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Abstract
Fruiting bodies of fungi are rich in multiple types of bioactive compounds with 
(potential) pharmaceutical effects. Many kinds of mushrooms are thus highly 
valued in traditional medicine in different cultures over the world for treatment 
of diseases and maintenance of good health. Modern science has uncovered 
functional principles in many medicinal species and assigned beneficial activi-
ties (antimicrobial, antiviral, anti-oxidative, immunomodulatory, anti- 
inflammatory, anti-tumorous, hypotensive, hepatoprotective, antidiabetic/
hypoglycemic and hypocholesterolemic, mitogenic/regenerative, etc.) to a 
wealth of secondary metabolites, peptides, proteins, and sugar-based polymers. 
Compared to the extensive lists of bioactive compounds and the description of 
their distinctive effects, the pathways of their biosynthesis and the genes behind 
are largely understudied. This can now become changed by the many genomes 
which are provided by large-scale fungal sequencing programs. Among are many 
assembled genomes for important edible and medicinal mushroom species which 
can be used in genome mining for genes of interest, both for the synthesis of 
known products and for the synthesis of novel, so far undetected compounds. 
Also, genomes of other species offer possibilities to predict genes for the biosyn-
thesis of formerly unnoticed bioactive fungal products of either biochemically 
already known or novel structure. We present here examples of recent 

mailto:ukuees@gwdg.de
mailto:s.badalyan@ysu.am


398

 identification of genes and gene clusters for bioactive compounds (different ter-
penoids, phenolics, polyketides, cyclic peptides, aegerolysins, lectins, protease 
inhibitors, and ribosome-inactivating proteins) in medicinal and edible fungi. 
Genome comparisons and gene mining identify related genes for similar prod-
ucts in other species. Usually, genes for medicinally interesting products are 
found in only a restricted range of species, inconsistently distributed over the 
fungal taxa. Some of the recognized medicinal species probably have genes for a 
higher variety of bioactive products than species which are estimated purely for 
their good edible value or species being commonly neglected for exploitation as 
food and medicine.
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ggs Gene for geranylgeranyl pyrophosphate synthase
p450 Gene for cytochrome P450
sdr Gene for short-chain dehydrogenase/reductase

13.1  Introduction

The fungal subkingdom Dikarya splits into the two phyla Ascomycota and 
Basidiomycota that represent the higher fungi, many of which grow in mycelial 
form and produce compact fruiting bodies with meiotic spores for sexual reproduc-
tion (Hibbett et al. 2007). Specific genera of the Ascomycota, in particular within 
the order Pezizales (e.g., Helvella, Morchella, Terfezia, Tirmania, Tuber), and in full 
extend the class Agaricomycetes within the phylum Basidiomycota give rise to 
larger mushrooms (Hibbett 2007; Schoch et al. 2009). Mushrooms are fruiting bod-
ies of macroscopic size, can be seen by the naked eye and be picked by hand, and 
may grow above (epigeous) or below (hypogeous) ground in soil or a respective 
growth substrate (Chang and Miles 1992). There is a tremendous variety in mush-
room morphologies, such as in their overall shapes, sizes, colors, consistencies, 
tissue structures, etc. (Schoch et  al. 2009; Kües and Navarro-Gonzalés 2015; 
Sherratt et al. 2005; Halbwachs et al. 2016). Mushrooms attracted humans since 
ancient times not only by their often beautiful eye-catching looks but for reasons of 
exploitations such as for food, health care, and use as hallucinogens, among in spiri-
tual practices (Kües and Liu 2000; Boa 2004; Jo Feeney et al. 2014; Sayin 2014; 
de Mattos-Shipley et al. 2016).

Mushrooms are commonly distinguished into edible, nonedible (e.g., due to no 
or too bad taste or by too hard structure), medicinal, psychedelic, and poisonous 
species, with sometimes fuzzy overlaps between the categories (Boa 2004; Guzman 
2008; Garibay-Orijel et al. 2009; Gonmori et al. 2011; Grienke et al. 2014; Jo et al. 
2014; Santiago et al. 2016). Although controversially discussed, the best known fly 
agaric Amanita muscaria, for example, is reported to be eaten upon decoction in 
certain locations of the world, possibly in the lack of alternative better and safer 
food (Rubel and Arora 2008; Viess 2012). The consumption of this unmistakable 
fungus for the experience of its hallucinogenic effects is also disseminated in certain 
populations and cultures (Feeney 2010; Viess 2012; Sayin 2014), while (accidental) 
poisonings with the fly agaric (pantherina-muscaria syndrome based on ibotenic 
acid as the most potent toxin in the fruiting bodies) are also recorded. However, fatal 
outcomes are rare (2–5% of cases) by advanced diagnosis and good medical treat-
ment (Michelot and Melendez-Howell 2003; Marciniak et al. 2010; Vendramin and 
Brvar 2014; Mikaszewska-Sokolewicz et al. 2016).

Global numbers of total fungal species and of different higher fungal taxa are 
still challenged with contemporary estimates for species between lowest 0.7 and 
highest 5.1 million, with 1.5–3.0 million being the current working figure (Schmitt 
and Mueller 2007; Blackwell 2011; Hawksworth 2012; Tedersoo et al. 2014; Dai 
et  al. 2015). In the so far most comprehensive molecular genetic survey of soil 
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mycobiomes from different continents, latitudes, and ecosystems, about 50% of all 
detected fungal species (in total 80,486) were Agaricomycetes and 1.8% 
Pezizomycetes, with over 40% of the taxa being still unknown (OTUs, operational 
taxonomic units; Tedersoo et al. 2014). Earlier conservative estimates stated that 
within a total of 1.5 million fungi, about 140,000 macrofungi exist worldwide of 
which 10 % were known at the time (Hawksworth 1991; Chang 2001). Of the then 
known mushroom species, about 7000 and >2000 are considered to be edible and to 
be entirely safe, respectively (Hawksworth 1991; Chang 2001), while a small per-
centage (2–3%) of the known species (at least 170) is poisonous to deadly toxic 
(Gonmori and Yoshioka 2003; Boa 2004). However, the numbers of named fungal 
taxa (especially genera and species) are rapidly increasing, including that important 
edible and medicinal fungal species complexes (e.g., within the genera Morchella, 
Ganoderma, and Inonotus) become better resolved and subdivided into new lin-
eages (Dai et al. 2015).

Regardless of an actual edible status, mushrooms can have many useful medici-
nal properties, including psychedelic and potentially lethal species which may pro-
vide medicinal power also by their Janus-faced toxins (Wasser 2002; Jo et al. 2014; 
Carhart-Harris et  al. 2016; Rahi and Malik 2016). Substantial pharmacological 
properties were recorded for over 700 species. However, the extensive medicinal 
potential offered by mushrooms is likely by far not fully perceived and certainly not 
yet utterly exploited (Wasser and Weiss 1999; Wasser 2002, 2011; Lindequist et al. 
2005; Badalyan 2012; De Silva et al. 2013; El Enshasy et al. 2013). Best established 
in cancer cell line and animal test systems are positive effects of preparations of 
fungal β-glucans and proteoglycans such as of Trametes versicolor (the 100 kDa 
polysaccharide-K, PSK, krestin), Schizophyllum commune (the 45–50 kDa schizo-
phyllan), Lentinula edodes (the 45–50 kDa lentinan), Grifola frondosa (the 100 kDa 
maitake polysaccharide D fraction, respectively, purified MD fraction, grifoldan), 
Ganoderma lucidum (the 40 kDa polysaccharide PS-G preparation, ganopoly), and 
Phellinus species (fractions variably sized 8.9–2000 kDa) which are marketed as 
alternative medicine and used as anticancer therapeutics in Asian countries (Kidd 
2000; Lindequist et al. 2005; Lemieszek and Rzeski 2012; El Enshasy and Hatti-
Kaul 2013; De Silva et al. 2013; Huang and Nie 2015; Yan et al. 2017). L. edodes 
and G. frondosa are widely eaten gourmet mushrooms; S. commune fruiting bodies 
are included in human diets in some tropical countries (e.g., Thailand, Malaysia, 
and Mexico), whereas the tough sporocarps of T. versicolor and the conks of G. 
lucidum are edible but unpalatable and the latter in addition is too bitter (Boa 2004; 
Chang and Lee 2004; Ruán-Soto et al. 2006). Many versatile medicinal mushrooms, 
such as from the Ganoderma species complex, are therefore applied as food addi-
tives (nutriceuticals; Chang and Buswell 2001) in the form of tonics, teas, soups, 
and alcoholic beverages or as mushroom powders, frequently filled into capsules or 
pressed into pills, in order to make use of their good ingredients for benefits of 
human health (De Silva et al. 2012a; Bishop et al. 2015).

Medicinal mushrooms and their multiple bioactive compounds are listed to func-
tion in human health care for instance antiviral, antibacterial, antifungal, anti- 
oxidative, immunomodulatory and immunosuppressive, anti-inflammatory, 
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anti-tumorous, hypotensive, hepatoprotective, antidiabetic/hypoglycemic and hypo-
cholesterolemic, anti-obese, mitogenic/regenerative, anti-dementia, and more 
(Wasser and Weiss 1999; Wasser 2002, 2011; Poucheret et al. 2006; Badalyan 2012; 
Chang and Wasser 2012; Hassan et al. 2015; Phan et al. 2017). Such claims, how-
ever, need a good clinical survey to substantiate these potentials in practice (Chung 
2006; Hapuarachchi et al. 2016; Money 2016; Wasser 2017).

Functional compounds of mushrooms, their biochemical nature, their principles 
of actions, and their production and safe applications are a matter of concern. A 
wealth of organic bioactive molecules has been identified in worldwide research 
from mushrooms to have medicinal effects, including different bioactive proteins 
(e.g., aegerolysins, lectins, ribosome-inactivating proteins, and protein inhibitors), 
ribosomal and non-ribosomal peptides, polysaccharides, peptidoglycans, alcohols, 
phenolics, different types of terpenoids (sesquiterpenes, diterpenes, triterpenes, 
meroterpenes of mixed biosynthetic origin, less often monoterpenes), lipids, ste-
roids, alkaloids, polyketides, and other compounds (Wasser and Weiss 1999; Wasser 
2002; Ferreira et al. 2010; Anke and Antelo 2011; Schüffler and Anke 2011; De 
Silva et al. 2013; Grienke et al. 2014; Duru and Çayan 2015; Sabotič et al. 2016; 
Dickschat 2017). Functional compounds for applications might be isolated from 
collected or cultivated mushrooms (Tang et al. 2007; Stadler and Hoffmeister 2015; 
Bedlovicova et al. 2016; Tang et al. 2016a; Lau and Abdullah 2017) or, when pos-
sible, obtained from mycelial fermentation (Zhong and Xiao 2009; De Silva et al. 
2012b; Elisashvili 2012; El Enshasy and Hatti-Kaul 2013; Chen et al. 2016a). Not 
all mushroom species can grow in culture and such therefore fall short for fermenta-
tions (Badalyan 2012; Stadler and Hoffmeister 2015). However, polysaccharides 
(mainly β-glucans) and peptidoglycans as ordinary constituents of fungal cell walls 
and their external mucilage layers might abundantly be produced in large mycelial 
fermentation from well-growing species (Fazenda et al. 2008; Wasser 2011; Castillo 
et al. 2015; Chen et al. 2016a; Money 2016), but also some other bioactive com-
pounds, e.g., phenolic antioxidants and certain terpenoids, can be obtained from 
cultures (Lorenzen and Anke 1998; Asatiani et  al. 2007; Carvajal et  al. 2012; 
Thongbai et al. 2015; Tešanović et al. 2017). Not uncommonly, mycelia produce 
bioactive compounds which are not seen in the fruiting bodies (Hartley et al. 2009; 
Thongbai et al. 2015). In other instances, specific proteins and peptides, secondary 
metabolites, and other potent bioactive molecules might confine purely to the fruit-
ing bodies and even to specific tissues and stages in the development (Enjalbert 
et al. 1999; Boulianne et al. 2000; Walser et al. 2005; Hu et al. 2012; Li et al. 2014a; 
Lu et al. 2014; Yilmaz et al. 2015; Zhang et al. 2015a; Sabotič et al. 2016), or spe-
cific conditions need to be established for induction of targeted metabolite produc-
tion in liquid cultures (Xu et al. 2010). Favoring measures can be addition of methyl 
jasmonate, lipids, or surfactants (Ren et al. 2013a; Xu et al. 2016a,b), addition of 
suitable precursor molecules (Hu et  al. 2014, 2016) or specific known inducers 
(Liang et  al. 2010), addition of effective deregulators of the general metabolism 
(Ren et al. 2014) and of other severe stressors (You et al. 2013; Cao et al. 2017), 
application of specific pH control (Wang et al. 2016b) or temperature shifting strate-
gies (Feng et  al. 2016), or limitation of oxygen (Zhang and Zhong 2013). Such 

13 Making Use of Genomic Information to Explore the Biotechnological Potential…



402

environmental and physiological management strategies can become further 
expanded by genetic engineering of the fungal producers by smart modification of 
improving expression of genes for the synthesis of precursor molecules and of the 
compounds of concern and by interrupting gene expression of competitive path-
ways and unwanted pathway branches (Qin et al. 2015; Xu and Zhong 2015).

Fungal research with the twenty-first century experienced an unprecedented 
boost by whole genome sequencing programs over the fungal kingdom, many of 
which are provided to the public in assembled form with gene annotations on the 
MycoCosm page of the JGI (Joint Genome Institute, Walnut Creek, CA; http://
genome.jgi.doe.gov/programs/fungi/index.jsf; Grigoriev et  al. 2014) or can be 
found deposited in the NCBI databases (https://www.ncbi.nlm.nih.gov/). Fungal 
genome sequencing programs provide extraordinary resources for identifying new 
genes for the synthesis of bioactive compounds from mushrooms, both of biochemi-
cally already known substances and of unforeseen compounds. With respect to 
edible and medicinal mushrooms, sequencing so far provided from Ascomycota in 
particular the genomes of precious edible truffles such as Tuber melanosporum 
(Martin et al. 2010), Tuber borchii, Terfezia boudieri, and Terfezia claveryi, of the 
morels Morchella conica and Morchella importuna, and of the false morel Gyromitra 
esculenta (MycoCosm status from April 2017). Especially many mushroom 
genomes are published from the Agaricomycotina (see MycoCosm page and NCBI 
databases for full list), among from the edible Agaricus bisporus (Morin et  al. 
2012), Amanita jacksonii (Sánchez-Ramírez et al. 2014), Armillaria mellea (Collins 
et al. 2013), Auricularia subglabra (Floudas et al. 2012), Boletus edulis (MycoCosm 
page), Flammulina velutipes (Park et al. 2014), Hypholoma sublateritium (Kohler 
et al. 2015), Laetiporus sulphureus (Nagy et al. 2016), Lentinula edodes (Chen et al. 
2016b), Pleurotus eryngii (Yang et  al. 2016b), Pleurotus ostreatus (Riley et  al. 
2014), and Volvariella volvacea (Bao et al. 2013), also from the less often eaten 
Coprinopsis cinerea (Stajich et al. 2010) and S. commune (Ohm et al. 2010), and as 
further important medicinal mushrooms from Amanita bisporigera and Amanita 
phalloides (Pulman et  al. 2016), Amanita muscaria (Kohler et  al. 2015), 
Taiwanofungus camphoratus (synonym Antrodia cinnamomea; Lu et  al. 2014), 
Fistulina hepatica (Floudas et al. 2015), Fomitopsis pinicola (Floudas et al. 2012), 
various Ganoderma species (Kües et al. 2015; Merciere et al. 2015; Zhu et al. 2015), 
Lignosus rhinocerotis (Yap et  al. 2014)), Omphalotus olearius (Wawrzyn et  al. 
2012), Punctularia strigosozonata (Floudas et  al. 2012), Serpula lacrymans 
(Eastwood et  al. 2011), Stereum hirsutum (Floudas et  al. 2012), Suillus luteus 
(Kohler et  al. 2015), Trametes versicolor, and Wolfiporia cocos (Floudas et  al. 
2012). More fungal genomes of all categories of mushrooms are likely to come, all 
of which await exploitation.
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13.2  The Value of Fungal Genomes

In the past, discoveries of metabolic gene functions were commonly activity driven 
by encoded enzymes and their products; via appointing mutants, smart selection 
methods, and function-based genetic screenings; and through elucidation of meta-
bolic synthesis pathways by methods such as of isotope and precursor feedings 
combined with chemical structure clarifications (Casselton and Zolan 2002; Keller 
et al. 2005; Bills and Gloer 2016).

The established fungal genomes however offer now in addition invaluable plat-
forms for advanced genome mining, for example, for searching of biosynthesis gene 
clusters (BGCs) for natural bioactive products generated from multienzyme path-
ways, applying first in silico sequence searches and suitable bioinformatics methods 
(Wawryzn et al. 2015; Bills and Gloer 2016; van der Lee and Medema 2016) which 
subsequently can be combined with experimental activity research on identified 
genes (Bills and Gloer 2016). The latter might be addressed through heterologous 
gene expression, e.g., in Escherichia coli (e.g., Agger et al. 2009; Quin et al. 2013a; 
Sun et al. 2016; Yang et al. 2016a; Zhou et al. 2016; Alberti et al. 2017; Braesel et al. 
2017; Lin et al. 2017), Saccharomyces cerevisiae (Walser et al. 2004; Agger et al. 
2009; Ishiuchi et al. 2012; Alberti et al. 2017; Nielsen and Nielsen 2017), Pichia 
pastoris (Xue et  al. 2008; Bastiaan-Net et  al. 2013; Lin et  al. 2013, 2016), or 
Aspergillus species (Yaegashi et al. 2014; Alberti et al. 2017; Braesel et al. 2017). 
Recently, for the first time, a complete gene cluster from a mushroom has thus been 
functionally expressed in Aspergillus oryzae (Bailey et al. 2016; Alberti et al. 2017). 
Alternatively, if a transformation system exists for a fungus (in the basidiomycetes 
still rare), gene functions might be elucidated through homologous expression via 
in vitro-modified vector constructs providing, e.g., efficient promoters of superior 
regulatory schemes to cloned genes encoding biosynthesis enzymes (Bailey et al. 
2016; Alberti et  al. 2017) or gene-specific regulatory proteins (Fox and Howlett 
2008; Brakhage and Schroeckh 2011), or respective genes might be knocked out 
(Bailey et al. 2016; Sun et al. 2016; Yu et al. 2016).

Importantly, genome mining can be used to find the biosynthetic genes for 
already known products but also for novel products of hitherto unknown existence. 
Examples of all situations can be found in this article. Different approaches for find-
ing new genes by genome mining are possible. Whole genome comparisons, for 
example, can identify genes and gene clusters unique to a species as potential can-
didates for the production of unusual, “exotic,” bioactive compounds not found in 
other species (Wang et al. 2016c). Guesses on gene products, e.g., type of encoded 
enzyme families, and in the case of gene clusters on the combinations of enzymes 
provided can direct further research to eventually identify the synthesized metabolic 
products and their intermediates. Moreover, computer programs can be trained to 
specifically identify BGCs with relevant (highly conserved) genes but also to iden-
tify BGCs with more obscure genes and cluster organization. Motif-independent 
prediction programs make use of, e.g., transcriptomic data. On the other hand, a 
known bioactive secondary metabolite might be assigned to genes potentially 
responsible for their production. Where enzymes for biosynthesis of similar 
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metabolic products or for potential common precursors and intermediates are 
known, guesses can be made on the type of genes that should participate in the syn-
thesis of the compound of interest. Genome searches with the respective enzymes of 
known functions will help by sequence identities and similarities to find candidate 
genes encoding the desired enzymes for a chemically defined metabolite (Umemura 
et al. 2013, 2015; Koczyk et al. 2015; Li et al. 2016c; van der Lee and Medema 
2016).

Genome search approaches with amino acid sequences can of course also be 
performed with other, nonenzymatic bioactive proteins and peptides. Sometimes, 
however, revealing amino acid stretches of identity or similarity between proteins or 
peptides are very short or key amino acids in motifs are individually spread over 
larger sequence distances. Various bioinformatics tools are being developed to ele-
gantly address such cases in genome mining. Known structural information from 
similar proteins and peptides in addition can be included into computer-directed 
searches and, of course, any possible further knowledge such as related to other 
genes expected to be positioned in respective BGCs (Nagano et al. 2016; van der 
Lee and Medema 2016; Hetrick and van der Donk 2017). Nevertheless, busy man-
ual genome mining can be very helpful to (first) identify any informative motifs, and 
it is sometimes superior and more complete as compared to bioinformatics methods 
with discrete algorithms designed for finding small motifs (Niculita-Hirzel et  al. 
2008; Kües et al. 2015; Pulman et al. 2016; van der Velden et al. 2017).

In tendency in fungi, genes for a multienzyme biosynthesis pathway for given 
secondary metabolites localize together (Brakhage and Schroeckh 2011; Wiemann 
and Keller 2013; Yaegashi et al. 2014; Li 2016c), although in the so far understudied 
Basidiomycota this might be less true than in the Ascomycota (see opposing exam-
ples in the text below), or it might depend on the biochemical type of the metabo-
lites of concerns (Schmidt-Dannert 2015). Many novel fungal metabolic gene 
clusters identified via genome mining appear at first sight to be silent (referred to as 
cryptic or orphan BGSc), failing to provide any interesting metabolic product(s). 
However, strategies are presented as for how to activate silent gene clusters through 
the application of types of stresses, such as co-culturing, e.g., with bacteria, other 
fungi, or nematodes (Zheng et al. 2011; Plaza et al. 2014; Yao et al. 2016; Tauber 
et al. 2016). Induced gene expression can then be followed up by transcriptomics, 
proteomics, and metabolomics (Kuan et  al. 2013; Ren et  al. 2013a; Plaza et  al. 
2014; Yap et al. 2015a,b; Yu et al. 2015; Martinez et al. 2016; Yao et al. 2016; Tauber 
et al. 2016) and coexpression correlations (Umemura et al. 2013, 2015).

In the following, we are reviewing the recent progress made in identification and 
characterization of genes involved in the production of specific bioactive secondary 
metabolites, peptides, and proteins with (potential) pharmaceutical value through 
the now available genomes of many of the interesting mushrooms.
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13.3  Bioactive Secondary Metabolites and Their Enzymes 
for Biosynthesis

13.3.1  Sesquiterpene Synthases

Sesquiterpenes (C15 terpenoids) are volatile terpenes (isoprenoids) with a skeleton 
of three isoprene (2-methyl-1,3-butadiene) units. They are produced from the meva-
lonate pathway-derived five-carbon precursors dimethylallyl pyrophosphate 
(DMAPP) and isopentenyl pyrophosphate (IPP) through the 10-carbon fusion prod-
uct geranyl pyrophosphate (GPP) and another IPP via the 15-carbon compound 
farnesyl pyrophosphate (FPP). Sesquiterpene synthases dephosphorylate and 
cyclize the linear intermediate FPP to a multiplicity of different cyclic sesquiterpene 
scaffolds (>300) with the formula C15H24 (Miller and Allemann 2012; Li and Wang 
2016). Sesquiterpenes might be monocyclic, bicyclic, or tricyclic, and they further 
differ by rearrangements and by side chain modifications through actions of a mul-
titude of cytochrome P450 monooxygenases, oxidoreductases, further oxygenases, 
and group transferases (Quin et al. 2014). The wealth of different sesquiterpenes 
described from macrofungi and their medicinal potential is thus stupendous 
(Lorenzen and Anke 1998; Abraham 2001; Christianson 2006; Ajikumar et al. 2008; 
Fraga 2011; Li and Wang 2016).

The first sesquiterpene synthase genes from a sequenced mushroom to be cloned 
were from C. cinerea (Agger et al. 2009). This helped to find further sesquiterpene 
synthase genes in other genomes (>1000 genes in ~100 fungal genomes by year 
2014) and, where present, associated gene clusters with genes for precursor biosyn-
thetic enzymes, sesquiterpene-modifying enzymes, transcription factors for puta-
tive cluster regulation, and metabolite-related transporters (Wawrzyn et al. 2012; 
Quin et al. 2014). Table 13.1 gives an overview on so far cloned and characterized 
sesquiterpene synthases from the Agaricomycetes with their specific products as the 
first entry into the very complex and variable enzymology of sesquiterpene synthe-
sis from FPP in this fungal class. Enzymes differ in their modes of cyclization (by 
1,6-, 1,10-, or 1,11-ring closures, respectively). Some of the cloned sesquiterpene 
synthases share the same products, while others generate sesquiterpene scaffolds of 
quite different structure. Some of the enzymes are quite specific with only one or 
mainly one product, and these can be assigned to a specific function, while others 
are variable promiscuous in their product range. Importantly, however, not all of the 
detected sesquiterpenes are direct products of the cloned enzymes but result from 
secondary chemical rearrangements (Table 13.1).

Sesquiterpene synthases are specifically identified by the two characteristic 
aspartate-rich motifs DDXXD/E and NDE/DTE located at the entrance of the cata-
lytic enzyme center to coordinate a trinuclear Mg2+ cluster for binding the pyro-
phosphate moiety of the FPP substrate, positioning its isoprenyl chain into the 
pocket, and triggering the pyrophosphate cleavage (Schmidt-Dannert 2015). 
Enzymatic specificity is then influenced by amino acids in the conserved H-α1 loop 
which is found C-terminal to the NDE/DTE motif and caps the active site of the 
enzymes upon FPP binding. Accordingly, amino acid changes in Cop3 and Cop4 of 
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C. cinerea and replacing the loop of Cop4 by that of Cop6 changed product profiles 
of the enzymes, whereas mutations in the H-α1 loop of Cop6 and introduction of the 
Cop4 H-α1 loop into Cop6 had no effects on the product outcomes (Lopez-Gallego 
et  al. 2010a, b). Single amino acid replacements in Cop2 outside the functional 
center (L59H, S310Y, T65A) improved the selectivity of the enzyme for product 
germacrene D-4-ol (Lauchli et al. 2014).

Phylogenetic analysis can help to predict specific reactions from sesquiterpene 
synthases obtained from genome mining. Basidiomycota sesquiterpene synthases 
split by overall sequence conservation into five main clusters which reflect different 
types of cyclization mechanisms (e.g., 1,6-cyclization; 1,10-cyclization; 
1,11- cyclization) and make predictions for their expected types of products possible 
(Wawrzyn et al. 2012; Quin et al. 2013a; de Sena Filho et al. 2016; Tao et al. 2016).

The analysis on the diverged sesquiterpene biosyntheses in the fungi is however 
still in its infancy, with only a few cases reported where enzyme activities subse-
quent to the syntheses of sesquiterpene backbones were identified. The sesquiter-
pene synthase gene Pro1 from Armillaria gallica, for example, forms 
Δ6-protoilludene (Engels et  al. 2011) to which after oxygenation reactions an 
orsellinic acid moiety is esterified to give antimicrobial and cytotoxic hybrid terpe-
noids termed melleolides (Bohnert et  al. 2011, 2014; see also Sect. 13.3.4). The 
monocyclic polyketide orsellinic acid is produced by a seven-domain nonreducing 
polyketide synthase (NR-PKS) ArmB (Lackner et  al. 2013; Sect. 13.3.4). The 
melleolide- biosynthetic gene cluster with Pro1 has been deduced from the estab-
lished genome of A. mellea which includes also the characterized gene ArmB for the 
orsellinic acid synthase and 14 other genes for putative cytochrome P450 monooxy-
genases, NAD+-dependent oxidoreductases, a flavin-dependent oxidoreductase, and 
an O-methyltransferase (Lackner et al. 2013; Wick et al. 2016). However, outside 
the gene cluster spread over four different genomic locations, there are additional 
genes for melleolide modification, ArmH1 to ArmH5 for FAD-dependent haloge-
nases with a canonical signature sequence (FW[A/V]W[F/L]I). These five haloge-
nases were all able to chlorinate melleolide F as the compound experimentally 
tested for such a post-PKS-biosynthetic step. In addition, bromonation activity was 
demonstrated for ArmH4 as one selected enzyme (Misiek et al. 2011; Wick et al. 
2016). In the satellite gene cluster for melleolide modification together with armH1 
and armH2, a gene armA is found as another characterized gene which encodes a 
tridomain enzyme for adenylation of primarily l-leucine and l-threonine. Although 
the gene is expressed under melleolide production conditions, any biochemical link 
to melleolide production is not obvious (Misiek et al. 2011).

Of the six identified sesquiterpene synthase genes in C. cinerea (Table 13.1), 
only the cop6 gene appears to be part of a biosynthetic gene cluster. cop6 is flanked 
by two genes for cytochrome P450 monooxygenases (cox1, cox2 for α-cuprenene 
oxidases). The P450 enzyme Cox2 oxidizes the α-cuprenene produced by the highly 
specific enzyme Cop6 to α-cuparene and α-cuparophenol, while Cox1 oxidizes 
α-cuprenene to unknown hydroxy or ketone derivatives, respectively, and likely also 
α-cuparophenol into a keto-derivative (Agger et al. 2009). C. cinerea produces blue- 
stained antibiotic lagopodins (Bottom and Siehr 1975; Bu’Lock and Darbyshire 
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1976) which can principally be generated from α-cuprenene through multiple oxi-
dations to which Cox1 and Cox2 likely contribute (Agger et al. 2009).

O. olearius has in total 11 genes for sesquiterpene synthases (Table 13.1). omp1, 
omp6, and omp7 are located in distinct gene clusters. omp6 is found in the largest 
cluster of about 25 kb with four P450 genes and 14 other genes for a selection of 
putative oxidoreductases, transferases, drug transporters, a GTPase1 anthranilate 
synthase-related enzyme, and a poly-galactonurase. omp7 clusters with one P450 
gene and one gene for a FAD-binding protein, and they originate possibly from a 
partial duplication of omp6 cluster genes. Omp6 and Omp7 both produce 
Δ6-protoilludene. omp1 for a selective α-muurolene synthase groups with a single 
P450 gene and three genes for enzymes suggested to act in the modification of 
α-muurolene. α-Barbatane synthase Omp9 falls into the same clade of enzymes as 
seven of the total 17 different sesquiterpene synthases of F. pinicola (Table 13.1). In 
this species, only enzyme Fompi1 is encoded in a small gene cluster with two P450 
genes (Wawrzyn et  al. 2012). α- and β-Barbatane are products of F. pinicola 
(Rösecke et al. 2000). However, Fompi1 is a highly specific α-cuprenene synthase 
similar to Cop6 of C. cinerea (Wawrzyn et al. 2012).

Cluster predictions were also provided for S. hirsutum. Genes 159379 for 
β-barbatene synthase and 128017 for δ-cadinene synthase (Table 13.1) are located 
in distinct clusters together with genes for a range of oxidoreductases, but there is 
no P450 gene. δ-Cadinene is the likely precursor for the antibacterial stereumin. 
P450 monooxygenases required for stereumin synthesis may thus be provided from 
satellite gene clusters or individual genes still to be defined (Quin et  al. 2013a). 
Notably, the Agaricomycetes commonly possess large armies of potential P450 
genes (>100, e.g., Doddapaneni et al. 2005; Wawrzyn et al. 2012; Syed et al. 2014; 
Kües et al. 2015; Qhynya et al. 2015; Mgbeahuruike et  al. 2017). Genes 25180, 
64702, and 73029 for the three functional Δ6-protoilludene synthases in S. hirsutum 
(Table 13.1) in contrast are all located in larger gene clusters together with genes for 
a variety of scaffold-modifying enzymes including for several P450 monooxygen-
ases. Some of these are closely related to the P450 enzymes encoded in the omp6 
and omp7 gene clusters of O. olearius, which suggests shared origins of these clus-
ters of the different species. The cluster in S. hirsutum with gene 64702 contains 
also a gene for a transporter. Cytotoxic sterostreins could be products of the three S. 
hirsutum clusters with the functional Δ6-protoilludene synthase genes (Quin et al. 
2013a, b). Altogether, there appears to be a trend in the Agaricomycetes that genes 
for Δ6-protoilludene synthases associate with biosynthetic gene clusters (Schmidt- 
Dannert 2016).

The newest whole genome analysis for sesquiterpene synthase genes is from T. 
camphoratus (Lin et al. 2017; Table 13.1). In this fungus, one or two P450 genes 
localize in the vicinity of the genes for the enzymes AcTPS1, AcTPS2, AcTPS3, 
and AcTPS6, the genes for enzymes AcTPS4 and AcTPS9 are linked, and one to a 
few genes for potential modification have been identified in the closer and wider 
genomic environments of all sesquiterpene genes. However, there are usually sev-
eral additional genes for other unrelated or unknown functions, and genes from a 
shared chromosomal region appear to be not much in parallel regulated in mycelial 
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growth and during fruiting (Lin et al. 2017), shedding doubt on that many of these 
genes sit in true sesquiterpene biosynthetic gene clusters. In conclusion, a gene 
cluster situation for sesquiterpene synthesis is not necessarily the canonical situa-
tion in the Agaricomycetes.

13.3.2  The Pleuromutilin Gene Cluster

Pleuromutilin and its natural and semisynthetic derivatives are antibacterial tricyclic 
diterpenes (C20 terpenoids) from Clitopilus species (Hartley et  al. 2009) which 
block bacterial ribosome function by binding to the peptidyl transferase component 
of the larger ribosomal subunit (Lolk et al. 2008; Eyal et al. 2016). Some of these 
compounds are long appointed in veterinary medicine, and some are considered for 
human use (Paukner and Riedl 2017).

A gene cluster for the synthesis of pleuromutilin has recently been identified 
from the saprotrophic agaricomycete Clitopilus passeckerianus by homologous and 
heterologous gene expression studies (Bailey et al. 2016). Here, the authors made 
successfully use of the repeated observation that fungal genes for enzymes of sec-
ondary metabolite biosynthesis pathways often come in clusters (Brakhage and 
Schroeckh 2011; Wiemann and Keller 2013; Yaegashi et al. 2014). They had further 
the biochemical expectation that a gene for a geranylgeranyl pyrophosphatase 
(GGPP) synthase (GGS; a diterpene synthase for GGPP production from FPP and 
IPP as a key step in the synthesis of terpenes) should be implicated in the pleuromu-
tilin biosynthesis pathway. The authors designed degenerate primers to successfully 
screen a genomic λ phage library for GGS genes and identified by subsequent 
sequencing and expression studies the complete cluster with seven genes in total 
(Fig. 13.1). The authors did not provide the actual sequences of the genes and the 
encoded proteins (Pl-P450-3, cytochrome P450; Pl-ATF, acetyltransferase; Pl-CYC, 
terpene cyclase; Pl-GGS; Pl-P450-1 and Pl-P450- 2, cytochrome P450s, Pl-SDR, 
short-chain dehydrogenase/reductase), but a table supplied with the closest known 
homologues from other organisms (Bailey et al. 2016) allowed us to use these in 
genome mining of other mushrooms in order to find related gene clusters.

In pBlast searches of the Agaricomycetes entries in GenBank at NCBI, all pro-
teins but the Gibberella fujikuroi terpene cyclase (ent-kaurene synthase; Q9UVY5) 
gave longer lists of significant hits in various fungal species. However, sequence 
evidence for potential CYC functions for a two-step cyclation of GGPP was only 
found in P. strigosozonata, S. lacrymans, Gymnopus luxurians, Moniliophthora ror-
eri (partial sequences), and Moniliophthora perniciosa (partial sequences; see also 
Mondego et al. 2008; Fischer et al. 2015). The cyc genes in P. strigosozonata and S. 
lacrymans cluster with ggs, p450, and sdr genes which resembles the gene composi-
tion of the pleuromutilin biosynthesis cluster (Fig. 13.1), unlike the three potential 
cyc genes in G. luxurians which locate to fully different gene contexts. A similar 
analysis of the genomic environment is not yet possible for the two Moniliophthora 
species (synonyms Crinipellis roreri and Crinipellis perniciosa) by too short avail-
able scaffold lengths. However, these fungi synthesize gibberellin-like diterpenoid 

U. Kües and S.M. Badalyan



413

acids which in analogy of gibberellin biosynthesis is expected to happen via ent- 
kaurene (Mondego et al. 2008). In the past, red and violet terphenyl chinone pig-
ments (phlebiarubrones) and phlebiakauranes with antibacterial and selective 
antifungal activities have been reported from cultures of P. strigosozonata and 
Punctularia atropurpurascens (Lisy et al. 1975; Anke et al. 1984, 1987), and there 
is also a report on phlebiakaurane production in addition to crinipellins (tetraqui-
nane diterpenoids) by a strain Crinipellis sp. 113 (Li and Shen 2010). Synthesis of 
kaurane diterpenes employs a terpene cyclase and P450 oxygenases and monooxy-
genases for post-kaurene modifications (Takahashi et al. 2014), and the identified P. 
strigosozonata gene cluster might thus be responsible for phlebiakaurane produc-
tion. The S. lacrymans CYC is reported to give rise to the tricyclic diterpene ent- 
kauranol, differentially from the C. passeckerianus enzyme which forms the unique 
tricyclic pleuromutol core with a C8 ring from GGPP (Proteau et al. 2012). We are 
however not aware of any kaurane diterpenes described from S. lacrymans.

Production of kaurane diterpenes is generally rare in basidiomycetes (Anke et al. 
1987; Shen et al. 2009; Yang et al. 2012). An interesting further observation is thus 
that the GGSs from the putative antibiotic clusters of P. strigosozonata and S. lacry-
mans (and also C. passeckerianus?) are of the same origin than a larger group of 
ascomycetous enzymes, unlike the other identified basidiomycetous GGSs coming 
from G. luxurians. An origin from horizontal gene transfer is therefore suggested 
for the clusters (Fischer et al. 2015). Some Chytridiomycota, Mucoromycota, and 
insect GGSs appear also to be closely related (our unpublished observations). A 
further analysis of the evolutionary origin of the GGSs and the whole gene clusters 
could thus be very interesting.

Fig. 13.1 Gene arrangements in the pleuromutilin cluster of C. passeckerianus (Bailey et  al. 
2016) and putative antibiotic biosynthesis gene clusters of P. strigosozonata and S. lacrymans S7.9 
(as deduced from the MycoCosm page, April 2017). Note: A shared color indicates same types of 
gene functions, the arrows direction of transcriptions. ggs encodes geranylgeranyl pyrophosphate 
synthase, cyc terpene cyclase, p450 cytochrome P450, atf acetyltransferase, sdr short-chain dehy-
drogenase/reductase; white arrows: other functions
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13.3.3  Ganoderic Acid

Ganoderma species are especially rich in secondary metabolites (Peterson 2006; 
Sanodoya et al. 2009; Batra et al. 2013; Xia et al. 2014; Baby et al. 2015; Duru and 
Çayan 2015; Richter et al. 2015). From the multitude of bioactive triterpenoids in 
Ganoderma species (>150 different triterpenoids have been isolated at different 
fungal developmental stages; Chen et al. 2012; Duru and Çayan 2015), ganoderic 
acids and derivatives are best known as highly oxygenated lanostane-type triterpe-
noids (C30 terpenoids) with potent anticancer activities (Cheng et  al. 2010; Shi 
et al. 2010; Xu et al. 2010; De Silva et al. 2013; Wu et al. 2013), inhibition effects 
on cholesterol synthesis (Komoda et al. 1989; Hajjaj et al. 2005), and antioxidant, 
antidiabetic, hepatoprotective, and other activities (Zhu et al. 1999; Shi et al. 2010; 
Peng et al. 2013; Liu et al. 2015b; Tang et al. 2016c).

As for other terpenoids, ganoderic acid synthesis takes its origin in the mevalon-
ate pathway, via FPP, squalene, and lanosterol as intermediates (Shiao 2003; Shi 
et al. 2010; Chen et al. 2012). Thirteen genes for the 11 enzymes (for two enzymes 
there are two genes in G. lucidum) of the mevalonate pathway up to lanosterol cycli-
zation by the 2,3-oxidosqualene-lanosterol cyclase (lanosterol synthase) are known 
(Chen et al. 2012; Liu et al. 2012a; Kües et al. 2015; Zhu et al. 2015). Genetic engi-
neering to overexpress various cloned genes from the upstream mevalonate pathway 
successfully leads to improved ganoderic acid synthesis (Shi et al. 2010; Xu et al. 
2012, 2015; Ren et al. 2013b; Zhou et al. 2014; Xu and Zhong 2015; Zhang et al. 
2017), as did introduction of heterologous chaperones as protectants against accom-
panied oxidative stress (Li et al. 2016a).

Lanosterol is at a branch point of sterol and terpenoid biosynthesis. The fungal- 
unique essential membrane organizer ergosterol is produced from lanosterol by 
actions of the P450 enzyme lanosterol 14α-demethylase (CYP51A; lanosterol syn-
thase) (Lepesheva and Waterman 2008; Shi et al. 2010; Chen et al. 2012; Liu et al. 
2012a). A series of oxidations, reductions, and acylation reactions are expected to 
lead alternatively from lanosterol to the different forms of ganoderic acids (Chen 
et al. 2012). However, genes for biochemical reactions after lanosterol cyclization 
are not yet been clearly identified. P450 enzymes and also UDP-glucosyltransferases 
(with six identified genes for potential transfer of sugar moieties to triterpenoid 
backbones; Liu et al. 2012a) are discussed to act as candidate enzymes in later steps 
of ganoderic acid synthesis. Compared to any other fungi (ascomycetes and basid-
iomycetes), Ganoderma species have an exceptional high number of genes for oxi-
dative and hydroxylating P450 enzymes containing heme cofactors (cytochromes 
P450, CYPs), i.e., nearly 200 and more different functional ones with an additional 
number of pseudogenes (Chen et al. 2012; Liu et al. 2012a; Syed et al. 2014; Zhu 
et al. 2015). The P450 proteins cluster into 42 different families. Some have only a 
single member in Ganoderma sp. and others multiple members, some are presented 
with new subfamilies, and some of the families are novel and unique to Ganoderma 
sp. (Chen et al. 2012; Liu et al. 2012a; Kües et al. 2015). The plenty of p450 genes 
makes it difficult to predict their individual enzymatic substrate and product speci-
ficities. Expression of p450 genes is variably differentially regulated, with 
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subgroups (e.g., 15 CYP512 and one CYP5144 gene) which correlate in regulation 
with the lanosterol synthase gene (Chen et al. 2012). A total of 24 gene clusters with 
three or more different CYP genes (three larger clusters longer than 200 kb might 
split into two or more different biosynthetic gene clusters) were identified in the 
genome of G. lucidum (Chen et al. 2012; Liu et al. 2012a; Kües et al. 2015). Two of 
these gene clusters show some parallels to the expression of lanosterol synthase, 
whereas ten other p450 genes linked to the lanosterol synthase gene do not (Chen 
et al. 2012). G. sinense distinguishes in the number of gene clusters from G. lucidum 
with 29 in total identified gene clusters. Further, the number of p450 genes in shared 
gene clusters can vary between the species. Many of the p450 genes appear to origi-
nate from gene duplications, with options of neofunctionalization, subfunctional-
ization, and increased gene-dosage advantage (Zhu et al. 2015). Because reliable 
transformation methods and gene silencing techniques for G. lucidum are at hand 
(Mu et al. 2012; Xu and Zhong 2015), it should be possible with time to address the 
important p450 genes in ganoderic acid production. Comparison of the P450omes 
of different species can possibly give some insight into which candidate genes to 
select for further study (Lu et al. 2014).

13.3.4  Polyketide Synthases

Prenylphenols are hybrid molecules of the monocyclic polyketide orsellinic acid 
and a prenyl side chain of terpene origin. A stereaceous basidiomycete BY1 pro-
duces the novel prenylphenol cloquetin. The fungus has a gene cluster with two 
functional genes for nonreducing polyketide synthases, PKS1 and PKS2, for the 
synthesis of orsellinic acid and an unlinked gene BYBP for a regiospecific prenyl-
transferase that attaches a prenyl group to orsellinic acid (Braesel et al. 2017). S. 
hirsutum possesses a highly similar gene (69% protein identity to BYBP; 
XP_007308836; Floudas et al. 2012) and is as other Stereum species also a prenyl-
phenol producer (Omolo et al. 2002; Yun et al. 2002b; Braesel et al. 2017). Other 
mushrooms (e.g., A. bisporus, XP_007334149; A. muscaria, KIL64777; A. subgla-
bra XP_007349181; C. cinerea, XP_001839609, XP_001839607; G. frondosa, 
OBZ66374; G. luxurians, KIK57132, KIK57133; P. strigosozonata, XP_007385948; 
S. commune, XP_003029237; S. lacrymans, XP_007322388, XP_007323929) have 
genes for less similar, yet uncharacterized prenyltransferases (around 25–40  % 
identity to BYBP). In general, prenyltransferases catalyze regioselective and stere-
oselective prenylations of aromatic compounds such as tryptophan, tryptophan-
containing peptides, indole derivatives, tyrosine, and also nitrogen-free aromates. 
Among others, FPP synthases and GGPP synthases producing the precursors for 
sesquiterpene and triterpene synthesis, respectively (Sects. 13.3.1 and 13.3.2), are 
prenyltransferases (Winkelblech et al. 2015).

Other than PKS1 and PKS2 of strain BY1, only a few other genes for polyketide 
synthases (PKSs) have been characterized in the Basidiomycota, i.e., for the produc-
tion of orsellinic acid in T. camphoratus (Yu et al. 2016; Chou et al. 2017), A. mellea 
(Lackner et al. 2012, 2013; ArmB; see Sect. 13.3.1 above) and C. cinerea (Ishiuchi 
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et al. 2012). These enzymes have multi-domain structures as typical for fungal type 
1 nonreducing iterative polyketide synthases (NR-PKSs; Fig. 13.2), distinct from 
modular highly reducing polyketide synthases (HR-PKSs) of clade I (Fig.  13.2) 
which have additional other domains, from highly reducing polyketide synthases of 
class II and from hybrid clades I, II, and III polyketide synthases, respectively 
(Lackner et  al. 2012; Du and Lou 2010;  Liu et  al. 2015a). Basidiomycetous 
NR-PKSs of class I are monophyletic and divide into two major subclades (Lackner 
et al. 2013). Genes for similar modular enzymes as PKS1 and PKS2 from strain 
BY1 are, for example, present in A. muscaria (KIL57002), F. hepatica (KIY47273), 
G. frondosa (BAO20284), G. luxurians (KIK51473, KIK52832), Hebeloma cylin-
drosporium (KIM41076), P. strigosozonata (P_007386370), S. commune 
(XP_003038401), S. lacrymans (EGN93845), S. hirsutum (XP_007307184, 
XP_007300189; Floudas et  al. 2012), S. luteus (KIK37237), and T. versicolor 
(XP_008041566). Of these, orsellinic acid metabolites are known from Stereum 
species (Li et al. 2006; Braesel et al. 2017).

Orsellinic acid was further detected in co-culture of Ganoderma applanatum 
and T. versicolor. The authors put the production onto G. applanatum (Yao et al. 
2016), while a respective conserved polyketide synthase gene can also be detected 
in T. versicolor (Koczyk et  al. 2015; XP_008041566). The enzyme from gene 
pks63787 in T. camphoratus is responsible for the synthesis of orsellinic acid 
from acetyl- CoA and malonyl-CoA.  Orsellinic acid is then in parallel routes 
farnesylated by different CoQ (coenzyme Q)-type synthesizing enzymes (i.e., 
Coq2, Coq3, and Coq6 which were identified from a pool of total 10 different coq 
genes) to give with additional ring modifications the benzoquinone ring precur-
sors for a variety of antroquinonols with anticancer activities and for the cytotoxic 
meroterpene 4- acetylantroquinonol B (Yu et  al. 2016; Chou et  al. 2017). 

SAT KS AT PT ACP TE

SAT KS AT PT ACP TEACP ACP

Taiwanofungus camphoratus PKS
Coprinopsis cinerea NR-PKS
Basidiomycete BY1 PKS1 

SAT KS AT PT ACP TEACPArmillaria mellea ArmB

Basidiomycete BY1 PKS2 

Fig. 13.2 Domain structures of nonreducing polyketide synthases for the monocyclic polyketide 
orsellinic acid production from the Agaricomycetes (Lackner et al. 2012, 2013; Yu et al. 2016; 
Braesel et al. 2017) and of the highly reducing polyketide synthases PPS1 and PPS2 for polyene 
production of the basidiomycete BY1 (Brandt et al. 2017). Note: SAT starter unit acyl carrier pro-
tein transacylase, KS β-ketosynthase, AT acyl (malonyl-CoA) transferase, PT product template 
domain, ACP acyl carrier protein, transacylase, TE thioesterase, DH dehydratase, KR 
β-ketoreductase, MT methyltransferase. Note that orsellinic acid synthases from different fungi 
differ in numbers of ACP domains
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4-Acetylantroquinonol B production is intimately linked to CoQ synthesis. 
Production of 4- acetylantroquinonol B can be enhanced by feeding either CoQ or 
the CoQ precursor 4-hydroxybenzoic acid from the shikimate pathway and by the 
addition of oleic acids to enhance the mevalonate pathway (Yang et al. 2017).

Most recently, the first modular HR-PKSs have been characterized with the 2736 
amino acid long polyene pigment synthases PPS1 and PPS2 of basidiomycete BY1 
(Fig. 13.2) from an own clade of fungal PKSs. These enzymes are 99% identical in 
sequence, likely allelic, and the only HR-PKSs found to be encoded in the host 
genome. Their genes do not reside in a recognizable gene cluster (Brandt et  al. 
2017). Genes for enzymes of similar modular structure occur in M. roreri and S. 
hirsutum (Brandt et  al. 2017), Fibroporia radiculosa (XP_012183873, 
XP_012185398, XP_012183840), Gloeophyllum trabeum (XP_007869847), Jaapia 
argillacea (KDQ50123), and L. sulphureus (KZT06902, KZT06920). PPS1 was 
expressed in Aspergillus niger and shown to confer production of yellow nemato-
toxic polyene pigments (18-methyl-19-oxoicosaoctaenoic acid, 20-methyl-21- 
oxodocosanonaenoic acid) with an unusual shifted conjugated C-C double-bond 
pattern (Brandt et al. 2017).

Another striking observation from genome mining is that false reports in the lit-
erature on functional compounds from mushrooms can be wiped out through 
genome mining. Together with highlighting misleading flaws in analytical methods 
used in reports of flavonoid productions of mushrooms, Gil-Ramírez et al. (2016) 
showed in such manner that mushrooms might have genes for phenylalanine ammo-
nia lyases (e.g., A. bisporus, XP_006461241; P. ostreatus, KDQ28180) but that they 
do not have like plants any genes for chalcone synthases and for chalcone isomer-
ases required for flavone synthesis. Distantly related to plant chalcone synthase 
genes (around 30% amino acid identities between gene products) are exceptional 
genes (1 or 2 pro genome) for fungal type III polyketide synthases in the mush-
rooms Calocera cornea (KZT59672.1), Calocera viscosa (KZO96206), 
Dacryopinax primogenitus (EJT98013), Exidia glandulosa (KZW02173), 
Phanerochaete carnosa (XP_007391992, XP_007391993), Phlebia centrifuga 
(OKY58712, OKY58713), and Sporotrichum laxum (AMW87979, AMW87980).

Gene knockouts and heterologous expression in E. coli proved that the S. laxum 
Pks2 (AMW87980) is an alkylresorcinol synthase which elongates palmitoyl-CoA or 
palmitoyl-ACP by three malonyl-CoAs and cyclizes the product via a 2,11 intramo-
lecular aldol condensation, with fatty acid acyl-primed triketide and tetraketide 
pyrenes as by-products (Sun et al. 2016). The alkylresorcinols are precursors of spiro-
laxine (Sun et al. 2016) which acts as plant growth inhibitor (Arnone et al. 1990), 
antibacterial (Blaser 1992), cholesterol-lowering (Robinson and Brimble 2007), and 
inhibitory toward cancer cell lines (Tsukamoto et  al. 1998; Gianni et  al. 2004). 
Antibacterial analogs are known from Phanerochaete velutina (Dekker et al. 1997). 
The two pks genes in S. laxum, P. carnosa, and P. centrifuga are tail-to-tail arranged 
and locate in a cluster with a gene for a membrane-bound O-acyltransferase (MBOAT) 
family protein (Sun et al. 2016; XP_007391994 and OKY58711). However, genes for 
other enzymes expected to participate in the biosynthesis of spirolaxine, and analogs 
are not present in the cluster (Wang et al. 2013; Sun et al. 2016).
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13.3.5  The Atromentin Gene Cluster

Atromentin is an NRSP (non-ribosomal peptide synthetase)-like derived terphenyl-
quinone with antibacterial activity and apoptosis-inducing activity in leukemia cell 
lines (Zeng et al. 2006; Hee and Lee 2009). Atromentin is a central precursor of 
variegatic acid and various related pigments, for example, for diarylcyclopentenone 
pigments in Paxillus involutus (Braesel et al. 2015) and pulvinic acid-derived pig-
ments in Suillus species (Wackler et al. 2012). Variegatic acid and the diarylcyclo-
pentenone pigment involutin have roles in redox cycling during Fenton chemistry in 
the breakdown of lignocellulosic organic matter (Eastwood et  al. 2011; Braesel 
et al. 2015; Shah et al. 2015).

The synthesis pathway of atromentin has first been elucidated in Tapinella panu-
oides. Atromentin derives from l-tyrosine which is deaminated by the pyridoxal 
5′-phosphate-dependent l-tyrosine:2-oxoglutarate aminotransferase AtrD into 
4-hydroxyphenylpyruvic acid. Two 4-hydroxyphenylpyruvic acid molecules are 
then adenylated by the NRSP-like quinone synthetase AtrA (a tridomain enzyme 
reminiscent to non-ribosomal peptide synthetases, NRPS; see Sect. 13.4.5), ester- 
bonded to the enzyme, and finally condensed through symmetric C-C bond forma-
tion into atromentin. Genes atrA and atrD are clustered with an adh gene (for 
alcohol dehydrogenase) in between (Schneider et  al. 2008). The same genetic 
arrangement is found in several other basidiomycetes including in O. olearius, 
Paxillus species, S. lacrymans, and Suillus species, and the gene promoters have 
specific conserved sequence motifs with a potential regulatory function (Wackler 
et al. 2012; Braesel et al. 2015; Tauber et al. 2016). Confrontation with soil bacteria 
can elucidate expression of these genes (Tauber et al. 2016).

13.3.6  Enzymes for Bioactive Metabolites Evolved 
from Conventional Fungal Functions

Clavaric acid is a triterpenoid (C30H48) from H. sublateritium with an antitumor 
activity which reversibly inhibits farnesyltransferase activities competitive to Ras 
(Jayasuriya et al. 1998; Lingham et al. 1998). It is synthesized from squalene alter-
natively to lanosterol, an essential intermediate in the typical fungal ergosterol 
pathway. Synthesis occurs in four steps via 2,3-oxidosqualene, squalene, 
2,2:22,23-dioxidosqualene, and clavarinone. Steps 1 and probably also 2 are per-
formed by the ERG1 squalene epoxidase, and step 1 is shared with lanosterol pro-
duction (compare Sect. 13.3.3). Step 3 is performed by the specific oxidosqualene 
cyclase OCC (Godio and Martin 2009) and step 4 presumably by a clavaric acid 
synthase. Genes erg1 and occ gene with their encoded products are known. These 
are unlinked. OCC distinguishes from the lanosterol cyclases by a VSDCVGE 
motif in its active center (Godio et al. 2007; Godio and Martin 2009). As the only 
other related enzyme in the NCBI database in April 2017, KIM38979 of H. cylin-
drosporum has the same motif.
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13.3.7  Others

The FAD-binding monooxygenase and aromatic ring hydrolase VibMO1 of 
Boreostereum vibrans were identified to convert prenyl 4-hydrobenzoate into pre-
nylhydroquinone, likely as one step in the biosynthesis of the unusual fused 
β-lactone-type metabolites vibralactones and related meroterpenoids (Yang et  al. 
2016c). Vibralactones can act as lipase inhibitors (Liu et  al. 2006) and can have 
antifungal activities (Schwenk et  al. 2016). The gene for the protein closest and 
related to VibMO1 is from S. hirsutum (XP_007305833: 84% identical, 98% simi-
lar). Genes for FAD-binding monooxygenases are not uncommon in Agaricomycetes. 
Identity and similarity values for FAD-binding monooxygenases from other mush-
rooms range around 40% and 60%, respectively. Prenyl hydroquinone is a second-
ary metabolite also known from Ganoderma species (Baby et al. 2015).

A gene dodA for a 4,5-DOPA (3,4-dihydroxyphenylalanine) dioxygenase in A. mus-
caria is long known from biosynthesis of the yellow betalain-related pigment mus-
caflavin with a 7-membered nitrogen heterocycle. DodA opens DOPA either by 
4,5-ring cleavage or by an extra 2,3-extradiol cleavage activity to give unstable seco-
DOPA intermediates which spontaneously recyclize to betalamic acid and muscafla-
vin, respectively (Hinz et al. 1997; Mueller et al. 1997). DOPA is derived from tyrosine 
through oxidation by a tyrosinase (a monophenol monooxygenase) restricted to col-
ored mushroom tissues (Mueller et al. 1996). A. muscaria has two tyrosinase genes 
(KIL63081; KIL63082) found in tandem at another chromosomal position than gene 
dodA (our unpublished observation). Betalain pigments are better known from the sub-
order Chenopodiniae of the plant order Caryophyllales and are of interest for their 
antioxidant activities and as food colorants. Muscaflavin is not formed in plants because 
their enzymes lack significant 2,3-ring cleavage activity (Gandía-Herrero and García-
Carmona 2013; Slimen et al. 2017). In the fungi, betalains occur distinctively in species 
of the three genera Amanita, Hygrocybe, and Hygrophorus (Steglich and Strack 1991; 
Stintzing and Schliemann 2007; Babos et al. 2011). Many other of the Agaricomycetes 
have also genes for tyrosinases, e.g., DOPA production (Halaouli et  al. 2006), and 
importantly, also genes for potential 4,5-DOPA dioxygenases highly identical in 
sequence to A. muscaria DodA (between 60 and 80% identity and >70 to >90% simi-
larity; e.g., A. bisporus XP_007326059: 68% identical, 85% similar). Whether these 
potential 4,5- DOPA dioxygenases promote 2,3-extradiol cleavage of DOPA or whether 
they are more stringent in their activities like the plant enzymes remains to be tested.

13.4  Peptides: Linear and Cyclic, Ribosomal 
and Non-ribosomal

13.4.1  Ribosomal Cyclic Peptides of the α-Amanitin 
and Phalloidin Family

Amatoxins and phallotoxins bind to RNA polymerase II and F-actin, respectively 
(Wieland 1986; Vetter 1998; Göransson et al. 2012). This group of toxins occur in a 
range of toxic Amanita, Conocybe, Galerina, and Lepiota species, with α-amanitin 
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as best known example (Pomilio et al. 2006; Li et al. 2014a, b; Sgambelluri et al. 
2014; Pulman et al. 2016; Tang et al. 2016b). They are bicyclic peptides generated 
from ribosomally produced short precursor peptides (between 33 and 39 amino acids 
long; Pulman et  al. 2016) by the action of a specialized prolyl oligopeptidase B 
(POPB) of the serine protease family S9a (Luo et al. 2009, 2010, 2014). The precur-
sors are characterized by a conserved 10-aa leader region and a conserved 17-aa 
follower region with an internal core of different length (between 6 and 10 aa) and 
sequence which represents the mature cyclopeptide (Fig.  13.3). The conserved 
sequence of the leader region gave this family of RiPPs (ribosomally synthesized and 
posttranslationally modified peptides) the name MSDIN family of cyclic peptides 
(Hallen et al. 2007; Pulman et al. 2016), while the primary sequences outside the 
core region from Amanita species and Galerina marginata diverged, and the latter 
species has only two α-amanitin genes (Luo et al. 2012, 2014; Pulman et al. 2016). 
Two conserved prolines, one terminal to the conserved leader and one terminal to the 
core sequence, are required for proteolytic processing (Pulman et al. 2016; Fig. 13.3).

Toxic Amanita species have several MSDIN genes (A. phalloides and A. bisporig-
era each ~30 with little overlap between the species) mostly for toxins or in some 
cases also nontoxic cyclopeptides (cycloamanides), but mature products are only 
found from genes whose predicted precursors have the two conserved prolines 
(Pulman et al. 2016; Fig. 13.3). The peptide chains are processed and macrocyclized 
to yield a backbone macrolactam by head-to-tail peptide bonds through peptide 
bond hydrolysis and transpeptidation by POPB (Luo et  al. 2009, 2010; Truman 
2016) and further by an unusual internal Trp-Cys cross-bridge via a sulfoxide or a 
sulfide link for amanitins and phalloidins, respectively (Battista et  al. 2000; 
Göransson et al. 2012). The bicyclic toxins can further diversify by hydroxylations 
of side chains of their amino acids (Sgambelluri et al. 2014). The ppob gene clusters 
with two ama genes for α-amanitin in the G. marginata genome and on a genomic 
cosmid from an Amanita species (likely not A. bisporigera) with a gene for an 
MSDIN family cyclic peptide with the sequence GAYPPCPMP (Luo et al. 2010; 
Pulman et al. 2016).

Another member of the MSDIN family of cyclic peptides is antamanide from A. 
phalloides which is a monocyclic decapeptide (cyclic sequence = cVPPAFFPPFF) 
with a strong antidote activity against amatoxins and phallotoxins. Moreover, it 

Fig. 13.3 Precursor proteins for the bicyclic toxins α-amanitin and phalloidin from the MDSIN 
family of RiPPs (Pulman et al. 2016). Note: The conserved leader and follower regions are shown 
in different shading to the interior core sequences of the toxins. The bows mark amino acids 
involved in macrocyclization and Trp-Cys cross-bridging, respectively
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shows antitumor and immunosuppressive activities and inhibits the mitochondrial 
permeability transition pore as an effector of cell death induction through binding of 
the pore regulator cyclophilin D (Siemion et  al. 1992; Azzolin et  al. 2011). 
Immunosuppressive activity has also been reported for A. phalloides cycloamanide 
A (VFFAGP) and B (SFFFPIP) (Wieczorek et al. 1993). Less studied are the mono-
cyclic virotoxins (cVTSPAW) from A. phalloides and Amanita virosa which bind to 
actin similar as the phallotoxins (Faulstich et al. 1980; Vetter 1998; Hossain and 
Park 2016).

13.4.2  The Omphalotin Gene Cluster

Omphalotins are cyclic N-methylated depsipeptides (WVIVVGVIGVIG) with 
nematicidal activity from O. olearius (Mayer et al. 1997; Sterner et al. 1997). These 
are members of a new (fourth) class of fungal RiPPs and are produced by a suicidal 
enzyme OphA.  This 399 amino acid-long enzyme has an N-terminal SAM- 
dependent methyltransferase domain with which it methylates iteratively the amino 
acids in the depsipeptide motif located at its C-terminus (Fig. 13.3). Methylation 
occurs intermolecularly. The biochemical process of macrocyclization of the 
N-methylated omphalotins out of their larger protein precursor and the responsible 
endopeptidase remain to be uncovered. A candidate prolyl oligopeptidase is encoded 
by gene ophp in a gene cluster together with ophA and genes ophB1 and ophB2 
(monooxygenases), ophC (NTF2-like), ophD (O-acyltransferase), and ophE  (F-box/
RNI-like) for putative posttranslational modification functions of the omphalotin 
core peptide (van der Velden et  al. 2017). Posttranslational modifications of the 
tryptophan residue (to a hexahydropyrrolo[2,3-b]indole 2-carboxamide) in the 
omphalotin core peptide are reported as well as oxidations of other residues (Buchel 
et al. 1998; Liermann et al. 2009; Ruiz-Sanchez et al. 2011). Importantly, it is pos-
sible to exchange amino acids in the depsipeptide motif and its border region with-
out loss of methylation function indicating flexibility in the process (van der Velden 
et al. 2017).

A related enzyme to OphA with an autocatalytic N-methylation function of a 
similar C-terminal core peptide (Fig. 13.4) has been found in the basidiomycete 
Dendrothele bispora (van der Velden et al. 2017). NCBI pBlast searches with the D. 
bispora protein detect one or more candidate enzymes from a few other agaricomy-
cetes for similar reactions (see selected examples in Fig. 13.3) which could offer 
potential for further natural cyclic peptides of the new class of RiPPs with the pro-
posed name borosins (van der Velden et al. 2017). Notably, for further attention, a 
dioxygenase domain with aromatic-ring-cleavage activity is predicted for some of 
the well-conserved enzymes in between the N-terminal SAM-dependent methyl-
transferase domain and the C-terminus (around amino acids 315–375). Borosin can-
didates might also be certain unprecedented highly N-methylated cyclopeptides 
from other agaricomycetes such as the gymnopeptides from Gymnopus fusipes and 
the pteratides from Pterula sp. which have antiproliferative activities on human 
cancer cell lines (Chen et al. 2006; Ványolós et al. 2016).
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13.4.3  More Potential Cyclic RiPPS

Gene clusters for the synthesis of other fungal cyclic RiPPs (e.g., ustiloxins and 
phomopsins, antimitotic cyclic mycotoxins which inhibit microtubule assembly and 
may be of interest for antitumor drug development; Koiso et al. 1994; Cormier et al. 
2008) and functions of first genes in these clusters have recently been described in 
filamentous ascomycetes (Umemura et  al. 2014; Tsukui et  al. 2015; Ding et  al. 
2016; Nagano et al. 2016; Ye et al. 2016). Among genes for regulation, transport, 
and types of posttranslational modifications, these clusters include the genes for 
protein precursors with repeated peptide motifs and genes for DUF3328 proteins 
which represent a novel class of oxidases with function in peptide cyclization (Ding 
et al. 2016; Nagano et al. 2016; Ye et al. 2016). Genes for DUF3328 oxidases (fam-
ily oxidase ustYa) were found in many ascomycetes and also in a subset of 
Agaricomycotina, often near candidate genes for protein precursors with repeated 
peptide motifs (Ding et al. 2016; Nagano et al. 2016). Two examples of putative 
precursors of novel cyclic RiPPs from the Agaricomycetes identified via genome 
mining by DUF3328 sequences are shown in Fig. 13.5. The cyclized products of 
such precursors were termed dikaritins after the fungal subkingdom of Dikarya 
(Ding et al. 2016).

13.4.4  Linear Peptides

Linear oligopeptides with cytotoxic activities against cell lines [pterulamides I–VI, 
highly N-methylated pentapeptides consisting of modified valine, isoleucine, and 
alanine residues (sequences: AIVVL; VVVVI) from Pterula sp. mushrooms; Lang 
et  al. 2006] were reported, and several inhibitors with variable short sequences 
(between 3 and 17 amino acids) of specific enzymatic activities (angiotensin 
I-converting enzyme) with antihypertensive effects and anti-oxidative actions from 

Omphalotus olearius (van der Velden et al. 2017) GFPWVIVVGVIGVIGSVMSTE
Dendrothele bispora (ID 765759) GFPWVIVTGIVGVIGSVVSSA
Lentinula edodes (GAW09067) GFPWIIVVGVVGVVGSVVSSA
Rhizopogon vinicolor (OAX31299) GFPTVLVILPTVIVVLIGRE
Moniliophthora roreri (XP_007857024.1) GKPTAFLSAVVIATIIIAL
M. roreri (KTB34288) GKPTAFVGLVVIIAVVV
Moniliophthora perniciosa (EEB90231) GKPVAFLSAVVIATIIIAL
Fomitiporia mediterranea (EJD06538) GTPHPALALLVVIICLI
Hydnomerulius pinastri (KIJ64101) NEPAALTTMINIHVTHV
R. vinicolor (OAX33483) NGPQGLGTIILVWHTVHGIA
R. vinicolor (OAX39229) DGPEGLAVVVIVLVATVALLALLV

Fig. 13.4 The C-terminal ends with short sequences for (putative) cyclopeptides (borosins) from 
a family of some (potentially) autocatalytic SAM-dependent methyltransferases from different 
agaricomycetes. Note: The known sequence of the omphalotins is shaded in gray. JGI and NCBI 
accession numbers are added where known
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different mushrooms were described (Kang et al. 2013; Geng et al. 2016). Their 
origins (ribosomal or non-ribosomal) are currently unclear.

13.4.5  Non-ribosomal Peptides

Non-ribosomal peptide synthetases (NRPSs) are multifunctional enzymes with 
multiple core domains (Fig. 13.6) which resemble polyketide synthases by a modu-
lar multi-domain structure (Du and Lou 2010; Wang et al. 2015; compare Fig. 13.2). 
NRPSs assemble their products (non-ribosomal peptides, NRPs) progressively 
while moving the growing peptide chain directionally along the protein template. A 
typical single NRPS elongation module therefore includes all reactive domains 
required for incorporation of an element to the chain (at minimum adenylation 
domain A with a non-ribosomal specific code for selection and activation of a 
monomeric substrate, thiolation domain T to hold the activated substrate, and con-
densation domain C to catalyze amide bond formation between adjacent T-domain 
bonded substrates). An NRPS can have a single A-T-C module (monomodular) or 
several (multimodular). An initiation module used to initiate the peptide synthesis 
misses the condensation domain. However, NRPS can be very diverse in a number 
of domains and by the inclusion of various other types of domains for product modi-
fications (Finking and Marahiel 2004; Du and Lou 2010; Kalb et al. 2013; Singh 
et al. 2017; (Fig. 13.6).

A first NRPS gene cloned and also the first gene cluster detected in a basidiomy-
cete were fso1 and the ferrichrome A siderophore gene cluster of O. olearius with 
the additional genes ato1 and omo1, respectively (Welzel et al. 2005). Ferrichrome 
A is made up of a glycine, two serines, and three trans-(α-methyl)-glutaconic 
 acid- acylated N5-hydroxyornithine amino acid residues (Zalkin et  al. 1966). The 
synthesis occurs in at least three steps: hydroxylation of l-ornithine by an 

Fig. 13.5 Precursor sequences for cyclic mycotoxins (dikaritins) from the Ascomycota and newly 
reported precursor molecules for putative ribosomally synthesized cyclic peptides from two mush-
rooms. Note: The (predicted) core sequence for peptide cyclization are shaded in gray (Tsukui 
et al. 2015; Ding et al. 2016) and dipeptides for potential proteolytic processing by KEX proteases 
are given in bold
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l-ornithine-N5-monooxygenase, acylation of N5-hydroxy-l-ornithine by an acyl- 
CoA:N5-hydroxy-l-ornithine N-acyl-transferase, and incorporation of other amino 
acids by a modular NRPS. omo1 of O. olearius encodes an l-ornithine-N5- 
monooxygenase and ato1 an acetylase. The NRPS Fso1 is 4548 amino acids long 
with a weight of about 500 kDa. It consists of repeated A-T-C and T-C modules 
(Welzel et al. 2005; Fig. 13.6). Adenylation (A) domains are the gatekeepers for 
NRPSs and select, activate, and load the substrate onto thiolation domains (the 
molecular carrier) for subsequent condensation reactions. A domains have signature 
sequences for the selection of cognate substrates. Attempts are made to define non-
ribosomal codes for amino acid selection of different A domains (Schwecke et al. 
2006; Kalb et al. 2013; Lee et al. 2015). A selective sequence of DIITITATLR has 
been deduced for the third A domain (A3) in Fso1 for N5-hydroxy-N5- 
methylglutaconyl-l-ornithine (MGHO) binding (Kalb et al. 2013). Basidiomycete 
mushroom genomes, in general, do not contain as many genes for modular NRPSs, 
NRPS-like enzymes, and also polyketide synthases as genomes of ascomycetes. In 
average, there are about four genes for such modular enzymes in a respective 
genome, with 0 up to 9 different genes for NRPSs spread into different gene clusters 
(Lackner et al. 2012; Liu et al. 2012a; Wawrzyn et al. 2012; Riley et al. 2014; Sasso 
et al. 2014).

13.5  Proteins

13.5.1  Aegerolysins and Other Pore-Forming Proteins

Aegerolysins represent an aerolysin superfamily (Pfam 06355) of short microbial 
proteins (ca 140 amino acids, molecular weights of 15–20 kDa) with two conserved 
cysteines and potential hemolytic activities. They are named after the primordia- 
specific protein Aa-Pri1 from Agrocybe aegerita (Fernandez Espinar and Labarère 
1997). Well-known other members of this family are erylysin A from P. eryngii 
(Shibata et al. 2010) and pleurotolysin A (ostreolysin) of P. ostreatus (Berne et al. 
2002) which come together with the larger 59  kDa MACPF (membrane attack 

Fig. 13.6 Domain structures of the multimodular non-ribosomal peptide synthetase (NRPS) Fso1 
for hydroxamate siderophore production in Omphalotus olearius (Welzel et al. 2005). Note: Fso1 
is compared to the monomodular l-tyrosine:oxoglutarate aminotransferase AtrD from Tapinella 
panuoides (Schneider et  al. 2008; Sect. 13.3.3). A adenylation, T thiolation, TE thioesterase/
cyclase, C condensation
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complex/perforin; Reboul et  al. 2016) proteins erylysin B and pleurotolysin B, 
respectively (Shibata et al. 2010; Ota et al. 2013). Typically in mushrooms, these 
types of proteins are expressed in stages of fruiting body development and in spe-
cific cells of the fruiting bodies (Fernandez Espinar and Labarère 1997; Berne et al. 
2002; Schlumberger et al. 2014) or in multicellular sclerotia such as in Lignosus 
rhinocerotis (Yap et al. 2015b).

A. aegerita aegerolysin and the Pleurotus proteins are reported to be hemolytic 
acting against mammalian erythrocytes (Berne et al. 2002). However, erylysin A 
and pleurotolysin A exert such activities only in bicomponent complexes with the 
MACPF perforins  erylysin B and pleurotolysin B, respectively (Ota et  al. 2013; 
Schlumberger et al. 2014). Erylysin A and pleurotolysin A are pore-forming pro-
teins which interact with lipid rafts in cholesterol- and sphingomyelin-rich cellular 
membranes and insert into cellular membranes (Berne et al. 2009; Hullin-Matsuda 
et al. 2016; Yamaji-Hasegawa et al. 2016). Erylysin A and pleurotolysin A need to 
bind to the membranes to then recruit the perforins erylysin B and pleurotolysin B, 
respectively, and to further assemble as heteromeric complexes with β-barrel pro-
tein shapes the transmembrane pores in the cellular membranes (Tomita et al. 2004; 
Ota et al. 2013; Schlumberger et al. 2014; Lukoyanova et al. 2015; Skočaj et al. 
2016). The assembled pore complexes influence transport processes of the cells 
such as increasing Ca2+ influx, thereby disturbing Ca2+ homeostasis of the cells 
(Vrecl et al. 2015a, b).

Aegerolysins occur in about 20% of the Agaricomycetes, inconsistently distributed 
over the species (Lakkireddy et al. 2011; Nayak et al. 2013; Novak et al. 2015), among 
in G. marginata (KDR71454, KDR68296, KDR71457), H. sublateritium (KJA14257, 
KJA14258), and T. versicolor (XP_008043601). Of these species, T. versicolor 
(XP_008043602) also has an MACPF perforin-type protein. Apart of a link to fruiting 
body development, the biological functions of the proteins for the mushrooms are 
unclear (Berne et al. 2009; Lakkireddy et al. 2011; Schlumberger et al. 2014).

Other types of membrane-integrating pore-forming mushroom toxins are hemo-
lytic chimerolectins (Lakkireddy et al. 2011; Sabotič et al. 2016). L. sulphureus has 
a family of chimerolectins of which the hemolytic LSL has been studied in detail 
(Mancheno et al. 2010). The 315 amino acid-long LSL consists of an N-terminal 
β-trefoil-type lectin domain and a C-terminal aerolysin-like pore-forming domain. 
LSL binds to β-galactosides such as lactose and LacNAc. The crystal structure of 
LSL resembles that of bacterial aerolysins. LSL is therefore believed upon insertion 
into membranes to adopt an oligomeric β-barrel protein structure like the aegeroly-
sins (Mancheno et al. 2004, 2005, 2010; Angulo et al. 2011). Genes for LSL-like 
proteins occur singly or as families inconsistently distributed over the 
Agaricomycetes (Lakkireddy et al. 2011). Highly similar, full-length proteins, for 
example, exist in G. marginata (KDR66599), G. frondosa (OBZ73067), F. pinicola 
(EPT04861), and Sphaerobolus stellatus (KIJ34088). Protein CC1G_11805 of a 
family of LSL homologues of C. cinerea (Lakkireddy et al. 2011) has been shown 
to be nematotoxic (Plaza et al. 2014).

A further novel family of mushroom lectins (referred to as FB_lectin super-
family) with structural similarities to hemolytic actinoporins is presented by the 
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insecticidal XCL of Xerocomus chrysenteron which binds to N-acetyl-galactosamine 
(Bleuler-Martinez et al. 2011; Yan et al. 2012). XCL forms tetramers in solution. 
Upon internalization into insect and human cells by a clathrin-dependent pathway, 
lectin XCL is delivered to endosome compartments, and it induces changes to the 
actin cytoskeleton (Francis et al. 2003; Birck et al. 2004). Other characterized lec-
tins of this family are ABL from A. bisporus, SRL from Athelia rolfsii, and BEL 
from B. edulis (Lakkireddy et al. 2011; Sabotič et al. 2016). FB_lectin genes are 
more common in species of the Agaricomycetes, while the presence of such genes 
(singly or in families) is also irregularly distributed over the mushrooms (Lakkireddy 
et al. 2011).

13.5.2  Fungal Immunomodulatory Proteins (FIPs)

A first fungal immunomodulatory protein (FIP, Fve superfamily) identified from 
mushrooms is the well-studied 111-aa-long asparagine-rich protein LZ-8 (FIP-glu) 
from G. lucidum (Kino et al. 1989) with anti-allergy, wound-healing, and manifold 
antitumor activities with partially understood mechanisms (Li et al. 2011b; Wang 
et al. 2012; Lin et al. 2014; Wu et al. 2015). Similar immunomodulatory 13 kDa 
proteins (110–114 amino acids) are available from other Ganoderma species (Lin 
et al. 1997, 2010; Zhou et al. 2009; Wang et al. 2012; Yu et al. 2015), Chroogomphus 
rutilus (Lin et al. 2016), Dichomitus squalens (Li et al. 2017), F. velutipes (Ko et al. 
1995), L. rhinocerotis (Pushparajeh et al. 2016), Postia placenta (Li et al. 2015), T. 
versicolor (Li et al. 2012), and V. volvaceae (Hsu et al. 1997; Wang et al. 2016c). 
There are also genes for FIPs in A. muscaria (KIL61952, KIL58061), A. subglabra 
(XP_007340731, an immunomodulatory 13.4 kDa protein has been isolated from 
Auricularia polytricha, Sheu et al. 2004), Botryobasidium botryosum (KDQ10166), 
G. subvermispora (EMD41188, EMD41189, EMD41190), H. sublateritium 
(C-terminal linked to a protein kinase domain, KJA26560), Obba rivulosa (C-terminal 
linked to a protein kinase domain, OCH90019), P. carnosa (XP_007392586), 
Schizopora paradoxa (C-terminal linked to a protein kinase domain, KLO20748), 
Trametes pubescens (OJT03424, OJT03425), and more (Lakkireddy et  al. 2011), 
while they are extremely rare in the Ascomycota with only two host species detected 
so far (Bastiaan-Net et al. 2013; Li et al. 2016b). FIPs of closer- related species might 
be up to 100% identical and sequences from more distantly related fungi between 56 
and 75%. Depending on the species, FIPs are variably asparagine- and valine-rich (Li 
et al. 2011b, 2017; Lin et al. 2016; Pushparajeh et al. 2016).

Importantly, the sequences of the FIPs show similarities to sequences of immu-
noglobulins (Igs; Tanaka et  al. 1989; Ko et  al. 1997) although they usually lack 
cysteine, methionine, and histidine residues which are regularly present in Igs 
(Paaventhan et al. 2003; Huang et al. 2008). FIPs adopt a Ig-like β-sandwich fold 
from the seven β-sheets in their C-terminal fibronectin III-type domain like Igs, and 
they form homodimers or homotetramers (FIP-gmi from Ganoderma microsporum) 
via dimerization through an N-terminal α-helix stabilized by hydrophobic amino 
acid interactions and assisted by a β-sheet formed by the two dimerizing proteins 
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from the β-strand following directly after the N-terminal α-helix (Lin et al. 1997; 
Paaventhan et al. 2003; Wu et al. 2007; Huang et al. 2008; Pushparajah et al. 2016). 
Variably strong in their cytotoxic, mitogenic, and anticancer activities (Li et  al. 
2011b; Wang et al. 2012; Ou et al. 2015), FIPs are capable to perform Ig-like reac-
tions and stimulate, e.g., proliferation of lymphocytes and macrophages and modify 
the production of cytokines by T cells (e.g., Ko et al. 1997; Hsieh et al. 2003, 2007; 
Hsu et al. 2008; Ou et al. 2009; Lin et al. 2010; Lee et al. 2013; Li et al. 2015; Wu 
et al. 2015), and they can be inhibitory to virus infections (Chang et al. 2014).

FIPs’ activities partially depend on their 3D structure and homodimerization 
(Lin et al. 1997; Huang et al. 2008, 2014b). The difference in activities between 
FIPs probably base on the variable amino acid sequences found in loopDE and 
loopFG of the Ig-like β-sandwich structure (Huang et al. 2008; Wang et al. 2016c) 
and possibly on strength and structural differences of the α-helices mediating the 
N-terminal dimerization (Lin et al. 1997; Wang et al. 2016c). The proteins provide 
a carbohydrate- binding pocket (CBM, family CBM34-like; key residues in F. velu-
tipes FIP-fve: W24, T28, D34, R90, I91, W111) by the β-sandwich structure, and 
the folded proteins can bind to complex cell-surface sugars such as dextrin, cyclo-
dextrin, and N-acetyl neuraminic acid (Kino et al. 1989; Ko et al. 1995; Liu et al. 
2012b; Pushparajeh et  al. 2016). FIPs therefore have a lectin character and can 
cause blood cell aggregation, while individual FIPs differ in specificity to aggluti-
nate different animal (rat, mouse, sheep) or human red blood cells (Li et al. 2012; 
Liu et al. 2012b; Lin et al. 2016; Pushparajah et al. 2016).

Interesting for future studies could be functional analyses on the potentially 
bifunctional proteins of H. sublateritium, O. rivulosa, and S. paradoxa with a pro-
tein kinase domain linked to one or two FIP units, because FIP-fve has been shown 
to activate protein kinase C-α in human peripheral blood mononuclear cells (Ou 
et al. 2009).

13.5.3  Other Lectins

The catalog of different lectins, i.e., carbohydrate-binding proteins which are also 
known as hemagglutinins, is large in mushrooms as are the lists of types of sugars 
they interact with and the potential medicinal functions attributed to them including 
antitumor, mitogenic/antimitogenic, immunomodulatory, antiviral, and other activi-
ties (Lakkireddy et al. 2011; Erjavec et al. 2012; Hassan et al. 2015; Singh et al. 
2015; Sabotič et al. 2016). Moreover, 3D structures have been established for sev-
eral distinct fungal lectins, and different structural families of fungal lectins have 
been defined (Varrot et al. 2013; Hassan et al. 2015; Sabotič et al. 2016). Related 
genes for the diverse types of lectins are often found in only selected species scat-
tered over the Agaricomycetes, commonly not much linked to any taxa relation-
ships. Sometimes, the distribution of related genes within different mushrooms is 
very restricted to only a low number of species (Lakkireddy et al. 2011; Sabotič 
et al. 2016).
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By the wealth of different lectins which occur in mushrooms and which are 
moreover possibly even characterized, we can present here only a few selected 
examples of different groups of lectins and document the quite irregular dissemina-
tion of respective lectin genes over the species ranges. The examples discussed 
should emphasize the value of looking into more (types of) lectins of more mush-
room species. The chimeric lectins and the FIPs discussed in Sects. 13.5.1 and 
13.5.2 belong to other families of lectins, and further lectin-like proteins with pro-
tease inhibitory functions and protease activities are presented in Sect. 13.5.4.

Genes for galectins binding β-galactosides are, for example, present in Agrocybe 
cylindracea (ACG; Yagi et al. 1997, 2001; Ban et al. 2005), A. aegerita (the fruiting 
body-specific AAG; Yang et  al. 2009; Luan et  al. 2010), C. cinerea (the fruiting 
body-specific Cgl1 and Cgl2; the related Cgl3 binds LacdiNac and chitobiose; 
Cooper et al. 1997; Boulianne et al. 2000; Walser et al. 2004; Wälti et al. 2008; 
Plaza et  al. 2014), Heterobasidion irregulare, Laccaria amethystina, L. bicolor 
(Lakkireddy et al. 2011; Lyimo et al. 2011), G. marginata (KDR68111), Pisolithus 
microcarpus (KIK30469), and a few others (Sabotič et al. 2016). The fungal galec-
tins adopt a typical β-sandwich structure composed of two antiparallel, six-stranded 
β-sheets. CGL2 and CGL3 of C. cinerea form homotetramers; ACG and AAG from 
Agrocybe species form homodimers (Walser et al. 2004; Ban et al. 2005; Wälti et al. 
2008; Yang et al. 2009). CGL1 and CGL2 show toxic activity against nematodes, 
mosquitos, and amoebae, by binding to N-glycans of glycoproteins of attacked 
organisms (Butschi et al. 2010; Bleuler-Martinez et al. 2011). ACG recognizes spe-
cifically N-sialoglycans specific to human leukemic cells in a comparably well- 
understood binding mode (Hizukuri et al. 2005; Parasuraman et al. 2015). Antitumor 
activities and binding to tumor-related glycan antigens have been demonstrated for 
AAL (Zhang et al. 2015b; Jin et al. 2016; Liu et al. 2017).

The β-trefoil family of fungal lectins (from the ricin-B superfamily) is much 
larger with the majority of Agaricomycetes having one or more members. However, 
overall sequence identities and similarities between individual members of this fam-
ily can be very low with values of 7–26% and 25–40%, respectively. The lectins of 
the β-trefoil family also vary in their carbohydrate-binding specificity and are often 
fruiting body- or sclerotia-specific (Lakkireddy et  al. 2011; Žurga et  al. 2014; 
Sabotič et al. 2016). Well-studied examples for the β-trefoil family of lectins are the 
fruiting body-specific CCL1 and CCL2 of C. cinerea which have nematicidal activi-
ties like many other members of this family, while others are acting entomotoxic 
(Schubert et al. 2012; Plaza et al. 2014; Sabotič et al. 2016). CCLl and CCL2 are 
55% identical and 73% similar in sequence. Most similar proteins, e.g., to CCL2 
from other mushrooms, are from S. lacrymans (XP_007323761: 43% identical, 
60% similar), Coniophora puteana (XP_007765699: 43% identical, 59% similar), 
Rhizopogon vinicolor (OAX40927: 45% identical, 56% similar), S. stellatus 
(KIJ40569: 43% identical, 55% similar), P. ostreatus (KDQ26460: 45% identical, 
59% similar), and L. amethystina (KIJ95877: 41% identical, 54% similar). CCL2 
binds to a GlcNAc-β1,4-(Fuc-α1,3)GlcNAc (anti-HRP, anti-horseradish peroxi-
dase) epitope N-glycans of nematodes (Schubert et  al. 2012; Stutz et  al. 2015). 
Another well-studied lectin from the β-trefoil family in the Agaricomycetes, the 
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entomotoxic agglutinin RSA from Rhizoctonia solani (Candy et al. 2001; Hamshou 
et  al. 2013), interacts in contrast with Gal-/GalNAc-containing insect glycans 
(Hamshou et al. 2012; Walski et al. 2014). RSA is shown to also bind to proteins 
α-2-macroglobulin and IgA from human serum (Van Leuven et  al. 1993). The 
nematotoxic ricin B-like lectin CNL from Clitocybe nebularis (26% identical, 40% 
similar to RSA; Sabotič et al. 2016) immunostimulates dendritic cells via the toll- 
like receptor 4 pathway (Svajger et al. 2011; Pohleven et al. 2012). A lectin in other 
species closest to CNL is from Leucoagaricus sp. (KXN92490: 32% identical, 50% 
similar), while other related lectins from P. placenta and C. cinerea are only 26% 
identical and 46–44% similar to CNL (Lakkireddy et al. 2011).

Another group of interesting lectins is represented by the 42  kDa PVL from 
Lacrymaria (Psathyrella) lacrymabunda. This is an integrin-like protein which 
adopts a six-bladed β-propeller fold with six carbohydrate-binding sites for terminal 
GlcNAc and sialic acid residues (Ueda et al. 2002; Cioci et al. 2006; Audfray et al. 
2015). This lectin binds truncated N-glycans on human cancer cells (Audfray et al. 
2015). A highly similar lectin PAL from Lacrymaria (Psathyrella) asperospora of 
high sequence identity (87%) and similarity (92%) and with a similar 3D structure 
also binds terminal GlcNAc and sialic acid. PAL has a strong cytotoxic effect on 
human colon cancer cells and on monkey kidney cells (Rouf et al. 2014; Ribeiro 
et al. 2017). PVL- and PAL-related lectins are however also not as widely distrib-
uted in other mushroom species (Lakkireddy et al. 2011). A. aegerita, C. cinerea, 
and L. bicolor each have one gene (Lakkireddy et al. 2011; Rouf et al. 2014; Ren 
et al. 2015), and there are related genes in G. marginata (KDR83047, KDR74277), 
H. cylindrosporium (KIM35067, KIM47177, KIM35070), H. sublateritium 
(KJA19519), and L. amethystina (KIK03462, KIJ92371, KIJ96935, KIJ93857).

Tectonins are lectins of an interesting structure by having tandem β-propeller 
repeats which form blades by a four-stranded antiparallel β-sheet (Low et al. 2009). 
Tectonin Le-Tec2 of L. bicolor agglutinates E. coli and recognizes O-methylated 
mannose and fucose residues, typically present in the outer bacterial lipopolysac-
charide layers (Wohlschlager et  al. 2014). Genes for tectonins appear not to be 
much distributed over all the various mushroom species, but they are repeatedly 
found in species with an ectomycorrhizal lifestyle (Sabotič et al. 2016) such as in H. 
cylindrosporum (KKIM38814, KIM38815, KIM38816, KIM38829, KIM38830, 
KIM38831, KIM35453, KIM35454, KIM35464, KIM35465), L. amethystina 
(KIJ90107, KIJ94531, KIJ94903), L. bicolor (XP_001876432, XP_001877906), 
Paxillus rubicundulus (KIK93906), while the saprotrophic G. marginata 
(KDR71733, KDR71773) has also gene copies.

13.5.4  Proteinase Inhibitors and Lectins with Protease Activities

Another type of small proteins found often specifically expressed in stages of fruit-
ing body development and in specific mushroom tissues concerns protein inhibitors. 
While many mushroom crude extracts have been shown to confer proteinase- 
inhibiting activities, few inhibitors have been isolated and characterized. Among 
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https://www.ncbi.nlm.nih.gov/protein/1000866865?report=genbank&log$=prottop&blast_rank=3&RID=FHP5WF9T015
https://www.ncbi.nlm.nih.gov/protein/648169407?report=genbank&log$=prottop&blast_rank=5&RID=FFJ7V3G8015
https://www.ncbi.nlm.nih.gov/protein/648160562?report=genbank&log$=prottop&blast_rank=11&RID=FFJ7V3G8015
https://www.ncbi.nlm.nih.gov/protein/751685027?report=genbank&log$=prottop&blast_rank=6&RID=FFJ7V3G8015
https://www.ncbi.nlm.nih.gov/protein/751697199?report=genbank&log$=prottop&blast_rank=10&RID=FFJ7V3G8015
https://www.ncbi.nlm.nih.gov/protein/751685030?report=genbank&log$=prottop&blast_rank=15&RID=FFJ7V3G8015
https://www.ncbi.nlm.nih.gov/protein/763722059?report=genbank&log$=prottop&blast_rank=16&RID=FFJ7V3G8015
https://www.ncbi.nlm.nih.gov/protein/750945554?report=genbank&log$=prottop&blast_rank=9&RID=FFJ7V3G8015
https://www.ncbi.nlm.nih.gov/protein/750934129?report=genbank&log$=prottop&blast_rank=14&RID=FFJ7V3G8015
https://www.ncbi.nlm.nih.gov/protein/750938902?report=genbank&log$=prottop&blast_rank=17&RID=FFJ7V3G8015
https://www.ncbi.nlm.nih.gov/protein/750935710?report=genbank&log$=prottop&blast_rank=18&RID=FFJ7V3G8015
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these are mycospins (e.g., cospin of C. cinerea and cnispin from C. nebularis) as 
serine proteinase inhibitors and mycopins (clitopypins from C. nebularis and mac-
rocypins from Macrolepiota procera) as cysteine protease inhibitors (Renko et al. 
2012; Dunaevsky et  al. 2013; Sabotič et  al. 2016). Cospin as an example of the 
mycospin family is a 150 amino acid-long antibiotic protein (Sabotič et al. 2012), 
cnispin is 146 amino acid-long (Avanzo Caglič et  al. 2014), and LeSP1 from L. 
edodes 152 amino acid-long (Odani et al. 1999). These proteins belong by sequence 
similarities all to the ricin B-like superfamily and adopt a β-trefoil structure with 12 
β-strands and 11 loops, and they show high activity against trypsin (Odani et al. 
1999; Avanzo Caglič et al. 2014). Cnispin inhibits proteases by its β11-β12 loop 
with Lys-127 as the P1 amino acid which binds to the active site in trypsin (Avanzo 
Caglič et al. 2014). In contrast, loop β2-β3 with Arg-27 is responsible for the inhibi-
tory activity of cospin (Sabotič et al. 2012). The mycopins macrocypin 1 and clito-
cypin are also members of the large fungal ricin B-like family. However, they block 
proteases through interaction with their β5-β6 loops. Mycopins are strong inhibitors 
of papain-like proteases (Sabotič et al. 2007, 2009; Renko et al. al. 2010). Genes for 
the superfamily of ricin-like proteins are widely distributed in the Agaricomycetes 
and often occur in the species in larger diverse families (Lakkireddy et al. 2011; 
Sabotič et  al. 2016). Fungal β-trefoil proteases and fungal ricin B-like lectins of 
β-trefoil structure interact with each other which is considered as a regulatory mech-
anism of respective protein activities (Žurga et al. 2015).

The second group of β-trefoil chimerolections encloses MOA from M. oreades. 
This lectin consists of an N-terminal lectin domain and a C-terminal cysteine 
protease domain. MAO binds to terminal Gal-α1,3-Gal/GalNAc-β epiotopes 
(Grahn et  al. 2007, 2009; Wohlschlager et  al. 2011). The homologous lectins 
PSL1a from P. squamosus and SCA from S. commune in contrast recognize termi-
nal Neu5Acc- α2,6-Gal-β epitopes (Kadirvelraj et  al. 2011; Wohlschlager et  al. 
2011). MAO forms dimers of a dumbbell shape with the dimerized cysteine pro-
tease domain connecting the two β-trefoil lectin domains. Protease activity 
requires binding of divalent ions such as Ca2+ for induction of conformational 
changes (Cordara et al. 2011, 2016; Wohlschlager et al. 2011). When taken up 
into mammalian cells, MOA inhibits protein and DNA biosynthesis and induces 
degradation of β1-integrin, disruption of integrin-dependent cell adhesion signal-
ing, rearrangements of the cytoskeleton, and cell death (Cordara et  al. 2014; 
Juillot et al. 2016). Toxic activities toward mammalian cells depend on the prote-
ase domain (Manna et al. 2017). Also the presence of genes for MAO-like genes 
is inconsistently spread over the Agaricomycetes. Related genes (protein similar-
ity ca 35 to >40%) were further found in Peniophora sp. (KZV64829, KZV65628), 
Plicaturospis crispa (KII87094), Polyporus umbellatus (ANC28063), Pycnoporus 
coccineus (OSC96843, OSD05564), S. lacrymans (EGN95167), S. stellatus 
(KIJ35645), and Trametes cinnabarina (CDO76070).
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https://www.ncbi.nlm.nih.gov/protein/1024071771?report=genbank&log$=prottop&blast_rank=10&RID=GBUUHPZ0015
https://www.ncbi.nlm.nih.gov/protein/1024072591?report=genbank&log$=prottop&blast_rank=18&RID=GBUUHPZ0015
https://www.ncbi.nlm.nih.gov/protein/749762310?report=genbank&log$=prottop&blast_rank=15&RID=GBUUHPZ0015
https://www.ncbi.nlm.nih.gov/protein/1024847513?report=genbank&log$=prottop&blast_rank=5&RID=GBUUHPZ0015
https://www.ncbi.nlm.nih.gov/protein/1184851564?report=genbank&log$=prottop&blast_rank=6&RID=GBUUHPZ0015
https://www.ncbi.nlm.nih.gov/protein/1184860356?report=genbank&log$=prottop&blast_rank=3&RID=GW2MD2HM014
https://www.ncbi.nlm.nih.gov/protein/336366821?report=genbank&log$=prottop&blast_rank=12&RID=GBUUHPZ0015
https://www.ncbi.nlm.nih.gov/protein/749865213?report=genbank&log$=prottop&blast_rank=11&RID=GBUUHPZ0015
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13.5.5  Ribosome-Inactivating Proteins (RIPs)

Ribosome-inactivating proteins (RIPs) are N-glycosidases which depurinate an ade-
nine residue in the conserved α-sarcin/ricin loop of eukaryotic 28S rRNA, thereby 
blocking the binding of elongation factor 2 (EF-2) and in consequence protein bio-
synthesis. Type I RIPs (chimero-RIPs) are enzymes with a single RNA N-glycosidase 
activity domain and molecular weights from ca 20 up to 40 kDa. Type 2 RIPs consist 
of two different chains of distinct function, an N-glycosidase A-chain (similar to type 
1 RIPs) and a lectin-like B-chain (for cell binding and transport into cells), which are 
interlinked by a disulfide bridge. Type 3 RIPs are atypical RNA N-glycosidases with 
two domains, an N-terminal type-1 RIP-like domain and a C-terminal domain of 
unknown function which must be removed to activate the enzymatic function of the 
N-terminus (Girbes et al. 2004; Akkouh et al. 2015; Wang et al. 2016a).RIPs are best 
known from plants (Akkouh et al. 2015; Wang et al. 2016a) while ribosome-inacti-
vating effects have also been attributed to several proteins isolated from various 
mushrooms (Table 13.2). These are however all not fully characterized. Enzymatic 
depurination activities on 28S rRNA are deduced for marmorin of H. marmoreus and 
volvatin of V. volvaceae from gels showing a 28S rRNA fragmentation band of about 
0.4 kb which was similar in size to the specific “Endo’s” bands generated from 28S 
rRNA through depurination by plant RIPs (Endo et al. 1988; Yao et al. 1998; Wong 
et al. 2008). Indication for a member of the classical RIP superfamily in fungi could 
come indirectly from a comparison of full-length protein sequences (Lapadula et al. 
2013). Significantly, the sequence of a RIP from maize (2PQI_A) detected genes for 
RIP-like proteins only in exceptional cases in very few fungal plant and insect patho-
gens from the Ascomycota and in S. stellatus (KIJ38555; KIJ48721) as the only 
basidiomycete (Lapadula et al. 2013; this report).

Usually, the N-terminal sequences of reported fungal ribosome-inactivating pro-
teins and the protein sizes as determined by migration in gel electrophoresis were 
published (Table 13.2), whereas the actual nature of the proteins always remained 
open by the lack of complete sequences. Now the published N-terminal sequences 
can be used in tBlastn or pBlast searches in the databases against the genomic 
sequence or against the proteome deduced from a fungal genome, respectively. We 
have done this here for a range of fungal ribosome-inactivating proteins (Table 13.2). 
Even with complete genomes available for H. marmoreus (GCA_001605315) and 
two distinct strains of F. velutipes (Park et al. 2014; BDAN01000000; both only 
little annotated), we could not detect 100% perfect sequence matches with any of 
the experimentally established N-terminal peptide sequences. However, the H. mar-
moreus marmorin and F. velutipes velin peptides hit the N-termini of matured 
secreted proteins of expected sizes which have suggested lectin functions. Marmorin 
belongs thus to a novel family of fungal lectins together with a crystallized 
α-galactosyl-binding lectin of Lyophyllum decastes and some proteins from a few 
ascomycetes and basidiomycetes (Goldstein et al. 2007; van Eerde et al. 2015; this 
study). It is striking that the L. decastes lectin shares galabiose-binding activity with 
the Shiga toxin from the RIP superfamily (Goldstein et al. 2007). Another interest-
ing finding concerns flammin. It appears to be related to or be in fact the formerly 
characterized F. velutipes endo-β-1,3-galactanase FcEn3GAL (Kotake et al. 2011). 
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https://www.ncbi.nlm.nih.gov/protein/749868327?report=genbank&log$=prottop&blast_rank=5&RID=FVG5V3GZ014
https://www.ncbi.nlm.nih.gov/protein/749879073?report=genbank&log$=prottop&blast_rank=8&RID=FVG5V3GZ014
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Notably, the gene for En3GAL was only found in one of the two released F. velu-
tipes genomes (BDAN01000000; Table 13.2).

Further interesting cases are H. marmoreus hypsin and Lyophyllum shimeji 
lyophyllin. The experimentally determined N-termini of hypsin and lyophyllin 
(Lam and Ng 2001a, b) recognize in pBlast searches internal sequences of a larger 
H. marmoreus protein (KYQ37785) with an undefined N-terminal half and an M35- 
like Zn2+-metallopeptidase/deuterolysin domain in the C-terminal half (Table 13.2). 
Moreover, the N-terminal sequences match that of a 21 kDa serine metalloprotein-
ase characterized from L. shimeyi (Moon et  al. 2014). The smaller size suggests 
either a posttranslational splitting of the two domains to give the experimentally 
determined N-terminus (the calculated protein size is 18.25 kDa), or the enzyme is 
produced from an ATG start codon in close vicinity to the coding sequence of the 
established N-terminus (the calculated size is 19.16 kDa). The N-terminal sequence 
analysis data as presented in Table 13.2 in effect suggest that none of the fungal 
ribosome-inactivating proteins are classical RIPs.

Most fungal ribosome-inactivating proteins have been classified as such by proof 
of inhibitory activities in cell-free translation assays, while RNA N-glycosidase 
activity is often claimed but not shown in the publications (Lam and Ng 2001a, b; 
Wang and Ng 2000a, 2001a, b; Ng et al. 2003; Ng and Wang 2004a, b). Looking at 
the shown or proposed biological functions of the diverse candidate proteins listed in 
Table 13.2, it is difficult to imagine that all of them should be true bioactive RIPs 
with specific 28S RNA cleavage function (see also the discussion by Lapadula et al. 
2013). The proteins listed in Table 13.2 have variably been assigned further activities 
to, for example, being antiproliferative against cancer cell lines (hypsin, lyophyllin, 
marmorin), anti-mitogenic (calcaelin, hypsin, lyophyllin), antifungal (hypsin, 
lyophyllin), RNase active (calcaelin), HIV reverse transcriptase inhibiting (hypsin, 
lyophyllin, marmorin), and β-glucosidase and β-glucuronidase inhibiting (velutin), 
(Yao et al. 1998; Wang and Ng 2000a, 2001a, b; Lam and Ng 2001a, b; Ng et al. 
2003; Ng and Wang 2004a; Wong et  al. 2008). Such variability in multiple extra 
functions is shared with many other proteins isolated over the years from mushrooms 
and published under diverse headings such as antifungal, antibacterial, antiviral, and 
antitumor proteins (Akkouh et al. 2015; Ng et al. 2016). Strategies of their isolation 
and characterization are also commonly shared with the fungal ribosome- inactivating 
proteins, including that the protein identity is regularly defined via determination of 
N-terminal sequences. It is thus possible that also behind many of these yet to clearly 
identify proteins are such diverse kinds of proteins as suggested for the denoted fun-
gal ribosome-inactivating proteins from the here presented peptide pBlast and tBlastn 
searches (Table 13.2). For further interest, tables with published N-terminal sequences 
of mushroom bioactive proteins of pharmaceutical interest are compiled, e.g., in Ng 
(2004) and Ng et al. (2016).

Other short mushroom proteins with reported antitumor-, deoxyribonuclease-, 
and ribosome-interfering activities are, e.g., the 8.5  kDa protein CULP from the 
 puffball Calvatia cealata (Wang et  al. 2003), the 9  kDa protein CCULP from 
Cantharellus cibarius (Wang et al. 2003), the 12.5 kDa glycosylated protein PULP 
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from P. ostreatus (Wang and Ng 2000b), and the 18.5 kDa RBUP from Ramaria 
botrytis (Zhou et al. 2017) from a longer catalog of ubiquitin-like proteins compiled 
from work of similar experimental systematics on many fungal species. No full- 
length protein sequence of any of the isolated and analyzed ubiquitin-like proteins 
seem to have ever been published, but obtained N-terminal sequences and MS/
MS-covered internal peptides (69% in case of the R. botrytis protein) always match 
the ubiquitin of Coprinellus congregatus which as highly conserved protein is 
99–100% identical in sequence to ubiquitins of other basidiomycetes and of 
ascomycetes.

13.5.6  Others

TFP of Tremella fuciformis fruiting bodies is a new 135 amino acid-long non- 
glycosylated homodimeric macrophage-activating protein. TFP cannot agglutinate 
blood cells and has likely no lectin activity. Its closest relatives are small expressed 
proteins from S. commune and L. bicolor classified as nonenzymatic proteins from 
the expansin superfamily which are plant-cell-wall binding and loosening proteins 
(Huang et al. 2014a).

Another novel immunomodulatory macrophage-activating protein is the glyco-
sylated and cysteine-rich secreted ACA from mycelium of T. camphoratus. This 
protein belongs to the fungal phytotoxic cerato-platanin protein family and also 
shows no lectin agglutination properties. The ACA precursor is 136 amino acids 
long (Sheu et al. 2009). Members of the cerato-platanin family have been well stud-
ied in the Ascomycota (Gaderer et al. 2014; Pazzagli et al. 2014), while information 
in the Basidiomycota is scarce. Many of the Agaricomycetes do have variable genes 
for cerato-platanin-like proteins, among them are Trametes species (four genes in T. 
cinnabarina, five genes in T. pubescens, five genes in T. versicolor). T. versicolor 
protein YZP (alleles from different strains: AGH06133 and XP_008037058; 56% 
identical and 74% similar to ACA of T. camphoratus) stimulates B lymphocytes and 
induces production of interleukins IL-6 and IL-10 (Kuan et al. 2013). Notably, YZP 
is present in the Krestin polysaccharide-peptide extracts of T. versicolor and could 
be part of the effective principle of Krestin, similarly to lectin LZ-8 in G. lucidum 
polysaccharide PS-G (Yeh et al. 2010; Kuan et al. 2013).

A highly toxic protein for human cell lines via promotion of apoptosis is the 143 
amino acid-long toxophallin from stems of A. phalloides mushrooms. It is structur-
ally related to a functional amino oxidase of L. bicolor but has no mono- and 
diamine activity and acts as l-amino acid oxidase (L-AAO). Enzymatic activity 
generates aggressive H2O2 which is suggested to lead to activate apoptosis by a 
caspase-independent pathway (Stasyk et al. 2010). Similar enzymatic activities are 
known from snake venoms (Doley and Kini 2009). Other mushrooms including L. 
bicolor contain related genes for enzymes with 30–60% identity and 40–74% simi-
larity to toxophallin.
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13.6  Conclusions

In medicinal and other kinds of mushrooms, there is a fortune of unexploited sec-
ondary metabolites which have potential therapeutic values (Wasser and Weiss 
1999; Wasser 2002; Anke and Antelo 2011; Schüffler and Anke 2011). Various 
unique types of proteins, both enzymes and non-enzymatic proteins, have also been 
reported to be linked to pharmaceutical effects of mushrooms (Lakkireddi et  al. 
2011; Xu et al. 2011; Erjavec et al. 2012; Sabotič et al. 2016). Modes of actions are 
being elucidated from many of fungal bioactive compounds, and the spectrum of 
activities is as broad as the biochemical nature of mushroom bioactive compounds.

Naturally by the high species number of the Agaricomycetes in nature as com-
pared to the less studied ascomycetous mushrooms, most of the molecules discussed 
in this chapter originate from the Agaricomycetes. Although overlaps in the outfits 
of bioactive molecules are recorded between  the Agaricomycetes from the 
Basidiomycota and  the Ascomycota, there seems to be a tendency that different 
types of metabolites have preferentially been adopted in the two phyla of Dikarya. 
This has also been noted before. Comparably, much more polyketides and non-
ribosomal peptides are found with corresponding genes in the ascomycetes and 
much more terpenoids and terpene synthase genes in contrast in the basidiomycetes 
(Bushley and Turgeon 2010; Chen et al. 2012; Liu et al. 2012a; Schmidt-Dannert 
2015, 2016) and possibly (noncore) genes for lectins and lectin-like proteins 
(Sabotič et al. 2016). Production of secondary metabolites and specific proteins are 
often but not always connected to mushroom development. However, the vegetative 
mycelia may also produce the same or other bioactive compounds and proteins. 
Biological functions of mushroom compounds for the producer often remain elu-
sive. Defense reactions against competing and adverse organisms are trendy postu-
lates, while in some instances experimental evidence has been provided for such 
(Schwenk et al. 2014; Sabotič et al. 2016). Whatever the actual biological functions 
for the mushrooms are, their mode of actions might be exploited in tasks of 
pharmacology.

Research on bioactive metabolites and proteins classically starts by a screening 
of mushrooms for effective principles, possibly supported by ethnobotanical knowl-
edge on traditional medicinal species. Now with the many fungal genomes at hand, 
there is a paradigm shift in approaches. Earlier in 2011, we performed a genome 
mining study with studied fungal lectins and pore-forming proteins with available 
genome sequences. Although complete at the time, the study was only on a small 
scale and finished quickly due to the restricted number of available sequences 
(Lakkireddy et al. 2011). Until recently, reports with sequences for metabolic genes 
were very rare and “anecdotal” (Schneider et al. 2008). When we agreed last year to 
write this chapter, we expected that this would not have changed as much. As docu-
mented in the chapter, genome-driven publications however now pop up like mush-
rooms in the forests. The recent flood of excellent papers in the field describing 
genes and their products indicates that a change has happened through the avail-
ability of the genomes. It is now much easier to target interesting genes and func-
tions of pharmaceutical interest, both from medicinal species where such are 
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expected but also from genome mining in other mushrooms not considered before 
for potential medicinal applications. However, this makes classical experimental 
research on genes and compounds not obsolete.

We blasted with selected protein sequences (mostly by pBlast against defined 
protein sequences) the mushroom genomes deposited at NCBI (including all those 
mentioned in the introduction). A reoccurring observation is that usually only a few 
of all tested species contain specific genes of concern. Usually, genes of the same 
kind are distributed independently of clear species connections. Some of the species 
(e.g., G. marginata or T. versicolor) appeared more often in the searches than others 
mentioned in the text, and there are other species which were never hit. It is possible 
that recognized medicinal species are equipped with many more genes for pharma-
ceutically interesting secondary metabolites and unique type of proteins than other 
fungal species. This notion should be better elucidated in the future.

Detection of gene clusters in fungal genomes can be an entry point into the bio-
synthesis of known and of novel metabolites. However, on an average there seems 
to be fewer gene clusters to be present per species in basidiomycetes as compared 
to ascomycetes (Schmidt-Dannert 2015; Wawrzyn et al. 2015). Examples are accu-
mulating from the Agaricomycetes that genes for a distinct biosynthetic pathway are 
not necessarily completely kept together in a single cluster (Wick et  al. 2016; 
Braesel et al. 2017; this chapter). Moreover, there are also numerous examples of 
single genes in genomes (e.g., genes for sesquiterpene synthases; Sect. 13.3.1) sug-
gesting that gene clustering for metabolic pathways in basidiomycetes might not be 
as strict as compared to ascomycetes. Possibly, this makes the systems more versa-
tile and allows producing a much larger diversity of compounds. Also, this idea will 
need to become substantiated in the future.
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