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Abstract In this chapter, we discuss the development and application of molecular
modeling methods to analyze and forecast the experimental properties of nano-
materials. We mainly focus on Quantitative Nanostructure—Activity Relationships
(QNAR) to evaluate the extent of biological activities potentially induced by var-
ious types of nanomaterials. First, we present the basic principles of QNAR
modeling that uses machine-learning techniques to establish quantified links
between the biological endpoint of interest (e.g., cytotoxicity, cell death, ROS
production) and nanomaterials’ characteristics. Second, we briefly review recently
published studies reporting on the QNAR modeling of the largest and most sig-
nificant datasets of nanomaterials available in the public domain. Third, we discuss
some perspectives for the use of molecular modeling on nanomaterials. Overall, we
show how molecular modeling can represent a key element for enabling the rational
design of nanomaterials with the desired activity and safety profile.

Keywords Molecular modeling � Cheminformatics � QNAR �Machine learning �
Virtual screening

14.1 Introduction

Nanotechnology [1] represents the final frontier for advanced material manufac-
turing at the atomic resolution. Manufactured nanoparticles (MNPs) are materials
with at least one dimension varying from 1 to 100 nm. At that scale, such materials
are characterized by unique optical, thermal, electrical, magnetic, and biological
properties [2]. As a consequence, this is no surprise that the research on novel
MNPs has led to a wide interest in many areas of research and industrial applica-
tions. Thus, nanotechnology is now seen as a global, multi-purpose technology [3].

D. Fourches (&) � R. Lougee
Department of Chemistry, Bioinformatics Research Center,
North Carolina State University, 1 Lampe Dr, Raleigh, NC 27695, USA
e-mail: dfourch@ncsu.edu

© Springer Nature Singapore Pte Ltd. 2017
B. Yan et al. (eds.), Bioactivity of Engineered Nanoparticles,
Nanomedicine and Nanotoxicology, DOI 10.1007/978-981-10-5864-6_14

361



Its worldwide impact is expected to be as big as that of plastics with a global market
reaching three trillion dollars as early as 2020 [4, 5]. As of mid-2013, more than
1800 consumer products from 622 companies and 32 countries have already been
inventoried [6].

One area of great interest for the use of nanotechnology is nanomedicine. As
potential medical devices, MNPs are already capable of being used on various
surfaces as antimicrobials, water purifying agents, or as electrochemical biosensors
[7, 8]. Other nanomedicine-relevant applications have also been explored in which
MNPs are directly interacting with biological systems. For instance, we can high-
light the use of MNPs for achieving fluorescent labeling, drug delivery, detection of
pathogens, detection of proteins, probing of DNA structure, tissue engineering,
tumor destruction, purification of biomolecules and cells, or MRI contrast
enhancement [9]. Furthermore, nature actually relies on complex nanoparticles in
many organisms: e.g., cephalopods fabricate reflective protein platelet nanostruc-
tures [10], fireflies generate nanostructured cuticles on their abdomen, which
enhance the emission of bioluminescent light [11]. We could also underline
Geobacter sulfurreducens, a sulfur-reducing proteobacterium, which utilizes
protein-based nanowires to transfer electron in the extracellular environment [12].
Thus, the potential of nanomaterials for medical applications with therapeutically
relevant outcomes is tremendous. However, this objective is only valid as long as
the MNP-based nanodevices have controlled and safe bioprofiles.

One particularly well-studied class of nanomedicine-relevant MNP is carbon
nanotube (CNT). These cylindrical structures entirely composed of carbon are
considered the quintessential nanomaterial. A varied list of properties and mor-
phologies makes CNTs useful in many applications, especially when it comes to
their mechanical strength, high thermal conductivity, optical properties, and out-
standing field emission properties. As CNTs are increasingly considered in
next-generation microelectronics (e.g., CNTs used as key components for the
upcoming generation of 3-D microprocessors), they are also seen as a promising
platform for carrying and delivering drugs in the human body [13–15]. However,
up to this date, the lack of biocompatible CNTs has dramatically slowed down their
development as devices for nanomedicine.

WithMNPs being used in medicine, cosmetics, clothing, food, and even goods for
children, it is of high importance to study and understand whether and how exposure
to these highly diverse nanoparticles could impact their environment as well as human
health. Are the unique properties of MNPs a potential source of short-term and/or
long-term toxicity [6] for living organisms? Indeed, one important drawback ofMNPs
(and in particular CNTs) is their known toxicity potential due to their complex (and
mostly unknown) bioprofiles as shown in various assays, cell lines, and organisms
[16, 17]. For instance, even thoughCNTs are entirelymade of carbon, theseMNPs are
not inert. In fact, they resist biological degradation and can potentially accumulate and
induce toxicity in organs like lungs [18]. Moreover, not only humans are directly
concerned but the whole environment including aquatic ecosystems due to industrial
waste waters [19]. Therefore, eco- and human toxicological assessments are
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increasingly needed as the number and diversity of consumer-oriented MNPs con-
tinue to follow a sustained rise.

When considering the outcome of federal screening efforts [20–22] such as
Toxcast and Tox21, it is rather accurate to hypothesize that testing all the
MNP-including products currently available on the market following similar
experimental toxicological protocols would literally and optimistically take decades
and cost several billion dollars. With the skyrocketing rate at which MNPs are
being generated and incorporated into everyday products, there is a strong rationale
for mainly relying on computational chemistry techniques to speed up the assess-
ment of MNPs characteristics.

In this chapter, we discuss the development and application of cheminformatics
methods to analyze and assess the experimental properties of nanomaterials. We
focus on a family of techniques entitled Quantitative Nanostructure—Activity
Relationships (QNAR or nano-QSAR) for evaluating the biological events induced
by nanomaterials based on their chemical, physical, and structural characteristics. In
Sect. 14.2, we present the basic principles of QNAR modeling that employs
machine-learning techniques (e.g., logistic regression, support vector machines,
artificial neural network) to establish quantified links between the biological end-
point of interest (e.g., cytotoxicity, cell death, ROS production) and a selected pool
of experimentally measured physical chemical properties and/or nanomaterials’
characteristics computed from their structures. In Sect. 14.3, we briefly review a
couple of recently published studies reporting on the QNAR modeling of datasets
of nanomaterials, especially for carbon nanotubes. In Sect. 14.4, we discuss some
perspectives for the use of molecular modeling on nanomaterials, especially the use
of predictive molecular docking and molecular dynamics simulations in the com-
plement of QNAR models.

14.2 Quantitative Nanostructure—Activity Relationships
(QNAR)

14.2.1 Definitions and General Principles

Nanotechnology has been defined by the National Nanotechnology Initiative as
“the ability to control and restructure the matter at the atomic and molecular levels
in the range of approximately 1–100 nm, and exploiting the distinct properties and
phenomena at that scale as compared to those associated with single atoms or
molecules or bulk behavior” [23]. MNPs are nanoparticles that have been designed
and manufactured through either top-down or bottom-up approaches, i.e., top-down
approaches are processes where NPs are created from bulk materials through
processes such as milling, repeated quenching, or photolithography [24, 25];
bottom-up approaches are based on molecular-sized components as starting mate-
rials and complex clusters are created through chemical reactions, nucleation,
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and growth process [26]. Importantly, functionalization is the process of adding
surface modifications to a material. In the case of nanomaterials, functionalization is
used to modulate the bioprofiles of MNPs by decorating their surface with small
molecules (see Sect. 14.3). Nanotoxicology is the field that seeks to understand
how the unique characteristics and properties of nanomaterials can induce, modu-
late, and/or impact a potential detrimental and toxic effect in the human body and/or
the environment.

The main cheminformatics method used to model MNPs is actually based on
Quantitative Structure–Activity Relationships (QSAR). Based on the general
principle that similar compounds should induce similar biological effects, Puzyn
et al. [27] introduced the term “nano-QSAR” (which is equivalent to the term
QNAR) referring to the use of QSAR models for nanoparticles. Puzyn et al. [27]
proposed that “nano-QSAR” models would be capable of establishing key links
between MNPs features and their biological properties. QSAR primarily relies on
machine-learning algorithms (e.g., random forests, support vector machines, arti-
ficial neural networks) to generate prediction models using subsets of parameters
(called descriptors) describing MNPs’ chemical, physical, constitutional, and
structural characteristics. QSAR methods have a long history of providing valuable
and robust models used to identify and help designing drugs [28, 29]. For more
technical details about the exact nature of a QSAR model, how to train and validate
it, how to assess the domain of applicability, and how to screen a set of molecules
using a QSAR model, we highly recommend the recent state-of-the-art review by
Cherkasov et al. [30].

Again, Quantitative Nanostructure–Activity Relationships (QNAR) are based on
the same principle as QSAR, i.e., nanomaterials with similar chemical, physical,
and structural characteristics are likely to induce similar biological effects. Thus,
QNAR models [29] involve the use of molecular descriptors that characterize the
structures and other chemical physical properties of MNPs. Here, we should
underline the fact that these descriptors can be either computed using dedicated
software taking as input the chemical structures of the nanomaterials, or experi-
mentally measured (e.g., zeta potential, size distribution) according to the same
protocols and conditions. Some of the latter measured descriptors are sometimes
referred as biological descriptors when MNPs are tested in a range of in vitro
biochemical assays. Each QNAR model establishes quantified relationships
between nanomaterials’ descriptors and a particular endpoint (e.g., cytotoxicity). To
do so, modelers use the exact same machine-learning techniques they employ when
building more traditional QSAR models for small organic molecules [29].

14.2.2 Data Sources

Publicly available sources and repositories for MNP datasets suitable for QNAR
modeling are slowly emerging. In this paragraph, we cite some of the most
well-known repositories for MNP-related data:
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– The DaNa2.0 database (Data and Knowledge on Nanomaterials—accessible at
www.nanopartikel.info/en/) incorporates key information on MNPs, exposure,
uptake, and behavior in both the human body and environment. The information
is organized first by the field of application of a given product, then by the type
of nanoparticle.

– The Nanowerk nanomaterials database (accessible at www.nanowerk.com)
currently contains almost 4000 unique nanomaterials. The information con-
tained in this database is primarily originating from supplier information. Key
physical characteristics (e.g., purity, size distribution) are available for the
MNPs included in the dataset.

– The Nanodatabase (accessible at nanodb.dk) is a search engine containing a
collection of 2340 different consumer nanomaterials. The collection contains
information on the product category, year, type of nanomaterial, country of
origin, country of production, manufacturer, waste products, and potential
exposure pathways.

– Nano is a searchable database (accessible at https://nano.nature.com) of
nanoscience data created by Springer. The database offers more than 200,000
curated profiles on nanomaterials and nanodevices. Each entry comes from high
impact journals and patents, which are all evaluated by nanotechnology experts.
Precise search tools help to categorize the structures, size, composition, prop-
erties, characterization methods, toxicity, other biological effect, synthesis
methods, applications, and patent claims of these nanomaterials.

– The Nanomaterial Registry (accessible via https://nanohub.org/groups/
nanomaterialregistry) contains information from many publicly available sour-
ces. This dataset contains several thousands of records, the most populated entry
being for silver-based MNPs (ca. 200 records). Particles’ size, size distribution,
zeta potential, aggregation properties, and purity values are generally available
for the records. The data quality control, MNPs’ naming and description
ontology, and storing protocols are state of the art by following the Nano-Tab
recommendations [31, 32].

– The Nanomaterial–Biological Interactions Knowledgebase (accessible at nbi.
oregonstate.edu) compiles experimental data on various types of MNPs and their
effects on biological systems. The now famous weighted EZ metric scores are
calculated from a panel of assays to characterize the bioprofiles of each MNP and
can represent valuable biological descriptors to train nano-QSAR models [33].

14.2.3 QNAR Modeling

QNAR modeling workflow is strictly similar to the classical predictive QSAR
workflow [30, 34]. Therefore, we refer the readers to these papers for more details
regarding the exact procedures for training, validating, and selecting the best
models using a particular set of molecules, a machine-learning technique, and one
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(or several) endpoint(s) to assess. Importantly, QNAR models need to account for
the unique properties arising with MNPs.

There are many features and other specificities that contribute to the diversity
and uniqueness of MNPs [35]. For instance, we can underline the molecular shape
(e.g., cubes, cylinders, platelets, hollow spheres), the dispersion medium (e.g.,
liquids, gels, solid matrix), or the surface modifications (e.g., pristine, polymer
grafting, biomolecules, surface coatings). These aforementioned features should
thus be characterized either by the computational descriptors or the experimentally
measured properties [27]. Therefore, modelers should consider various types and
combinations of descriptors (such as chemical composition, size distribution, zeta
potential, agglomeration state, porosity, overall molecular shape, surface chemistry)
in order to build their nano-QSAR models.

This structural diversity of MNPs makes the choice of descriptors very chal-
lenging and so critical when it comes to prediction performances and the inter-
pretability of the QNAR models built with these descriptors [27]. For instance, the
chemical descriptors used for quantum dots will likely not be the same as the ones
used for functionalized multiwalled carbon nanotubes. Therefore, we proposed to
distinguish two categories of nanomaterials: (1) those with different cores and
surface chemistry and (2) those possessing the same core but different surface
functionalization. In order to afford high-performing QNAR models, the descriptors
used to characterize MNPs need to be well-chosen. In case of MNPs with different
cores, descriptors need to describe the whole MNP taking into account both the
cores and the surface modifiers (if any). In the case of a mono-core with different
functionalization, the descriptors can either describe the whole MNP or simply the
surface modifiers. In the latter case, the nano-QSAR model is simply a traditional
QSAR model of the surface decorators.

The chemical data curation workflow we published [36, 37] is also critical for
MNPs. While each dataset of MNPs should theoretically undergo its own cus-
tomized curation procedure, curation should always involve the removal of certain
records (e.g., mixtures), structural cleaning (e.g., neutralization, removal of coun-
terions), normalization of specific chemotypes, treatment of tautomeric forms,
analysis and removal of duplicates, and a final manual inspection of the curated
dataset of structures.

Once the chemical datasets has been compiled and curated, a set of chemical
descriptors needs to be obtained for each MNP. Among the computed descriptors,
we can mention: 0D/1D descriptors are a single number parameter usually referring
to a global property of the MNP (e.g., presence of carbon atoms, average molecular
weight, number of oxygen atoms). 2-D descriptors are computed from the 2-D
molecular representations of the MNPs or its surface modifier. 2-D descriptors
traditionally encompass molecular fragments, topological indices, and other
graph-derived parameters [30]. 3-D descriptors refer to parameters and indices
computed from the three-dimensional structure of the MNP and/or its surface
decorators [30]. Quantum descriptors computed from semiempirical or ab initio
quantum chemistry software are also very useful for characterizing the distinct
properties of MNPs [30].
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Similarly to classical QSAR models, QNAR can be either continuous or clas-
sification models. Classification QNAR models relate the predictor variables to a
categorical value (binary or multi-class) of the response variable, while regression
models have continuous response variables. QNAR models can not only be utilized
to forecast the properties of MNPs, but also to understand which functional groups,
physical characteristics, or quantum parameters have significant effects in the
modulation of those experimental properties. This is crucial when it comes to the
rational design of new MNPs.

14.3 Recent Case Studies of Nano-QSAR Modeling

Gajewicz et al. [38] developed nano-QSAR models for a set of 18 metal oxide
nanoparticles to evaluate their toxicity on cells. Quantum descriptors used in this
study included DHf

c (related to the band gap width) and Xc (related to Fermi level of
the oxide). The authors showed these computer-selected descriptors could help the
understanding of the mechanism of action for these MNPs when tested against
HaCat keratinocyte human cells and Escherichia coli cell lines.

Interestingly, this paper echoes another study [39] published in Nanotoxicology
regarding the nano-QSAR models based on a set of 70 oxide nanoparticles and their
oxidative stress potential. The authors showed those MNPs were capable of
inducing oxidative stress in vitro because of their specific band energy character-
istics similar to redox potentials of antioxidants or radical formation reactions.

Recently, Puzyn and coworkers [40, 41] further demonstrated the usefulness of
characterizing the physicochemical features of metal oxide nanoparticles, especially
for predicting the zeta potential of such MNPs, a determining factor of their
aggregation properties and ultimate behavior once released in the environment.

As illustrated by the three aforementioned examples, the compendium of studies
regarding the development of QNAR and nano-QSAR models is growing fast. We
recommend reading the excellent reviews by Kar et al. [42], Puzyn et al. [27, 43], or
Tantra et al. [44] One should also note the growing interest in the modeling of
gold-based nanomaterials [45].

In this mini-chapter, we specially focus on the papers reporting on QNAR
models for carbon nanotubes (CNT) as the current knowledge is still limited
regarding CNTs’ in vivo bioprofiles and potential induced toxicity. Indeed, a sig-
nificant range of negative effects caused by pristine CNTs has been reported in the
literature for various assays, cell lines, and organisms [16, 17]. Interestingly, recent
studies have proven these detrimental effects can be noticeably reduced by func-
tionalizing CNTs’ surface with organic molecules [46]. Therefore, the rational
design of CNTs’ surface chemistry could lead to safe and controlled bioprofiles for
industrial CNTs, and obviously a more appropriate biocompatibility for CNTs
potentially relevant for medical applications.

To allow a safe and optimal use of CNTs in medical applications, CNTs can
be functionalized to optimize blood circulation and biocompatibility [47].
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On a practical point of view, the nanotube surface is drastically modified by adding
biocompatible organic compounds. These surface modifications can lead to
improved interactions with biological components, altered homeostasis, and
improved permeability with plasma membranes [48].

In 2006, Dumortier et al. [49] studied the effects of functionalized carbon nan-
otubes (f-CNTs) on immune system cells. T lymphocytes, B lymphocytes, and
macrophages were shown to take up four different types of f-CNTs and the authors
did not observe any detrimental effects on cell viability.

In another study, Liu et al. [50] studied the biodistribution of radio-labeled
f-CNTs in mice by in vivo positron emission tomography and Raman spectroscopy.
They found that CNT functionalized with poly ethylene-glycol phospholipids were
stable in vivo. These f-CNTs exhibited relatively long blood circulation times with
a half-life of *2 h for longer phospholipid chains, and *0.5 h for the shortest
chains. Also, the authors showed these f-CNTs exhibited surprisingly low uptake
into the liver and kidneys. Additionally, these f-CNTs efficiently showed significant
uptakes in various tumor types giving a strong indication of their potential abilities
in cancer nanomedicine. In a follow-up publication, Liu et al. [51] increased blood
circulation to 24 h and showed complete clearance of CNTs from major organ
systems in about two months. Since f-CNTs were detected in feces, kidneys, and
bladder, the study of Liu et al. [51] demonstrated that clearance is possible via the
biliary and renal pathways.

In the context of structure–toxicity relationships, Sayes et al. [52] analyzed the
effects of the density of functionalization for f-CNTs. The authors showed that the
type and density of functionalization were correlated with CNTs’ cytotoxicity
observed in cultures of human dermal fibroblasts. Interestingly, the authors found
that when the degree of sidewall functionalization increases, the cytotoxicity
induced by the f-CNTs decreases. These results illustrate how CNTs can be ren-
dered less toxic to cells. A complementary study by Chen et al. [53] showed that
polymer-coated CNTs could be better interfaced with living cells.

As shown by the aforementioned studies, the experimental testing of pristine and
functionalized CNTs is well underway and has now led to more knowledge on the
actual bioprofiles of some compounds. However, are these preliminary results
sufficient to start building predictive models to assess the induced effects of new
CNTs? Or help in designing CNTs with the desired biocompatibility?

There are many challenges in developing and using computational chemistry
methods to evaluate the biological effects induced by CNTs. The ultimate objective
is to develop techniques that are effective and accurate in identifying biological
effects (harmful or beneficial) for the various forms of CNTs being synthesized. The
current experimental methods to characterize CNTs experimentally are expensive
and time-consuming. Therefore, high-throughput computational methods with the
ability to assess biological outcomes for hundreds of thousands of virtual f-CNTs in
a time-effective manner would dramatically reduce overhead cost and allow for the
exploration of the chemical space of f-CNTs.

Modern cheminformatics methods such as QNAR and nano-QSARmodels utilize
biological and chemical data including physical and geometric properties in order to
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create statistically significant and externally predictive models capable of accurately
forecasting the adverse and therapeutic biological effects of f-CNTs [29]. Although
interest in the predictive modeling of MNPs is increasing in the computational
chemistry community, literature specifically related to the cheminformatics modeling
of f-CNTs for the purpose of understanding and forecasting their biological activity is
still scarce. Below are recapitulated some of the most recent studies:

Monajjemi and Mollaamin [54] conducted molecular dynamics simulations of
f-CNTs in different solvents. The functionalization was based on the anti-cancer
drug cisplatin. The authors explored the potential of those f-CNTs for drug delivery.

Puzyn et al. [43] developed a robust nano-QSAR model based on ensemble
learning regression methods in order to predict the biological effects of diverse
nanomaterials including CNTs. Based on CDK molecular descriptors, these models
were tested against in vitro assays to determine their reliability and underwent
fivefold cross validation. The prediction performances of the nano-QSAR model for
f-CNTs were as high as R2 = 0.922 for the full set.

Fourches et al. [29, 55, 56] developed a series of QNARmodels based on a dataset
of 83 f-CNTs tested in in vitro toxicological assays. Four protein-binding assays
(bovine serum albumin, carbonic anhydrase, chymotrypsin, and haemoglobin) were
conducted as well as acute and immune toxicity assays. External prediction accuracy
of the QNAR models based on 2-D descriptors and support vector machines were
shown to be as high as 74% (n = 73, sensitivity = 79%, specificity = 69%) for the
cytotoxicity models. Protein-binding classification QNAR models afforded 77%
external prediction accuracy. Importantly, these models were used to screen a large
library of 240,000 potential surface modifiers. The modifiers predicted to lead to
f-CNTs with low toxicity and low protein affinity were identified and recommended
for experimental synthesis. Ten putatively active and 10 putatively inactive CNTs
were synthesized and tested. We found that all 10 putatively inactive and 7 of 10 (6 of
10) putatively active CNTs were confirmed in the protein-binding (cytotoxicity)
assay. These results suggested that QNAR models can be employed for predicting
biological activity profiles of novel nanomaterials, and prioritizing the design and
manufacturing of nanomaterials toward better and safer products.

New studies are under way to build QNAR models for even larger sets of f-CNTs
tested in more diverse assays. The progress of machine-learning techniques (e.g., deep
learning) will enable the prediction performances to afford higher levels of accuracy
and allow the rational design of f-CNTs with perfectly controlled bioprofiles. This is
the only way to achieve a fast and robust screening of millions of hypothetical f-CNTs
and to prioritize the experimental testing to the most interesting compounds.

14.4 Perspectives

As modelers, we should recognize that the current QNAR modeling technology is
still in its infancy. In that regard, there are multiple ways QNAR models will evolve
in the coming years. Not too surprisingly, these evolutions will mostly follow the
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directions taken by the more traditional QSAR models for small organic molecules,
and we describe those potential evolutions in the section below. Not only the actual
prediction performances of these models will improve, but more generally the
overall robustness and interpretability of cheminformatics methods we rely on when
it comes to the modeling of nanomaterials.

However, it is important to emphasize the fact that the QNAR modeling field has
completely different types of challenges comparing to the QSAR modeling field.
The latter deals with very large sets of well-defined and characterized molecules
tested against multiple and diverse of biochemical and cell-based assays. There is
no lack of small molecule datasets to be modeled by QSAR models due to the
efforts of the research community to deposit and maintain experimental data in
freely accessible online repositories (such as PubChem, ChEMBL, or Chemspider).
On the contrary, the field of QNAR modeling faces a severe paucity of nanoma-
terial datasets available in the public domain, and this lack of experimental data
limits the type, quality, and applicability domain of the current generation of QNAR
models.

Below, we underline several approaches regarding the future evolution of
QNAR and nano-QSAR modeling:

– Consensus QNAR models: the vast majority of QNAR and nano-QSAR
modeling studies rely on the use of one single type of machine-learning tech-
nique and one type of chemical descriptors per study. However, the benefits of
using a collection of independent models based on various learning algorithms
and chemical descriptors have been shown and established in several key
community benchmarks [57, 58]. Therefore, it is likely that future QNAR and
nano-QSAR models will, in fact, be consensus models, i.e., an ensemble of
individual models averaging their predictions to assess the bioactivity of a given
compound. The averaging procedure can be complex with a weighting scheme
based on models’ individual characteristics and/or performances. The two main
advantages of using a consensus QNAR models are the gain of prediction
performances and an assessment of the models’ concordance allowing a better
estimation of the prediction reliability for a particular compound. Importantly,
methods like read-across [59, 60] can also be considered for taking part in such
types of consensus models.

– Use of biological descriptors: hybrid QSAR models involving both computed
molecular descriptors and experimentally measured biological properties have
been shown to afford higher prediction performances [30, 61–63]. For instance,
concentration-response curves can be used as descriptors in a QSAR model [64].
Datasets including hundreds or thousands of chemicals fully tested against tens
or hundreds of biological assays are still rare in the public domain, but one could
note several recent examples of such screening efforts [21, 65]. Due to the
critical lack of MNP-related data in the public domain, it is way more difficult to
obtain and use biological descriptors for training a QNAR model. The largest
datasets of MNPs in the public domain contain ca. 150 compounds and are
generally tested in one single biological assay. Therefore, the use of biological
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descriptors for QNAR models will certainly intensify as soon as more experi-
mental screens are conducted for larger sets of MNPs.

– Mixtures of nanomaterials: Slurries are stable suspensions of abrasive nano-
materials (e.g., alumina, silica, and/or ceria) dispersed in water with other
chemicals. They are notably employed for polishing tasks in the manufacturing
of semi-conductors (e.g., chemical mechanical planarization process). These
types of suspensions represent a real challenge for molecular modelers as they
involve complex mixtures of different nanomaterials and various organic
molecules in solution. As their bioprofiles are difficult to assess, it is likely more
cheminformatics studies will be done to create simpler “model systems” for
attempting the modeling of such types of mixtures of nanomaterials.

– Quantum mechanics: QM represents one of the cornerstones of computational
chemistry. As shown by the work of Puzyn and coworkers [40], QM-based
calculations are essential in enabling the characterization of the electronic,
physical, and chemical properties of nanomaterials. With the development of
new DFT functionals adapted for subtypes of nanomaterials, the use of QM
calculations for computing MNPs’ descriptors in order to build QNAR models
will skyrocket in the coming years. This is especially true for challenging series
of analogous MNPs with subtle structural variations, for which QM-based
descriptors will help in discriminating.

– Molecular docking: Three-dimensional molecular docking [66] is a popular
technique used for screening large libraries of molecules in drug discovery [67,
68]. Docking allows modelers to forecast the binding mode of small molecule
ligands in the active site of a biological target (e.g., protein, DNA). Obviously,
the 3-D structure of the target is needed. Molecular docking not only predicts the
binding mode of the ligand but also scores the actual molecular interactions to
estimate the free energy of binding. These docking scores can be used to rank
ligands in virtual screening studies [69, 70]. These methods can be applied to
estimate the binding modes of carbon nanotubes with small proteins. Since the
scoring functions used by molecular docking programs have not been designed
and trained for that purpose, the docking of f-CNTs is still very prototypical and
not ready for reliable virtual screening.

– Molecular dynamics: Another computational methodology utilized in chem-
informatics is molecular dynamic simulations (MDS) [71]. MDS allows mod-
elers to simulate the dynamic motions of molecules by solving Newton’s
equations of motions for every single atom in the system. A force field [72] is
used to compute all intra- and intermolecular forces so that the full-atom system
with the explicit solvent can evolve over several hundreds of nanoseconds of
biological time in a “realistic” manner. There are several examples of MDS for
nanomaterials and CNTs [73–76]. These simulations can give clear insight into
the intermolecular forces of f-CNTs interacting with biological targets in an
explicit solvent as well as the effects of different functionalization. In the future,
these MDS trajectories are likely to be used in complement to nano-QSAR
models.
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Overall, QNAR modeling represents a reliable and potentially disrupting way we
assess the properties of nanomaterials. This is obviously critical from a chemical
risk assessment standpoint and thus for regulators that need to fully evaluate the
potentially detrimental effects induced by a given MNP in a particular organism.
But QNAR modeling is also essential for enabling the rational design of new MNPs
with a defined list of characteristics and controlled bioprofiles. In fact, developing
reliable QNAR models to help identifying those highly valuable MNPs is critical
for the future of nanotechnology. Nanomedicine-oriented MNPs are requiring
enormous amounts of costly and time-consuming rounds of structural optimization
to make them efficient and safe by design. Thus, we posit that any new computa-
tional technique enabling or facilitating that MNP design process is relevant and
worth investigating as part of establishing the future toolbox of next-generation
chemists.
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