
Chapter 7
Riboflavin-Conjugated Multivalent
Dendrimer Platform for Cancer-Targeted
Drug and Gene Delivery

Pamela T. Wong, Kumar Sinniah and Seok Ki Choi

Abstract Riboflavin receptors (RFRs) are overexpressed in several malignant
cells, and have been characterized as an emerging tumor surface biomarker. In this
article, we discuss the design principles of a RFR-targeted nanoparticle system and
illustrate its applications with studies performed in our laboratories. This system is
based on a poly(amidoamine) (PAMAM) dendritic polymer which is modified on
the surface by conjugation with riboflavin (RF) as the targeting ligand. First, we
discuss the application of this system for targeted drug delivery by its conjugation
with methotrexate as an antitumor payload. In cell-based experiments performed
in vitro, this drug conjugate displayed RF-dependent, potent inhibition of cell
growth in RFR(+) KB carcinoma cells. Second, the use of the RF-conjugated
dendrimer for gene delivery applications through the formation of polyplexes with
plasmid DNA is described. The ability of this targeted system to significantly
enhance gene transfection in epithelial cells points to its potential as a promising
new class of nonviral vectors. Third, the tunability of the functional properties of
the dendrimer through modular integration is illustrated with an optically active
gold nanoparticle (AuNP). The resultant dendrimer-coated AuNPs have a unique
capability for tumor cell imaging via surface plasmon resonance scattering. Finally,
we discuss the biophysical basis of the multivalent mechanism involved in the tight
and specific binding of a RF-conjugated multivalent dendrimer to RFRs on the cell
surface. The design principles and proof of concept studies presented here are
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strongly supportive of the promising potential of RF-conjugated nanoparticles for
delivery and imaging applications in tumors.

Keywords Riboflavin � Tumor surface marker � PAMAM dendrimer � Targeted
delivery � Multivalent avidity � Surface plasmon resonance � Imaging cavity

Abbreviations

AFM Atomic force microscopy
BSA Bovine serum albumin
DAPP 3,8-Diamino-6-phenylphenanthridinium
DLS Dynamic light scattering
EPR Enhanced permeation and retention
EGFR Epidermal growth factor receptor
FGFR Fibroblast growth factor receptor
FAD Flavin adenine dinucleotide
FMN Flavin mononucleotide
FITC Fluorescein isothiocyanate
FAR Folate receptor
G5 Generation 5
AuNP Gold nanoparticle
HPMA N-(2-hydroxypropyl)methacrylamide
ITC Isothermal titration calorimetry
MTX Methotrexate
NP Nanoparticle
pDNA Plasmid DNA
PAMAM Poly(amidoamine)
PSMA Prostate-specific membrane antigen
RF Riboflavin
RFBP Riboflavin binding protein
RFR Riboflavin receptor
SPR Surface plasmon resonance

7.1 Introduction

Identification of tumor-associated surface markers plays a fundamental role in the
design strategy for tumor-targeted nanoparticles (NPs) [1]. NP conjugation with a
ligand molecule of high specificity for the particular biomarker of interest constitutes
the basis for the mechanism of active tumor targeting [2, 3]. Optimal ligand con-
jugation design confers these NPs with a greater ability to facilitate tumor-specific
NP binding and payload uptake than passive targeting mechanisms which rely solely
on the enhanced permeation and retention (EPR) effect in which NPs accumulate in
the tumor through the enhanced leakiness of tumor vasculature [4].
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Several classes of tumor biomarkers have already been identified and used in the
development of targeted NPs [1–3, 5]. These include: (1) receptors for vitamin
uptake such as the folate receptor a, b (FARa, FARb) [6, 7], biotin receptor [8, 9];
(2) an integrin family of receptors such as avb3 [10]; (3) prostate-specific membrane
antigen (PSMA) receptor [11, 12]; (4) growth factor receptors including HER2
[13], epidermal growth factor receptor (EGFR) [14], fibroblast growth factor
receptor (FGFR) [15]; insulin receptors [16]; and (5) the transferrin receptor [17].
Each of these tumor biomarkers is overexpressed in one or more types of tumors
and engages in receptor-mediated endocytosis [18], which serves as the specific
route for the internalization of targeted NPs.

Riboflavin receptors (RFRs) belong to the class of vitamin uptake receptors
which show promising potential for tumor-targeted applications [19, 20]. In an
earlier study, Low et al. [21] investigated the cellular uptake mechanism of ribo-
flavin (RF)-conjugated bovine serum albumin (BSA) in several human tumor cell
lines. Uptake of this conjugate occurred at a rate greater than that of unmodified
BSA, and the process was RFR-dependent and specific. Such facilitated protein
uptake was attributed to RFR-mediated endocytosis, and highlighted the potential
of using a RFR-targeted strategy for enhancing specific delivery. A research group
led by Swaan, P.W. later also demonstrated the receptor-mediated uptake of a
RF-rhodamine dye conjugated form [22, 23] in human cell lines.

Recently, we [24–28] and others [29–32] have started the development of
RFR-targeted delivery platforms, and have conducted several proofs of concept
studies in vitro and in vivo for their validation in tumor-targeted delivery. In this
review article, we aim to describe our approaches in the design of RF-conjugated
NPs, and provide several lines of evidence supportive of their significance and
potential as a novel platform for tumor-targeted delivery. The purpose of this
chapter is primarily to address the current lack of reviews and perspectives focused
on RFR-targeted applications. Other established tumor biomarkers such as FARs
[33, 34], integrin avb3 [10], PSMA receptor [35], HER2 [13, 36], and EGFR [14,
37] are already extensively reviewed elsewhere and thus are introduced only
minimally here. We believe that this review provides a timely coverage of the
various aspects important to RFR-targeted drug and gene delivery, and will serve as
an invaluable resource in the design of RFR-targeted nanoplatforms.

7.2 Riboflavin Receptors and Ligands

In cellular metabolism, RF (vitamin B2) is required in the biosynthesis offlavin-based
redox cofactors including flavin mononucleotide (FMN) and flavin adenine dinu-
cleotide (FAD). However, its hydrophilicity (logP = −1.46; P = partition
coefficient = [RF]octanol/[RF]water) makes it unable to passively diffuse across
hydrophobic cellmembranes [38]. Thus, its cellular availability depends on the uptake
mechanism mediated by its receptors.
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7.2.1 RFRs

A group of multiple proteins is involved in the cellular uptake of RF, consisting of
RF carrier, RF transporter, and RF binding protein (RFBP). In this article, these
proteins are collectively referred to as riboflavin receptors (RFRs) (Table 7.1). They
are expressed as both soluble and membrane-bound isoforms [23, 39–41], and are
involved primarily in cellular trafficking and uptake of RF. RFRs display high RF
affinity as illustrated by RFBP (KD � 1 nM) [41]. Recent studies suggest that RFRs
are overexpressed in certain malignant cells including human breast and prostate
tumors, which implicate RFRs as a class of tumor biomarkers [19, 20, 32]. Thus,
these cells displayed the unique ability to take up riboflavin or its macromolecular
conjugates, which is indicative of their expression of RFRs [20, 21, 26, 32, 42].
These cells include KB carcinoma [21, 26, 42], LnCap (prostate cancer) [20, 32],
SK-LU-1 and A549 (lung cancer) [21], and SK-OV (ovarian cancer) [21]. In
addition, a class of ATP-dependent RF transporters is involved in the subcellular
accumulation of RF in certain cancer stem cells which are resistant to anticancer
chemotherapeutic agents, suggesting their potential as a biomarker for these cells
[43].

RFRs share several structural and functional similarities with FARs. Both RFRs
and FARs belong to the family of folate binding proteins which are
glycosylphosphatidylinositol-anchored surface receptors [38]. The receptors exhibit
a high degree of homology in their amino acid sequences [44] and have similar
secondary structure [45] in their ligand binding domains. RFRs, like FARs are
taken up along with their bound ligand by the cell through endocytosis [21, 23, 46],
the mechanism responsible for the uptake of NPs following their cell surface
binding to the receptor.

Despite such similarities between these two important vitamin uptake receptors,
RFRs play a distinct role in RF transport and cellular uptake and exist as more
diverse forms such as soluble carriers, transporters, and membrane-bound proteins
[23, 39, 40, 45]. As summarized in Table 7.1, RFRs also show clear differences in
their tissue distribution and the types of malignant cells they are associated with
including cancer stem cells [43]. Such distinct features of RFRs suggest an
important opportunity for targeting specific malignant cells which are otherwise not
addressable by use of other tumor biomarkers. In addition to their ligand role,

Table 7.1 Properties of riboflavin receptors (RFRs)

Isoform Biochemistry
[40, 41]

Ligand Tissue distribution

Soluble: riboflavin
binding/carrier protein
[45]
Membrane-bound:
riboflavin uptake
transporter [23, 39, 40]

Glycosylated
219–469
Amino acids
27.5–40 kDa

RF [41]
Lumiflavin,
Roseoflavin
[47]
Quinacrine
[25]

Placenta [40], Small intestine [40],
Breast [19, 39], Prostate [20], Liver
[17], Cancer stem cells [43]
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certain types of RF analogs display potent cytotoxic activity due to their ability to
competitively interfere with the cellular functions of flavin cofactors [48], and offer
additional benefits in the therapeutic applications of RF ligand-conjugated
nanoplatforms [25].

7.2.2 Riboflavin Ligands

The primary targeting ligand for RFR-targeted platform design is RF which is the
endogenous ligand for these receptors. It is made up of two structural units—an
isoalloxazine and a (D)-ribose, each modifiable for ligand conjugation (Fig. 7.1). In
addition, there are a number of structural homologues to RF which are referred to as
RF antagonists or antimetabolites. These include roseoflavin, cofactor F420 [47],
and 2(4)-imino-4(2)-amino-2,4-dideoxyriboflavin [25, 47–49]. Each of these retains
the ability to bind RFRs, but lacks the requisite functional activity required for the
biosynthesis of RF-associated cofactors.

To be considered ideal for the design of RFR-targeted platforms, the ligand
should provide certain sites amenable for linker installation, allow easy synthetic
modification, and lack any functional activity for stimulating cell growth. In an
effort to identify such ligands, we searched RF-mimicking small molecules in the
SciFinder® database, and identified a set of candidate molecules that include
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perphenazine, chlorpromazine, quinacrine, and chloroquine (Fig. 7.1) [25]. Each of
these is structurally less complex than RF but contains a flat tricyclic heterocycle
that mimics the isoalloxazine head of RF.

We investigated the binding interaction of these small molecules with chicken
RFBP using isothermal titration calorimetry (ITC), and determined their dissociation
constants (KD) as summarized in Table 7.2. In general, these molecules bound with
lower affinity thanRF in the order ofRF (5.0 nM) > lumiflavin (61 nM) > quinacrine
(264 nM) > chloroquine (2100 nM). Two other tested compounds, perphenazine and
chlorpromazine, lacked detectable binding affinity despite their structural similarities
based on the tricyclic heterocycle. Both lumiflavin and quinacrine do not cause
undesired positive trophic effects as those associatedwith the function ofRFwhich has
been shown to stimulate tumor cell growth.Despite their lower affinity, it is anticipated
that NPs conjugated with this lower affinity ligand will still have the ability to bind
RFRs on the cell surface with high avidity constants via multivalent binding inter-
actions [50–52]. Use of these RF-mimicking molecules in the design of RFR-targeted
platforms constitutes a subject of follow-up studies.

7.3 Application of RF-Conjugated Dendrimers

7.3.1 Linker Design

An X-ray crystal structure was determined for RF in complex with chicken RFBP at
a resolution of 2.5 Å [45]. This serves as the basis for rational linker design by
providing several insights on the position and orientation of the linker needed in the
design of a RF-linker construct. First, the xylene domain of its isoalloxazine unit is
stacked between aromatic planes in the ligand binding cleft and is not ideal for
linker attachment. However, the opposite face (N-3 position) of the same isoal-
loxazine head is relatively open for linker modifications. This is illustrated by an
earlier study, in which 3-carboxymethylriboflavin (1, Fig. 7.2) [25, 53, 54], a RF
derivative with a carboxylic acid extended out from the N-3 position, retained its

Table 7.2 Binding affinity and thermodynamic parameters of RF antagonists to riboflavin
binding protein (RFBP) in PBS buffer, pH 7.4

RF antagonists na KD

(nM)
ΔHa

(kJ mol−1)
ΔG (kJ mol−1) ΔS (kJ mol−1

K−1)

Riboflavin 0.78 ± 0.02 5.0 −91.2 ± 5.7 −47.5 −0.15

Lumiflavin 1.08 ± 0.07 61 −48.2 ± 7.2 −41.2 −0.02

Quinacrine 0.90 ± 0.04 264 −51.6 ± 3.9 −37.5 −0.05

Chloroquine 1.06 ± 0.04 2100 −40.4 ± 2.9 −32.4 −0.03

Perphenazine No binding observed

Chlorpromazine No binding observed

Adapted with permission from [25]. Copyright © 2011, American Chemical Society
an = binding stoichiometry of ligand to receptor. Reported errors (SD) are from fitting data

150 P.T. Wong et al.



affinity for RFBP which allowed its use in the detection of RFBP in milk products
[53, 54]. Synthesis of this riboflavin linker construct at the N-3 position (1) as
described in literature [25, 53, 54] is conveniently achieved in three consecutive
steps that comprise of the exhaustive acetylation of (−)-riboflavin, the N-alkylation
of 2′,3′,4′,5′- tetra-O-acetylriboflavin to the ethoxycarbonyl methyl derivative, and
complete removal of ester protecting groups by acidic hydrolysis (Fig. 7.2).

In order to further validate 3-carboxymethylriboflavin as the linker construct in
RFR-targeted delivery platforms, we investigated its binding affinity to RFBP by
surface plasmon resonance (SPR) spectroscopy using a biosensor chip prepared by
immobilization with 2 which contains a spacer (3-aminopropyl) at the carboxylic
acid terminus of 3-carboxymethylriboflavin. This amine-terminated riboflavin
derivative 2 was prepared by the EDC-mediated amide conjugation of
3-carboxymethylriboflavin 1 with a mono N-Boc protected propanediamine
(Fig. 7.2). RFBP bound to the surface in a dose-dependent manner (Fig. 7.3). Its
binding was also ligand-specific, as the RFBP adsorption was competitively
blocked by co-injecting RF, quinacrine and 2. This SPR study validated the
compatibility of the linker installation made at the N-3 position of RF.

N

N

N

NH

O

O

OH

HO OH
OH

10

3

1

N

N

N

N

O

O

OH

HO OH
OH

OH

O

3

Riboflavin

1

reagents and conditions : i) Ac2O, AcOH,65oC, 6 h; ii) Ethyl bromoacetate (3 eq), 
K2CO3 (3 eq), DMF, 85oC; iii) 6 M HCl, 90oC, 6 h; iv) EDC, NHS, DMAP, DMF, rt; then 
N-Boc 1,3-diaminopropane; v) TFA, CH2Cl2, rt; vi) glutaric anhydride (2 eq), pyridine, 
DMSO.85oC, 12 h. rt = room temperature

N

N

N

NH

O

O

OH

HO O
OH

10

OH

O O

3

N

N

N

N

O

O

OH

HO OH
OH

R

O

3

2: R = NH(CH2)3NH2

iv,v

vi

i-iii

Fig. 7.2 Synthesis of riboflavin linker constructs. Each linker (in blue) is installed at the N-3 (1,
2) or N-10 position through the terminal hydroxyl group of (D)-ribose (3)

7 Riboflavin-Conjugated Multivalent Dendrimer Platform … 151



Second, the (D)-ribose unit is largely exposed to the aqueous medium and makes
a minimal contribution to receptor binding. Thus, its external accessibility in
combination with its flexible configuration makes the sugar unit suitable for linker
installation as illustrated by a glutarate linker attached at the terminus of the (D)-
ribose through an ester linkage (3, Fig. 7.2). This riboflavin derivative 3 contains a
glutarate moiety attached through an ester linkage at its hydroxyl group of the (D)-
ribose unit. It was prepared by heating a mixture of riboflavin and glutaric anhy-
dride in a mixture of pyridine and DMSO. This coupling reaction might occur
regioselectively at the primary hydroxyl group as suggested by other similar con-
jugation reactions of riboflavin reported elsewhere [21, 46], possibly because the
primary terminal position is sterically less hindered than those secondary alcohols
located adjacent to the bulky isoalloxazine head.

7.3.2 Dendrimer Conjugates Designed for RFR-Targeted
Drug Delivery

We developed RF-targeted delivery platforms with a generation 5 (G5) poly(ami-
doamine) (PAMAM) dendrimer (diameter 5.4 nm) [55]. This PAMAM dendrimer
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has a globular shape with a large number of dendritic branches (theoretically 128
for G5), each terminated with a primary amine which is amenable to conjugation
with a targeting ligand or a drug molecule. The use of this G5 dendritic polymer
provides several key benefits for biomedical applications [56, 57] as it displays
biocompatibility, is characterized by favorable pharmacokinetic properties such as
extended duration of circulation, and lacks immunogenicity [58–61].

Two types of conjugates were designed that include G5(RF)6.3(FITC)1.3 5 and
G5(RF)2.5(MTX)3.9 6 (Fig. 7.4). First, G5(RF)6.3(FITC)1.3 is a fluorescently labeled
conjugate that has a mean of 6.3 RF molecules and 1.3 fluorescein isothiocyanate
(FITC) molecules attached on the dendrimer surface prepared for confocal micro-
scopic imaging of its cellular uptake. Here, the ligand attachment was made con-
veniently through an ester bond formed between a primary hydroxyl group on the
(D)-ribose unit of RF and a glutaric acid spacer presented on the dendrimer surface.
Second, G5(RF)2.5(MTX)3.9 6 is a drug conjugate that carries covalently attached
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methotrexate (MTX) as the payload. MTX potently inhibits dihydrofolate reductase
in the cytoplasm with a Ki value of 4.8 pM [62], leading to strong inhibition of cell
growth.

Assessment of the cellular binding and uptake of conjugate 5 was performed in
RFR(+) KB cells. These cells belong to a subline of cervical tumor cells that
showed receptor-mediated uptake of RF and RF-dye conjugates [21, 46]. Our flow
cytometry analysis showed dose- and incubation time-dependent binding of the
conjugate (Fig. 7.5) [26]. When incubated with other human cancer cell lines, this
RF conjugate also showed significant fluorescence intensity in these cell lines
including IGROV-1 (ovarian) and SCC15 (head and neck) like in KB cells. This is
supportive of conjugate binding and uptake by these tumor cells, some of which
have been validated earlier for their overexpression of RFR on the cell surface [21].

In a subsequent study, we investigated the effectiveness of this RFR-targeted
conjugate for drug delivery using G5(RF)2.5(MTX)3.9 6. The cytotoxic effect of 6
was determined in KB cells in vitro using an XTT assay (Fig. 7.5b). This conjugate
showed potent inhibition of tumor cell growth at low nM doses, and its inhibition
activity was incubation time- and dose-dependent. The IC50 value estimated from
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the dose response curve (at 4 h incubation) for the conjugate was 72 nM, which
indicates slightly lower activity than that of free MTX of 48 nM.

In order to verify the mechanism of RF-mediated delivery by 6, we performed a
series of ligand competition experiments in RFR(+) KB cells with RF (30 lM,
Fig. 7.5c) or G5(RF)2.5 (30 lM, Fig. 7.5d). Here, the addition of RF or its den-
drimer conjugate G5(RF)2.5 (which has no MTX attached) alone showed no effect
on cell growth. When G5(RF)2.5(MTX)3.9 6 (30 nM) was co-incubated with an
excess amount (30 lM) of G5(RF)2.5 (a multivalent ligand competing for RFR), the
cytotoxicity of 6 could be effectively blocked due to perhaps competitive occu-
pation of RFRs by the added G5(RF)2.5 which would contribute to the decrease of
its intracellular uptake. As a result, the cell growth was restored to 90% from
*50% observed in the absence of G5(RF)2.5.

Co-incubation with free RF failed to show such restoring effects on cell growth.
This distinct difference between RF and G5(RF)2.5 is attributable to the high avidity
binding of the multivalent conjugate compared to the monovalent RF ligand [51,
52, 63]. Our results of ligand competition experiments are in agreement with a
previous uptake study performed with 125I-labeled, multivalent RF-conjugated
bovine serum albumin (shortly, 125I-BSA(RF)5) in RFR(+) KB cells reported by
Low et al. [21]. Thus, co-incubation of 125I-BSA(RF)5 with free RF (at 10–40 mol
excess) resulted in almost no change in its cellular uptake relative to no RF addi-
tion, while co-incubation with an unlabeled BSA(RF)5 (at 10 mol excess) led to
significant blocking (*70%) of its uptake, evidence supportive of its multivalent
tighter binding than monovalent RF.

All of these studies are supportive of the cellular uptake of 6 through a
RFR-mediated mechanism and verify the activity of delivered MTX in the cyto-
plasm in inducing potent cytotoxicity. These studies also point to the potential
application of RF-conjugated dendrimers in targeted delivery of a fluorescent
imaging molecule and an anticancer therapeutic agent to malignant tumor cells
overexpressing the RF receptor.

7.3.3 Dendrimer Conjugates Designed for RFR-Targeted
Gene Delivery

We investigated the potential of applying RF-conjugated dendrimers as a new class
of nonviral vectors for RFR-targeted gene delivery in tumor cells (Fig. 7.6) [42].
For this approach, we modified the conjugate G5(RF)4.9 by co-attachment of
multiple molecules of 3,8-diamino-6-phenylphenanthridinium (DAPP) which has
the ability to intercalate into DNA, thus forming polyplexes with dsDNA. The
resulting dendrimer G5(RF)4.9(DAPP)6.9 has dual functional motifs, one for tar-
geting RFRs on the cell surface and the other for anchoring a DNA payload.

We selected a series of RF-conjugated dendrimers along with other targeted
dendrimers that include 7 G5(FA)8.6, 8 G5(DAPP)5.4, 9 G5(FA)8.6(DAPP)5.4, 10
G5(RF)4.9, and 11 G5(RF)4.9(DAPP)6.9. Each was used for preparing a series of
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polyplexes by complexation with plasmid DNA (pDNA) encoding a luciferase
(pLuc) as a reporter gene. Several polyplexes containing DNA at various
dendrimer-to-pDNA ratios (D/P) were made, and it was investigated whether such
dendrimer polyplexes are effective for gene transfection by performing transfection
experiments in FAR(+) and RFR(+) KB carcinoma cells in vitro.
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Fig. 7.6 A schematic illustrating the concept for dendrimer vectors with DNA intercalation motifs
for RFR-targeted gene delivery. a–c Transfection of luciferase plasmid DNA (pLuc) in FAR(+)
and RFR(+) KB cancer cells via dendrimer polyplexes, each made with 7 G5(FA)8.6, 8 G5
(DAPP)5.4, 9 G5(FA)8.6(DAPP)5.4, 10 G5(RF)4.9, and 11 G5(RF)4.9(DAPP)6.9. a, b Box and
whisker plots showing the distribution of luminescence at dendrimer-to-plasmid (D/P) ratios of 1:1
(a) and 2:1 (b) at 1 lg of pLuc. Each p value was calculated against plasmid DNA alone
(Asterisk). c Luciferase transfection at higher D/P ratio of 4:1 or 8:1. DAPP =
3,8-di-amino-6-phenylphenanthridine. RLU relative light unit. Error bars standard deviation
(±SD). Adapted with permission from [42]. Copyright © 2011, American Chemical Society
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As presented in Fig. 7.6a, b, each of the polyplexes prepared at the D/P ratios of
1:1 or 2:1 showed transfection activities greater than the pristine plasmid used as
control. The transfection efficiency varied with dendrimer type such that polyplexes
prepared with 10 G5(RF)4.9 or 11 G5(RF)4.9(DAPP)6 gave the highest transfection
efficiency at each ratio with statistical significance of p < 0.01 (F test). These were
more effective than those polyplexes prepared with FA-conjugated dendrimers. It is
notable that 10 G5(RF)4.9 showed such high efficiency despite its lack of DAPP
which was presumably needed for DNA anchoring. We postulate that RF alone
attached to the dendrimer could play a dual functional role as both a targeting ligand
and DNA anchor due to its previously demonstrated ability to intercalate its flat
isoalloxazine head between two adjacent DNA base pairs in dsDNA [64, 65]. The
efficiency of gene transfection also varied with the D/P ratios while a single best
ratio applicable for all polyplexes was not observed. This variation is attributable to
the mechanism of nonviral gene delivery [66] in which the ratio as well as
nanoparticle type determine the shapes and charge properties of the polyplexes,
each playing a critical role in the course of intracellular uptake, DNA release, and
nuclear transport. This observation is indicative of the challenges in predicting the
optimal structure and function of the polyplex which requires further studies in the
future.

The cellular uptake of these polyplexes can occur through either FAR or
RFR-mediated mechanism. By confocal microscopy, we imaged KB cells treated
under the same conditions as in the transfection experiment. As shown in Fig. 7.7,
cells treated with each polyplex showed significant fluorescence which is indicative
of their cellular uptake. Most of the fluorescence intensity was predominantly
localized in the cytoplasmic area rather than on the cell surface and with only minor
fluorescence observed in the nuclei. This is supportive of their intracellular uptake
possibly via a receptor-mediated mechanism, as well as the release of pDNA in the
cytoplasm rather than nuclear uptake of the polyplex complex. As a comparison, 8
G5(DAPP) which lacks RF was taken up, but less effectively than 11 G5(RF)
(DAPP), suggesting the possibility of other mechanisms of uptake such as
macropinocytosis and phagocytosis which is dependent on nanoparticle shapes [67].

In summary, we investigated a new concept for targeted gene delivery using
RF-conjugated multifunctional dendrimers. This novel platform was highly effec-
tive for facilitating gene transfection in specific for RFR(+) mammalian cells.

7.3.4 RFR-Targeted Imaging Methods

As shown above, imaging of RF-conjugated dendrimers in the cell can be per-
formed by confocal microscopy by focusing on fluorescent dye molecules associ-
ated with the NP. However, these dye molecules are photounstable and rapidly
bleach, leading to reduced resolution and detection capabilities. We developed
another imaging modality for investigating the cellular association of
RF-conjugated dendrimers [27]. It is based on a gold nanoparticle (AuNP) system
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which displays unique optophysical properties such as surface plasmon resonance
(SPR) absorption, visible luminescence, and SPR scattering effects [68, 69]. With
these modalities, the detection of AuNP does not require conjugation with any
additional fluorescent labels, and it is conveniently performed under dark field light
[70–72] and confocal microscopy [73].

The AuNPs used in this study [27] were spherical in shape and displayed a
maximal absorption (kmax) band at 520 nm. The size distribution of AuNPs was
measured by atomic force microscopy (AFM), indicating a mean diameter of
13.5 ± 2.2 nm. Their hydrodynamic diameter as determined by dynamic light
scattering (DLS) was as large as *30 nm (Zave) which points to the contribution of
the hydrated diffusion layer surrounding the AuNP core to the measured size. The
AuNP was modified to form the core–shell nanocomposite AuNP@dendrimer by
its surface modification with dendrimer conjugates 12, 13 G5(RF)n (n = 0, 4)
(Fig. 7.8). The surface modification was achieved through Au–S chemisorption
between the surface Au and the cyclic disulfide moiety at the terminus of a lipoic
amide branch of the dendrimer.

Fig. 7.7 a–e Fluorescence confocal microscopy of various polyplexes taken up by KB cells
in vitro. Each sample was prepared using polyplexes made of luciferase plasmid (1 lg/mL) in
complex with each of dendrimer conjugates 7 G5(FA)8.6, 8 G5(DAPP)5.4, 9 G5(FA)8.6(DAPP)5.4,
10 G5(RF)4.9, or 11 G5(RF)4.9(DAPP)6.9 at a 2:1 ratio (w/w). In this imaging study, the
localization of the dendrimer polyplex was detected by fluorescent emission that is attributed to
excitation of dendrimer-attached ligands including folate (a), riboflavin (d), and/or DAPP
(3,8-di-amino-6-phenylphenanthridine; b, c, e). Reprinted with permission from [42]. Copyright ©
2011, American Chemical Society
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We first validated two methods for detecting AuNPs which did not contain any
fluorescent dyes or chemisorbed dendrimer. As shown in Fig. 7.8a–c, RFR(+) KB
cells were incubated with citrate-stabilized AuNPs (50 nM) for 2 h, and were
imaged by confocal microscopy via two detection modes including SPR scattering

Fig. 7.8 SPR scattering imaging for the cellular uptake of dendrimer-coated gold nanoparticles
AuNP@G5(RF)n in KB cells. a–c KB cells treated with 50 nM of unmodified AuNP for 2 h were
imaged by a SPR scattering or b luminescence. c Co-localization of the signals was confirmed by
the overlay. SPR scattering imaging was taken for KB cells treated for 4 h with 80 nM of d AuNP,
e AuNP@G5(RF)n=0 or f AuNP@G5(RF)n=5, (inset is a magnified view of the adjacent cells).
Scale bar 30.3 lm (inset, 28.8 lm). Signal from the SPR scattering was overlaid with differential
interference contrast (DIC) images. Reprinted with permission from [27]. Copyright © 2014,
American Chemical Society
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(kex 514 nm; kem 474–506 and 522–570 nm) and luminescence (kex at 514 nm; kem
at 550–650 nm). AuNPs associated with the cells were clearly detectable under
both detection modes, SPR (Fig. 7.8a) and luminescence (Fig. 7.8b); however, their
detection intensities were rather weak due to their low level of cellular uptake.

For enhanced uptake, KB cells were treated at a slightly higher concentration
(80 nM) and incubated for a longer period (4 h) with AuNP and AuNP@G5(RF)n
(n = 0, 5). Images of the treated cells were acquired in the SPR scattering mode,
showing qualitatively clear differences between untargeted NPs (AuNP, AuNP@G5
(RF)0) and targeted AuNP@G5(RF)5. The targeted AuNP@G5(RF)5 showed more
punctate and localized areas of signal, and their intensity was distinctly greater than
those observed otherwise with the bare unmodified AuNP as well as with the
AuNP@G5(RF)0) treated cells (Fig. 7.8d–f). We attribute this scattering detection
to large aggregates of AuNPs rather than individual AuNPs either bound on the cell
surface or internalized.

In summary, our confocal microscopy studies demonstrated the utility of the
dual detection modes of SPR scattering and luminescence for the determination of
the cellular localization of dendrimer-chemisorbed AuNPs in tumor cells. As
covalent modification with fluorophores for detection is sometimes not desirable
due to the possible alteration of native activity, these nonfluorescent-based methods
of detection may offer a better alternative for imaging applications.

7.4 Biophysical Basis of Multivalent High Avidity

The design principle of targeted NPs involves a multivalent ligand system in which
each NP is conjugated with multiple targeting ligands. Thus, the multivalent NP
recognizes and binds to a target cell with high specificity and strong binding
affinity, which together are referred to as avidity [51, 52, 63, 74]. Unlike affinity
which often refers to the strength of monovalent interaction between a single
receptor and ligand pair, avidity is a collective property that measures the strength
of simultaneous interactions between multiple receptor–ligand pairs [51, 56, 57]
(Fig. 7.9).

Multivalent design factors have been extensively investigated by many labora-
tories including ours by conjugation of small molecule ligands such as carbohy-
drates [51, 63, 75, 76], folate [77, 78], methotrexate [79–83], vancomycin [84–87],
and oligonucleotide [88] to NP scaffolds based on polymers [75, 89, 90], den-
drimers [77, 79, 84, 88], and inorganic nanomaterials [78, 86, 87, 91]. These studies
suggest that several factors play a significant role in conferring high avidity and
selectivity. These include: (1) use of threshold ligand valence [77, 84, 88];
(2) presentation of two different ligands for co-targeting two distinct receptors on
the same cell surface [78, 91]; (3) evaluation of NP sizes and shapes [92] for
optimized conformal interactions [75, 93, 94]. It is also notable that an over-
crowding or steric effect can occur [89, 95] when too many or bulky ligands are
presented on the same surface of a NP which thus can interfere with high avidity

160 P.T. Wong et al.



binding. This steric interference is especially an issue with large molecule ligands
such as antibodies [96]. Here, we investigated the biophysical basis for the specific
and high avidity adsorption of RF-conjugated dendrimers to receptor expressing
cell surfaces.

7.4.1 Ligand Affinity

We first investigated the thermodynamic basis of monovalent interactions between
a receptor and a RF-conjugated dendrimer in solution [51]. One of the key design
factors of this dendrimer conjugate is the RF valency which is known to play a
significant role in controlling the avidity of the multivalent system. However, little
is known about its role in monovalent affinity. Two series of RF-conjugated den-
drimers G5(RF)n 14–19 were prepared by the covalent attachment of RF at either its
N-10 or N-3 position to the dendrimer (Fig. 7.9). The linker used for RF attachment
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Fig. 7.9 a, b Structures of two RF-conjugated dendrimer series G5(RF)n. In each, the RF ligand is
tethered to the G5 PAMAM dendrimer through a linker located at either its N-10 or N-3 position
with variable valency (n). c Representative raw ITC data for the interaction between 17 G5(RF)4.5
with chicken RFBP (4 lM) at 25 °C in PBS buffer. d Plot of integrated area under each injection
peak for 17. The solid line is an independent model fit to data with parameters n, KD, and ΔH. Inset
a model for monovalent receptor–ligand association. Reprinted with permission from [28].
Copyright © 2012, American Chemical Society
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in each series is composed of a three to five atom spacer. We chose this linker
length as our previous cell binding [26] and SPR studies [25] suggested that it is
long and flexible enough for the dendrimer-attached RF to be able to dock in the
ligand site of RFBP. In each series, the average number (n = valency) of RF
attached was varied in order to determine whether the ligand valency plays any role
in the monovalent affinity (KD) of the tethered RF ligand in solution.

Several binding parameters for the interaction between RF-conjugated den-
drimers and soluble RFBP were determined by ITC in solution as summarized in
Table 7.3 [28]. First, free RF binds to RFBP with a binding stoichiometry (nb) of
1:1 (RFBP/ligand) [25]. Each of 14–16 G5(RF)n in the N-10 series showed an nb of
*3–5:1 (RFBP/dendrimer), indicative of partial occupation of all the RF sites on
the dendrimer by RFBP. This stoichiometry is in close agreement with the analysis
based on a simple sphere model in which approximately six to seven RFBP (d = 4–
5 nm) protein molecules can be theoretically accommodated around the surface of a
G5 dendrimer nanoparticle (d = 5.4 nm) [55]. In contrast, 17–19 G5(RF)n in which
each RF was tethered through a short spacer (3 atom) at its N-3 position showed
only 1–2 RFBP occupation per dendrimer. These results suggest that ligand con-
jugation at the (D) ribose terminus via a longer glutarate linker provides more space
and flexibility for more optimal protein accommodation.

Overall, this ITC analysis suggests a number of new insights in multivalent
ligand design. First, we observed an upper limit in the maximal number of ligands
that could engage in receptor binding. Control of this limit is dependent on design
factors such as linkage position, spacer length, and ligand valency. However, it is
notable that the RFBP used here is a monovalent system in solution, and thus
different from RFRs presented on the cell surface. Accordingly, the remaining
unoccupied ligands on the dendrimer are still available for making opportunistic
receptor binding interactions to these RFRs, given their proximity [28].

Second, the dissociation constant (KD) values determined for all dendrimer
conjugates were greater by a factor of 93–1110 relative to the KD value of RF
(5 nM) [25]. This suggests that the mean affinity of each RF ligand to RFBP is
significantly decreased once it is conjugated to the dendrimer surface. The KD

values determined for the N-3 linkage series also showed reduced affinity to RFBP,
but overall higher affinity by a factor of *5 than the N-10 series at a similar RF
valency. These results clearly signify that contacts made in the binding pocket by
the RF ligand with an unmodified (D) ribose moiety are important, and thus con-
tribute to tighter binding in the binding pocket.

Third, the decrease in the affinity of the RF-dendrimer conjugates to RFBP is
better understood by examination of thermodynamic parameters based on enthalpic
(ΔH) and entropic (−TΔS) contributions. Enthalpically, the binding of the N-3
conjugates was much more favorable than the N-10 series. In contrast, the entropic
penalty (−TΔS) was more severe for the N-3 conjugates. This implies that the
binding of the N-3 conjugates is largely enthalpy driven, and the conjugation of
more RF ligands per dendrimer likely results in the higher entropic penalty perhaps
due to steric repulsion or congestion [97].
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7.4.2 Multivalent Avidity

Our thermodynamic studies above show that the monovalent interaction between
the RF-dendrimer conjugate and the RFBP in solution is not enhanced, but is in fact
weaker than that of free RF. We then investigated the avidity of the multivalent
binding interactions between a RF-conjugated dendrimer and multiple RFBP
molecules presented on a surface (a model system of the cell surface). We
employed AFM because of its proven ability to quantify multivalent effects in
biomolecules and synthetic model systems [98]. In particular, AFM-based dynamic
force spectroscopy allows for the precise measurement of the physical forces
involved in biomolecular interactions [98].

We hypothesized that the multivalent avidity, which results from multiple,
cooperative interactions, should result in a force which is greater to break than the
monovalent affinity [51, 52, 63, 99]. For this AFM study, a model system for the
cell surface was generated by immobilization of RFBP onto a substrate (an ultra-flat
gold surface) as illustrated in Fig. 7.10. Force experiments were performed through
the contact approach of an AFM tip coated with G5(RF)n (n = 0, 3, 5) to the
RFBP-immobilized substrate followed by retraction to measure the rupture force
arising from the recognition interaction. Rupture events were observed over the
course of the tip retraction, and the binding specificity was confirmed by addition of
a competitive ligand (free RF) (not shown) which led to the block of the rupture
events.

For data analysis, rupture forces were extracted by force–distance curves as
illustrated for G5(RF)5 in Fig. 7.10, and those forces measured for G5(RF)n were
plotted as a function of loading rates as shown in Fig. 7.10D. G5(RF)0 showed only
nonspecific, weak interactions as most of its rupture events showed lack of loading
rate dependency as typically expected for nonspecific events. However, some
events showed a small loading rate dependency which is believed to arise from
nonspecific global interactions such as electrostatic and/or van der Waals interac-
tions between the dendritic residues and the RFBP protein. G5(RF)3 showed a
loading rate dependency that was markedly different from the nonspecific inter-
actions observed in G5(RF)0. Its rupture forces were in the range of 40–50 pN
which may arise from a combination of mono, di- or trivalent interactions given its
ligand distribution [100]. G5(RF)5 also showed a loading rate dependency that was
different from G5(RF)3. The rupture forces observed from the G5(RF)5-RFBP
interactions are higher, and in the range of 70–110 pN, and the upper end of these
forces are most likely arising from multivalent binding greater than those in G5
(RF)3. It is notable that the rupture forces measured in G5(RF)5 are greater than
those in G5(RF)3, and even comparable to the force (*75 pN) reported for a
biotin-avidin bond (KD * 10−15 M) [101] which constitutes one of the strongest
non-covalent interactions.

In summary, this dynamic force spectroscopy study enabled us to quantitatively
measure the physical forces involved in the adsorption of RF-conjugated den-
drimers to the surface through multivalent receptor binding. RF valency is
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positively correlated with the magnitude of rupture force for dendrimer adhesion.
These results were strongly supportive of its essential role in the design of
RFR-targeted NPs.

7.5 Conclusion

RFR plays an essential role in cellular uptake of RF in normal physiology. Its
overexpression is, however, observed in a number of cancer cell types and in cancer
stem cells [19, 20, 43]. Here, we summarized the proof of concept studies reported
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Fig. 7.10 a An AFM gold (Au) probe tip prepared by surface coating with G5(RF)n (n = 0, 3, 5;
linkage at N-3 position), and schematic for dynamic force spectroscopy; b Representative force–
distance curves between a G5(RF)5 (13)-coated tip and RFBP covalently attached to an ultra-flat
gold surface. Loading rate = 5.7 nN/s. Offset force curves depict rupture events in the a 10–20 pN,
b 20–50 pN, and c 50–120 pN ranges; c Dynamic force spectra of G5(RF)n (n = 0, 3, 5) versus
loading rate. Square data points represent rupture of unbinding event (a). Circle and triangle
points represent unbinding events (b, c), respectively. Adapted with permission from [24].
Copyright © 2014, American Chemical Society

7 Riboflavin-Conjugated Multivalent Dendrimer Platform … 165



by our laboratories which demonstrated that RF or its homologous antagonists such
as lumiflavin and quinacrine [25] have a strong potential to serve as ligands for
selectively targeting RFRs, specific biomarkers in tumors and cancer stem cell
biology. With a rational design approach based on an available RFBP crystal
structure [45], we developed linker chemistry which enabled efficient conjugation
of RF at its (D)-ribose unit and isoalloxazine head without loss of its binding
activity [26, 28]. A series of multifunctional RF conjugates prepared with
G5 PAMAM dendrimer were demonstrated as effective nanoplatforms for
RFR-targeted delivery in RFR(+) KB cells in vitro using an anticancer therapeutic
agent (MTX) and a reporter gene. Imaging methods based on AFM and confocal
microscopy in combination with the SPR scattering modality of AuNPs conferred
an ability to investigate the receptor-mediated uptake of RF-conjugated dendrimers
by tumor cells [27, 42].

Development of nanotechnology for RFR-targeted applications has started only
recently following early studies on receptor-mediated uptake of RF and its protein
conjugates by tumor cells [21, 23]. Despite its early stage, a number of explorative
studies which have been conducted in our laboratories [24–28] and others [29–31]
are strongly supportive of multiple promising applications. These include delivery of
antitumor agents (MTX [26], mitomycin C [31]) by RF-conjugated nanomaterials
based on the PAMAM dendrimer [26, 28, 42], AuNP [27], N-(2-hydroxypropyl)
methacrylamide (HPMA) copolymer [31], and human serum albumin [21]. In
conclusion, we anticipate that RFR-targeted nanotechnology has a strong potential
for playing a critical role in the development of new technology and effective
nanodevices for tumor-specific delivery and imaging applications.
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