully 
understand its mechanism of action, studies have shown in MS patients treated with 
DMF that there is a reduction in Th1/Th17 subsets, an increase in Th2 subsets, and 
a shift from M1 to M2 macrophages [110, 129], while others have shown that DMF 
can inhibit microglia and astrocyte inflammation and has neuroprotective effects 
in vitro and in EAE animal models [1, 126]. Promisingly, miR-155 expression was 
found to be significantly reduced in monocytes from MS patients receiving DMF 
[69].

Natalizumab was the first humanized monoclonal antibody approved for MS in 
2007 and is classed as a highly effective treatment. It blocks the cellular adhesion 
molecule α4 integrin on immune cells, inhibiting their ability to bind and migrate 
through the endothelial BBB.  Natalizumab has been shown to reduce miR-155 
expression in PBMCs and monocytes isolated from MS patients which also corre-
lated with a decrease in IL-17, IFNγ, and TNF gene expression [64, 69]. Furthermore, 
patients with the highest expression of miR-155 expression pre-natalizumab ther-
apy had higher levels of anti-EBV nuclear antigen titers in their serum [64]. 
Fingolimod, although not a monoclonal antibody, works in a similar manner to 
natalizumab by trapping immune cells in lymph nodes and preventing their migra-
tion to the CNS.  Fingolimod also significantly reduced miR-155 expression in 
human monocytes [69].

Alemtuzumab is a humanized monoclonal antibody against CD52, a cell surface 
receptor expressed on mature T and B lymphocytes, while ocrelizumab, the first 
approved drug for PPMS, is a humanized monoclonal antibody that binds to CD20, 
a cell surface marker specifically expressed on B cells. Both treatments result in 
tagging their respective cells for destruction, and patients have shown very promis-
ing improvements in disability and disease progression. Although miR-155 expres-
sion has not been explored with either drug, ibrutinib, a B-cell-depleting therapy for 
chronic lymphocytic leukemia has been shown to significantly decrease miR-155 
expression [34].
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Overall, this data strongly suggests that miR-155 could be a very effective bio-
marker for monitoring responsiveness to treatment. Moreover, it indicates that 
inhibiting miR-155 itself could be a very legitimate and realistic target for the treat-
ment of MS. This is even more pertinent when we consider the astounding efficacy 
miR-155 antagomirs have had in EAE models, as well as consider the overall impact 
that miR-155 inhibition has in skewing cells of the immune system to an anti-
inflammatory phenotype both in vitro and in vivo [74, 135]. Indeed, judging by the 
extraordinary number of submitted patent applications for miR-155 antagonists, it 
strongly suggests that generation of miR-155 antagomirs as a therapeutic treatment 
is already underway.

5.10  �Future Directions

One of the biggest challenges in MS is the lack of a biomarker to effectively stratify 
different MS subtypes, which is critical when considering the most effective treat-
ment strategy. In addition, a biomarker that aids our understanding of disease sever-
ity, responsiveness to treatment, and disease progression is still required. The 
attractiveness of miRNAs as biomarkers for disease cannot be underestimated [27]. 
Their presence, not only in cells and tissues but also in readily available body fluids 
and extracellular vesicles, suggests that they represent a gold mine of noninvasive 
biomarkers for disease. miRNAs are extremely stable; those that are found in blood 
are highly resistant to ribonuclease due to their packaging in lipid vesicles, binding 
to RNA-binding molecules, or their association with high-density lipoproteins [14]. 
Once expressed, they are long-lived. For example, from a range of immunologically-
related miRNAs tested in macrophages, we showed that miRNAs have an average 
half-life of 5 days [28]. Once isolated from relevant samples, they are resistant to 
extended storage, freeze-thaw, and extreme pH. The development of sensitive plat-
forms for detection and quantification using methods such as miRNA assays, bead-
based assays, NanoString techniques, and deep sequencing has ensured that results 
are quantifiable, reproducible, and accurate.

To date, miRNA expression profiles have been conducted in MS patients from a 
variety of tissues including whole blood, PBMCs, serum, CSF, MS lesions, as well 
as sorted lymphocyte and myeloid-derived immune cell populations [27, 42]. 
Interestingly, Jagot and Davoust consolidated 19 miRNA profiling metadata studies 
conducted in plasma, CNS, and immune cells in an attempt to find the most com-
monly dysregulated miRNAs in MS patients. miR-155 was identified to be elevated 
across all MS patient samples tested, along with altered expression of miR-23a, 
miR-223, miR-22, miR-326, and miR-21 suggesting that these miRNAs may form 
an important signature in MS [43]. However, it is also important to note that other 
studies have found no changes in miR-155 expression in PBMCs from RRMS, 
SPMS, and/or PPMS [16, 36, 47, 48, 66, 85, 108]. In fact, miR-155 was found to be 
significantly downregulated in CD4+ T cells from a cohort of secondary progressive 
MS patients [101]. Moving forward, it will be critical to assess if miR-155 elevation 
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is specific for a particular cell type or subtype of MS, while isolating miR-155 from 
urine or CSF could provide an alternative avenue of exploration. Overall, generating 
panels of miRNA signatures to include miR-155, rather than looking at miRNAs 
individually, could be a more beneficial approach for developing diagnostic and 
prognostic indicators for MS.

The delivery of stem cells, particularly hematopoietic stem cells (HSC), mesen-
chymal stem cells (MSC), induced pluripotent stem cells (iPSC), and neural stem 
cells (MSC), is under intense investigation in many neurodegenerative diseases 
including MS.  In particular, early clinical trials have demonstrated that RRMS 
patients receiving HSC transplants have had the greatest improvements in disease 
progression, with a dramatic decrease in relapse frequency and MRI activity [65]. 
Although the contribution of miRNAs in therapeutic stem cell delivery has not been 
explored in MS, it has been widely examined in cancer, cardiovascular diseases, 
arthritis, and neurological disease, where they have been shown to play a fundamen-
tal role in stem cell differentiation and therapeutic modulation [24, 99, 104, 119, 
132]. It is clearly worth pursuing whether these emerging therapies for MS have a 
direct impact on miR-155.

In MS, the CNS also has the capacity to remyelinate and repair any damage 
caused to neuronal axons. Clinicians often observe this as a “shadow plaque” in 
MRI scans when old lesions have been repaired and remyelinated during the remit-
ting phases of the disease. Remyelination is mediated by a population of oligoden-
drocyte progenitor cells (OPCs) that can proliferate and migrate to areas of damage, 
where they differentiate into myelin-producing mature oligodendrocytes. 
Understanding the molecular mechanisms while identifying novel therapies that can 
promote oligodendrocyte maturation and remyelination is currently under heavy 
investigation in the MS field. Recent evidence suggests that microRNAs may gov-
ern this process [26]. In particular, miR-219 and miR-338 have been shown to be 
critical for CNS remyelination after injury, while miR-146a could facilitate remye-
lination by promoting OPC differentiation in cuprizone demyelinating models [122, 
137]. Clearly, the impact of miR-155 in these processes could be an exciting avenue 
for exploration.

5.11  �Conclusion

Although many advances have been made understanding the role of miR-155  in 
immune cell function and regulation, there are many gaps in our knowledge in 
understanding its role in non-immune cells. Furthermore, the exact contribution of 
miR-155  in the majority of relevant cell types has not been directly explored in 
MS. Generating conditional knockout animals or transgenic overexpressing models 
will help to answer these questions. Moreover, extending the use of typical MS 
models to focus on its impact in demyelination and remyelination should be consid-
ered. Understanding whether miR-155 is simply a marker for inflammation or 
whether it plays a predominant role in triggering MS requires further study. 
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Standardizing miRNA detection methods in various human samples will help con-
solidate whether miR-155 could be used as a realistic biomarker in MS.  Most 
importantly, therapeutic inhibition of miR-155 and understanding whether it will be 
most efficacious by delivering it in the periphery or directly to the CNS, or directly 
to specific cell types or specific MS disease subtypes, remains to be elucidated.
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Chapter 6
Inflammasomes in the Gut Mucosal 
Homeostasis

Xiaomin Yao and Guangxun Meng

Abstract  Inflammasomes are critical checkpoints in inflammation. The activation 
of inflammasome can cause a series of inflammatory responses including matura-
tion of interleukin (IL)-1β and IL-18 and a specialized form of cell death called 
pyroptosis. Since its identification in the early 2000s, inflammasomes have been 
implicated to play multifaceted roles in varied pathological and physiological con-
ditions, especially in the mucosal compartments including the gut. Maintaining gut 
mucosal homeostasis has always been a remarkable challenge for the host due to 
both the vast mucosal surface that is exposed to the outside and the enormous 
amount of local microbiota. To accomplish this challenge, the host mounts a con-
stant dynamic low-grade inflammatory response (physiological inflammation) in 
coping with insults of microbes in the intestine. This book chapter aims to summa-
rize the current knowledge of how inflammasomes contribute to gut mucosal 
homeostasis.
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6.1  �Introduction

6.1.1  �Characterization of Inflammasomes as a Critical Arm 
in Innate Immunity

A multicellular organism usually utilizes the barrier system and the immune system 
to cooperatively segregate body constituents from harmful agents in the surround-
ing environment while simultaneously leaving some communicable space to absorb 
benefits such as energy from the outside world. In mammals like humans, the 
immune system comprises two parts, namely, the innate and adaptive immune sys-
tems, which are responsible for non-specific and antigen-specific immune responses, 
respectively. Although the adaptive immune system is evolutionarily superior and 
more efficient to target varied intruders, the innate immune system is indispensable 
for the initiation and full-functioning of the adaptive immune responses. Moreover, 
since many innate immune cells prefer to reside locally right behind the different 
barrier systems as well as to patrol in the circulation, innate immunity normally acts 
as the first line to detect and defend pathogens or organ injuries. Mechanistically, 
the innate immune system harnesses a set of germ line-encoded pattern recognition 
receptors (PRR) to recognize different pathogen/danger-associated molecular pat-
terns (PAMP or DAMP). These PRRs are armed with invariable recognition motifs, 
i.e., each PRR can only target a few limited PAMPs or DAMPs which are ubiqui-
tously presented in different pathogens and tissue injuries, such as 
lipopolysaccharides(LPS) on gram-negative bacteria cell walls and nucleic acid 
leaked from dying host cells. Currently, the PRRs contain membrane-associated 
toll-like receptors (TLRs) and C-type lectin receptors (CLRs), cytosolic NOD-like 
receptors (NLRs), AIM2-like receptors (ALRs), and RIG-I-like receptors (RLRs) 
[1]. Of interest, members of the NLRs (NLRP1, NLRP3, NLRP6, NLRC4, and 
NLRP12) and ALRs (AIM2) can orchestrate a specialized protein complex desig-
nated as inflammasomes to license the activation of the profoundly inflammatory 
caspase-1. The canonical inflammasomes are formed upon either exogenous or 
endogenous insults, which trigger the PRR molecule to oligomerize and act as 
nucleate to promote recruited adaptor apoptosis-associated speck-like protein con-
taining a CARD (ASC) and pro-caspase-1 to form prion-like macromolecules, lead-
ing to the proximity-induced autoactivation of caspase-1 [2]. Of note, recent studies 
identified a noncanonical inflammasome formation upon direct binding of cytosolic 
LPS to caspase-11, which can not only activate caspase-11 itself but also trigger 
caspase-1 activation through yet unknown mechanisms [3–6]. In addition to mem-
bers of NLRs and ALRs which are able to form inflammasomes, Shao and col-
leagues identified a previously neglected PRR, pyrin, to recognize abnormally 
inactivated RHOA (a small GTPase protein of Rho family) by pathogens and then 
form classical inflammasome to activate caspase-1 [7]. The activation of inflamma-
tory caspases usually leads to proteolytic maturation and secretion of IL-1β and 
IL-18, as well as cleavage of pore-forming Gasdermin D (GSDMD), which triggers 
pyroptosis [2].
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6.1.2  �A Complex Microbiota-Immune Interaction Underlies 
the Gut Homeostasis

With more and more newly identified inflammasome-forming PRRs, the landscape 
of the multifaceted physiological significance of inflammasome has been gradually 
revealed. Among the many body sites, the intestinal mucosal surface stands out as 
the major location where the immune system performs its guardian function, since 
about 70% of immune cells of the entire immune system gather along the intestine 
[8]. The reason why host deploys such massive immune forces at intestinal mucosal 
surface is because of the residence of a much more massive amount of microbial 
flora, namely, microbiota at the same place. It was estimated that a number of 1013–
1014 microbes reside in the human gut, which is more than ten times of the total 
number of host cells in our body [9]. Although recently a revised estimation of both 
the microbial companions and ourselves reduced the ratio from ~10:1 to ~1:1, with 
each numbering at 3.9×1013 and 3×1013, respectively [10], this doesn’t affect the 
magnitude of the huge challenge that gut microbiota has posed to the host. Indeed, 
in germ-free animals, where no any microbes present in the gut, a substantial shrink-
age of the gut local immune system was observed [11]. But surely these tiny bugs 
have become our neighbors for good reasons during evolution. For example, they 
help us absorb energy from usually indigestible polysaccharides by degrading and 
fermenting them to short-chain fatty acid; also, microbiota provides us with pre-
cious vitamins to support human health by metabolic processes that we don’t pos-
sess. More importantly, microbiota can provide vital cues to elicit and shape the 
sound immune system locally and systematically. Much more than these, microbi-
ota can directly help to expel invasive pathogens trying to penetrate the mucosal 
surface by competitive “colonization resistance” or by priming the host immune 
system to better combat infections indirectly [12]. On the other direction, human 
intestine offers the microbiota with invaluable anaerobic living sphere with excep-
tionally richness of food for them to prosper, which are rare to find in the inorganic 
world outside [13]. Such significant mutualism between us and microbiota demands 
careful maintenance, which is a dynamic status now known as gut homeostasis [13]. 
As the inflammasomes constitute an important arm of innate immunity, and many 
mutations identified in inflammasome component genes have been associated with 
intestinal disorders [14], their roles in keeping gut homeostasis need in-depth inves-
tigation. So, in this book chapter, we summarize the current understanding of the 
inflammasomes’ contribution to gut mucosal homeostasis.
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6.2  �Inflammasome Effectors in Maintaining Gut 
Homeostasis

The discovery of different inflammasome effector molecules was much earlier 
than identification of the platform nucleating PRRs [15]. In 1977, Dinarello et al. 
first purified fever-causing factor, called pyrogen, from human blood [16]. Later on 
this pyrogen was defined as the first interleukin, i.e., IL-1β [15]. Fifteen years later, 
the enzyme that is responsible for the maturation of IL-1β, i.e., IL-1β converting 
enzyme (ICE), a cysteine protease, was cloned and now known as caspase-1 [17–
19]. Another interleukin substrate of caspase-1, IL-18, was identified soon after the 
discovery of caspase-1 [20, 21]. In addition to mediating maturation and secretion 
of the aforementioned cytokines, caspase-1 activation can also lead to a programed 
but proinflammatory cell death, which is named as pyroptosis [22]. Since the early 
identification, the roles of these inflammatory molecules in gut homeostasis have 
been studied extensively.

6.2.1  �IL-1β

As the initial context for characterization of IL-1β is in inflammation, early reports 
in clinical human inflammatory bowel disease (IBD) patients indicated a pathogenic 
role of IL-1β in promoting IBD [23]. However, these reports were largely based on 
studies with patients bearing onset IBD, where it’s hard to distinguish whether ele-
vated IL-1β is a result of or the causing factor for IBD. Further studies with animal 
models trying to clarify this point failed to reach a consensus conclusion, as totally 
opposite results had been obtained from different researches.

With the antibody blocking approaches to either inhibit or enhance the IL-1 sig-
naling by targeting IL-1R and IL-1R antagonist (IL-1RA), respectively, a positive 
correlation of IL-1 level with colitis severity was revealed, indicating IL-1β is del-
eterious for maintaining gut homeostasis [24, 25]. However, in an earlier study, with 
the same model, they found that pretreatment with low dose of recombinant IL-1β 
significantly reduced the colitis symptoms [26]. Interestingly, a recent study showed 
that transplantation of IL-1β-primed mesenchymal stem cells (MSC) can alleviate 
the chemical dextran sulfate sodium (DSS)-induced colitis [27]. Also in a parallel 
comparison of IL-1α and IL-1β in DSS-induced colitis using Il1α-/- and Il1β-/- mice, 
they found that IL-1β is protective while IL-1α is detrimental [28]. But in a separate 
research, also using Il1β-/- mice, IL-1β was found to be selectively activated by cer-
tain bacteria such as pathobiont Proteus mirabilis through NLRP3 inflammasome, 
which contributed to DSS-induced colitis, indicating probably the varied commen-
sal microbiota presented in the intestine that affects disease outcomes [29]. Besides 
the chemical-induced injury model, there were reports showing that IL-1β can also 
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protect mice from intestinal infection of Clostridium difficile and Citrobacter roden-
tium, by promoting phagocytosis and eradication of bacteria in mononuclear 
phagocytes [30–32]. But in the study carried out by Alipour et al, treatment with 
exogenous IL-1β in wild-type mice resulted in exacerbated disease by C. rodentium, 
emphasizing that the balanced IL-1β in the intestine might be the key to gut homeo-
stasis [30]. Another investigation found IL-1β ignited inflammation by promoting 
the accumulation of innate lymphoid cells  in the  Helicobacter hepaticus  elicited 
chronic intestinal inflammation [33]. In the genetically predisposed spontaneous 
colitis model in Il10-/- and Tlr5-/- mice, IL-1β has also been shown to play a detri-
mental role [34, 35]. A notable fact is that Il1β-/- mice housed under normal condi-
tion do not develop spontaneous intestinal inflammation. Taken together, the rather 
ambiguous data concerning IL-1β’s role in the IBD pathogenesis demands further 
investigation with careful consideration of, first, whether the microbiota (or the spe-
cific pathogen used in infection model) presented in the studied subject’s intestine 
has strong or weak ability to trigger IL-1β release and, second, the timing to mea-
sure IL-1β’s role in IBD, i.e., the initiation stage of inflammation vs after inflamma-
tion onset or vs the inflammation resolution stage.

Despite the abovementioned multiple studies focusing on the role of IL-1β in 
varied intestinal disorders, little information has been revealed about its physiologi-
cal role under homeostasis. Until recently, an elegant study for the first time revealed 
the beneficial role of IL-1β under homeostasis, in which IL-1β was shown to be 
secreted by lamina propria mononuclear phagocytes (LPMP) to signal through 
IL-1R-myd88 axis on the local type 3 innate lymphoid cells (ILC3), which in return 
release an important cytokine GM-CSF. GM-CSF helps LPMPs to maintain their 
ability to secrete regulatory retinoic acid and IL-10 to promote the proliferation of 
local Tregs, which is crucial to sustain intestinal tolerance to food/commensal-
derived microbial antigens [36]. Of great importance,  the secretion of IL-1β is 
dependent on microbiota-associated cues [36]. Another study indicated that IL-1β 
can directly boost the intestinal epithelium secretion of certain antimicrobial pep-
tide to restrict commensal translocation and to help maintain gut homeostasis [37], 
which was at least partially supported by an earlier study using ex vivo system, 
which showed that the intestinal ILCs (Lin(−)c-Kit(+)Sca-1(−) cells) can readily 
respond to IL-1β stimulation and secrete IL-22 and several antimicrobial peptides 
[38]. IL-1β has also been shown as critical effector for intestinal eosinophils to 
supervise local IgA production, thus contribute to gut microbial symbiosis [39]. So 
accumulating evidences support a beneficial role of IL-1β in gut mucosal homeosta-
sis under resting conditions, which suggests that it is necessary to reexamine any 
treatment of IBD targeting IL-1β in a clinic to avoid over-medication.
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6.2.2  �IL-18

The initial identification of IL-18 has pointed out its structural similarity to IL-1β, 
although functionally it was found to induce interferon (IFN)-γ and promote Th1 
response [20, 21]. IL-18’s role in inflammatory bowel disease was firstly reported in 
1999, by examination of its expression in Crohn’s disease (CD) and ulcerative coli-
tis (UC) patients in comparison with control people. These studies indicated that 
IL-18 was upregulated in IBD patients (more profoundly in CD), and the major 
contribution of activated IL-18 was from the epithelium, while lamina propria 
mononuclear cells had limited contribution [40, 41]. Similar to the case of IL-1β, 
however, these studies failed to tell whether the IL-18 increase in patients was a 
consequence or causing factor for IBD.  Indeed, in a separate study, researchers 
claimed that the increase of IL-18 in IBD patients was rather heterogenous; only a 
minor part of investigated CD patients carried accountable elevation for IL-18 [42]. 
In later researches, polymorphisms in IL-18 genomic locus were claimed for asso-
ciation with increased risk for IBD [43–45], while other studies that either failed to 
obtain a positive conclusion [46, 47] or identified the IL-18 associated  increased 
risk for IBD were actually dependent on NOD2 polymorphism, which is one of the 
most prominent genetic predisposing factors for IBD [48].

Earlier researches using neutralization strategies, in the chemical-induced ani-
mal model colitis, had shown that IL-18 was proinflammatory, as blockade of IL-18 
could significantly improve disease status [49–52]. In addition, another study using 
a transgenic IL-18 mouse line supported the detrimental role of IL-18 in DSS colitis 
[53]. Also in the Il18-/- mice, TNBS was shown to fail in inducing colitis [52]. In the 
T cell transfer colitis, administration of antisense RNA against IL-18 mRNA 
reduced colitis severity, again supporting the notion that IL-18 mediated CD-like 
colitis pathogenesis [54]. The prevalent blame on IL-18 in fueling IBD in the earlier 
studies encountered few challenges except a study using Il18-/- and Il18r-/- mice 
demonstrated that actually IL-18 could be beneficial in DSS colitis [55]. The lop-
sided situation started to change only in recent years when studies were carried out 
to explore the role of inflammasomes in IBD. A series of studies investigating var-
ied inflammasomes in experimental IBD pointed out that IL-18 functioned down-
stream of inflammasome to provide protection against colitis and/or colitis-associated 
cancer [37, 56–67]. Based on these discrepancies, Britta Siegmund proposed that 
the IL-18 activation in the epithelium might be helpful, but activation in lamina 
mononuclear cells might be pathogenic for IBD [68]. But this hypothesis was chal-
lenged by a recent research with careful reexamination of IL-18 signaling in contri-
bution to intestinal inflammation. This study found that in the epithelium, IL-18 was 
actually playing detrimental roles by deformation of goblet cells (which is respon-
sible for intact mucus barrier) during DSS colitis induction [69]. The debate that 
whether IL-18 is a friend or foe in IBD seems unsettled yet, but notable clues have 
been revealed, including that physiological stress can significantly affect experi-
mental colitis severity in wild-type mice through stress-induced IL-18 [70] and that 
IL-18 deficiency can lead to outgrowth of colitogenic bacteria and dysbiosis, which 
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could predispose the host to DSS-induced colitis [58, 62]. These intriguing clues 
enlightened that IL-18’s role in pathogenesis of IBD can be an uncertain result of its 
delicate interaction with local microbiota, neural/hormonal cues, and/or different 
subsets of cells. Dissecting these relevant pathways may help our understanding, as 
well as clinical diagnosis of IBD.

Akin to IL-1β, despite the intensive attention being paid to IL-18 in the diseased 
condition, little effort has been exerted to decipher its physiological role under 
normal conditions. Except aforementioned studies revealing that IL-18 may help 
maintain gut microbial symbiosis through supervising local antimicrobial peptide 
generation [37, 58, 62], currently there is no clear information related to the contri-
bution of IL-18 to gut homeostasis under resting condition, which is in need for 
future investigation.

6.2.3  �Pyroptosis

By studying the Salmonella typhimurium-caused caspase-1-dependent cell death, 
pyroptosis was defined as a new form of programmed inflammatory cell rupture. 
Since the S. typhimurium is a known enteric pathogen, the pyroptosis has been spec-
ulated as a countermeasure utilized by infected enterocytes to expose pathogens to 
be killed by effector cells such as neutrophils [71, 72]. In a spontaneous colitis 
model caused by TLR2-MDR1A double deficiency, clear activation of inflamma-
some by commensal bacteria led to myeloid CD11b+ cells to undergo pyroptosis, 
and similar situation was observed in genetically relevant IBD patients, suggesting 
that pyroptosis may play a pathogenic role in IBD [73]. Another study using sys-
temic in  vivo delivery of flagellin caused NLRC4 inflammasome-dependent but 
IL-1β- and IL-18-independent rapid pyroptosis, which contributed to the systemic 
inflammation-induced lethality [74]. Future study is required to clarify the role of 
pyroptosis in gut homeostasis and IBD.

6.3  �Different Inflammasomes in Intestinal Homeostasis 
and IBD

6.3.1  �NLRP1 Inflammasome

NLRP1 inflammasome is the first identified inflammasome ever [75]; it can respond 
to MDP challenge in human [76] and Bacillus anthracis lethal toxin/Toxoplasma 
gondii challenge in mouse [77–80]. However, the role of NLRP1 inflammasome in 
intestine health and disease has scarcely been reported. The first implication that it 
plays a role in intestinal homeostasis came from a report showing that a polymor-
phism in NLRP1 gene is associated with celiac disease, a common intestinal disor-
der [81], and also another clinical study showing that the NLRP1 Leu155His 
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polymorphism was more frequent in IBD patients who were unresponsive to gluco-
corticoid treatment [82]. While in the mouse model study, the only elaborated study 
carried out with Nlrp1b-/- mice showed that NLRP1 was protective in DSS-induced 
colitis and colitis-associated colon cancer through upregulation of IL-1β and IL-18, 
with the former providing the majority function [83]. The authors also claimed that 
NLRP1 mainly functioned in the non-hematopoietic cells to provide protection 
against experimental IBD [83]. More interestingly, the researchers found that the 
aggravated colitis was transmissible to WT cagemates through cohousing, which 
indicated that an outgrowth of colitogenic microbiota was induced in the absence of 
NLRP1 [83]. Thus, the interaction between NLRP1 and local microbiota (especially 
certain specific NLRP1 inflammasome-activating bacteria species) and the possible 
overlapping/complementary relationship between NLRP1 and other NLRs in main-
taining gut homeostasis could be of great value that awaits future investigation.

6.3.2  �NLRP3 Inflammasome

NLRP3 inflammasome is the most intensively studied inflammasome since its iden-
tification to date [84]. The incredibly broad range of stimuli that activate the NLRP3 
inflammasome made its exact activation mechanism still foggy; its role in the intes-
tinal homeostasis and diseases is unclear either. First, in the clinical studies for 
NLRP3 polymorphisms in IBD showed discrepant results, with one group demon-
strating that SNPs in the 5-prime region of NLRP3 gene leading to impaired NLRP3 
expression and inflammasome activity were associated with CD susceptibility [85], 
while the other group with a large-scale population-based analysis failed to identify 
such correlation between NLRP3 polymorphisms and IBD prevalence [86]. The 
contradictory results in these two studies may be explained by the different genetic 
background of the subjects they approached, as other two studies revealed that vari-
ants in NLRP3 in combination with CARD8 polymorphisms were associated with 
higher risk to CD [87, 88].

In the animal model study, initially, there were two reports showing that NLRP3 
played a protective role in the DSS-induced colitis, as Nlrp3-/- mice were more sus-
ceptible to DSS challenge [56, 65]. However, these two reports also contradicted 
with each other upon that in which cell compartment NLRP3 was functioning. By 
using the same bone marrow transfer strategy, one claimed a profound role of 
NLRP3 in the epithelium [65], while the other emphasized a function for NLRP3 
mainly in the hematopoietic cells [56]. On the contrary, another report showed an 
even opposite role for NLRP3 in DSS colitis, stating that NLRP3 was pathogenic, as 
abolishment of NLRP3 protected Nlrp3-/- mice from DSS challenge [89]. However, 
in a successive study, these authors found that the protective effect in Nlrp3-/- mice 
can be blunted by cohousing with WT mice, suggesting that the claimed detrimental 
effects of NLRP3 in reference [89] are microbiota dependent [90]. Indeed, another 
study arguing the beneficial role of NLRP3 in both TNBS- and DSS-induced colitis 
models demonstrated the Nlrp3-/- mice contained altered microbiota as compared 
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with WT mice, indicating that loss of NLRP3 might lead to dysbiosis, hence 
increased susceptibility to experimental IBD [91]. Although it was claimed that 
NLRP3 plays a detrimental role in DSS colitis without causing dysbiosis in a rele-
vant study mainly focusing on NLRP6 inflammasome [58], in a recent study by a 
careful screening of NLRP3 inflammasome-activating mouse fecal bacteria, 
researchers identified that a pathobiont Proteus mirabilis can specifically activate 
NLRP3 inflammasome in the lamina propria mononuclear phagocytes, which is 
responsible for aggravating inflammation after epithelium breakage mediated by 
DSS exposure [29]. This study thus gives a strong example of NLRP3-microbiota 
interaction in regulating intestinal homeostasis and disease outcome. In another 
common enteric mucosal infection model, i.e., the Citrobacter rodentium infection 
of mice intestine, it was also shown that NLRP3 has an important role in the epithe-
lium, but with unexpected data showing that Nlrp3-/- mice had intact intestinal cas-
pase-1 activity [92], which indicated that some hidden facts fill the gap of our current 
understanding in terms of NLRP3’s anti-infection function in the gut. Under resting 
conditions, in addition to the aforementioned report showing that NLRP3 plays a 
role in maintaining gut microbial symbiosis [91], a recent report showed that through 
short-chain fatty acid (SCFA)-GPR43/GPR109A signaling axis on the epithelial 
cells, potassium efflux was triggered and NLRP3 inflammasome was activated, 
which promoted the integrity of the intestinal epithelium [93].

In summary, the role of NLRP3 in regulating gut homeostasis and diseases has 
been increasingly appreciated; however, several key matters still require future stud-
ies to be addressed, which include where (epithelium vs lamina propria hematopoi-
etic cells) and how NLRP3 regulates microbiota under homeostasis and diseases 
(injury vs infection) and how these interactions determine the homeostatic status/
final disease outcome.

6.3.3  �NLRC4 Inflammasome

NLRC4 was initially characterized with caspase-1-activating ability upon 
Salmonella typhimurium challenge. It forms inflammasome upon Naip-dependent 
detection of either cytosolic flagellin or type 3 secretion system (T3SS) component 
proteins [2]. Its role in intestinal homeostasis was implicated by the identification of 
mutation in NLRC4 causing infantile enterocolitis and autoinflammation syndrome 
[94]. In mouse models, Nlrc4-/- mice showed increased susceptibility to colitis-
instigated colon tumorigenesis (AOM + DSS-induced colon cancer (CAC) model) 
[95, 96]. However, these two reports showed discrepant results in explaining 
NLRC4’s role in the acute DSS colitis model, with Hu et al. arguing a dispensable 
role while Carvalho et al. pointed out a protective role for NLRC4 in this model [95, 
96]. Contradictory results have also been shown, as another study showed Nlrc4-/- 
mice had similar susceptibility to CAC as WT mice [56]. In supporting for NLRC4’s 
protective role, another study using Naip1–6-deficient mice showed increased 
colitis-associated colon tumor formation, but unexpectedly, in the acute colitis 
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model, Naip1–6 seem to be detrimental, which was speculated to be an NLRC4-
independent event [97]. In accordance to its primary function in dictating Salmonella 
typhimurium infection, local or systemic administration of either flagellated bacte-
ria or flagellin alone leads to NLRC4-dependent intestinal inflammation, which 
would either help expel the pathogen or lead to a severe acute inflammation-induced 
rapid death of mice [74, 96]. Recently, the epithelium-intrinsic NLRC4 inflamma-
some activity has been proven essential and sufficient for the expulsion of S. 
typhimurium-infected (or cytosolic flagellin-alerted) intestinal epithelial cells, 
which highlighted the critical role of NLRC4 in the surveillance of flagellated gut 
microbes [98, 99]. Thus, despite the in-depth understanding of NLRC4 in restricting 
specific pathogens such as S. typhimurium, its role in the intestinal homeostasis and 
IBD is quite preliminary and controversial. The reasons behind these contradictory 
conclusions from different laboratories can vary, but surely the gut microbiota needs 
to be taken into consideration for future studies.

6.3.4  �NLRP6 Inflammasome

Unlike other inflammasomes, the molecular characterization of NLRP6 inflamma-
some is currently lacking. Nonetheless, in an overexpression system, NLRP6 was 
shown to interact with ASC to promote caspase-1 activation in vitro [100], but the 
upstream ligand or signals responsible for NLRP6 activation are not clear, as in the 
primary Nlrp6-/- macrophages, inflammasome activation in response to Salmonella 
typhimurium, Listeria monocytogenes, or LPS + ATP was unaffected [101]. 
However, the role of NLRP6 in the intestinal homeostasis has been well studied. 
The expression of NLRP6 is constantly high in the intestinal epithelium, and defi-
ciency of this gene leads to dysbiosis, as well as aberrant goblet cell-derived mucus 
layer [58, 102]. In the intestinal monocyte, a beneficial role of NLRP6 was also 
revealed during DSS colitis induction, which is mediated by IL-18 in an autocrine 
manner [64]. NLRP6’s role in goblet cell function was supported by a delicate study 
showing that NLRP6 inflammasome was found critical in licensing sentinel goblet 
cell activation upon bacterial penetration of the epithelium [103]. In a successive 
study, the NLRP6 inflammasome was shown to promote gut homeostasis through a 
positive feedback loop, wherein NLRP6 regulates local antimicrobial peptides pro-
duction via IL-18, thus supervising microbiota to produce more metabolites such as 
taurine to support NLRP6 inflammasome activation [62]. Another study indicated 
that NLRP6 has a pivotal role in detecting intestinal virus through DHX15-MAVS-
induced type 1 interferon induction [104]. Thus, NLRP6 has a multifaceted role in 
regulating intestinal homeostasis and gut diseases.
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6.3.5  �AIM2 Inflammasome

The AIM2 inflammasome was initially identified in detecting abnormal transloca-
tion of cytosolic DNA, mainly from invading pathogens or damaged host cells [2]. 
The intestine is a place where continuous opportunistic bacterial/viral invasion or 
physical/chemical damages occur, all of which may lead to aberrant DNA presence 
in the cellular space, suggesting a potential involvement for AIM2 inflammasome in 
the gut. Indeed, recent reports using AIM2-deficient mice have revealed such impor-
tant function of AIM2 in the intestine in varied experimental and clinical disease 
contexts. In clinical analysis of mutations in small bowel carcinogenesis patients, a 
high prevalence of AIM2 frame shift was detected [105], and the absence of AIM2 
expression in colorectal cancer patients was associated with poor prognosis [106], 
indicating its importance in tumor control. In addition, an increase of PYHIN-200 
family members AIM2 and IFI16 was detected in the mucosa of IBD patients [107]. 
In the animal study, AIM2-deficient mice showed increased susceptibility to both 
DSS colitis and colitis-associated colon cancer [37, 63, 108]. But in the tumor 
patients as well as animal models receiving radiation/chemotherapy, AIM2 in the 
intestine detects the resultant DNA damage and induces inflammasome-dependent 
cell death and proinflammatory responses, which leads to severe damages to the 
host. Thus, targeting AIM2 in such circumstances represents a promising counter-
measure to relieve suffering of patients [109, 110].

6.3.6  �Noncanonical Inflammasomes: Caspase-11 and Pyrin 
Inflammasome

Recently, the caspase-11 mediated noncanonical inflammasome, and the pyrin 
inflammasome has been characterized [3–7]. The role of pyrin in the intestinal 
homeostasis and disease is still an open question. Unlike pyrin, the noncanonical 
inflammasome-forming caspase-11 has been studied in the context of intestinal 
inflammatory processes. Three studies all showed that caspase-11 protects against 
DSS-induced colitis and epithelial and hematopoietic caspase-11 is required [111–
113]. Mechanistically, two reports emphasized IL-18 and IL-1β in mediating the 
protective effects [111, 112], while the third study denied cytokines’ major effects, 
since they observed normal or even increased IL-18/IL-1β production in caspase-
11-deficient mice after DSS challenge. Instead, they attributed the protective effects 
to pyroptosis downstream of caspase-11 inflammasome [113].
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6.4  �Concluding Remarks

Our current understanding of inflammasomes’ role in intestinal mucosal homeosta-
sis and disease has been summarized in Fig. 6.1, which is complex and severely 
unequilibrated. On the one hand, due to the relatively long history of identifying 
different inflammasome components and effectors, the effector molecules charac-
terized earlier such as IL-1β and IL-18 have been studied intensively and controver-
sially, while the latter identified inflammasome orchestrator molecules such as 
NLRs and AIM2 are still to be investigated, with pyrin even left unstudied. On the 
other hand, these insights were largely obtained from studies under diseased condi-
tions, while the physiological working model of inflammasome under resting 
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Fig. 6.1  The complex network of different inflammasomes in regulating gut mucosal homeostasis 
and diseases
The intestinal lumen contains a diverse repertoire of commensal/pathogenic microbes, which often 
opportunistically impedes the intestinal barrier (mucus layer); the intestine as well will experience 
injuries caused by ingestion of harmful matters or radio-/chemotherapies, which leads to tissue 
damages. The varied inflammasome-forming pattern recognition receptors (PRR) in either epithe-
lial or lamina propria cells detect these microbial or danger signals to initiate inflammasome for-
mation, hence activating the downstream effector cascade. The three major effector molecules, 
IL-1β, IL-18, and GSDMD, would either target the downstream epithelial/hematopoietic cells to 
regulate inflammatory and antimicrobial responses or form large pores on the cell membrane to 
mediate pyroptosis, which would both help the expulsion of infected pathogens and boost local 
inflammation
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conditions is underinvestigated, probably due to the lack of practical models or inef-
ficient examination tools. For better comprehension of current knowledge and 
explanation of the contradictories, and for further broadening of our knowledge 
concerning the physiological role of inflammasomes in intestinal homeostasis, 
future studies should include more newly developed methods to monitor inflamma-
some activity. Moreover, full consideration of multiplayers in the gut disease pro-
cess, including host immune cells, barriers, and intestinal contents (food and 
microbiota), as well as neural/humoral cues locally and systematically, is also 
necessary.
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Chapter 7
Microbial Factors in Inflammatory Diseases 
and Cancers

Hong Sheng Ong and Howard Chi Ho Yim

Abstract  The intestinal microbes form a symbiotic relationship with their human 
host to harvest energy for themselves and their host and to shape the immune system 
of their host. However, alteration of this relationship, which is named as a dysbiosis, 
has been associated with the development of different inflammatory diseases and 
cancers. It is found that metabolites, cellular components, and virulence factors 
derived from the gut microbiota interact with the host locally or systemically to 
modulate the dysbiosis and the development of these diseases. In this book chapter, 
we discuss the role of these microbial factors in regulating the host signaling path-
ways, the composition and load of the gut microbiota, the co-metabolism of the host 
and the microbiota, the host immune system, and physiology. In particular, we high-
light how each microbial factor can contribute in the manifestation of many diseases 
such as cancers, Inflammatory Bowel Diseases, obesity, type-2 diabetes, non-
alcoholic fatty liver diseases, nonalcoholic steatohepatitis, and cardiovascular 
diseases.
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7.1  �Introduction

Millions of microbes inhabit the surfaces of the human body. Most of them reside in 
the gastrointestinal tract and exist in a microbial community named as microbiota. 
Amazingly, they do not cause any harmful effect to the host. Rather, these microbes 
foster a symbiotic relationship with their host. While the host provides them a favor-
able habitat, they participate in the host’s digestive process by providing an extra 
range of enzymatic systems to harvest energy for themselves and the host. They also 
interact bidirectionally with the host immune system to shape their own ecology and 
the development of the host immune system, achieving a symbiosis to cope with 
environmental challenges. This symbiosis plays an important role in maintaining 
human health.

Many diseases such as cancers, Inflammatory Bowel Diseases (IBD), and meta-
bolic diseases including obesity, type-2 diabetes, non-alcoholic fatty liver diseases 
(NAFLD), non-alcoholic steatohepatitis (NASH), and atherosclerosis have been 
linked to different degree of inflammation. Interestingly, this inflammation is asso-
ciated with an alteration of the symbiotic relationship between the microbiota and 
its host. This altered relationship is called a dysbiosis. In this chapter, we focus on 
how metabolites (Table 7.1), cellular components (Table 7.2), and virulence factors 
(Table 7.3) of the microbiota interact with the host to influence the dysbiosis and 
involve in the etiology of these inflammatory diseases and cancers.

7.2  �Microbial Metabolites

7.2.1  �Short-Chain Fatty Acids (SCFAs)

The human intestine does not have enzymes that are capable of degrading most 
complex carbohydrates and plant polysaccharides [1]. Thus, humans rely heavily on 
the microbiota present in the colon to ferment undigested carbohydrates including 
cellulose, xylans, and resistant starch into short-chain fatty acids (SCFAs) such as 
acetate, propionate, and butyrate [1]. The SCFAs undergo passive diffusion into the 
host, acting as an important source of energy for the host [1, 2]. For example, butyr-
ate acts as an energy substrate for colonic epithelial cells, while acetate and propio-
nate provide energy to the peripheral tissues [3].

Apart from its role of supplying energy, SCFAs can regulate the host physiology 
by acting as signaling molecules that bind G-protein-coupled receptors (GPCRs) in 
cells [2]. For example, SCFAs induce secretion of glucagon-like peptide 1 in the 
colon via GPR43 activation, leading to the enhancement of insulin sensitivity [4]. 
SCFAs activate GPR41 to induce the intestinal expression of Pyy which inhibits gut 
motility, raises intestinal transit rate, and reduces the harvest of energy from the gut 
[5]. In the adipocytes, SCFAs, via GPR43, inhibit insulin signaling, leading to the 
reduction of fat accumulation in adipose tissue and the increase of metabolism of 

H.S. Ong and H.C.H. Yim



155

lipids and glucose in other tissues [6]. Moreover, butyrate and propionate activate 
intestinal gluconeogenesis via cyclic AMP (cAMP)-dependent mechanism and via 
a GPR41-dependent gut-brain circuit, respectively [7].

An optimal level of SCFAs is required for maintaining a balance between energy 
harvest and expenditure. However, obesity is closely linked to a higher level of 
SCFAs. In genetically obese mice, the level of acetate and butyrate is higher in their 
cecum as compared to their lean littermates [8]. This is attributed to the presence of 
microbiota in obese mice that is able to degrade dietary polysaccharides into SCFAs 
[8]. Similarly, overweight human subjects also have higher concentration of SCFA 

Table 7.1  Involvements of microbial metabolites in inflammatory diseases and cancers

Microbial metabolites
Signaling receptor 
involved Associated malignancy/physiology

SCFAs GPR45 ↓ Experimental colitis
GPR43, GPR109A ↓ Experimental colitis
GPR43 ↑ Gout-associated inflammation

↑ Insulin sensitivity
↓ Fat accumulation in adipose tissue
↑ Lipid and glucose metabolism in non-
adipose tissues

GPR41 ↓ Gut motility
↑ Intestinal transit rate
↓ Energy harvest from gut
↑ Intestinal gluconeogenesis
↓ Allergic airway inflammation

GPR109A ↓ Colitis-associated colon cancer
↑ Colon cancer in a genetic model

AHR ligands AHR ↑ Epithelial integrity
↓ Experimental IBD

H2S ↑ IBD
↑ Colorectal cancer

Primary bile acids FXR ↓ NAFLD
Secondary bile acids TGR5 ↑ Insulin sensitivity and glucose tolerance

↓ Obesity
↓ Hepatic steatosis
↓ Intraplaque and adipose tissue 
inflammation
↓ Vascular lesion formation
↓ Atherosclerosis
↑ Obesity-associated hepatocellular 
carcinoma

Taurine NLRP6 ↓ Experimental colitis
TMAO ↑ Atherosclerosis
Spermine NLRP6 ↑ Experimental colitis
N1,N12-diacetylspermine ↑ Colorectal cancer
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than the lean subjects [9]. Consistent with the observations in mice, the obese human 
individuals have enriched microbiota that is able to process carbohydrate for energy 
[10] and have a higher level of ethanol in their breath [11]. As SCFAs can act as 
energy source for the host, these findings suggest that the energy harvest in obese 
people is elevated by the enrichment of SCFA-producing microbiota, which may 
eventually contribute to the etiology of obesity.

SCFAs act as a double-edged sword in inflammatory diseases and cancers. For 
example, SCFAs, via GPR45, inhibit histone deacetylase in regulatory T (Treg) 
cells thereby increasing the frequency and function of these cells, thus alleviating 

Table 7.2  Involvements of microbial cellular components in inflammatory diseases and cancers

Microbial 
components

Signaling 
receptor Associated malignancy/physiology

LPS TLR4 ↓ Experimental colitis
↑ Epithelial integrity
↑ Obesity
↑ Type 2 diabetes
↑ NAFLD and NASH
↑ Pancreas tumorigenesis
↑ Colon tumorigenesis
↑ Liver tumorigenesis

Flagellin TLR5 ↓ IBD
↑ Insulin sensitivity
↓ Hyperlipidemia
↓ Hypertension
↓ Adiposity
↑ Tumor progression in a mouse model of sarcoma
↓ Tumor progression in a mouse model bearing the breast 
carcinoma cell line

PSA TLR2 ↓ Experimental colitis
↓ A mouse model of multiple sclerosis

Bacterial DNA TLR9 ↓ Experimental colitis
↑ Sensitivity to glucose and insulin
↓ Obesity
↑ NASH during inflammasome malfunction

MDP NOD2 ↓ Experimental colitis
↑ Insulin sensitivity
↓ Colon cancer tumorigenesis

Table 7.3  Involvements of microbial virulence factors in inflammatory diseases and cancers

Microbial virulence factors Signaling receptor Associated malignancy

FadA adhesin E-cadherin ↑ Colon tumorigenesis
PKS islands ↑ Colon tumorigenesis
BFT ↑ Colon tumorigenesis
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the disease severity of experimental colitis [12, 13]. Furthermore, SCFAs, via 
GPR43 and GPR109A, induce membrane hyperpolarization and Ca2+ ion mobiliza-
tion in colonic epithelial cell, to activate the NOD-like receptor protein 3 (NLRP3) 
inflammasome [14]. This leads to the activation of caspase-1 and interleukin (IL)-
18, which maintain the integrity of colon epithelium and thus the protection of mice 
from experimental colitis [14]. As protein kinase R (PKR) has recently been shown 
to inhibit NLRP3 inflammasome activity and has suggested to regulate the colitis 
development [15, 16], it would be interesting to investigate if SCFAs activate 
NLRP3 inflammasome by suppressing PKR activity as well. SCFAs which help 
reduce the severity of experimental colitis are produced by 17 strains of Clostridia 
in cluster XIVa, IV, and XVIII [17, 18]. Consistently, these bacteria and SCFA level 
also reduce the disease severity in IBD patients [19–22]. While not limited to the 
gut, the anti-inflammatory effect of SCFAs is also observed in the airway. SCFAs, 
via GPR41, suppress allergic airway inflammation by augmenting the generation of 
dendritic cell precursors in the lung and subsequently decreasing T helper type 2 
(Th2) cell function [23]. On the other hand, SCFAs can also exacerbate inflamma-
tion. For example, acetate potentiates the monosodium urate crystal-activation of 
inflammasome possibly via GPR43, leading to the induction of IL-1β and CXCL1 
expression and the subsequent exacerbation of gout-associated inflammation [24].

SCFAs activate GPR109A to induce the differentiation of Treg cells and IL-10-
producing T cells by triggering anti-inflammatory responses in macrophage and 
dendritic cells, leading to the protection against colitis-associated colon cancer [25]. 
In contrast, the butyrate derived from an altered gut microbiota promotes tumori-
genesis in a genetic mouse model of colon cancer by inducing colon epithelial cells 
hyperproliferation [26]. Hence, the role of SCFAs varies among different types of 
colon cancer.

7.2.2  �Aryl Hydrocarbon Receptor Ligands

Tryptophan is an essential amino acid that is found in red meat, fish, eggs, and cru-
ciferous vegetables [27, 28]. Gut microbes such as Lactobacillus can catabolize 
tryptophan into indole-3-aldehyde which is a ligand for the aryl hydrocarbon recep-
tor (AHR) [29]. Upon binding of its ligand, AHR is transported into the nucleus and 
binds to the AHR nuclear translocator, leading to the transcription of genes includ-
ing IL-22  in Th17 cells and group 3 innate lymphoid cells [27]. IL-22, in turn, 
induces the expression of antimicrobial peptides and production of mucus, thereby 
maintaining the epithelial integrity of the intestine [27]. Interestingly, absence of 
AHR or AHR ligands in the diet increases the disease severity in a murine IBD 
model [30]. This suggests that AHR ligands may play a role in preventing IBDs via 
maintenance of the epithelial integrity.
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7.2.3  �Hydrogen Sulfide

Food, such as dried fruits, nuts, fermented beverages, and brassica vegetables, and 
the host colonic mucus layer provide rich sources of inorganic and organic sulfate 
for the sulfate-reducing bacteria to extract energy [31, 32]. This energy extraction 
involves oxidation of organic compounds or hydrogen and reduction of sulfate into 
hydrogen sulfide (H2S) in the colon [32]. Of note, these sulfate-reducing bacteria in 
the human colon mainly belong to the genus of Desulfovibrio in the class of 
Deltaproteobacteria [33].

Although previous studies have shown contradictory results on the amount of 
sulfate-reducing bacteria present in the mucosal layer and feces of IBD patients 
[34–40], the level of H2S has been shown to be consistently higher in IBD patients 
as compared to the healthy individuals [34, 41]. There are two hypotheses on how 
H2S induces inflammation. It has first been proposed that H2S causes inflammation 
in IBDs by inducing injury in colon epithelium via its genotoxic effect and by sup-
pressing the effect of SCFA [42–44]. Recent studies, however, have held a different 
view that the elevated level of H2S in IBD patients may degrade the outer and inner 
mucus layer of the colon of the patients, leading to the invasion of gut microbes into 
the epithelium and the subsequent colonic inflammation [32, 45].

H2S has also been associated with colorectal cancer. This is supported by the fact 
that the level of fecal H2S is higher in patients who had surgical removal of sigmoid 
colon cancer and later developed neoplasia as compared to the healthy individuals 
[46]. In addition, H2S activates mitogen-activated protein kinase and induces DNA 
damage [47, 48] which together induce colonic mucosal hyperproliferation [43, 49], 
thereby leading to colorectal cancer.

7.2.4  �Bile Acids

There are two classifications of bile acids: primary and secondary. Primary bile 
acids include chenodeoxycholic acids and cholic acids in human and cholic acids 
and muricholic acids in mice and rats [50]. They are synthesized from cholesterol in 
liver and then conjugated with glycine or taurine in human, or only with taurine in 
rodents [50]. They are subsequently released into the duodenum to perform its func-
tion of solubilizing cholesterol, dietary fats, and fat-soluble vitamins for absorption 
[1, 50]. Most of these conjugated bile acids are reabsorbed in the ileum and trans-
ported back to the liver via the hepatic portal vein, thereby preserving 95% of the 
bile acid pool [50]. However, a portion of these preserved bile acids are deconju-
gated by bacteria including Lactobacillus, Bifidobacteria, Clostridium, and 
Bacteroides [50]. To perform such deconjugation, these bacteria utilize the bile salt 
hydrolase [50]. Deconjugated bile acids are not absorbed by the small intestine but 
are metabolized into secondary bile acids via 7α/β-dihydroxylation in the colon by 
bacterial members in genus of Clostridium including C. scindens, C. hiranonis, C. 
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hylemonae, and C. sordellii [27]. These secondary bile acids include lithocholic 
acid deconjugated from chenodeoxycholic acid and deoxycholic acid deconjugated 
from cholic acid in human, and murideoxycholic acid deconjugated from muricho-
lic acids in mice [50].

Bile acids can act as ligands which bind to cell surface receptors responsible for 
regulating different metabolic processes. For example, primary bile acids mainly 
bind to the farnesoid X receptor (FXR) which is highly expressed in the liver, ileum, 
and kidney [51, 52]. In healthy individuals, FXR controls the synthesis of bile acids 
via a negative feedback mechanism [50]. However, the dysregulation of primary 
bile acid activation may result in metabolic diseases. For example, FXR-deficient 
mice fed on chow diet develop hyperglycemia and hypercholesterolemia [53, 54]. 
Similarly, mice with double deficiency of FXR and Apolipoprotein E which were 
fed on a high-fat and high-cholesterol diet, gained weight and increased the severity 
of atherosclerosis with elevated expression level of inflammatory genes [55]. In 
contrast, mice with double deficiency of FXR and low-density lipoprotein receptor 
on a high-fat diet have improved lipid profile and protect against diet-induced devel-
opment of obesity and atherosclerosis [56]. Similarly, FXR-deficient mice which 
are fed on a high-fat diet or have genetically obese background are protected against 
obesity and have improved glucose homeostasis [57–59]. Hence, the role of FXR in 
obesity and obesity-associated diseases such as atherosclerosis and type-2 diabetes 
remains controversial. This controversy may have resulted from the different micro-
biota present across different animal facilities. Further studies are required to iden-
tify the specific microbiota which fine-tune the effect of FXR on these diseases. 
Moreover, patients with NAFLD have reduced expression of hepatic FXR which is 
associated with the elevated level of liver X receptor, sterol regulatory element-
binding protein 1C (SREBP-1C), and enhanced hepatic triglyceride synthesis [60]. 
This elevation of SREBP-1C is associated with the severity of hepatic steatosis in 
the NAFLD patients [60]. Therefore, these findings suggest that the primary bile 
acids play a role in regulating the development of metabolic diseases. However, the 
role of gut microbiota in these diseases requires further investigation.

Secondary bile acids bind to TGR5 (GPR113). Upon activation, TGR5 induces 
the release of GLP-1 in enteroendocrine L cells by promoting mitochondrial oxida-
tive phosphorylation and Ca2+ influx [61]. This improves the insulin sensitivity and 
glucose tolerance in obese mice [61]. The TGR5 activation also enhances the energy 
expenditure in brown adipose tissue, preventing obesity, insulin resistance, and 
hepatic steatosis [61, 62]. This is partly mediated by the cAMP-dependent thyroid 
hormone-activating enzyme type 2 iodothyronine deiodinase [62]. In addition to its 
effect on metabolism, TGR5 also affects the immune system. TGR5 activation by 
synthetic bile acid inhibits NFκB-dependent expression of cytokines including 
IL-1β, TNF-α, and IL-6 via cAMP signaling in macrophages [63]. This reduces 
intraplaque inflammation and vascular lesion formation, thereby preventing the 
development of atherosclerosis [63]. This macrophage-specific TGR5 activation 
also inhibits the adipose tissue inflammation by suppressing chemokine expression 
and macrophage infiltration, leading to the protection against insulin resistance 
[64]. This suppression is mediated by AKT-mTOR-dependent induction of 
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differential translation of the dominant-negative C/EBPβ isoform [64]. Hence, the 
binding of TGR5 with secondary bile acids can prevent metabolic diseases includ-
ing obesity, atherosclerosis, hepatic steatosis, and type-2 diabetes.

Taurine, derived from the deconjugation of primary bile acid, has been shown to 
activate the NLRP6 inflammasome to induce IL-18 and antimicrobial peptides, pro-
viding protection against colitis [65]. However, the clinical relevance of this finding 
requires further examination.

Development of cancer can be associated with either the dysregulated bile acid 
secretion or certain types of bile acid. Colorectal cancer patients have increased 
level of bile secretion and fecal bile acid concentration [66, 67]. Furthermore, the 
fecal concentration of secondary bile acids in African Americans with a high risk of 
colon cancer is higher than that in rural native Africans with a low risk of the disease 
[68]. On the other hand, the deoxycholic acid has suggested to provoke the 
senescence-associated secretory phenotype in hepatic stellate cells which in turn 
induces various inflammatory and tumor-promoting factors such as IL-1β in the 
liver, thus promoting the obesity-associated hepatocellular carcinoma development 
in mice [69].

7.2.5  �Trimethylamine-N-Oxide (TMAO)

In our diet, trimethylamine-N-oxide (TMAO) is directly obtained from fish, or indi-
rectly from meat and high-fat diets that are typically rich in choline and l-carnitine 
[70]. TMAO can be directly absorbed and transported to the blood for normal func-
tion of the body, while in the precursor form, choline and l-carnitine have to first be 
converted into trimethylamine (TMA) by the gut microbiota. Once absorbed, TMA 
is then converted into TMAO in the liver by the host hepatic enzyme flavin-
containing monooxygenase 3 [70]. The normal function of TMAO includes coun-
teracting the destabilizing effect of urea on proteins and nucleic acids in kidney, and 
acting as a chaperone that promote protein folding [70].

Diets play a role in shaping the composition of the gut microbiota which in turn 
determines the plasma level of TMAO. For example, the plasma level of TMAO 
increases in human subjects who ingest phosphatidylcholine [71]. This elevation is 
inhibited by antibiotic treatment but reappears after antibiotic withdrawal [71]. 
Similarly, people who are omnivores have a stronger ability to convert l-carnitine 
into plasma TMAO than people who are vegans or vegetarians [72]. Such difference 
in l-carnitine metabolism depends on the differences in specific bacterial taxa in the 
human gut between these two groups of people [72]. These findings suggest that the 
long-term dietary habit shapes the composition of microbiota to determine the 
metabolism of the ingested food.

The increased plasma level of TMAO has been associated with the elevated risk 
of adverse cardiovascular events including overall mortality, myocardial infarction, 
or stroke in human [71–73]. This induction of TMAO, which is suggested to be a 
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result of the altered gut microbiota [72], promotes macrophage cholesterol accumu-
lation and foam cell formation [74]. This leads to the promotion of atherosclerosis 
[74]. On the other hand, the reduced level of available phosphatidylcholine leads to 
NAFLD in mice [75]. This is caused by the dysregulated enzymatic systems of the 
altered gut microbiota and the stronger ability of the host to produce excretory 
methylamine from phosphatidylcholine [75]. Hence, the levels of TMAO and its 
precursors play a role in regulating metabolic diseases including cardiovascular dis-
eases and NAFLD.

7.2.6  �Polyamine

Polyamines are polycationic molecules that are present in living cells to carry out 
different cellular functions including gene transcription, translation, cell growth, 
and cell death [76]. These polyamines including putrescine, spermidine, and sperm-
ine can be generated by the host cells or the gut microbes to maintain the integrity 
of the epithelial barrier [76]. However, the upregulation or downregulation of the 
polyamine level has been associated with diseases. For example, spermine level is 
increased during colitis caused by NLRP6 deficiency [65]. The elevated spermine 
inhibits the NLRP6 inflammasome induction of IL-18 and antimicrobial peptide, 
promoting the disease severity in an experimental colitis model [65]. Intriguingly, 
the levels of polyamine metabolites including N1,N12-diacetylspermine are higher in 
biofilm-positive colon cancer tissues [77]. When the colon cancer patients are 
treated with oral antibiotics, the isolated colon cancer tissues have no biofilm or 
culturable bacteria and a  reduced level of N1,N12-diacetylspermine [77]. As biofilm 
has been associated with the enhanced crypt epithelial cell proliferation in colon 
mucosa [78], biofilm may act synergistically with the host cancer to generate poly-
amines that may promote colorectal cancer development [77].

7.3  �Microbial Components

7.3.1  �Lipopolysaccharide (LPS)

Lipopolysaccharide (LPS) is a cell wall component of the Gram-negative bacteria. 
It is a ligand of Toll-like receptor 4 (TLR4) and is present in many gut bacteria. 
Commensal bacteria maintain an optimal TLR4 activation to ensure the gut epithe-
lial integrity, leading to the protection against the intestinal injury-induced colitis 
[79]. This protection is mediated by MyD88, a downstream signaling molecule of 
TLR4 [79], which in turn induces the expression of cyclooxygenase 2 from intesti-
nal epithelial cells and macrophage, leading to the enhanced mucosal production of 
prostaglandin E2 and the subsequent maintenance of gut epithelial survival [80–83]. 
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However, when there is over-activation of TLR4 possibly by LPS from microbiota, 
the gut barrier is disrupted, and gut bacteria invade the mucosa, leading to the exac-
erbation of chemically induced colitis [84].

Apart from its role in IBD development, LPS also regulates metabolic inflamma-
tion. Mice fed on a high-fat diet have an increased plasma LPS level, elevated intes-
tinal permeability and a higher proportion of LPS-containing gut microbiota, 
resulting in metabolic endotoxemia [85]. Subcutaneous infusion of LPS into mice 
leads to insulin resistance and obesity [85]. Consistently, antibiotic treatment 
decreases the metabolic endotoxemia and the cecal content of LPS in mice that are 
genetically obese and fed on a high-fat diet, resulting in the reduction of glucose 
intolerance, body weight gain, fat mass development, and inflammation [86]. 
Indeed, the metabolic endotoxemia is mediated by CD14, a co-receptor for LPS 
binding to TLR4 [86]. In support of these studies, patients with metabolic syndrome 
and type-2 diabetes have endotoxemia [87, 88]. Furthermore, NLRP3 and NLRP6 
inflammasomes suppress the progression of metabolic diseases including NAFLD 
and NASH via IL-18-dependent changes of the gut microbiota [89]. These changes 
of gut microbiota correlate with the increased hepatic steatosis and inflammation 
via the influx of TLR4 and TLR9 ligands into the portal circulation, leading to 
enhanced hepatic TNF-α expression and the subsequent NASH progression [89]. In 
agreement with the data from mouse models, NAFLD patients have elevated levels 
of TNF-α, IFN-γ, and IL-6, disruption of microvilli structure in small intestine, and 
enhanced gut permeability [90–92]. Hence, it is possible that the endotoxemia, 
which is resulted from the increased gut permeability by the loss of inflammasome 
activity, is crucial for the development of these metabolic diseases.

LPS, possibly leaked from the gut microbiota, has been shown to promote the 
development of pancreatic and liver cancer via a TLR4-dependent signaling path-
way [93, 94]. This role of LPS for tumorigenesis can also be observed in colitis-
related colon cancer. TLR4-deficient mice are protected against the development of 
such cancer [95], while constitutive activation of TLR4 enhances it [95, 96]. 
Similarly, overexpression of TLR4 is observed in tumors of the IBD patients [95]. 
Whether the LPS promotion of colitis-related colon cancer development originated 
from the gut microbiota requires further studies. Moreover, the intestinal mucus 
secretion is impaired in tumor in a genetic mouse model of colorectal cancer, leading 
to the increased gut permeability and translocation of LPS of the gut microbiota into 
the portal circulation [97]. This in turn activates the myeloid cells to induce IL-17 
and IL-23 via the TLR4-MyD88 pathway, promoting colon cancer development 
[97]. Similarly, in another genetic mouse model of colon cancer, microbiota  has 
been suggested to activate the MyD88 signaling pathway in intestinal epithelial cells 
which inhibits the degradation of the c-Myc oncoprotein, leading to the promotion 
of colon tumorigenesis [98]. As c-Myc has been shown to activate IRAK1 which is 
a signaling molecule downstream of MyD88 [99], it would be interesting to study 
whether this c-Myc stabilization acts as a positive feedback mechanism to amplify 
this microbiota-MyD88-dependent tumor formation. In summary, it is suggested 
that LPS translocates into circulation from the gut microbiota by a leaky gut during 
the development of liver, pancreatic, and colon cancers. This, in turn, promotes the 

H.S. Ong and H.C.H. Yim



163

development of these cancers. However, the causes of this gut leakiness require fur-
ther examination.

7.3.2  �Flagellin

Flagellin is a structural component of flagella which allows the pathogenic bacteria 
to adhere and invade host tissues [100]. It is recognized by TLR5 [100]. Interestingly, 
TLR5-deficient mice develop spontaneous colitis with increased bacterial load in 
the colon as compared to wild-type mice [101]. This inflammation may be mediated 
by the increased colonic expression of hematopoietic cell-derived pro-inflammatory 
cytokines [101]. Deletion of TLR4 rescues the colitis of TLR5-deficient mice but 
not the bacterial load in the colon [101], suggesting that TLR4 ligands are involved 
in induction of mucosal inflammation when TLR5 is absent. This notion is sup-
ported by the finding that the polymorphisms in TLR5 gene are associated with 
ulcerative colitis and simultaneous polymorphisms in TLR4 and TLR5 are corre-
lated with decreased level of pro-inflammatory cytokines [102]. In addition, TLR5 
is associated with metabolic syndrome. TLR5-deficient mice exhibit hyperphagia 
and develop hyperlipidemia, hypertension, insulin resistance, and increased adipos-
ity [103]. These metabolic changes correlate with changes in the composition of the 
gut microbiota in these mice [103]. Transfer of this microbiota into wild-type germ-
free mice results in similar metabolic changes [103]. Similarly, mice lacking 
TLR5 in intestinal epithelial cells have a low-grade inflammation in the spleen and 
colon and a delayed clearance of pathobiants, leading to the development of meta-
bolic syndrome and colitis [104]. This inflammation is correlated with the increased 
localization of gut microbiota into the colonic mucosa and the increased levels of 
fecal LPS and flagellin [104]. Loss of TLR5 in dendritic cells does not lead to the 
development of inflammation or the change in the composition of the microbiota 
but only dampens the flagellin-induced IL-22 production [104]. Consistently, a 
study using germ-free mice has shown that the gut commensal microbiota is respon-
sible for the gut inflammation when TLR5 is absent [105]. Hence, it is possible that 
flagellin from the commensal microbes activates TLR5 to maintain the gut epithe-
lial integrity. When this barrier is impaired in the case of TLR5-deficiency such as 
TLR5 gene polymorphisms, some gut commensal microbes become pathobiants 
and induce mucosal inflammation via TLR4, contributing to the development of 
IBD and metabolic diseases.

Depending on the cancer type, commensal bacteria can either potentiate or sup-
press the extraintestinal cancer progression via interaction with TLR5. Rutkowski 
et al. has shown that gut commensal microbiota induces systemic IL-6 serum level 
via TLR5, hence promoting tumor progression in a mouse sarcoma model [106]. 
This elevation of IL-6 expands the granulocytic myeloid-derived suppressor cells, 
leading to the secretion of galectin-1 from γδ T cells [106]. The secreted galectin-1 
suppresses the antitumor immunity and enhances malignant progression [106]. On 
the contrary, when the tumor is unresponsive to IL-6, gut commensal microbiota 
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activation of TLR5 suppresses tumor growth by inhibiting IL-17 production in mice 
bearing the breast carcinoma cell line [106]. Consistently, breast cancer patients 
with TLR5 R392X polymorphisms have poorer survival and higher IL-17 levels 
than the patients with wild-type TLR5 alleles [106]. Whereas in the case of ovarian 
cancer, patients with the same polymorphisms have improved survival [106]. As 
discussed above, TLR5 can maintain the epithelial integrity. Hence, it is possible 
that the gut microbiota modifies the outcome of cancer malignancy only when there 
is an impairment of gut lining caused by the loss of function of TLR5.

7.3.3  �Polysaccharide A (PSA)

Polysaccharide A (PSA), which is a cell wall component of the symbiont Bacteroides 
fragilis, shapes the maturation of the developing immune system including the 
development and function of T cells [107]. PSA signals through TLR2 on CD4+T 
cells to activate the Treg cells to secrete IL-10, leading to the protection against 
inflammation in mouse models of IBD and multiple sclerosis [108–111]. In addi-
tion, PSA can be released by Bacteroides fragilis in outer membrane vesicles 
(OMV) [112]. This PSA-containing OMV is sensed by TLR2 present in intestinal 
dendritic cells to promote Treg cells and anti-inflammatory cytokine production, 
leading to the protection against experimental colitis [112].

7.3.4  �Bacterial DNA

Cytosine-guanine dinucleotide (CpG) motifs of bacterial DNA are present in many 
commensal bacteria. They are recognized by TLR9. Activation of TLR9 at apical 
surface of intestinal epithelial cells suppresses the NF-κB activation and expression 
of TNF-α and IL-8, leading to the protection against experimental colitis [113]. This 
protection is also mediated by TLR9 activation of hairy enhancer of split 1 and 
expression of vascular endothelial growth factor that promote the intestinal wound 
healing and CpG-TLR9 enhancement of Treg cell function [114, 115]. Moreover, 
TLR9 reduces glucose intolerance and insulin resistance, thus protecting against 
high-fat diet-induced obesity [116]. This is possibly mediated by the TLR9 suppres-
sion of M1 macrophages and Th1 cells and TLR9 inhibition of pro-inflammatory 
cytokine and chemokine expression in the adipose tissue [116]. In contrast, TLR9 
ligands promote NASH progression when the permeability of gut is increased by 
inflammasome malfunction [89]. Hence, the gut integrity may determine whether 
TLR9 ligands promote or suppress the inflammation in IBD and metabolic 
diseases.
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7.3.5  �Muramyl Dipeptide (MDP)

Muramyl dipeptide (MDP), which is a peptidoglycan motif, is present in a wide 
range of Gram-positive and Gram-negative bacteria including those present in our 
gut microbiota. It is recognized by nucleotide-binding oligomerization domain pro-
tein 2 (NOD2). Previous studies have shown that polymorphisms in NOD2 are asso-
ciated with Crohn’s disease (CD) which is one of the IBD subtypes [117, 118]. The 
ileal mucosa of CD patients with homozygosity in NOD2 mutation has higher load 
of Bacteroidetes [119]. An elevated load of Proteobacteria and a lower load of 
Firmicutes are also associated with the NOD2 mutation [119]. In mice, however, 
conflicting results have been reported on the role of NOD2 in altering the composi-
tion of the gut microbiota, and the mechanism of NOD2 regulation on these changes 
[117, 119]. Regardless of this inconsistency, translocation of Gram-negative bacte-
ria, Gram-positive bacteria, and yeast Saccharomyces cerevisiae on gut Peyer’s 
patches in the ileum is increased in NOD2-deficient mice [120]. These mice are also 
more susceptible to the experimental colitis [120]. In addition, more adherent-
invasive Escherichia coli (E. coli), which is associated with CD, are attached to and 
translocate across the Peyer’s patches of the NOD2-deficient mice via their long 
polar fimbriae [121]. Apart from colitis, NOD2-deficient mice have elevation of 
inflammation in adipose tissue and liver, and insulin resistance when they are fed on 
a high-fat diet [122]. This is caused by the bacterial translocation from the gut 
into the adipose tissue and liver [122]. These findings suggest that NOD2, possibly 
activated by MDP, maintains the gut lining integrity to prevent the translocation of 
gut microbes, leading to the protection against IBD and metabolic diseases. This 
integrity maintenance could be mediated by the MDP-NOD2 inhibition of the gut-
microbe-activated TLR2 and TLR4-dependent pro-inflammatory responses and by 
the NOD2 modulation of TGF-β-producing Treg cells in colonic lamina propria 
[123–126]. However, the origin of the MDP and the mechanism of its translocation 
across the mucus layer of the gut require further investigation.

NOD2-deficient mice are more susceptible to colitis-associated colorectal cancer 
[127]. This is mediated by the increased IL-6 secretion resulted from the changes of 
the gut microbiota in these mice [127]. In addition, variant R702W in NOD2 has 
been associated with colorectal cancer [128]. These findings suggest that NOD2 
plays a role in ensuring a healthy gut microbiota possibly via the above-proposed 
mechanism of gut integrity maintenance.
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7.4  �Virulence Factors

7.4.1  �FadA Adhesin

Fusobacterium nucleatum (F. nucleatum) is an opportunistic commensal bacterium 
which is present in the oral cavity [129] and is associated with different periodontal 
diseases [129]. FadA, a virulence factor of F. nucleatum, is a surface adhesin that 
defines the invasiveness of this bacterium [129]. Interestingly, the level of FadA 
gene in colon tissue from patients with adenomas and adenocarcinomas is higher 
than that from the healthy individuals [129]. Furthermore, FadA binds to E-cadherin 
on the gut epithelial cells, leading to the activation of β-catenin induction of epithe-
lial cell proliferation [129]. This results in the F. nucleatum potentiation of the 
tumor growth in a genetic mouse model of colon cancer [130]. Consistently, higher 
frequency of F. nucleatum has also been found in the samples of patients with 
colorectal cancers [131, 132].

7.4.2  �Polyketide Synthases (PKS) Islands

E. coli strains are one of the Gram-negative bacteria that constitute a healthy gut 
microbiota. However, there is an increased attachment of E. coli to the colon mucosa 
in patients with adenocarcinoma as compared to healthy controls [133–135]. Some 
strains of E. coli have a 54 kb polyketide synthases (PKS) genotoxicity island in 
their genome. This island encodes multiple enzymes to synthesize colibactin, which 
is a genotoxin [136]. E. coli that contain PKS island have been found in the mucosal 
lesions of patients with IBD and colorectal cancer [137–139]. They also enhance 
tumor development in two mouse models of colitis-associated colon cancer and a 
genetic mouse model of colon cancer [137, 138, 140]. Several mechanisms have 
been proposed on how colibactin promote colon cancer development. Firstly, it 
induces cellular senescence by conjugating p53 with small ubiquitin-like modifier, 
leading to the enhanced tumor growth [140]. Secondly, it induces the colon epithe-
lial cell proliferation [138]. Lastly, it cross-links DNA by its warhead, leading to the 
induction of DNA damage and the subsequent cell cycle arrest and genomic insta-
bility [141–143].

7.4.3  �Bacteroides fragilis Toxin (BFT)

Bacteroides fragilis (B. fragilis) are anaerobic symbionts living in the colon [136]. 
They are classified into non-toxigenic B. fragilis (NTBF) and enterotoxigenic B. 
fragilis (ETBF) [136]. While both NTBF and ETBF can colonize mouse colon, only 
ETBF can promote colitis and tumor development in a multiple intestinal neoplasia 
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mouse model via the activation of Th17 cell responses [144]. This is possibly medi-
ated by B. fragilis toxin (BFT) derived from ETBF that can induce the expression of 
spermine oxidase to catabolize polyamine in colonic epithelial cells, leading to 
DNA damage [145]. Consistently, higher percentage of colonoscopic biopsies and 
fecal samples containing the bft gene is found in colorectal cancer patients than in 
the controls [146, 147]. Hence, both BFT and the entire ETBF are crucial in poten-
tiating the development of IBD and colon cancer.

7.5  �Concluding Remarks

Microbial metabolites, microbial components, and virulence factors interact with 
the host tissues and cells both locally and systemically, contributing to the patho-
genesis of inflammatory diseases and cancers. These interactions are made possible 
by the ability of microbial factors to cross the gut epithelial barrier. While microbial 
metabolites or secretory toxins can diffuse passively across this barrier, the gut epi-
thelia contain a mucus layer that blocks the passage of intact gut microbes. Thus, it 
is reasonable to propose that the cellular components of these microbes can only 
interact with the host cells and tissues when this barrier has been breached during 
disease development. However, studies have implicated that these microbial com-
ponents can activate tolerogenic immune responses to maintain this barrier integrity 
without compromising it in the first place. The mechanisms taken by the gut micro-
biota or the host to maintain the gut epithelial barrier require further investigation. 
In addition, the rapid advancement of meta-omic technologies will facilitate the 
discovery of more microbial factors that contribute to the development of inflamma-
tory diseases and cancers. Once identified, they will provide insights into the estab-
lishment of preventive measures and intervention strategies to tackle these 
diseases.
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Chapter 8
cGAS-STING Activation in the Tumor 
Microenvironment and Its Role in Cancer 
Immunity

Geneviève Pépin and Michael P. Gantier

Abstract  Stimulator of interferon (IFN) genes (STING) is a key mediator in the 
immune response to cytoplasmic DNA sensed by cyclic GMP-AMP (cGAMP) syn-
thase (cGAS). After synthesis by cGAS, cGAMP acts as a second messenger acti-
vating STING in the cell harboring cytoplasmic DNA but also in adjacent cells 
through gap junction transfer. While the role of the cGAS-STING pathway in patho-
gen detection is now well established, its importance in cancer immunity has only 
recently started to emerge. Nonetheless, STING appears to be an essential compo-
nent in the recruitment of immune cells to the tumor microenvironment, which is 
paramount to immune clearance of the tumor. This review presents an overview of 
the growing literature around the role of the cGAS-STING pathway in the tumor 
microenvironment, with a specific focus on the role that cancer cells may play in the 
direct activation of this pathway, and its amplification through cell-cell transfer of 
cGAMP.
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8.1  �Introduction

Detection of pathogen-associated molecular patterns (PAMPs) by the immune sys-
tem is the foundation of innate immunity and is one of the first lines of defense 
against infections. Viral nucleic acids and bacterial cell wall components (such as 
lipopolysaccharides or flagellar proteins) are PAMPs selectively detected by differ-
ent types of innate immune receptors. These include membrane-bound Toll-like 
receptors (TLRs)—located at the surface of the cells or in the endosomes (e.g., 
TLR3, TLR4, and TLR7/8/9)—or cytoplasmic sensors such as retinoic acid-
inducible gene I (RIG-I)-like helicases, which detect foreign RNAs [1, 2]. Activation 
of such innate immune sensors results in the production of antiviral and antibacte-
rial proteins, including cytokines such as TNF-α or type I interferons (IFNs). Type 
I IFNs exert a strong antiviral effect through transcriptional induction of more than 
2000 genes [3].

8.1.1  �Stimulator of Interferon Genes: STING

Stimulator of interferon genes (STING, also known as MITA, ERIS, MPYS, or 
TMEM173) was independently discovered by four different groups in 2008 in an 
attempt to characterize mechanisms of DNA recognition resulting in the production 
of type I interferon (IFN), independently of TLR9 [4–7]. STING is an ER-localized 
protein containing N-terminal transmembrane helices and a large C-terminal cyto-
solic domain. Its activation promotes signal transduction through the TBK1-IRF3 
axis and production of type I IFNs [8, 9]. STING is directly involved in intracellular 
bacterial detection through sensing of cyclic dinucleotides (CDNs). During infec-
tion, CDNs are produced by bacteria such as Listeria monocytogenes and 
Mycobacterium tuberculosis [10, 11], which activate STING to promote strong 
immune responses to these pathogens.

8.1.2  �Cyclic GMP-AMP Synthase: cGAS

Despite the initial demonstration of STING’s involvement in intracellular DNA 
sensing [12], a lack of evidence for a direct dsDNA-STING interaction prompted 
the community to suggest the existence of an upstream DNA sensor. Several poten-
tial cytoplasmic DNA sensors had been described (e.g., DAI, IFI16, DDX41, 
DNA-PK, MRE11, Sox2, and PQBP1, reviewed in [13]), before the discovery of 
cyclic GMP-AMP synthase (cGAS) by the Chen laboratory in 2013 [14]. Following 
cytoplasmic DNA detection, cGAS produces an endogenous second messenger, 
2′3′-cyclic GMP-AMP (2′3′-cGAMP), that binds directly to STING to promote its 
activation [15–19]. It is now clear that cGAS is an important immune receptor for 
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DNA viruses and retroviruses. As such, its capacity to sense cytoplasmic DNA is 
not restricted to standard Watson-Crick DNA, and it can also sense DNA-RNA 
hybrids [20]. The DNA cGAS senses can originate from various sites; in addition to 
bacterial and viral DNA, there is now good evidence that it senses self-DNA leaked 
from the nucleus [21] or mitochondria [2, 22].

By activating STING, DNA detection by cGAS culminates in the production of 
pro-inflammatory cytokines and the recruitment of the IFN response. Soon after the 
discovery of this pathway, the role of cGAS-STING in sterile inflammation (i.e., in 
the absence of any pathogen) was investigated. Mutations promoting a gain-of-
function of STING have been shown to result in chilblain lupus [23], a rare type of 
cutaneous auto-inflammation. In addition, cGas and/or Sting genetic deletion was 
found to rescue animals from lupus-like diseases [24–26].

8.1.3  �cGAS-STING in Tumor Development

Beyond its critical role in innate immunity, the cGAS-STING pathway is rapidly 
emerging as a critical player in the control of tumor development. Clearance of 
tumorigenic cells by the immune system initially relies on type I IFN production by 
dendritic cells (DCs) and the recruitment of CD8+ T cells, which promote the tar-
geted death of such aberrant cells. Accordingly, chemically induced tumors develop 
better in mice lacking type I IFN signaling compared to their wild-type (WT) coun-
terparts; similarly, a deficiency in type I IFN signaling results in poorer rejection of 
transplanted immunogenic tumors [27, 28].

Recruitment of CD8+ T cells in the tumor microenvironment is the key step in 
antitumor immunity and is directly dependent on type I IFN production by DCs [29, 
30]. Critically, STING appears to play a unique, non-redundant role in the recruit-
ment of CD8+ T cells to the tumor microenvironment [31, 32]. Indeed, genetic loss 
of a number of the most important signaling molecules known to date in innate 
immunity did not have any impact on CD8+ T cell infiltration in the tumor microen-
vironment in a syngeneic melanoma model [31, 32]. Conversely, the loss of STING 
abolished the spontaneous infiltration of CD8+ T cells in this melanoma model [32, 
33].

8.1.4  �STING Agonists as Antitumoral Adjuvants

The use of pathogen-associated molecular pattern (PAMP)-like molecules to poten-
tiate DC activation upon radiation therapy and help tumor clearance is well estab-
lished, with several clinical trials currently underway [34]. Specifically, there has 
been a great deal of enthusiasm around the concept that synthetic STING ligands 
could be designed to facilitate tumor clearance [35, 36]. One STING ligand that 
showed early promise was DMXAA, a flavonoid compound comprising two phenyl 
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rings and a heterocyclic ring. DMXAA was found to exert strong antitumoral activi-
ties in mice and to act as a direct ligand for mouse STING [37]. However, DMXAA 
failed in human clinical trials [38] and was found not to be a direct ligand for human 
STING [39]. Other research has focused on cGAMP, the second messenger that 
activates STING. Although cGAMP can be synthesized in vitro, its application as 
an adjuvant is partially limited by the fact that it is not membrane permeable. 
Nonetheless, cGAMP injection has been found to synergize with radiation therapy 
to control local and distant tumors in pancreatic cancer [40] and to decrease chemo-
therapy toxicity in colon cancer [41].

To remedy the limitations of natural cGAMP, various types of synthetic STING 
ligand based on the structures of CDNs have already been synthesized and tested in 
various cancer models (reviewed in [39]). Most of these ligands have been designed 
to target human STING and have the potential to be used in clinical trials, as exem-
plified by compound MIW815 (ADU-S100). In line with a role for STING in CD8+ 
T cell recruitment and considering prior evidence with DMXAA, intratumoral 
injection of these CDN molecules into different types of cancer (melanoma, colon, 
glioma, and breast carcinomas) caused rapid tumor regression and mediated lasting 
and systemic antigen-specific T cell immunity [37, 35, 39]. The action of STING 
agonists may not be limited to antitumor immunity, and they could also promote 
direct apoptosis of cancer cells, as suggested by observations in malignant B cell 
leukemia [36].

In addition to designing synthetic ligands, loading of otherwise non-permeable 
cyclic di-GMP into liposomes was found to stimulate clearance of murine mela-
noma [42]. This suggests that experimentation with packaging and delivery of 
STING agonists may help enhance the therapeutic potential of these molecules.

8.1.5  �STING and Immunotherapy

The tumor microenvironment plays a critical role in the control of CD8+ T cells to 
kill tumor cells. The specificity of CD8+ T cells relies on the surface expression of 
different receptors and ligands, creating an immune checkpoint to limit aberrant 
killing by CD8+ T cells. Programmed cell death 1 (PD-1) expression on CD8+ T 
cells inhibits their activation upon binding of its ligand, PD-L1. Expression of 
PD-L1 in the tumor microenvironment promotes inhibition of CD8+ T cell clear-
ance. Consequently, strategies to block PD-L1 or its binding to CD8+ T, ultimately 
aimed at reigniting immune clearance of tumor cells, have shown great therapeutic 
potential in several types of cancers [43]. Critically, the cGAS-STING axis appears 
to be very important in the capacity of PD-L1 blocking strategies to reactivate CD8+ 
T cells, as evidenced by cGAS- and STING-deficient animal models [44], and in 
studies using co-administration of PD-L1 with STING ligands [45, 46].

Conversely, there has been evidence that STING activation can dampen immune 
activity through induction of the immune checkpoint indoleamine 2,3-dioxygenase 
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(IDO) [47–49]. Further, in a subtype of head and neck cancer where the tumor was 
in a repressed immune state, STING activation could not mediate recruitment of 
CD8+ T cells [45].

With these lines of evidence taken together, the role of STING in immunotherapy 
is context dependent, and further studies are needed to better understand the signal-
ing pathways initiating the different outcomes of its activity. How STING is acti-
vated within tumor cells is not fully understood either and is a subject for further 
study, although the role of STING in immune cells during tumor immunity and 
tumor clearance is well documented. In this review, we will focus on the role of 
cGAS and STING within tumor cells. We will also address the role of cell-cell com-
munication in STING activation within the tumor microenvironment.

8.2  �Mechanisms Underlying IFN Production in Immune 
Cells Within the Tumor Microenvironment

8.2.1  �STING Activation by Tumor DNA

The current model of IFN production and CD8+ T cell priming by tumor cells indi-
cates a possible role for the activation of antigen-presenting cells (APCs) by DNA 
released from the tumor as a result of apoptosis and taken up by APC via phagocy-
tosis. This is supported by the demonstration that DNA from the tumor could be 
observed in APCs where STING was activated and type I IFN produced [32, 31, 
50]. In this model, sensing of apoptotic cell-derived nuclear DNA by DCs recruits 
the STING-IRF3 axis to promote type I IFN production, thereby enhancing the 
functionality of DCs in an autocrine loop. Activated DCs further mediate the activa-
tion and the clonal expansion of CD8+ T cells favoring tumor clearance [31].

However appealing, this model does not account for how the tumor DNA would 
be released from the endosome/phagolysosome of APCs to reach the cytoplasm, 
where cGAS is located. In fact, previous work indicates that phagocytosis of apop-
totic cells does not result in IFN-I activation, due to sequestration of DNA in the 
phagosome [51]. Similarly, despite tumor DNA being found in APC cells in vivo, 
dead tumor cells incubated with APCs did not engage an IFN response in vitro [32]. 
Another limit of the phagocytosis model is that it restricts the role of tumor cells in 
initiating an immune response to only dying/apoptotic cells.

There is also emerging evidence that the growth and spread of tumors, such as 
melanoma tumors, which display very little cell death, are regulated by 
STING. Indeed, mouse melanoma cells transplanted in mice lacking STING were 
found to develop significantly more lung metastases than WT mice [31]. Collectively, 
these examples indicate that the essential role of STING in tumor restriction is prob-
ably not limited to the activation of cGAS-STING in APCs upon phagocytosis of 
dead/apoptotic tumor cells.
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8.2.2  �Cytosolic DNA Activation of cGAS-STING

STING is indirectly activated by cytosolic DNA, through upstream cGAS engage-
ment. Following cytoplasmic DNA recognition, cGAS produces cGAMP which 
acts as a second messenger between cGAS and STING.  Critically, once synthe-
sized, cGAMP has the capacity to be transferred between cells and mediate STING 
activation in adjacent cells [52], provided they form gap junctions with the cell 
making cGAMP.  In homeostasis, physical restriction of DNA in the nucleus or 
phagosome (when the DNA is phagocytosed) ensures that self-DNA is not accessi-
ble to cytosolic cGAS. However, it is now apparent that self-DNA can escape from 
its original localization and activate the cGAS-STING pathway in certain contexts. 
To prevent aberrant cGAS recruitment, several key nucleases are at play to degrade 
DNA molecules escaping nuclear retention. Accordingly, defects in such DNases—
e.g., TREX1 [53], DNase2a [54], or the nuclease-like SamHD1 [55]—lead to cyto-
plasmic DNA accumulation and cGAS-STING activation by self-DNA. In addition, 
certain chemical modifications of DNA, such as 8-OHG, protect DNA from DNase 
degradation (such as by TREX1) thereby favoring cGAS activation [56, 25]. 
Decreases in genome stability or faults in DNA repair pathways can also lead to 
STING activation. Loss of ATM, which results in an impaired DNA damage 
response, increases genomic instability and causes spontaneous type I IFN produc-
tion through STING activation [57]. In line with this, a lack of RPA and/or RAD51, 
which normally bind to damaged DNA and sequester it in the nucleus, results in 
cGAS detection of leaked cytoplasmic DNA [58]. Therefore, the cGAS-STING 
pathway is indirectly involved in the response activated upon DNA damage.

Genome stability is directly dependent on the capacity of the cell to stop and 
repair its DNA. During each cell division, multiple mutations are made but are also 
constantly being repaired. Oncogenes and tumor suppressors regulate cell cycle and 
proliferation. In cancer, these genes are often mutated to cause sustained prolifera-
tion. This constant pressure to proliferate leads to genomic instability by forcing the 
cells to divide even in the presence of damaged DNA [59]. Accordingly, cytosolic 
DNA can be observed in B cell lymphomas, but not in normal B cells [60]. Despite 
being predominantly produced by infiltrating immune cells, some growing tumors 
can also produce type I IFNs [50]. Such type I IFN production can directly relate to 
cGAS-STING activation as recently suggested using a model of breast cancer with 
genomic instability [61]. Although a detailed understanding about how nuclear 
DNA can be leaked to the cytoplasm remains elusive, there is data to suggest that 
such leakage results from an active process. Overexpression of RNaseH1 (that 
degrades the R-loops of DNA-RNA hybrids) reduces the level of cytosolic DNA 
and type I IFN production and hampers the rejection of the lymphoma tumors [62]. 
Conversely, in prostate cancer cells, the MUS81 endonuclease cleaves DNA at 
stalled replication forks, promoting export of DNA products into the cytoplasm 
[63]. This results in type I IFN production through STING activation by the cancer 
cells, which consequently enhances the rejection of the tumor in  vivo [63]. All 
together, these data strongly suggest that the cGAS-STING can be activated in 
select tumor cells, independently of APC phagocytosis.

G. Pépin and M.P. Gantier



181

8.2.3  �cGAS-STING Activation in Tumor Cells

To date, most reports addressing the in vivo role of the cGAS-STING pathway in the 
tumor environment have relied on the use of Sting−/− tumor-bearing mice compared 
to WT mice [33, 32, 35]. These models, although supporting a critical role for 
STING in the tumor microenvironment, are unable to define the source of STING 
activation in the tumor itself. Given that about 50% of tumor cell lines express 
cGAS (e.g., 5/11 colorectal cancer cell lines [64] and 7/11 melanoma cell lines 
[65]), cGAMP production by tumors is likely to be a frequent occurrence, assuming 
they also have defective DNA repair capacity. Whether such tumor-derived cGAMP 
activates type I IFN production by cancer cells is dependent on the presence of 
STING [64, 65], but this cGAMP can also modify the tumor microenvironment 
through horizontal transfer of the second messenger to adjacent cells [52].

With this in mind, at least two different scenarios involving cGAMP expression 
in tumor cells can be envisioned as illustrated in Fig.  8.1. First, tumor-derived 

Fig. 8.1  Engagement of cGAS in tumor cells can amplify type I IFN production
Genomic instability, DNA damage, and accelerated cell proliferation can mediate leakage of DNA 
into the cytoplasm in tumor cells. The released DNA can then be detected by cytosolic cGAS to 
result in cGAMP production. cGAMP acts as a second messenger, which can directly activate 
STING in the cGAS engaged cells (if present—in this schematic the cells with cytosolic DNA do 
not express STING). Independent of intracellular STING activation, cGAMP can transfer to adja-
cent cells through gap junctions and activate STING in these recipient cells (1). Such cells, 
although not exhibiting cytosolic DNA, respond to cGAMP through STING engagement and pro-
duce type I IFN. This amplification of type I IFN production and associated cytokines by adjacent 
cells promotes the recruitment and activation of dendritic cells (2). Recruited dendritic cells scan 
tumor cells and can be further activated by cGAMP transfer through immune synapse or phagocy-
tosis (3). Ultimately, activation of dendritic cells results in CD8+ T activation and tumor 
immunity
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cGAMP production could lead to type I IFN production by the tumor cells or 
STING-competent adjacent tumor cells and mediate the subsequent recruitment of 
immune cells. Alternatively, tumor-derived cGAMP could directly engage STING 
in immune cells during phagocytosis or during immune synapse formation. These 
scenarios are not mutually exclusive and could possibly happen simultaneously; 
they place the focus on tumor-derived cGAMP, rather than immune-derived cGAMP, 
and illustrate how cGAMP transfer to immune cells better equipped for type I IFN 
production could be used to amplify the local detection of cytoplasmic DNA, indic-
ative of aberrant cellular replication in this case.

In support of the origin of non-hematopoietic-derived cGAMP, it should be noted 
that Trex1−/− mice initially produce type I IFN in their non-hematopoietic compart-
ment. This primary induction mediates recruitment of inflammatory cells that pro-
duce even more type–I IFN [66]. Importantly, cGAMP may also potentiate local 
type I IFN production through nonimmune adjacent tissues. As such, in an in vivo 
model of melanoma engraftment, cGAMP passage from the tumor to the vascula-
ture may explain the observation that the primary source of IFN was endothelial 
cells [33].

It is tempting to speculate that cGAS activation in tumor cells could explain why 
some patients develop spontaneous leukocyte infiltration and antitumor T cell 
responses. Such spontaneous T cell tumor infiltration has, for instance, been reported 
in melanoma [67] and ovarian [68], breast [69, 61], and colorectal cancers [70]. 
Whether such infiltration depends on cGAS activation in the tumor and how such 
activation would take place are not currently defined. Future studies investigating 
the correlation between tumor-derived cGAMP and leukocyte infiltration may help 
refine disease prognosis—leukocyte infiltration is already a powerful prognostic 
factor in colorectal cancer patients [71]—while being informative about the best 
therapeutic approach to be selected.

8.2.4  �Loss of cGAS-STING Expression in Tumor Cells

Many bacteria and viruses have evolved to block innate immune pathways, thereby 
facilitating their intracellular survival. Similar selection pressure constantly oper-
ates on tumor cells, which attempt to evade clearance by the immune system. Type 
I IFN is crucial to immune cell recruitment into the tumor microenvironment, and 
STING is a key factor in such type I IFN production, as discussed previously. One 
could speculate that selective pressure operates to block the cGAS-STING pathway 
in tumor cells to facilitate immune evasion. Accordingly, cGAS-STING inhibition 
has been recently described in human cancers.

The first extensive study on the loss of the cGAS-STING pathway comes from 
the field of colorectal adenocarcinoma (CA). In that research, cGAS-STING activ-
ity was decreased in the vast majority of CA cell lines, which lacked the capacity to 
produce type-I IFN in response to cytoplasmic DNA [64]. In some cell lines such as 
HT29 cells, the pathway was altered but still functional [64]. In support of this 
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in vitro data, one third of 48 clinical samples of adenocarcinoma analyzed showed 
a loss of cGAS expression [64]. Interestingly, upregulation of cGAS expression in 
the early stages of cancer and disruption of the STING pathway in advanced stages 
were reported in a similar study [72]. These data indicate that engagement of the 
pathway during early stages of tumor development, but inhibition of the pathway 
later in disease, favored tumor growth. Similarly to CA, melanoma cells displayed 
recurrent loss of cGAS-STING expression, ultimately inhibiting type I IFN produc-
tion [65]. Epigenetic repression was found to relate to the cGAS and STING inhibi-
tion proposed in these studies [64, 65], but other factors are most likely at play. In 
another study, ovarian cancer cells (serous, clear cell, and endometriosis) had lost 
responsiveness to DNA transfection via STING-IRF3 activation [73]. These reports 
collectively suggest that loss of expression or activity of the cGAS-STING pathway 
may favor the development of the tumor cells.

Therapeutically, such a loss of the cGAS-STING response can be harnessed to 
obtain clinical benefit. Indeed, cGAS-STING-deficient tumors are more susceptible 
to viral oncolysis—where modified DNA viruses like HSV-1 have been used to 
target and kill cancer cells [65, 64].

8.2.5  �cGAS-STING in Pathogen-Driven Carcinogenesis

Whether the cGAS-STING pathway is involved in pathogen-driven carcinogenesis 
is a question that remains elusive. Human papillomavirus (HPV) is the causative 
agent of cervical cancer and other types of cancer. HPV is a DNA virus, making it a 
potential target of cGAS sensing [74]. Accordingly, and although not detailed in the 
current literature, the cGAS-STING pathway may play a role in HPV infection and 
cancer development. In line with this hypothesis, a single nucleotide polymorphism 
(SNP) in cGAS (rs311678) has been recently associated with a reduced risk of cer-
vical precancerous lesions. This SNP was found to modulate cGAS expression 
in vitro, and higher cGAS was associated with a reduced risk of HPV infection [75]. 
As described for other viruses, HPV can also counteract the activity of the innate 
immune system. In vitro expression of the HPV E2 protein in human primary kera-
tinocytes downregulates the expression of STING and several other innate immune 
genes [76]. In addition, STING repression has been shown in HPV+ low-grade squa-
mous intraepithelial lesions, when compared with HPV− controls. Furthermore, 
viral oncogenes such as HPV E7 and E1A of human adenovirus A5 were proposed 
to bind to the N-terminal region of STING to reduce its downstream signaling [77].

In line with a role for the cGAS-STING pathway in reducing the risk of early 
stages of pathogen-driven cancer, STING expression is significantly decreased in 
gastric cancers when compared to non-tumor tissues [78]. Helicobacter pylori, the 
main causative agent of gastric cancer, can activate STING and promote inflamma-
tion [78]. These data collectively suggest a role for cGAS and STING in pathogen-
mediated carcinogenesis.

8  cGAS-STING Activation in the Tumor Microenvironment and Its Role…



184

8.3  �Connexin Expression in Tumor Cells and Its Impact 
on Tumor Development

Beyond the inhibition of tumor-derived type I IFN production by cGAS, one could 
argue that loss of cGAS expression by a significant number of tumor cells is also 
important for stopping the propagation of cGAMP within the tumor microenviron-
ment. As mentioned previously, cGAMP transfers horizontally through gap junc-
tions to activate STING in adjacent cells [52]. With this in mind, it is tempting to 
revisit previous works on the role of gap junctions in tumorigenesis.

8.3.1  �Connexins and Gap Junctions

Gap junctions are formed through the interaction of connexins from both interacting 
cells to promote the intercellular circulation of ions and small molecules such as 
cGAMP. Among the family of connexins, connexin (CX) 43 and CX45 were found 
to be essential in human embryonic kidney 293T (HEK293T) cells for cGAMP 
horizontal transfer [52]. Critically, transfer of cGAMP to HEK293T CX43/45-
deficient cells could be restored through the expression of human CX26, CX31, 
CX32, CX40, CX43, and CX62 and mouse CX43 and CX45, suggesting that most 
connexins are able to transfer cGAMP (noting that human CX50 overexpression did 
not restore transfer) [52].

8.3.2  �Loss of Intercellular Cell Communication in Early-Stage 
Tumors

Loss of intercellular communication by cancer cells was first described over half a 
century ago [79]. Since their discovery, connexins have been shown to exert both 
pro- and antitumoral activities, making it a controversial field of research [80]. The 
overall view is that retention of connexin expression benefits antitumoral activities 
at early stages but can later favor metastasis. Arguably, loss of connexin expression 
early in tumor development would be expected to reduce cGAMP horizontal trans-
fer to adjacent cells and inhibit type I IFN induction—thereby favoring tumor initia-
tion and immune evasion. Accordingly, CX43 expression is decreased in prostate 
cancer patients compared to controls. In line with what is observed with the loss of 
cGAS, the reduction of CX43 expression was found to correlate with advanced 
stages of cancer [81]. Similar trends were observed in breast cancers and head and 
neck squamous cell carcinomas (HNSCC), where low expression of CX43 corre-
lated with a negative prognosis [82]. Given that HPV is also often detected in 
HNSCC tumors [83], it is of interest to note that HPV-E6 protein expression was 
associated with a reduction of gap junction formation [84].
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Further supporting an antitumoral effect of connexins in early tumor growth, 
overexpression of CX43 was found to reduce melanoma tumor growth in vivo [85], 
while its downregulation stimulated the growth of prostate cancer cells [86]. 
Re-expression of connexins in breast cancer cell lines implanted in vivo also reduced 
tumor growth [87]. Qigesan, a molecule that increases the expression of connexins, 
reduced cell migration and invasion in esophageal cancer cells [88]. Critically, in a 
model of chemically induced mammary tumors, enforced expression of connexin 
decreased the incidence of tumor formation, while no difference was observed on 
the tumor growth [89]. These findings suggest that connexins may play a greater 
role in tumor initiation than tumor development [89]. It should, however, be noted 
that the latter tumor model relied on tumoral expression of the Cre recombinase—
which we linked recently to cGAS-STING engagement [90]—opening the possibil-
ity for a direct role for the cGAS-STING pathway in the initiation of tumors in this 
model.

8.3.3  �The Role of Connexin in Metastasis

Conversely, there are instances where increased expression of connexins was found 
to enhance metastasis. Indeed, in a mouse melanoma model, the metastatic capacity 
of the cancer cells was found to be dependent on CX26 expression [91]. Furthermore, 
CX43 expression is induced in CA cell lines that display greater metastatic poten-
tial, while CX43 levels are almost absent in other tumor cell lines [92].

Critically, direct evidence for the role of cGAMP and gap junction in metastasis 
was recently reported. When breast and lung cancer metastatic cells migrated to the 
brain, they increased connexin expression, allowing passage of tumor cell-derived 
cGAMP to adjacent astrocytes [93]. cGAMP transfer to astrocytes promoted astro-
cyte activation and the subsequent secretion of pro-inflammatory cytokines favoring 
tumor growth and chemotherapeutic resistance [93].

8.4  �cGAS-cGAMP: Connexins-STING in Chemotherapy

The role played by intercellular cell communication during chemotherapy is also 
controversial: there are reports of both positive and negative roles for connexins on 
the outcome of chemotherapy. For example, increased expression of connexins 
enhanced the sensitivity of RKO colon cancer cells to diverse chemotherapeutic 
agents such as fluorouracil, oxaliplatin, and irinotecan [94]. Critically, increased 
sensitivity was observed in vitro when the cells were more confluent or when they 
were treated with retinoic acid, which induces the expression of connexins [94]. In 
addition, low expression of connexins correlated with reduced sensitivity of hepato-
carcinoma cells to oxaliplatin [95]. On the other hand, inhibition of connexins was 
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reported to sensitize glioblastoma cells previously shown to be resistant to chemo-
therapy [96].

Chemotherapy, which mostly relies on the greater sensitivity of tumor cells to 
DNA damage, often induces type–I IFN production [97]. We recently discovered 
that the DNA intercalating agent acriflavine could promote cGAMP synthesis in 
SV40T immortalized mouse embryonic fibroblasts (MEFs), in association with 
increased cytoplasmic DNA levels [21]. Despite previous evidence of cGAS and 
STING activation following DNA damage and cytoplasmic DNA leakage [ 56, 57, 
98], there had been no prior demonstration of the direct engagement of cGAS and 
cGAMP production in these contexts. Critically, the capacity of the topoisomerase 
I inhibitor, topotecan (TPT), to restrict breast cancer cell proliferation in vivo was 
abrogated in mice lacking STING [99]. This, however, does not tease out whether 
cGAMP was generated by the tumor after chemotherapy treatment or by phago-
cytes. Similar results were found using irradiation of tumors [100]. Interestingly, 
single-stranded DNA (ssDNA) leaking in the cytoplasm of the tumor cells follow-
ing chemotherapy was shown to be a by-product of BLOOM syndrome helicase 
(BLM) and the exonuclease-RNase EXO1 [101]. Along with the discovery that 
RPA and RAD51 normally work to retain ssDNA generated by BLM and EXO1 
during DNA repair [58], these findings suggest that cytoplasmic DNA leakage is 
likely related to a saturation of the cell’s capacity to retain it in the nucleus [101]. 
Although ssDNA is not supposed to activate cGAS, it can bind to it weakly, and it 
is likely that its modification upon DNA damage (such as by 8-OHG) somewhat 
favors cGAS activation [56, 101]. Further work is clearly warranted to better define 
the modalities of cytoplasmic DNA leakage and cGAS engagement upon DNA 
damage by chemotherapy.

8.5  �DNA Damage Engages cGAS Activity and Horizontal 
STING Amplification

We have previously demonstrated that DNA damage can mediate cGAMP produc-
tion [90, 21]. When using inducible Cre recombinase-mediated DNA damage, we 
observed that only a proportion of cells displayed the hallmarks of DNA damage 
(through γH2AX staining) [90]. Critically, we demonstrated that the capacity of 
damaged cells to generate a widespread type I IFN production in the cell monolayer 
was strongly dependent on cell density—which we attribute to a connexin-dependent 
transfer of cGAMP [90]. This illustrates the capacity of healthy adjacent cells to 
amplify the signal of selected damaged cells and suggests that a similar feedback 
loop could operate in the tumor microenvironment upon induction of DNA damage 
by chemotherapy. Surprisingly, cGAS-depleted bone marrow-derived DCs can be 
activated after co-incubation with irradiated tumor cells, albeit modestly, while 
STING depletion completely thwarted the effect. This residual activation in cGAS-
deficient cells suggests that engagement of cGAS in phagocytes is not essential for 
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STING activation by irradiated tumor cells [100]. From this point of view, the 
capacity of tumors cells to generate cGAMP and transfer it to adjacent cells may 
play an important role in the outcome of chemotherapy.

8.6  �Conclusion

In summary, the cGAS-STING axis is crucial to cancer immunity. There is accumu-
lating evidence for a role for STING in tumor DCs and cross priming of CD8+ T 
cells. These findings clearly suggest that STING ligands have strong therapeutic 
potential. Nonetheless, therapeutic STING activation may also contribute to the 
tumor expressing interferon-stimulated genes previously linked with chemoresis-
tance [97, 101, 102]. As such, critical questions regarding the modalities of activa-
tion of the pathway in the tumor microenvironment and its impact on chemotherapies 
are still to be answered. For instance, while DCs have a central role in mediating the 
recruitment of an antitumor immune response through STING, how other cell types 
like macrophages and neutrophils contribute to this pathway should also be 
addressed. Critically, the source of cGAMP activating STING in APCs and its puta-
tive modalities of transfer to APCs are not defined. In light of the current literature 
reviewed herein and our own experiments, we propose a model, illustrated in 
Fig.  8.1, in which cGAMP can be synthesized by tumor cells to play a role in 
immune cell activation through immune gap junctions. While this is supported by 
the demonstration that metastatic breast cancer cells could transfer cGAMP to 
astrocytes in the brain [93], direct evidence of cGAMP production by tumor cells 
and its transfer to APCs remains to be found. Defining if and how cGAMP can be 
made by tumors has the potential to help understand why select tumors are devoid 
of infiltrating immune cells. Given that the efficacy of preferred chemotherapies has 
been associated with STING signaling in vivo (e.g., irinotecan), these may be par-
ticularly effective when used in patients with active cGAS and functional connexin 
tumors.
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Chapter 9
TLR Agonists as Adjuvants for Cancer 
Vaccines

Ji-Kun Li, Jesse J. Balic, Liang Yu, and Brendan Jenkins

Abstract  Toll-like receptors (TLRs) are one of the best characterised families of 
pattern recognition receptors (PRRs) and play a critical role in the host defence to 
infection. Accumulating evidence indicates that TLRs also participate in maintain-
ing tissue homeostasis by controlling inflammation and tissue repair, as well as 
promoting antitumour effects via activation and modulation of adaptive immune 
responses. TLR agonists have successfully been exploited to ameliorate the efficacy 
of various cancer therapies. In this chapter, we will discuss the rationales of using 
TLR agonists as adjuvants to cancer treatments and summarise the recent findings 
of preclinical and clinical studies of TLR agonist-based cancer therapies.
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9.1  �Toll-Like Receptors

TLRs are a class of single membrane-spanning, catalytically inactive receptors. Ten 
human and 13 mouse TLRs have been classified to date [1, 2]. This protein family 
is best known for their ability to detect conserved microbial components, so-called 
PAMPs (pathogen-associated molecular patterns) [3]. The well-characterised TLR 
microbial ligands include: bacterial lipopolysaccharide (LPS) and its derivatives 
which activate TLR4; lipoteichoic acid and lipoprotein from bacterial cell wall and 
fugal zymosan which stimulate TLR1, TLR2 and TLR6; and bacterial flagellin 
which is sensed by TLR5. Additionally, unmethylated bacterial DNA stimulates 
TLR9; double-stranded RNA activates TLR3; and single-stranded RNA (ssRNA) is 
recognised by both TLR7 and TLR8. The cellular localisation of TLRs largely 
reflects their function and mode of ligand interaction. For example, the TLRs that 
recognise viral and bacterial nucleic acids such as TLR3, TLR7, TLR8 and TLR9 
are mainly localised endosomally, while TLRs on the cell surface such as TLR1, 
TLR2, TLR4, TLR5, TLR6 and TLR10 are involved in detection of bacterial com-
ponents in the extracellular space. Several TLRs, particularly TLR2 and TLR4, have 
been shown to detect not only exogenous PAMPs but also host-derived endogenous 
“damage-associated molecular patterns” (DAMPs) [4]. Many such ligands are 
increasingly being identified and include heat-shock proteins, high mobility group 
box 1 (HMGB1), various metabolic products such as reactive oxygen species (ROS) 
and uric acid as well as extracellular matrix components such as fibronectin and 
hyaluronan fragments [4].

Early studies suggested that TLRs are preferentially expressed on innate immune 
cells where the types of TLRs and level of expression are governed by cell-type 
specificity and function, which is associated with specific cytokine production [5–
8]. More recent data demonstrate that TLRs are also expressed on epithelial cells of 
the gastrointestinal, urogenital and respiratory tracts where they play important 
roles in the first-line defence against infection. Additionally, they may also function 
to preserve epithelial barrier integrity [9–11]. Ligand binding of TLRs induces 
dimerisation and conformational change which activates two major signalling cas-
cades – the MyD88-dependent or MyD88-independent pathways. Ultimately, this 
results in the activation and transduction of numerous downstream pathways includ-
ing nuclear factor kappa B (NF-κB), mitogen-activated protein kinases (MAPKs) 
and interferon regulatory factors (IRFs) to induce the upregulation of type I interfer-
ons (IFNs) and various pro-inflammatory cytokines (e.g. type I IFN, IL-1, IL-6, 
TNFα, etc.) and chemokines (e.g. MCP-1, CCL and CXCL chemokines). Given the 
canonical outcomes of TLR activation, the past decade has seen a considerable 
effort in ways to engage or modulate TLR signalling as potential therapeutic targets 
capable of enhancing antitumour effect by orchestrating innate responses and acti-
vation of the adaptive immune system [12, 13]. The basic immunology of TLR 
recognition of ligands and mechanisms of signal transduction has been extensively 
reviewed elsewhere. Rather, this chapter focuses on TLR agonists as adjuvants for 
cancer immunotherapy in preclinical and clinical studies.

J.-K. Li et al.
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9.2  �Cancer Vaccine and Adjuvant

Cancer vaccines, being prophylactic or therapeutic, aim to stimulate or restore the 
immune system’s capacity to protect against persistent infection that initiate and 
drive oncogenesis. Prophylactic vaccinations against human papillomavirus-
induced genital cancers with Gardasil® or Cervarix® vaccines or hepatitis B-induced 
hepatic cancers with Engerix®-B or Recombivax HB® vaccines have been used 
worldwide and play an important role in public health [14, 15]. Despite several 
decades of intense research and clinical evaluation, only one therapeutic vaccine 
(Provenge®) has been approved by FDA for the treatment cancer  – androgen-
independent metastatic prostate cancer [16]. In addition to drug safety profiles, 
there remain a few challenges that impact on vaccine efficacy that must be over-
come. For example, the major drawbacks for currently used purified tumour-
associated antigens (TAA) such as DNA/RNA, recombinant protein and peptides 
have poor immunogenicity and may cause inappropriate immune response that 
elicit no benefit or protection against the targeted infection or malignancy [17–19]. 
To overcome this and to be more effective, adjuvants are often co-administrated 
within the vaccine. In most cases, adjuvants were designed to augment the magni-
tude of an adaptive response to the vaccine administered.

Based on their perceived mechanism of action, adjuvants in the clinical settings 
can be divided into two main classes: immunostimulators and delivery system adju-
vants [18]. Many natural and synthetic agents can be used as adjuvants such as 
emulsions of liposomes or PAMPs [18]. A carefully designed formulation of an 
adjuvant-vaccine combination is required for directing appropriate types of 
responses and for achieving synergism, which is otherwise difficult to achieve with 
a single adjuvant. For example, Cervarix, the prophylactic cancer vaccine against 
various types of human papillomavirus (HPV), contains purified virus-like particles 
(VLPs) of the major capsid (L1) protein of HPV types 6, 11, 16 and 18. Purified 
VLPs are then absorbed on aluminium hydroxy sulphate particles which act as the 
first adjuvant, the delivery system as aluminium typically induces Th2 immune pro-
filing. Monophosphoryl lipid A (MPL), the TLR4 agonist, is then added as the sec-
ond adjuvant which broadens the immune responses [20]. Substantial evidence 
showed that using natural ligands or synthetic agonists for PRRs as adjuvants can 
activate multiple elements of innate immunity. A number of TLR agonists are now 
in clinical or preclinical studies either stand-alone or with many different combina-
tions for improving therapeutic cancer vaccines. So far, three TLR agonists have 
been licensed by the FDA for use in human cancers, including BCG (the bacillus 
Calmette-Guerin), a mixed TLR2/TLR4 agonist originally developed as an anti-
tuberculosis vaccine but is currently approved for in situ bladder cancer vaccine; 
MPL (monophosphoryl lipid A), also a mixed TLR2/TLR4 agonist derived from 
LPS that is used as an immunostimulatory adjuvant as part of Cervarix; and, finally, 
imiquimod, an imidazoquinoline derivative that can function via TLR7-dependent 
or TLR7-independent mechanisms [21] that have been tested in many human malig-
nancies (Table 9.1).

9  TLR Agonists as Adjuvants for Cancer Vaccines
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9.3  �TLR Agonists as Adjuvants

A rationale for adjuvanted vaccines is to induce the synchronous activation of den-
dritic cell (DC)-presenting antigen and promote Th1 and CD8+ T cell responses 
with minimal adverse effects. Extensive mouse studies and human trials using syn-
thetic TLR agonists have demonstrated that adding TLR agonists to cancer treat-
ments profoundly influences the extent of adaptive immune responses to tumour 
antigens. Such enhancing effects include direct activation of DC subsets, type I IFN 
production, enhanced cross-presentation, augmented CD8+ T cell responses and 
increased antibody titres; reinvigorated immunosurveillance in patients whose 
immune system is compromised or in less immunogenic patients such as elderly 
and children (change the tumour environment); sensitised conventional chemother-
apy or radiotherapy; and dose sparing, either minimising the number or amount of 
antigen introduced or reducing the vaccine schedule for optimal effects [20, 36]. 
The key effects of TLR agonists on immune system are summarised in Fig. 9.1.

9.3.1  �TLR2

Phylogenetic analysis identified TLR2 along with TLR1, 6 and 10 with highly simi-
lar primary sequences that cooperate with each other during PAMP recognition. [37, 
38]. TLR2 can functionally heterodimerise with TLR1, TLR6 and possibly TLR10 
to specifically recognised products from gram-positive bacteria, including triacyl 
lipopeptides and Mycoplasma fermentans macrophage-activating lipopeptide 
(MALP-2). Pam3Cys, a synthetic triacylated lipoproteins, is widely used ligand to 
activate TLR2 in the laboratory [39].

SMP-105 is a TLR2 agonist developed from the insoluble fraction of the cell 
wall skeleton (CWS) of Mycobacterium bovis. One study has demonstrated that the 
activation of TLR2 by SMP-105 significantly increased IFNγ-producing cells and 
tumour-specific cytotoxic lymphocytes (CTL) in mice inoculated with Lewis lung 
cancer cells, resulting in a growth suppression of implanted tumours [40]. However, 
SMP-105 has not yet been trialled, and the use and development of TLR2 agonists 
as an adjuvant in anticancer immunotherapy has not been investigated. This may be 
at least partly because of regulatory T cell (Treg) activation by TLR2 agonists and 
resultant production of the anti-inflammatory IL-10 [41–43]. In contrast, recent 
studies have shown that TLR2 activation by Pam3Cys can suppress Treg activity 
and promote a Th17-like phenotype shift in multiple sclerosis patients. Overall, this 
suggests that the outcomes of TLR2 signalling may be contextually and therefore 
immunobiologically diverse [44].

CBLB612 is a synthetic lipopeptide that specifically binds to TLR2 and TLR6. 
However, this molecule was evaluated as only a bone marrow protective agent for 
cancer patients before and after chemotherapy. A phase II double blind, multicentre 
study (NCT02778763) was completed on efficacy and safety of this molecule as a 
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monotherapy for neutropenia prophylaxis in breast cancer patients receiving myelo-
suppressive chemotherapy.

9.3.2  �TLR3

TLR3 is an endosomal receptor that recognise double-stranded RNA molecules. 
The primary TLR3 ligand is viral dsRNA. Polyinosinic-polycytidylic acid (poly-
IC), first developed in 1967, is a synthetic dsRNA molecule used in many studies to 
activate TLR3 and MDA5 [19, 45]. It has been shown that stimulation with poly-IC 
induces strong type I interferon production, humoral immunity and Th1 responses. 
However, the significant toxicity and the degradation by serum nucleases limit its 
development as a clinical dsRNA adjuvant.

To improve the safety and therapeutic potential, another two poly-IC derivatives, 
poly-IC12U (Ampligen®) and poly-ICLC (Hiltonol®), were developed and tested in 
numerous clinical trials as effective adjuvants. The former is a modified poly-IC 
with shortened half-life and shown to induce lower absolute levels of type I interferon 
than poly-IC [19]. Early studies showed that Ampligen not only activates NK cell 
and converts M2 macrophage to M1 counterparts but also elicits direct cytotoxic 
effects on cancer cells [19, 23]. However, more interest is currently focused on test-

Fig. 9.1  Antitumour responses by TLR ligands through direct and indirect effects
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ing this TLR3 agonist against HIV infection, myalgic encephalomyelitis and chronic 
fatigue syndrome [46].

Hiltonol® is designed to be highly resistant to serum nucleolytic hydrolysis. Its 
denaturation temperature can be as a high as 40 °C. When administered, the pro-
longed and enhanced activity of this compound has been shown to induce changes 
in immune-related gene profiles indicative of the activation of multiple canonical 
innate immune pathways [47]. In early studies, this drug was initially proposed to 
be used in clinical trials for treating children with acute leukaemia and neuroblas-
toma [48]. Due to high dose and systemic side effects, more recent clinical trial has 
transitioned to local administration such as intramuscular (i.m) or subcutaneous 
(s.c) route. Current studies have demonstrated that inclusion of poly-ICLC with 
overlapping long peptides (OLP) from a human tumour self-antigen NY-ESO-1 and 
Montanide ISA-51 was well tolerated and elevated the antigen-specific antibody 
titre and T cell responses in ovarian cancer patients immunised subcutaneously 
(NCT00616941) [49]. A further study of a sensitive CD154 expression-based assay 
characterised that the major effect of poly-ICLC was achieved through enhancing 
OLP vaccine-induced CD4+ T cell as an increased IFNγ/IL-4 ratio was detected. 
However, this study did not assess the influence of using poly-ICLC as a stand-
alone adjuvant [50]. Another very recent study showed that NY-ESO-1-specific 
IFN-producing CD8+ T cells were significantly increased in patients immunised 
with poly-ICLC than controls without poly-ICLC treatment [51] (UMIN000007954). 
Consistent findings were reported in a study of treating low-grade glioma (LGG) 
patients using a subcutaneous emulsified vaccination of glioma-associated antigen 
(GAA)-derived peptide with concurrent intramuscular injections of poly-ICLC 
(NCT00795457). This project was initially to explore an appropriate strategy for 
treating immunocompetent patients with slow growth rate gliomas as these patients 
may exhibit more immunogenicity and gain greater benefit from immunisations 
than those immunocompromised subjects with high-grade gliomas [52]. These 
results suggest TLR3 agonists as a promising adjuvant to cancer vaccines that target 
various tumour-associated antigens. Nevertheless, large-scale trials are required to 
evaluate the safety and efficacy of TLR3 agonist-based cancer therapies.

9.3.3  �TLR4

TLR4 was the first TLR identified in mammals and can be activated classically by 
LPS (also known as endotoxin) from gram-negative bacteria [13]. TLR4 also recog-
nises DAMPS, including heat-shock protein 70 [53] and nonhistone chromatin-
binding nuclear constituent HMGB1 [54]. These proteins can be released by cancer 
cells following heat stress or chemo-/radiotherapy and act as danger signals promot-
ing antitumour immunity by activation of TLR4 in DCs. Patients carrying single 
nucleotide polymorphisms (SNP) in TLR4 affecting the interaction between TLR4 
and HMGB1 relapsed earlier after chemo-/radiotherapy than those with the normal 
TLR4 allele [54].
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Monophosphoryl lipid A (MPL), a derivative of lipid A from gram-negative 
Salmonella minnesota endotoxin with reduced LPS (TLR4 ligand) toxicity in 
humans, was found to have antitumour activity in vivo early in the 1960s. Since 
1984, this molecule as an adjuvant has been extensively investigated for cancer vac-
cines in the clinical setting. AS04 (Adjuvant System 04), an aluminium salt and 
MPL-based adjuvant, was endorsed by FDA in 2009 as part of Cervarix®. AS04 was 
also developed by GSK Biologicals in different formulations and used as proprie-
tary adjuvant in numerous trials of cancer vaccine targeting specific TAAs (MAGE-
3, MUC-1, sialyl-Tn and Ras mutant) expressed on multiple cancer types [6, 55].

Bacillus Calmette-Guérin (BCG) is a vaccine primarily developed for the pre-
vention of tuberculosis worldwide [24]. Its anticancer potential began to be evalu-
ated in the clinical settings in the 1970–1980s [24]. Testing BCG as monotherapy in 
human bladder cancer demonstrated either no clinical benefit or was proven incon-
clusive due to the small cohort sizes. Since 1977 intravesical instillation of BCG has 
been the “gold standard” treatment for patients with in situ or non-muscle invasive 
bladder cancer. Several clinical trials listed were designed to compare BCG as a 
single agent with combination therapy. Successful trials using BCG for melanoma 
therapy demonstrated better prognosis overall when BCG was combined with a 
melanoma cell vaccine or in combination with topical treatment of 5% imiquimod, 
a cream-formulated TLR7/8 agonist [56]. The non-specific protection by BCG was 
shown to be mainly through activation of TLR2 and TLR4  in macrophages and 
DCs, inducing strong cytokine and chemokine production such as IFNγ, IL-2 and 
TNFα. However, BCG has been found to activate CD4+ CD25+ Treg cells and pro-
motes TGFβ and IL-10 secretion, which could be the reasons of unfavourable results 
in some trials [56–58].

Picibanil (OK-432) is a lyophilised preparation of Streptococcus pyogenes that is 
approved in Japan for the treatment of cervical cancer, gastric cancer and oral can-
cer [59]. Studies using this compound in other malignancy appear still active 
[60–62].

GLA-SE (G100), a synthetic glucopyranosyl lipid A (GLA) which is an oil-in-
water emulsion (ES), is a novel TLR4 agonist, and this particular formulation allows 
to maximise the activation of multiple immune-related signalling pathways [63]. A 
recent preclinical study showed that intratumoural injection of G100 three times a 
week significantly suppressed tumour growth and resulted in 60% CR (complete 
tumour regression) in an A20 lymphoma tumour model via a CD8+ T cell-dependent 
manner. Gene profiling analysis further demonstrated upregulation of broad 
immune-related genes, though also including T cell exhaustion marker such as 
CTL4, LAG3 and PD-L1 in G100-treated tumour. These data provide a rationale for 
co-administration of this TLR4 agonist with checkpoint blockade therapy to gain a 
potential synergistic effect [64] and support the current ongoing clinical trial of 
G100 for patients with non-Hodgkin’s lymphoma as a single agent or in combina-
tion with pembrolizumab, a humanised antibody against PD-1 (NCT02501473). 
Furthermore, a single injection of G100 subcutaneously prior to tumour inoculation 
resulted in reduction of metastatic development of a mammary adenocarcinoma and 
a colon cancer cell model in both rats and mice with no adverse effects.  
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The antitumour effect of G100 appeared to be mainly associated with enhanced 
activation of NK cells [65]. A pilot clinical trial of intratumoural injection of G100 
as monotherapy for patients with resectable Merkel cell carcinoma in a neoadjuvant 
setting exhibited an acceptable tolerability and increased CD8+ T cell antitumour 
activity [59, 66]. Additionally, in order to trigger a potent tumour antigen-specific 
antitumour response, G100 was also formulated with recombinant NY-ESO-1 pro-
tein and developed to be another immunogenic agent named ID-G305. A novel 
“priming-boost” combination approach called CMB305 is to sequentially dose 
LV305 (an in  vivo DC-targeting vector expressing the NY-ESO-1 gene) and 
ID-G305. This recipe allows to synergistically induce multiple level of antitumour 
immune effects. Of note, CMB305 does not require patient-specific manufacturing 
or ex vivo manipulation of patient samples. The phase Ib open-label, multicentre 
trial designed to evaluate the safety, tolerability, immunogenicity and preliminary 
clinical efficacy of CMB305 in patients with NY-ESO-1-positive tumours is cur-
rently recruiting (NCT02387125).

9.3.4  �TLR5

Flagellin protein, a constituent protein of bacterial flagella, is the only known natu-
ral ligand to activate TLR5. Formulation using liposomal engrafted synthetic pep-
tide containing flagellin fragments can induce DC maturation in vitro and in vivo 
[25]. In a study employing a mouse xenograft melanoma model, a vaccine formu-
lated with both N-terminal (9Flg and 42Flg) and C-terminal (10Flg and 11Flg) fla-
gellin peptide engrafted ovalbumin (OVA) liposomes suppressed lung metastasis in 
mice inoculated with B16-OVA cells compared to control mice [67]. More interest-
ingly, TLR5 agonists lack induction of self-amplified driving cytokines, such as 
TNFα, IL-1β and IL-2, which make its fingerprint as a safe adjuvant for systemic 
administration [26].

Entolimod (CBLB502), a pharmacological optimised flagellin derivative, has 
revealed antitumour effects in numerous mouse tumour models [26, 68–71]. Craig 
et al. also showed that activation of TLR5 signalling by systemic administration of 
entolimod as a single agent inhibited at least two types of murine tumour metastases 
to high TLR5 expression organs such as the lung and liver. These antitumour effects 
were initiated through a CXCR3-dependent NK-DC-CD8+ T cell axis [26]. One 
phase I clinical trial has been completed to determine the safety and preliminary 
evidence of efficacy using entolimod (i.m or s.c) in patients with late-stage solid 
tumours (NCT01527136). Overall, the treatment with entolimod was well tolerated 
with only common adverse events such as fever, transient hypotension and 
hyperglycaemia.

Interestingly, entolimod has been shown a protective effect against renal dys-
function in a murine model of acute renal ischemic failure as well as in an ulcerative 
colitis model [72, 73]. Furthermore, this compound showed radioprotective activity 
in mouse and primate models without reducing tumour radiosensitivity [74]. Further 
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preclinical study identified the liver and gastrointestinal tract as the major target 
organs of this molecule [75]. These evidence supported current clinical studies and 
raise considerable interest to test entolimod in development as a radiation counter-
measure in emergency severe condition such as acute radiation syndrome or radia-
tion sickness from radiotherapy against cancer. These findings allow entolimod to 
be a versatile player in cancer therapy.

Another TLR5 agonist, M-VM3 (Mobilan), is currently in two clinical trials 
(NCT02654938, NCT02844699) for prostate cancer. Mobilan was designed as a 
recombinant non-replicating adenovirus encoding human TLR5 and its specific 
agonistic ligand, flagellin. Delivery of this system into tumour cells would render an 
autocrine activation of TLR5 and result in subsequent strong adaptive antitumour 
immune responses. Certain human tumours expressing the coxsackievirus and ade-
novirus receptor (CAR) such as prostate cancer and several tumours of female 
reproductive system will be the primary targets using this TLR5 agonist-based sys-
tem [76].

9.3.5  �TLR7/8

TLR7 and 8, both expressed in the endosomes/lysosome, are receptors for ssRNA, 
especially U or GU-rich oligoribonucleotides [77]. They share high sequence 
homology and predominately overlap in the ligands they can each respond to. In 
humans, these TLRs are abundantly expressed in multiple subsets of human DCs. 
Stimulation of TLR7 and 8 with their agonists significantly augments multiple sub-
set DC maturation, Th1 cellular immunity, cross-presentation and humoral immu-
nity [78, 79]. Of note, conjugation of TLR7/8 agonist rather simply mixing with 
antigens has been demonstrated more effective to generate CD8+ immunity [17, 80].

Resiquimod, a TLR7/8-bispecific agonist, is a prototypical imidazoquinoline 
molecule [17]. Early studies showed that soluble molecules like resiquimod distrib-
ute quickly from the site of injection throughout the body and fail to induce local 
immune activation, thereby limiting its clinical utility. To resolve this problem, pro-
totypical imidazoquinolines were formulated as a dermal cream [17]. Aldara®, 
imiquimod 5% cream, is the one of the only three FDA-approved commercialised 
small molecule TLR agonists for HPV-mediated external genital warts, superficial 
basal cell carcinoma and actinic keratosis [24]. In recent clinical trials, imiquimod 
cream has been further exploited as stand-alone or in combination with various 
antitumour therapies including chemo-/radio- or laser therapy in various human 
cancers [17]. A study of topical imiquimod in breast cancer patients with skin 
metastasis reported that 2 of 10 patients achieved a partial response with histologic 
evidence of immune-mediated tumour regression. The treatment was well tolerated 
with exception of frequently local adverse events [81]. In contrast, another ran-
domised controlled trial (NCT00066872) conducted at 12 centres in the UK on 501 
participants reported that patients with nodular and superficial basal cell carcinoma 
treated with imiquimod 5% cream were superior to excision surgery [82]. 
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Considering the diversity of subtype of this skin cancer, to determine surgical or 
non-surgical modalities alone or combination needs to be optimised by future inves-
tigation [83, 84]. Furthermore, in a completed two-part randomised trial on high-
risk melanoma patients, NY-ESO-1 antigen emulsified in Montanide was 
intradermally injected, followed by topical application of 0.2% resiquimod gel or 
placebo to the vaccine site. Although this formulation with topical resiquimod was 
safe, the clinical outcome reveals no significant differences between study groups as 
addition of topical resiquimod was not sufficient to induce consistent specific CD8+ 
T cells. The reason could be that topical application of the TLR agonist may fail to 
absorb adequately and activate diverse DC populations in deeper skin layers [85], 
highlighting the selection of administration route for optimal efficacy using TLR 
agonists.

3M-052, a novel lipid-modified imidazoquinoline, was developed and evaluated 
as part of a conventional vaccine formulation. Compared to resiquimod, 3M-052 
induced a prolonged response locally with diminished systemic inflammation. It 
was also evaluated as an adjuvant in many vaccine models such as alum suspen-
sions, liposome formulation and oil-in-water emulsion [17, 86, 87]. In a preclinical 
study, Singh et al. showed that intratumoural injection 3M-052 in mouse melanoma 
and prostate tumour models suppressed local and distant tumour growth via not 
only promoting tumour-specific CD8+ T cells but also shifting M2 macrophages to 
M1 phenotype. 3M-052 has also exhibited synergic effects with checkpoint inhibi-
tor therapy using CTLA4 and PDL-1 antibodies [88].

9.3.6  �TLR9

TLR9 is expressed in the endosome of specific immune cell types – plasmacytoid 
DC and B cells – where they recognise bacterial or viral DNA containing unmethyl-
ated cytosine-guanine (CG) dinucleotides motifs [89]. Activation of TLR9 through 
the signalling of MyD88 leads to activation of interferon regulatory factor (IRF) 7, 
resulting in expression of type I IFNs [90].

CpG-7909 (PF-3512676, Promune®), a class B CpG, is the most extensively 
studied single-stranded CpG ODN. Unfortunately, two phase III clinical studies for 
advanced non-small cell lung cancer reported that addition of CpG-7909 to chemo-
therapy gained no improvement to either overall or progression-free survival [91, 
92]. Although phase I/II studies examining CpG-7909  in combination therapies 
were completed in various human cancers such as B-cell lymphoma (NCT00185965), 
metastatic breast cancer (NCT00824733) and oesophageal cancer (NCT00669292), 
no trials further assessing this molecule for cancer therapy are active.

MGN1703, a covalently closed natural DNA molecule, is a novel TLR9 agonist, 
which belongs to a different family called dSLIM (double stem loop immunomodu-
latory) [89, 93]. While CpG-7909 mainly stimulates B cells and may cause several 
CG motif-independent immune responses like IL-8 induction, dSLIM elicits signifi-
cant IFN-α induction and broad activation of human immune cells in vitro [89]. In 
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a phase II study of 59 patients with metastatic colorectal cancer treated with the 
first-line chemotherapy bevacizumab (anti-VEGF-A), patients who also received 
MGN1703 showed a superior progression-free survival (PFS) by (NCT01208194) 
[94–96]. A pivotal phase III trial has been designed to further investigate these data 
and is currently recruiting patients (NCT02077868). This compound has also been 
tested in a phase I trial to determine the highest tolerable dose in combination with 
ipilimumab (anti-CTLA-4) to patients with advanced solid tumours (NCT02668770) 
and another study in patients with small cell lung cancer (SCLC) (NCT02200081).

SD-101, another synthetic CpG molecule, was tested by intratumoural co-
administration with ipilimumab after local radiation therapy in patients with low-
grade, recurrent B-cell lymphoma (NCT02254772). The primary objective was to 
identify the best dose of intratumoural ipilimumab with TLR9 agonist in patients to 
augment different phases of antitumour immune responses as shown in previous 
preclinical studies [97, 98]. However, the result has not been released yet. Another 
trial using this molecule combined with ibrutinib (also known as Imbruvica, a tar-
geted inhibitor for Bruton’s tyrosine kinase) and intratumoural radiotherapy for 
low-grade follicular lymphoma is currently listed as recruiting (NCT02927964) in 
order to re-evaluate adverse event during this heavy combination therapy.

9.4  �Conclusion Remarks

Coupled with chimeric antigen receptor therapy [99] and immune checkpoint block-
ade [100], engagement of manipulating TLR signalling has drawn considerable 
interest as a treatment modality in the cancer immunotherapy field. Particularly, 
synthetic TLR agonists have been actively exploited for their safety and clinical 
efficacy in various therapeutic settings. Substantial evidence demonstrates that TLR 
agonists are potent immunostimulators and enhance natural or therapy-triggered 
antitumour immune responses. Despite the wealth of research in the cancer immu-
notherapy field, the past few years has witnessed a steady decrease in the number of 
clinical trials using TLR agonists as cancer treatments, be that unimodal or as adju-
vants to cancer vaccines [59]. There may be some reasons for this. Firstly, most TLR 
ligands initiate complex signalling cascade and may influence various cell types in 
cell-dependent manners, of which we haven’t fully elucidated. Immune cells, cancer 
cells and tumour stromal cell differ in their specific TLR expression and may all 
contribute to biological consequences of TLR activation [101]. Noninflammatory 
roles of TLRs in tumour progression such as regulation of apoptosis and prolifera-
tion in context of chronic inflammation and carcinogenic condition have been 
addressed [9]. Secondly, recent studies reveal that TLR activation can exert not only 
immunostimulatory effects but also immunosuppressive effects by regulating IL-10, 
Treg activity and PD-L1 expression [102–104]. In addition, as with many other 
antitumour agents in general, the underperformance of TLR agonist used in some 
trials may relate to the fact that patients recruited in most studies are in late-stage 
disease. Metastatic tumours, which are aberrant in multiple signalling pathways and 
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have mutations in various key genes regulating cellular functions, may all contribute 
to drug resistance. Additionally, immune system depression as a consequence of 
late-stage cancer may impede any effective induction of antitumour responses. Last 
but not least, the delivery system, type of tumour-associated antigen, type of TLR 
agonist and/or other adjuvants, schedule, route and site of administration need to be 
carefully considered and further investigated to acquire optimal activation and spec-
ificity [19]. Recent convergence of large-scale sequencing, cancer biology and bio-
informatics allows researchers to tailor the strategy of priming the immune system 
against multiple patient-specific neoantigens (tumour mutation-derived antigens) 
[105, 106]. Additionally, there is scope for these formulations of specific TLR ago-
nists to be personalised for specific patients’ tumours. Combination therapies based 
on stratification of patients by their immune state may lead to better targeted trials 
using TLR agonists.

Overall, basic research and clinical trials provide a strong rationale for using 
TLR agonists as adjuvants to cancer treatments.
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Chapter 10
Telomere Damage Response and Low-Grade 
Inflammation

Lihui Wang, Xianhua Yu, and Jun-Ping Liu

Abstract  Telomeres at the ends of chromosomes safeguard genome integrity and 
stability in human nucleated cells. However, telomere repeats shed off during cell 
proliferation and other stress responses. Our recent studies show that telomere attri-
tion induces not only epithelial stem cell senescence but also low-grade inflamma-
tion in the lungs. The senescence-associated low-grade inflammation (SALI) is 
characteristic of alveolar stem cell replicative senescence, increased proinflamma-
tory and anti-inflammatory cytokines, infiltrated immune cells, and spillover effects. 
To date, the mechanisms underlying SALI remain unclear. Investigations demon-
strate that senescent epithelial stem cells with telomere erosion are not the source of 
secreted cytokines, containing no significant increase in expression of the genes cod-
ing for increased cytokines, suggesting an alternative senescence-associated secre-
tory phenotype (A-SASP). Given that telomere loss results in significant alterations 
in the genomes and accumulations of the cleaved telomeric DNA in the cells and 
milieu externe, we conclude that telomere position effects (TPEs) on gene expression 
and damage-associated molecular patterns (DAMPs) in antigen presentation are 
involved in A-SASP and SALI in response to telomere damage in mammals.

Keywords  Telomere dysfunction • Cytokines • Immune cells • Inflammation • 
Tissue senescence
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Abbreviations

A-SASP	 alternative senescence-associated secretory phenotype
DAMPs	 damage-associated molecular patterns
DDR	 DNA damage response
SALI	 senescence-associated low-grade inflammation
TPE	 telomere position effect

10.1  �Introduction

Telomeres are comprised of tens of thousands of repetitive DNA sequences 
(TTAGGG) at the end of chromosomes to prevent deterioration or fusion by losing 
some sequences during cell division. Telomerase is a ribonucleoprotein complex 
that operates to maintain telomeres (chromosomal ends), counteracting cell division-
associated telomere shortening in the stem cell compartment and cancer [1, 2]. In 
the absence of telomerase in most differentiated cell types, consecutive shortening 
of telomeres in a chromosome replication-dependent fashion occurs, and the cell 
cycle-dependent, unidirectional catabolism of telomeres constitutes a mechanism 
with critically damaged telomeres terminating chromosome replication and initiat-
ing cellular senescence [3]. Loss-of-function gene mutations on telomerase subunits 
occur in a number of diseases [4, 5], including dyskeratosis congenita [6, 7], aplas-
tic anemia [8, 9], liver cirrhosis [10, 11], and idiopathic pulmonary fibrosis (IPF) 
[12–15].

Experimental studies on animals have demonstrated certain causal roles of 
telomerase deficiency compromised in tissue homeostasis and dysfunctional organs 
[16–19]. Knockout of telomerase RNA component (TERC) or telomerase reverse 
transcriptase (TERT) causes the phenotypes to resemble dyskeratosis congenita [20, 
21] and bone marrow failure [17, 21, 22]. In the lungs of TERC-deficient mice, 
elevated apoptosis of alveolar stem cells (alveolar epithelial type II cells, AECII) 
[23] hindered tissue growth in partial pneumonectomies [24]. The mechanisms of 
telomerase deficiency-associated diseases have not been fully elucidated, including 
the signaling of telomerase and telomeres in different conformations. The potentials 
of telomerase as antigens and in putative responses to vaccinations have been dem-
onstrated under various conditions including immune resistance, evasion, and toler-
ance in animals [25].

Recently, deficiency in TERC or TERT causes a remarkable elevation in various 
proinflammatory cytokines, including IL-1, IL-6, CXCL15, IL-10, and TNF-α, and 
monocyte chemotactic protein 1 (chemokine ligand2, CCL2), decrease in TGF-β1 
and TGFβR1 receptor in the lungs, and spillover of IL-6 and CXCL15 into bron-
choalveolar lavage fluids [26]. Intriguingly, mice with TERC deficiency and short 
telomeres do not show obvious pulmonary fibrosis [27], whereas mice that devel-
oped pulmonary fibrosis from bleomycin insult require telomerase activity [28–30], 
mirroring the finding that the majority of IPF lung samples showed increased telom-
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erase activity [30]. In the following sections, we will discuss the phenotypes of 
telomerase deficiency and telomere dysfunction-associated cellular responses, 
especially pulmonary alveolar stem cell senescence-associated low-grade inflam-
mation (SALI) [26].

10.2  �Telomerase Deficiency, Telomere Shortening, and Lung 
Epithelial Aging

Evidence indicates that telomerase operates in normal AECII [23, 31, 32] and is 
stimulated by silica inhalation and bleomycin instillation causing pulmonary fibro-
sis in rodents, suggesting that telomerase activity is involved in pulmonary fibrotic 
lesion [33, 34]. This scenario is in a sharp contrast to the relationship between 
telomerase gene mutations and IPF in humans [12–15]. Since genetic disruption of 
TERC or TERT leads to loss of telomerase activity and shortening of telomeres in 
mouse AECII cells [23, 35], we directly tested the hypothesis that the damaging 
effect of telomere ablations contributes to IPF in mice in vivo. Interestingly, disrup-
tion of TERC or TERT initiates telomere DDR with decreased telomere length; 
increased TIFs; increased p15, p16, and p21 and inductions of AECII replicative 
senescence characteristic of reduced total numbers of AECII; and increased popula-
tions of AECII positive for HP1γ and β-Gal staining [26]. Previous studies showed 
that telomerase deficiency renders pulmonary tissues susceptible to damage caused 
by cigarette smoke, potentially underpinning emphysema with or without pulmo-
nary fibrosis [27, 36, 37]. It is thus feasible that telomerase is required for AECII 
alveolar stem cell renewal and repair of damaged differentiated cells in pulmonary 
interstitium [38, 39]. However, IPF myofibroblast markers were not evidenced in 
the telomerase-deficient mouse lungs, suggesting that telomerase deficiency and 
telomere shortening are responsible for pulmonary senescence but not alone suffi-
cient in causing pulmonary fibrotic lesion [26]. It is possible that under the telomere 
dysfunctional pressure, additional signals are required for senescence-associated 
myofibroblast transdifferentiation in pulmonary fibrotic lesion.

Recent studies indicate that regulation of AECII stem cells by extracellular sig-
naling predominantly dictates AECII response to injury signals and that only about 
1% of mature AECII cells divide intermittently, with about a 40-day doubling time, 
supporting an overall renewal rate of 7% of alveoli per year [39]. Injuries to the 
AEC1 epithelial cell population, and together with EGF receptor activation, induce 
AECII broad stem cell functions [39]. Whereas activation of the Ras-ERK pathway 
stimulates proliferation [39] and inhibits differentiation [40] of AECII, inhibition of 
the Ras-ERK pathway is essential for TGF-β1-induced AECII differentiation [40]. 
Interestingly, previous studies by us and others showed that whereas mitogens 
upregulate telomerase activity by Ets transcriptional activation of the TERT gene 
[41, 42], TGF-β family members downregulate telomerase activity by Smad3 tran-
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scriptional repression of TERT in epithelial cell lines [43–45]. These data together 
suggest that the EGF-Ets and TGF-β-Smad3 pathways regulate the TERT gene and 
proliferative potential of AECII in a reciprocally opposing manner. Thus, TGF-β 
signaling induction of telomerase inhibition, cell proliferative suppression, and 
myofibroblast transdifferentiation could be a key event in initiating fibrotic lesion.

TGF-β is a key player in antagonizing AECII proliferation but stimulating AECII 
differentiation [46–53]. To date, it is still unclear which transcriptional targets 
downstream of TGF-β signaling mediate AECII differentiation and whether TGF-β-
induced Smad3-mediated telomerase downregulation plays a part in suppressing 
AECII proliferation and allowing AECII to undergo differentiation (Fig. 10.1). In 
the telomerase-deficient mice where we found no evidence of significant fibrotic 
lesion, TGF-β and its receptor are downregulated [26]. It is possible that activation 
of the TGF-β signaling pathway may boost α-SMA and Col1α1 increases in the 
telomerase-deficient lungs. Previous studies showed increased expression of α-SMA 
in AECII as a marker of AECII undergoing the gene expression involved in myofi-
broblasts by EMT [40, 49, 54]. TGF-β stimulates α-SMA gene expression through 
Smad3 interaction with β-catenin on the α-SMA gene promoter in AECII [55]. In 
addition, TGF-β activates the transient receptor potential vanilloid 4 (TRPV4) chan-
nels and actin polymerization, resulting in the formation and nuclear translocation 
of the myocardin-related transcription factor (MRTF-A)/serum response factor 
complex and the subsequent stimulation of the α-SMA gene transcription [56]. 
Since anomalous expression of α-SMA and Col1α1 in AECII is among the features 
of AECII transdifferentiation to myofibroblasts and suggestive of a fibrotic lesion of 

Fig. 10.1  Schematic of alveolar stem cell aging triggered by TGF-β intracellular signaling and 
p53- and Rb-mediated cell cycle arrest in response to cytokine-mediated cellular interaction with 
innate immune cells
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pulmonary fibrosis [49, 54], further investigations are required to characterize the 
regulatory mechanisms underlying the limited temporospatial processes and scales 
of AECII transdifferentiation triggered by telomere dysfunction.

10.3  �Telomere Dysfunction and Inflammation

Aging tissues and age-related diseases are intimately associated with low levels of 
chronic inflammation [57, 58]. In this regard, inflammation has been demonstrated 
to contribute to aging in mouse skin [59] and in mouse model of DNA damage-
driven progeria [60–62], suggesting synergistic interactions between DNA damage 
responses (DDRs) and inflammatory signals. Telomere dysfunction-induced DDR 
is a major cause of cellular senescence [63]. Severe telomere dysfunction is induced 
by telomere shortening in late-generation telomerase (terc−/−) knockout mice, where 
it compromises the function of tissue-specific stem and progenitor cells, limits tis-
sue regenerative capacity, and accelerates aging [64]. Since factors secreted by 
senescent cells participate in mediating chronic inflammation [65–67], it is antici-
pated that telomere shortening that causes replicative senescence is associated with 
SASP directly or indirectly. It is noteworthy that chronic low-grade inflammation 
enhances telomere dysfunction by increasing ROS-mediated DNA damage and thus 
accelerates accumulation of senescent cells [68]. A recent study also found that 
GATA4 is a key regulator of crucial senescent phenotypes and connects DDR to 
senescence and inflammation through IL1A and TRAF3IP2 activation of NF-κB 
[69].

However, telomere dysfunction in AECII triggered an inflammatory response 
with upregulations of cytokine signaling pathways known to provoke inflammation 
in the lung [26, 70]. A marked increase in proinflammatory cytokines occurs to the 
telomerase-deficient lung tissues, resulting in a significant spillover into the BAL 
fluids [26]. The concentrations of IL-6, CXCL15, and TNF-α in the pulmonary 
parenchyma are increased several folds with spillovers into the BAL fluids signifi-
cantly in telomerase-deficient mice [26]. These findings of telomere dysfunction-
caused SASP profiles of altered cytokines and growth factors in the mouse 
pulmonary tissues are consistent with persistent telomere DDR in both human and 
mouse studies [71–73]. Furthermore, the findings of markedly increased IL-1α and 
IL-1β are consistent with their regulatory roles in increased IL-6 and IL-8 [73], and 
increased CCL2 in the microenvironment of telomere-induced AECII senescence is 
consistent with a fundamental role in the recruitment of NK cells [74]. Among the 
differentially upregulated genes are Il17c, which encode interleukin 17c, and MIF 
encoding macrophage inhibitory factor, consistent with their known roles in 
epithelial-derived innate immune responses in the lung [70]. Thus, consistent with 
recruitment of inflammatory cells in the innate immune pathways, the proinflamma-
tory cytokines constitute a signature of chronic low-grade inflammation incurred by 
telomerase deficiency and telomere damages [26].
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10.4  �Molecular Mechanisms of Telomere-Associated 
Inflammation

Although senescent AECII cells show no significant increase in proinflammatory 
cytokine gene expressions, an alternative pathway that leads to SASP cannot be 
ruled out as an intermediate event in the sterile SALI [26]. Consistently, a large 
heterogeneous population of mononuclear inflammatory cells is positive for CD45 
and/or CD16/32 in the TERC-deficient lungs [26]. It is possible that telomere attri-
tion is a primary damage involved in the low-grade inflammation, a novel pheno-
type we preferred to term telomere-induced, stem cell senescence-associated, 
low-grade inflammation (tSALI) [26]. Since telomere DDR triggers the permanent 
cell cycle arrest of the stem cells lacking telomerase, SALI may generally serve as 
a potential mechanism to spread cellular senescence (Fig. 10.2). In line with this 
hypothesis, recent studies have shown that chronic inflammation suffices to induce 
telomere dysfunction and accelerate aging in mice [68]. Thus, as a primary means 
of prompting AECII senescence and undermining AECI repair, SALI represents a 
cellular mechanism of the focal circuit that mediates the spreading of cellular repli-
cative senescence from the original senescent foci in pulmonary aging (Fig. 10.2).

In mediating senescence transmission, SALI assumes a fundamental feature of 
innate immunity which requires recruitment and activation of inflammatory cells. 
The participation of inflammatory cells in SALI may be central to the process of 
senescence progression (Fig. 10.2) and play an obliging role in the full development 
of aging-related pathologies by provoking cellular transition from senescence to 
transdifferentiation, immortalization, and transformation. Therefore, by bridging 
and mediating the development of tissue pathological changes, SALI corresponds to 
a critical window of intervention in aging-related disease.

Fig. 10.2  Graphic representation of SALI foci in pulmonary tissue. SALI involves both inflamma-
tory cytokines and cells in the foci of senescent stem cells, by contrast to SASP that defines 
secreted molecules from the senescent cell. SALI functions to mediate senescence spreading with 
the fundamental effectors of innate immune cells that interact with senescent cells and generate a 
progressive radial pattern of cytokine gradients
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Although it remains unknown how telomere-induced alternative SASP (tSASP 
or A-SASP) and subsequent tSALI are evolved during senescence progression, it is 
possible that at least four pathways are involved through which A-SASP progresses 
to tSALI. First, telomere shortening unchecks the telomere position effect (TPE) on 
the transcriptions of the genes encoding inflammatory cytokines and pathogenic 
factors [75]. Second, telomere shortening renders epigenetic alterations of hetero-
chromatin formation resulting in activation of a specific group of gene expressions 
[76]. Third, telomere DNA fragments shedding off chromosomes into the milieu 
externe serve as damage-associated molecular patterns (DAMPs) that perpetuate the 
tSALI response, by analogy to mitochondrial and mammalian DNA molecules act-
ing as DAMPs [77, 78]. Fourth, compromised NF-κB signaling results in depressed 
regulatory factors in controlling innate immune response (see below). It has previ-
ously been indicated that telomere shortening is associated with telomere DNA and 
protein accumulations that are involved in complex molecular signaling [3].

Premature telomere erosion in peripheral blood mononuclear cells is a common 
characteristic of autoimmune syndromes [79], additional to aging-associated dis-
eases including chronic obstructive pulmonary diseases (COPD), neurodegenera-
tion, obesity, and vascular diseases. Telomere loss has been shown to increase the 
susceptibility to autoimmune disease as telomerase overexpression in T cells serves 
as a promising therapy for the treatment of autoimmune disease [80]. Several stud-
ies have shown that hTERT overexpression in T cells extends their replicative lifes-
pan while maintaining normal cell function [81]. Controversially, two studies have 
demonstrated chromosomal abnormalities in hTERT-transduced T cells [82, 83], 
and long-term culture of hTERT-transduced T cells results in accumulation of the 
cyclin-dependent kinase inhibitors p21 and p16 Ink4a, molecules that mediate cell 
cycle arrest and replicative senescence [84].

In addition, chronic inflammation aggravates telomere dysfunction and cell 
senescence, decreases regenerative potential in multiple tissues, and accelerates 
aging of mice. Anti-inflammatory or antioxidant treatment, specifically COX-2 
inhibition, rescued telomere dysfunction, cell senescence, and tissue regenerative 
potential, indicating that chronic inflammation may accelerate aging at least par-
tially in a cell-autonomous manner via COX-2-dependent hyperproduction of ROS 
[68]. Persistent inflammation aggravates telomere dysfunction by increasing oxida-
tive stress at least partially through COX-2 activation [68]. This then accelerates 
accumulation of senescent cells, which intensifies proinflammatory and prooxidant 
signaling by the SASP response and by induction of mitochondrial dysfunction [85, 
86], spreading DNA damage and senescence toward bystander cells [87]. As the 
cardinal transcriptional regulator of inflammation-related genes including proin-
flammatory interleukins, chemokines, cytokines, adhesion molecules, and others, 
NF-κB is not only activated by proinflammatory, stress, and cell senescence signals 
[88] but also regulated by telomerase. Mice lacking functional telomerase are defec-
tive in mounting an acquired immune response following an LPS challenge [89]. 
Binding directly to the NF-κB p65 subunit, telomerase regulates NF-κB p65 recruit-
ment to a subset of NF-κB promoters such as those of IL-6 and TNF-α [89]. 
Furthermore, NF-κB transcriptionally upregulates telomerase activity, suggesting a 
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feed-forward regulation between NF-κB and telomerase [89]. How loss of telomer-
ase in AECII would compromise NF-κB-dependent gene expressions and which 
NF-κB downstream gene(s) might be involved in mediating tSALI require further 
investigations. Consistent with telomerase involvement in proinflammatory 
response, a recent report shows that circulating peripheral blood mononuclear cells 
in patients with metabolic syndromes produce enhanced levels of TNF-α and IL-6 
and have high levels of telomerase activity [90].

10.5  �Perspectives

Prevention of SALI from occurring would be of significant importance in prohibit-
ing tissue premature aging, including the case of IPF. A major interceptive step to 
intervene senescence spreading by SALI would be to arrest the trigger of such self-
antigen as telomeric DNA, thereby disallowing the generation of cytokine gradients 
and immune cell chemotactic selection. It is foreseeable that the mechanisms under-
lying A-SASP will be uncovered to provide the key molecular interfaces for target-
ing. Investigations on the mechanisms by which tSALI takes place with the 
involvement of tSASP will include characterization of the molecules that bind with 
telomeric DNA and telomere-associated DAMPs and the molecules that are involved 
in innate immune response unchecked by compromised NF-κB signaling in the 
absence of telomerase as an upregulator. New discoveries of the mechanisms medi-
ating telomere molecular processing and recognition will also involve the cellular 
receptors and presenters for telomere-triggered innate immune responses. 
Antagonizing these sites will provide novel molecular targets for effectively design-
ing prophylactic and therapeutic modalities.
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Chapter 11
The Development and Diversity of ILCs, NK 
Cells and Their Relevance in Health 
and Diseases

Yuxia Zhang and Bing Huang

Abstract  Next to T and B cells, natural killer (NK) cells are the third largest lym-
phocyte population. They are recently re-categorized as innate lymphocytes (ILCs), 
which also include ILC1, ILC2, ILC3, and the lymphoid tissue inducer (LTi) cells. 
Both NK cells and ILC1 cells are designated as group 1 ILCs because they secrete 
interferon-γ (IFN-γ) and tumor necrosis factor (TNF). However, in contrast to ILC1 
and all other ILCs, NK cells possess potent cytolytic functions that resemble cyto-
toxic T lymphocytes (CTL). In addition, NK cells express, in a stochastic manner, 
an array of germ line-encoded activating and inhibitory receptors that recognize the 
polymorphic regions of major histocompatibility class I (MHC-I) molecules and 
self-proteins. Recognition of self renders NK cell tolerance to self-healthy tissues, 
but fail to recognize self (‘missing-self’) leads to activation to neoplastic transfor-
mation and infections of certain viruses. In this chapter, we will summarize the 
development of NK cells in the context of ILCs, describe the diversity of phenotype 
and function in blood and tissues, and discuss their involvement in health and dis-
eases in humans.

Keywords  NK cells • Development • NK receptors • Human disease
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Eomes	 Eomesodermin
Ets1	 ETS proto-oncogene 1
Gata3	 GATA-binding protein 3
ID2	 Inhibitor of DNA binding 2
IFN-γ	 Interferon gamma
ILC	 Innate lymphocyte
ILCP	 ILC progenitors
JAK1/3	 Janus kinase 1/3
LTi	 Lymphoid tissue inducer cells
MCMV	 Murine cytomegalovirus
Mef	 Myeloid elf-1-like factor
MHC-I	 Major histocompatibility class I
mTOR	 Mechanistic target of rapamycin
NFIL3	 Nuclear factor interleukin 3
NK	 Natural killer
PD-1	 Programmed cell death-1
PDK1	 3′-Phosphoinositide-dependent kinase 1
PLZF	 Promyelocytic leukemia zinc finger
S1P1	 Sphingosine-1-phosphate receptor 1
T-bet	 T-cell-specific T-box transcription factor
TCF-1	 T-cell factor 1
TNF	 Tumor necrosis factor
TOX	 Thymocyte selection-associated high-mobility group box
TRAIL	 TNF-related apoptosis ligand
Zeb2	 Zinc finger E-box-binding homeobox 2

11.1  �NK Cells Are a Group of Innate Lymphocytes that 
Secrete Adaptive Immune Cytokines

The innate immune system is constituted with granulocytes, monocytes, macro-
phages, and dendritic cells that secrete inflammatory cytokines, as well as innate 
lymphocytes that secrete adaptive cytokines such as IFN-γ, interleukin (IL)-4, and 
IL-17. NK cells are the prototypic ILCs, and they were first described in 1975 as 
being able to naturally kill mouse leukemia cells [1]. Since 2008, the concept of 
ILCs [2] has been expanded and now includes the related subsets of NK, ILC1, 
ILC2, ILC3, and the lymphoid tissue inducer (LTi) cells [3]. ILCs are characterized 
as having lymphoid morphology but lack rearranged antigen-specific receptors and 
myeloid and dendritic cell phenotypical markers. ILCs develop initially from pro-
genitors in the fetal liver [4, 5] and, later, in the adult bone marrow [6–8]. They 
subsequently seed mucosal tissues, where they continue to proliferate and become 
tissue-resident cells and maintain tissue homeostasis. ILCs and T cells share similar 
transcription factors that govern their differentiation and produce similar key cyto-
kines [2, 9]. Thus, in analogy to T cells, ILCs are subdivided into cytotoxic (NK) 
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and all other “helper”-like subsets that resembles IFN-γ/Th1-, interleukin 4 (IL-4)/
Th2-, and IL-17/Th17-secreting CD4+ T helper cells [10].

11.2  �ILCs Are Generated from Progenitors Downstream 
of the Common Lymphoid Progenitor

All ILCs initially derive from the common lymphoid progenitor (CLP). The transi-
tion from CLP to ILC-specific transcriptional program is accompanied with differ-
ential expression of over 400 genes [4, 5, 11], with temporal requirements for Nfil3 
(nuclear factor interleukin 3, also known as E4bp4), TCF-1(T-cell factor 1, encoded 
by Tcf7), and ID2 (inhibitor of DNA binding 2). Nfil3 expression is essential for the 
development of ILC progenitors prior to their commitment, and it is induced by 
mesenchymal-derived IL-7 [12–14]. NFIL3 also directly activates ID2 [14, 15]. 
TCF-1 represses genes critical for stem cell (Hhex and Lmo2) and pro-B cell (Spib, 
Irf8, Ly6d) function [11], and its loss affects the differentiation of both NK and other 
ILC subsets [16–18]. ID2 induces a major regulatory shift with broad repression of 
progenitor cell transcription factor genes and upregulation of critical regulators 
including Tox (thymocyte selection-associated high-mobility group box) and Gata3 
(GATA-binding protein 3) [11]. Thus, immedicably downstream of the CLP, the 
earliest ILC progenitor (EILP) is TCF-1+ [17], which further becomes ID2hi com-
mon helper ILC precursor (CHILP) when NK cell potential is lost [6, 14, 19, 20]. 
After acquisition of promyelocytic leukemia zinc finger protein (PLZF, encoded by 
Zbtb16), ILC progenitor (ILCP) loses the capacity to differentiate into LTi cells [5, 
6]. Programmed cell death-1 (PD-1) is co-expressed with PLZF and can be used as 
a cell surface marker to identify ILCP [11] (Fig. 11.1).

11.3  �NK Cells Develop Through Immature and Mature 
Stages

In the adult mouse bone marrow, pre-NK cell progenitor (pre-NKP) downstream of 
CLP (Lin−Flt3+ CD27+CD244+ CD127+CD122−Ly6D−) has a Lin−Flt3−CD27+CD2
44+CD127+CD122− surface phenotype, which further develop into rNKP (recently 
re-defined NK progenitor) that expresses CD122 [21, 22]. CD122 couples with the 
common γ-chain (CD132) and forms the IL-2/IL-15 receptor, allowing NK cells to 
respond to IL-15 and activate JAK1/3 and STAT5 [23–25]. IL-15 also activates 
3′-phosphoinositide-dependent kinase 1 (PDK1)-mTOR and regulates Nfil3 and 
CD122 expression [26]. rNKP develops through an immature NK cell (iNK) stage 
to become mature NK (mNK) cells. iNK expresses NK1.1 but does not express 
CD49b (antigen to DX5). The expression of Ly49 receptors on the developing iNK 
cells is critical for NK cell education and maturation and for the detection of 
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invading pathogens, such as murine cytomegalovirus (MCMV) [27, 28]. The most 
iNK-cell-proximal mNK cells are CD27+CD11b−, produce IFN-γ and TNF-α when 
activated, but are not yet fully cytotoxic effector cells. Cytotoxic capacity improves 
with NK cell maturation by type I interferons (IFN-α or IFN-β) or proinflammatory 
cytokines IL-2, IL-15, IL-12, and IL-18, which upregulate CD11b through T-bet 
and zinc finger E-box-binding homeobox 2 (Zeb2) [29, 30]. Of note, iNK cells in 
the bone marrow differentiate through four stages sequentially as CD27−CD11b−, 
CD27+CD11b−, CD27+CD11b+, and CD27−CD11b+ [31, 32]. Besides CD11b and 
Dx5, mature NK cells also highly express KLRG1, CD62L, and CD43 [32].
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Fig. 11.1  NK and helper ILCs development in mice
T, B, NK and all other helper ILCs develop from common lymphoid progenitor (CLP). NK and 
ILCs development accompany with sequential differential acquirement of hundreds of transcrip-
tion factors: Nfil3 and Tcf1 are required for the development and commitment of early ILC pro-
genitors (EILP). Expression of ID2 leads to the commitment of common helper ILC precursor 
(CHILP), which is not able to further develop into NK cells. When PLZF is expressed, ILC pro-
genitor (ILCP) is formed and its LTi potential is lost. Downstream of EILP, pre-NK progenitor 
(pre-NKP) develops into re-defined NK progenitor (rNKP) that expresses CD122, which couples 
with CD132 to form the IL-2/IL-15 receptor, allowing NK cells to respond to IL-15. rNKP then 
develops through an immature stage (iNK) to become mature NK cells (mNK). Nfil3, Tcf1, Ets1, 
Id2, Eomes, T-bet and Zeb2 governs NK cell development from EILP to mNK cells
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Apart from Tcf1 and Nfil3 [8, 13–15, 17, 33] required for EILP commitment, 
Ets1, Id2, Eomes, and T-bet are transcription factors essential for NK cell develop-
ment. Ets1, required for early NK cell lineage commitment, induces Id2, Tbx21, and 
Il2rb (CD122) expression [34–36]. Id2 suppresses E protein target genes (e.g., 
Socs3, Tcf7, Cxcr5), and the suppression of Socs3 promotes NK cell response to 
IL-15 [37, 38]. IL-15 is crucial for NK cell survival through the induction of the 
anti-apoptotic protein Bcl-2 [39, 40]. Eomesodermin (Eomes) and T-bet are mem-
bers of the T-box family of transcription factors and are required by iNK and mNK 
cells [41]. However, tissue-resident NK cells may exhibit different developmental 
reliance on T-bet and Eomes [42].

NK cell maturation and function are regulated by an additional group of tran-
scription factors. These include the Ets family protein myeloid elf-1-like factor 
(Mef, also known as ELF4) [43] and PU.1 (encoded by Spi1) [44], which respec-
tively regulate perforin expression and NK cell proliferation in response to IL-2 and 
IL-12. PR domain zinc finger protein 1 (Blimp1, encoded by Prdm1), induced by 
IL-15  in a T-bet-dependent manner during early NK cell development, promotes 
granzyme B expression but inhibits NK cell maturation and proliferation to low 
concentrations of IL-15 [45]. Tox regulates mNK development partially through the 
induction of Id2 [46]. The Ikaros family member Aiolos (encoded by Ikzf3) pro-
motes IFN-γ expression; however, its absence enhances the ability of NK cells to 
control tumor cells [47]. Kruppel-like factor 2 (Klf2) restricts iNK cell proliferation 
but is required for migration of NK cells toward IL-15-rich microenvironment [48]. 
IFN regulatory factor 2 (Irf2) is required for NK cell maturation in the periphery and 
survival in bone marrow. At homeostatic state, Gata3 is required for bone marrow 
NK cell maturation from CD27+CD11b− stage and for bone marrow egress, liver 
migration, and IFN-γ expression. In the face of infection, Gata3-deficient NK cells 
demonstrated inferior control of Listeria monocytogenes burden in the liver [49]. 
However, Gata3-deficient NK cells exhibited superior activity toward MCMV due 
to increased CD25 expression [50]. Discrepancies regarding forkhead box protein 
O1 (Foxo1) exist in the literature. In one report, Foxo1 was shown to be required for 
iNK cell survival by inducing autophagy that removes damaged mitochondria and 
intracellular reactive oxygen species (ROS) [51]. In another report, however, Foxo1 
inhibited late-stage NK cell maturation and function by downregulating Tbx21 
expression [52].

11.4  �Tissue-Resident NK Cells Acquire Unique Phenotype 
and May Have Distinct Developmental Pathways

Tissue-resident NK (trNK) cells often express CD69, CD103 (αE integrin), and 
CD49a (α1 integrin), which are involved in retaining NK cells in the tissues. CD69 
inhibits type I interferon-induced expression of sphingosine-1-phosphate receptor 1 
(S1P1). S1P1 and S1P5 on NK cells binds to sphingosine-1-phosphate (S1P), which 
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forms a gradient with the highest concentration in peripheral blood and, thereby, 
promotes egress of lymphocytes from tissues into the blood [53, 54]. CD103 forms 
a heterodimer with β7 integrin and binds to E-cadherin on epithelial cells [55]. 
CD49a forms a heterodimer with β1 integrin and binds to collagen [56]. The expres-
sion of both CD103 and CD49a is regulated by transforming growth factor-β (TGF-
β1) [57]. Development of trNK cells may be different from conventional blood NK 
cells. CD49a+ DX5− Trail+ trNK cells in the mouse liver express higher amount of 
TNF-α and GM-CSF than blood and spleen conventional NK cells, and they develop 
in a T-bet-dependent manner  in the absence of Nfil3 [41, 42]. CD49a+DX5− NK 
cells that resemble liver trNK cells are also observed in the mouse uterus and skin 
[42]. In contrast, salivary glands [58] and uterine NK cells [59–61] develop require 
Eomes in the absence of Nfil3. In addition, a population of CD127+ NK cells develop 
in Gata3- and IL-7-dependent manner independently from T-cell precursors in the 
mouse thymus, and thymic trNK cells demonstrate reduced granzyme B but 
increased IFN-γ, GM-CSF, and TNF expression [62, 63].

11.5  �NK Cell Diversity and Activity Are Regulated 
by Variegated Surface Receptors

The activities of NK cells are regulated by various germ line-encoded activating or 
inhibitory receptors (Table 11.1), many of which are expressed in stochastic pat-
terns, resulting in many subsets of functionally distinct NK cells [64–66]. The fami-
lies of NK receptors that recognize MHC class I include the murine Ly49 receptors, 
the primate killer cell immunoglobulin-like receptors (KIRs), and the CD94-NKG2 
receptors in both rodents and primates [65]. Inhibitory receptors in humans and 
rodents normally contain one or more intracellular immunoreceptor tyrosine-based 
inhibitory motifs (ITIM) that can activate downstream SHP-1, SHP-2, and SHIP 
phosphatase [67, 68]. Many of the activating receptors lack intracellular signaling 
motifs and transduce signals via the association with immunoreceptor tyrosine-
based activating motif (ITAM)-containing adapters DAP12, FcεRγ, and CD3ζ, 
which recruit and activate Syk or ZAP70 tyrosine kinases [69]. NKG2D ligands are 
self-proteins related to MHC class I molecules. They are generally absent on the cell 
surface of healthy cells but are frequently upregulated upon cellular stress [70]. 
NKG2D recruits DAP10 and mediates signaling through the activation of PI3K [71, 
72] and ERK [73]. Human KIRs contain either two (KIR2D) or three (KIR3D) 
extracellular immunoglobulin (Ig)-like domains. They are designated as KIR2DL or 
KIR3DL, respectively, if they possess a long cytoplasmic domain containing ITIM 
motif. KIR2DS and KIR3DS have short cytoplasmic domains lacking ITIM but 
associate through a charged residue in their transmembrane regions with DAP12 or 
FceRIγ, respectively. KIR2D receptors typically recognize human HLA-C alleles, 
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whereas KIR3D receptors recognize HLA-B or some HLA-A alleles [74, 75]. The 
NKG2 family contains one inhibitory NKG2A and two activating members NKG2C 
and NKG2E.  The CD94-NKG2 receptors recognize nonclassical MHC-I that is 
HLA-E in humans and its ortholog Qa-1 in mice [76–78]. A subset of human NK 
cells express KIR-related inhibitory receptor, LILRB1, which recognizes a shared 
epitope in all human MHC class I proteins [79].

NK cells also express activating and inhibitory receptors that recognize non-
MHC ligands [80]. For example, murine CD244 (2B4) recognizes CD48, an inter-
action essential for the IL-2-driven expansion and activation of NK cells [81]; 
human NKR-P1A (CD161) recognizes the lectin-like transcript-1 (LLT1, encoded 
by Clec2d), which is expressed on activated dendritic cells and B cells and inhibits 
NK cell cytotoxicity and IFN-γ expression [82, 83]; killer cell lectin-like receptor 
G1 (KLRG1) recognizes cadherins and mediates ‘missing-self’ education [84]; 
Gp49B1 recognizes αvβ3 integrin and inhibits IFN-γ expression [85, 86]. The acti-
vating DNAX accessory molecule-1 (DNAM-1, also known as CD226) [87–89] and 
the inhibiting T-cell immunoreceptor with Ig and ITIM domains (TIGIT) [90, 91] 
receptors both recognize poliovirus receptor (PVR, also known as CD155) and 
poliovirus receptor-related 2 (PVRL2, also known as nectin-2 and CD112), which 
are frequently expressed on transformed or stressed cells.

During NK cell development, the expression of self-MHC class I-reactive inhibi-
tory receptors ‘licenses’ NK cells. Under physiological conditions, licensed NK 
cells engage through the Ly49 and KIR inhibitory receptors with MHC class I and 
prevent NK cells from attacking self, and this self-tolerance is mediated through the 
recruitment of SHP-1, SHP-2, and SHIP phosphatase [67, 68]. Interestingly, 
licensed NK cells are more potent in their cytotoxicity toward MHC class I-deficient 
target cells and secrete more IFN-γ and TNF-a under noninflammatory conditions 
[92, 93]. During infection, however, inhibitory receptor engagement impairs the 
ability of licensed NK cells to control cytomegalovirus (CMV) infection [93]. The 
absence of inhibitory receptors on NK cells can have a beneficiary effect in human 
leukemia patients receiving irradiation therapy followed by bone marrow transplan-
tation. The absence or mismatch of donor NK inhibitory KIR receptors with recipi-
ent MHC-I was associated with better leukemic cell clearance and graft acceptance 
[94].

Activating receptors have the ability to recognize ‘altered-self’, which is often 
induced on malignant or stressed cells [95], and trigger NK cells to kill their tar-
gets. NK cells mediate target-cell killing by a number of mechanisms, including (1) 
the secretion of cytokines, (2) exocytosis of cytoplasmic granules containing per-
forin and enzyme, (3) FAS ligand and TNF-related apoptosis ligand (TRAIL)-
mediated induction of apoptosis, and (4) CD16 cross-linking and antibody-dependent 
cell-mediated cytotoxicity (ADCC) [94]. However, when NK cells are chronically 
exposed to endogenous, as well as foreign ligands recognized by their activating 
receptors, they are tolerated through either receptor downregulation or hypore-
sponsiveness [65]. NK cell tolerance mediated by activating receptors is reversible 
and can be broken in the presence of inflammatory cytokines or infection. For 
instance, in C57BL/6 mice receiving MCMV infection, initially both licensed and 
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unlicensed NK cells expressed CD69 and upregulated IFN-γ and granzyme B at 
similar level, but, subsequently unlicensed NK cells predominated in numbers and 
were the main mediators of viral clearance. The engagement of the activating 
Ly49H receptor with MCMV-encoded glycoprotein m157 on infected cells pro-
moted unlicensed NK cells to undergo a proliferative burst, but the inhibitory 
receptors on licensed NK cells restrained the proliferation through SHP-1 phospha-
tase signaling [68, 93] (Fig. 11.2).

11.6  �NK Cells Participate in Tissue Remodeling in Humans 
and Undergo Clonal-Like Expansion During Viral 
Infection

A mouse analog of human NK progenitor has been defined as Lin−CD34+CD38+C
D123−CD45RA+CD7+CD10+CD127−, which selectively gives rise to NK cells in 
vitro and in vivo [96]. Circulating human NK cells are a diverse population. In any 
given individual, the diversity is generated by the developmentally distinct NK cell 
subsets, KIR gene content, polymorphisms, and copy number variations [64], with 
differentiation and reprogramming in response to tissue-specific environment and 
infections [97]. Transcriptional, telomere length, and transfer of human NK cells 
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Fig. 11.2  NK cell license, activation and inhibition
(a) NK cell license occurs with the expression of self-MHC class I-reactive inhibitory receptors, 
Ly49 in mice and KIR in man. This prevents NK cells from attacking self. In the absence of inhibi-
tory receptors, chronic exposure of activating receptors with their ligands can also render NK cell 
hyporesponsive. (b) NK cell activation takes place under instances of human leukemia patients 
receiving irradiation therapy followed by bone marrow transplantation. The absence or mismatch 
of donor inhibitory NK receptors with recipient MHC-class I promotes leukemic cell clearance by 
both licensed and unlicensed NK cells. (c) During viral infection, inhibitory receptors on licensed 
NK cells inhibit their proliferation burst, and under these circumstances, unlicensed NK cells are 
the main mediators of viral clearance
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into NOD/SCID/γc−/− mice have demonstrated that circulating NK cells in human 
blood display sequential CD56bright CD62L+, CD56dimCD62L+ CD94high

, and 
CD56dimCD62L− CD94low developing stages [98, 99]. CD56bright CD62L+ NK cells 
are mostly KIR− NKG2A+CD27dim CD57−CD16+/− but express CD127 and CD117 
(also known as KIT and SCFR), which are also hallmarks of non-NK ILCs [2, 100]. 
Upon stimulation with combinations of IL-12, IL-15, and IL-18, CD56bright CD62L+ 
and CD56dimCD62L+ NK cells strongly proliferate and produce significantly greater 
amount of IFN-γ than CD56dimCD62L− NK cells. However, engagement of the acti-
vating receptors evokes more prominent chemokine (MIP-1α, MIP-1β and 
RANTES) and cytokine (IFN-γ) expression and NK cell cytotoxicity in 
CD56dimCD62L+ and CD56dimCD62L− cells. [98, 101, 102]. CD56dim NK cells can 
further develop with the sequential loss of NKG2A and the acquisition of KIRs and 
CD57 [103]. CD56dimCD57+ NK cells have increased cytotoxic capacity than 
CD56dimCD57− NK when they are activated through CD16 [104].

In parallel to mice, human tissue-resident NK cells also express CD69, CD103, 
and CD49a, and they may derive directly from progenitors that reside within the 
tissues [97]. NK cells are found at high frequencies in the endometrium of human 
uterus and decidua in the first trimester of pregnancy. Throughout the second half of 
the menstrual cycle, progesterone from the ovaries acts on uterine stromal cells, 
which in turn secrete IL-15 and support uterine NK cell proliferation [105]. During 
pregnancy, a key role for CD56bright uNK cells is to promote trophoblast invasion 
and maternal spiral artery remodeling, which is mediated through the production of 
IL-8, interferon-inducible protein-10 (IP10), and an array of angiogenic factors 
including vascular endothelial growth factor A (VEGF-A), VEGF-C, and angiopoi-
etins [99, 106]. Critically, fetal trophoblasts, which come into direct contact with 
maternal blood and tissues during pregnancy, are exempt from uNK-mediated cell 
killing. Uterine CD56bright CD49a+CD103+CD9+ NK cells express perforin, gran-
zymes A and B, and the activating receptors NKp30, NKp44, NKp46, NKG2D but 
are unable to form mature activating synapses and thus are not cytotoxic [107, 108]. 
Furthermore, the high expression of inhibitory KIRs (KIR2DL1, KIR2DL2, 
KIR2DL3), the CD94-NKG2A receptor complex, and the LILRB1 inhibit NK cell 
activation through the recognition of HLA-C, HLA-E, and HLA-G expressed on the 
extravillous trophoblasts, respectively [107, 109]. Interestingly, primary villous tro-
phoblasts do not express HLA, and extravillous trophoblasts are devoid of HLA-A 
and HLA-B.

In liver sinusoids, NK cells represent up to 30–40% of all hepatic lymphocytes 
[110], and CD56bright and CD56dim cells are present in equal proportions [111, 112]. 
Hepatic CD56bright NK cells express CD69 and are tissue resident [113, 114]. Liver 
resident macrophages (Kupffer cells) interact with NK cells to keep immune 
tolerance to nonpathogenic antigens from food and LPS from gut commensal bac-
teria, but remain alert to infections by pathogens and viruses. In recognition of bac-
terial cell wall products via TLR2/4 -MyD88, Kupffer cells secrete IL-10 and blunt 
NK cell activation [115]. However, when DNA or RNA viruses activate the TLR3-
TRIF-IRF-3 [115] or TLR8 pathways [116], Kupffer cells elicit potent IFN-γ and 
TNF expression in CD56bright trNK cells. Intrahepatic NK cells also mediate target-
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cell killing through the expression of TRAIL, whose expression is correlated with 
the control of hepatitis C virus (HCV) infection [117]. But during HBV infection, 
TRAIL also causes liver damage and can eliminate antigen-specific T cells [118, 
119].

Clonal-like expansion and memory formation of NK cells have been observed in 
humans with cytomegalovirus (HCMV) [120–123], chikungunya virus (CHIKV) 
[124] and hantavirus [125] infections. Clonal-expanded cells are characterized by 
the expression of NKG2C, CD57, and activating KIRs (KIR2DS4, KIR2DS2, 
KIR3DS1), a general lack of the expression of inhibitory NKG2A and KIR3DL1 
receptors (in individuals expressing its HLA-Bw4 ligand), and the decreased expres-
sion of CD161 (also known as KLRB1), NKp30, NKp46, and CD7. A subset of 
clonal-expanded NK cells can further acquire adaptive phenotypes that resem-
bles  more with cytotoxic CD8+ T lymphocytes than conventional NK cells. The 
intronic region of ZBTB16 in adaptive NK cells is hypermethylated, which is cor-
related with the decreased expression of PLZF and its target genes encoding FcεRγ, 
SYK, and EAT-2. Adaptive PLZF-deficient NK cells are distinct from clonal-
expanded NK cells expressing CD57, NKG2C and PLZF, and produce less IFN-γ 
upon cytokine stimulation with IL-12 and IL-18 [126].

11.7  �Conclusion

NK cells are a heterogeneous population of innate lymphocytes that develop from 
the common lymphoid progenitors. Tissue-resident NK cells may have different 
developmental origins and are phenotypically distinct from their blood counter-
parts. NK cells employ both inhibiting and activating receptors for ‘missing-self’ 
education, activation, and terminal differentiation. In humans, NK cells are critical 
for the implantation of the embryos and for the control of neoplastic transformation 
and viral infections, but they may also induce collateral damages to the tissues. 
Despite lacking rearranged antigen-specific receptors, NK cells can acquire adap-
tive T-cell features by clonal-like expansion and alteration in their DNA methylation 
profiles during viral infections.
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