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Abstract An efficient finite-difference time-domain (FDTD) model is presented to
analyse time delay and the crosstalk noise in lossy non-uniform interconnects. The
complementary metal oxide semiconductor (CMOS) is used as driver for
non-uniform interconnects and terminated with capacitive loads. Further, the
resistive losses at high frequency due to skin effect and shrinking of interconnects
are inculcated in the proposed model and analysed the high frequency effects. The
improved alpha power law model represents the nonlinear behaviour of CMOS
drivers, and the non-uniform interconnect is modelled including skin effect by
FDTD technique. Hence, the proposed algorithm accurately estimates the crosstalk
noise and delay in non-uniform interconnects at high frequencies and the results of
FDTD are validated using HSPICE simulations.
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1 Introduction

In recent trends, faster and compact devices need smaller interconnect length and
result in performance degradation in terms of delay, noise, and crosstalk.
High-speed interconnects are normally modelled with an equivalent circuit having
distributed RLGC parameters. Transmission lines with frequency-dependent vari-
ables are the best suit to describe electrical characteristics of on-chip interconnect.
At earlier stages of VLSI design, it is necessary that CMOS technology needs keen
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modelling of CMOS gate-driven interconnect structures [1]. Driving of intercon-
nects with the CMOS driver rises frequency/time conversion problem.

Recently, the authors in [2] proposed a model to analyse crosstalk accurately but
it depends on even mode and odd mode and is suitable for loss less uniform
interconnects. In [3], the authors proposed FDTD algorithm for analysing transients
in CMOS gate-driven lossy uniform interconnects with frequency-dependent
parameters. However, it is restricted to uniform interconnects, whereas for
non-uniform interconnects it is unreported. In this work, the extension of
frequency-dependent parameters is incorporated for non-uniform on-chip VLSI
interconnects. In high-speed interconnects, due to skin effect, the current flows near
the surface of the conductors and leads to increase in effective resistance [3]. In
[4, 5], the authors proposed a method to explain propagation delay for non-uniform
lossy transmission lines in time (t) domain using FDTD. In this work, parameters
depending on frequency are also included. However, in this model a resistive driver
is connected to transmission lines and terminates using resistive loads, so this
analysis is not a practical one for on-chip interconnects which are having nonlinear
drivers.

In this work, an efficient method is proposed for analyzing the crosstalk of
CMOS gate driven loss non uniform interconnect system. Signal integrity issues are
reported due to coupling in between the interconnect lines and nonlinear behaviour
of CMOS driver. Further, CMOS driver’s nonlinear behaviour is best described
using improved alpha power law model and interconnects are modelled based on
finite-difference time-domain (FDTD) model including frequency-dependence
parameters.

2 Modelling of FDTD Algorithm for Non-uniform Lossy
Interconnect System

In this section, the expressions for copper (Cu) interconnect line are developed
using frequency-based skin impedance in (1) and the same is incorporated in FDTD
model to find delay time and crosstalk at far end of the interconnect. The modelling
part is represented below.

ZðzÞ ¼ A1ðzÞþB1ðzÞ
ffiffi
s

p
: ð1Þ

2.1 Modelling of Non-uniform Lossy Interconnects
with Frequency Dependency

Generally, transmission line model is best suit to analyse coupled interconnect lines
because both have similar RLCG distributed elements [1]. The transmission line
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(TL) expression with space and time dependency is modelled [7, 8] as in (2a) and
(2b), and the equivalent two-coupled non-uniform lossy line is shown in Fig. 1.

@

@z
v z; tð Þþ Z tð Þi z; tð Þ ¼ �l zð Þ @

@z
i z; tð Þ ð2aÞ

@

@z
i z; tð Þþ g zð Þv z; tð Þ ¼ �c yð Þ @

@z
v z; tð Þ ð2bÞ

The internal impedance and current of the transmission line Eq. (2a) and (2b) are
transformed to Laplacian domain as

Z z; sð Þ � i z; sð Þ ¼ Z z; tð Þi z; tð Þ: ð3Þ

From Eq. (1) in Eq. (3),

L�1 Z z; sð Þi z; sð Þf g ¼ A1 zð Þi z; tð Þþ L�1 B1 zð Þffiffi
s

p
� �

� @

@t
i z; tð Þ: ð4Þ

The term (1/√s) in (4) having inverse transform as from [6] is

1ffiffiffiffiffi
pt

p ¼ 1ffiffi
s

p : ð5Þ

By substituting Eq. (5) in (4) gives

Z z; tð Þ � i z; tð Þ ¼ A1 zð Þi z; tð Þþ 1ffiffiffi
p

p
� �

B1 zð Þ
Z t

0

1ffiffiffi
p

p @

@ t � pð Þ i z; t � pð Þdp
8<
:

9=
;: ð6Þ
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Fig. 1 Non-uniform lossy
interconnect line existed by
CMOS nonlinear gate
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To solve lossy transmission line equations, FDTD is the most appropriate and
widely used technique. By using this technique, the space position axis z is divided
into equal subsections. Every adjacent V and I points are Dz=2 apart. Similarly,
adjacent voltage and current time points are Dt=2 apart.

On applying finite-difference algorithm to Eq. (6) gives:

Z t

0

1ffiffiffi
p

p @

@ðt � pÞ iðz; t � pÞdp ¼
Z t

0

Lðz; t � pÞffiffiffi
p

p dp ð7Þ

where the function Lðz; tÞ is treated as constant over the time segment Δt. Thus,
Eq. (7) becomes

Xn
x¼0

ZDtðxþ 1Þ

DtðxÞ

Lðz; ðnþ 1ÞðDt � pÞÞffiffiffi
p

p dp ¼
ffiffiffiffiffi
Dt

p Xn
x¼0

Lðz; ðxþ 1ÞDt � pÞP0ðxÞ: ð8Þ

On applying finite-difference approximation to TL equations in (2a), (2b) and
substituting (8) in (2a), results in (9a) and (9b) [9–11]

lðkÞ�inþ 1=2
k þ inþ 3=2

k

Dt
þ vnþ 1

kþ 1

Dz
þA1ðkÞ i

nþ 1=2
k þ inþ 3=2

k

2

þ B1ðkÞffiffiffiffiffiffiffiffi
pDt

p
Xn
x¼0

P0ðxÞ inþ 3=2�x
k � inþ 1=2�x

k

n o
¼ 0

ð9aÞ

c kð Þ v
nþ 1
k � vnk

Dt
þ g kð Þ v

n
k þ vnþ 1

k

Dt
¼ � inþ 1=2

k � inþ 1=2
k�1

Dz
ð9bÞ

where k = 1, 2,…., Nz. vnk ¼ v Dzðk � 1Þ;Dt nð Þ; ink ¼ ðDz k � 1
2

� �
;DtnÞ:

By solving (9a) and (9b)

lðkÞ
Dt

þ A1ðkÞ
2

þ B1ðkÞP0ð0Þ
Dt
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Dt
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2
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Dt
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k
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x¼1
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k

� �
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CðkÞ
Dt

þ GðkÞ
2

	 

Vnþ 1
k ¼ CðkÞ

Dt
� GðkÞ

2

	 

Vn
k �

Inþ 1=2
k � Inþ 1=2

k�1

Dz
: ð11Þ

A bootstrapping method is used to solve the Eqs. (10) and (11). The interconnect
line voltage and current values are assigned as zero. After applying input to the line,
from Eq. (11) the voltages are evaluated based on previous voltage and current
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solutions; later using Eq (10), currents are evaluated in terms of present current and
past voltages. The space discretization for performing the bootstrapping mechanism
along the line is shown in Fig. 2.

Putting k = 1 and NZ + 1 in Eq. (11) results (12) and (13) for near- and far-end
equations, respectively.

cð1Þ
Dt

þ gð1Þ
2

	 

vnþ 1
1 ¼ cð1Þ

Dt
� gð1Þ

2

	 

vn1 �

inþ 1=2
1 � inþ 1=2

0

Dz=2
ð12Þ
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2
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Dt

� gðNz þ 1Þ
2
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Nz
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:

ð13Þ

The line current at near end z = 0 is i0 and at far end z = l as iNz þ 1. Then, KCL
expression is represented in (14) and (15), respectively.

i0 ¼ ip � in þ cm
dðvns � vnþ 1

1 Þ
dt

� �
� Cd

dv1
dt

ð14Þ

iNz þ 1 ¼ Cl
@vNz þ 1

@t
: ð15Þ

By substituting Eq. (14) and Eq. (15) in (12) and (13) yields (16) and (17),
respectively. These are the expressions for line voltage and currents at any point
along the interconnect lines and for k = Na + 1.

vnþ 1
1 ¼ cðNa þ 1Þ

Dt
þ gðNa þ 1Þ

2

	 
�1
cðNa þ 1Þ
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Fig. 2 Interconnect line with
space discretization along its
length for implementing
FDTD model
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inþ 3=2
k ¼ lðkÞ
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3 Results and Discussions

In this section, the proposed FDTD model for interconnect lines is validated using
HSPICE simulations for different input conditions. Consider a two-coupled
non-uniform interconnects shown Fig. 1. The input excitation given as 0.9 V
pulse with duty cycle of 50% and rise/fall times is 50 ps and pulse width of 300 ps.

The load capacitance (CL) is 1fF. The interconnect line length is 1 mm, the
spatial discretization of the non-uniform lines chosen to be 10 segments, and the
time discretization is Δt = 100Δtmax.

Fig. 3 Time-domain response at a port 3 in-phase, b port 4 in-phase, c port 3 out-phase, and
d port 4 out-phase
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The p.u.l parameters are represented as follows:

l ¼ L1 L12
L12 L2

	 

nH/m c ¼ C1 C12

C12 C2

	 

pF/m

g ¼ G1 0
0 G2

	 

S=m R ¼ R1 0

0 R2

	 

X=m

where L1 ¼ L2 ¼ LðyÞ ¼ 387=1þ kðyÞ; Lm12ðyÞ ¼ kðyÞLðyÞ; CðyÞ ¼ 104:3=ð1þ
kðyÞÞ; C12ðyÞ ¼ �kðyÞCðyÞR1 ¼ R2 ¼ 60X=m

G1 ¼ G2 ¼ GðyÞ ¼ 0:001= 1� kðyÞ½ �
kðyÞ ¼ 0:25 1þ sinð6:25pyþ p

4Þ

 � :

At far end of interconnect, the transient response is observed and shown in
Fig. 3a–d. At near end, the transient response is shown in Fig. 4a–d. The results are
validated with HSPICE simulations.

Fig. 4 Time-domain response at a port 1 in-phase, b port 2 in-phase, c port 1 out-phase, and
d port 2 out-phase
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4 Conclusion

An efficient frequency-dependent FDTD model is developed for non-uniform lossy
interconnect lines to analyse near- and far-end transient analyses for interconnects.
Further, the proposed algorithm is validated using HSPICE simulation results in
very good accuracy in predicting the response. The time delay analysis is done by
comparing the near- and far-end interconnect time delays using FDTD, and the
same is validated using HSPICE. Hence, the model is verified accurately both in
predicting the timing response and delay of the on-chip interconnect lines.
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