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Abstract

The most astonishing feature of plant roots is their capability of secreting a broad 
variety of compounds ranging from low molecular to high molecular weights 
into the rhizosphere. These compounds act as signals for establishing and regu-
lating the interactions among plant roots and microorganisms present in rhizo-
sphere through different mechanisms. The mechanism of establishment of these 
relationships includes complex signaling cascades and involves different trans-
porter proteins. Exudation is an important process that influences the microbial 
diversity and relevant biological activities. In addition, these secretions mediate 
the phenomena of mineral uptake in soil with low nutrient content either through 
chelation directly or by affecting biological activity of microbes. Further, 
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microbes associated with plants have the potential to upgrade phytoremediation 
efficiency by facilitating phytoextraction and phytostabilization and through 
increase in biomass production by plants. Overall these exudation-mediated 
plant-microbe interactions influence the soil structurally and functionally via 
orchestrating microbial richness, nutrient acquisition, and phytoremediation. 
Hence, in light of this, the chapter is intended to provide the perceptivity to com-
prehend the impact of root exudation-mediated plant-microbe interactions in 
enriching the structural and functional characteristics of soil.
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23.1  Introduction

Among different metabolic features of plant roots, one of the utmost amazing proper-
ties is to secrete out numerous substances into rhizosphere. These secretions are out-
lined as lightweight permeable excretes which can be eliminated out without any 
trouble through passive diffusion, and for this process, plants don’t have to spend 
their energy (Bertin et al. 2003; Bais et al. 2006). Root secretions are broadly classi-
fied as (i) lightweight molecules like organic acids, amino acids, sugars, and some 
secondary metabolites, which include most of the excreted products from roots, and 
(ii) heavyweight secretions that include reminiscent of mucilage (polysaccharides) 
and proteins, which are large biomolecules in terms of weight Badr and Vivanco 
2009. This mechanism involves replenishment of soil with micro- and macronutri-
ents excreted out through roots (Hutsch et al. 2000; Nguyen 2003). The qualitative 
and quantitative nature of root secretions are reliant on the age and type of the plant, 
and other physical and biological parameters. Owing to the process of root exuda-
tion, various biochemicals excreted from plant roots have the capacity to control 
microbial growth, allow symbiotic relationship, prevent the development of parasitic 
and pathogenic species in the surrounding area of roots, and regulate the composition 
of soil (Nardi et al. 2000; Walker et al. 2003). Around 5–21% of whole photosyn-
thetic carbon is being circulated throughout the rhizosphere by means of root exuda-
tion (Nguyen 2003; Derrien et al. 2004). Although the exudates excreted from roots 
supply biomass and energy to soil, they also help the plant to establish communica-
tion with other microbes and regulate their growth. The crops facilitate each positive 
and negative communication within the rhizosphere by the means of root exudation 
(Bais et al. 2006; Philippot et al. 2013). The positive communication comprises sym-
biotic associations with useful microorganisms, similar to rhizobium, mycorrhizae, 
and plant growth-promoting rhizobacteria (PGPR). The existence of numerous 
microbes in rhizosphere impacts the soil by performing various processes like trans-
portation of water and nutrients through roots, maintaining fertility of soil, and nod-
ule formation (White 2003). These root secretions symbolize a vital role in plants for 
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maintaining interactions with rhizosphere-inhabiting microbes. To support commu-
nication, many types of substances and signaling substances are secreted from plant 
roots, known as autoinducers. However, several types of compounds are released 
from plant roots, and most of them belong to compounds having low molecular 
weight, referred to as secondary metabolites (Bais et al. 2004). Few of these second-
ary metabolic products had been recognized earlier, and their roles within the rhizo-
sphere have been studied and explained in detail.

23.2  Root Exudation and Its Mechanism

The mode of secretion of root exudates involve the release of carbon into soil from 
plant roots (Hutsch et al. 2000; Nguyen 2003; Vishwakarma et al. 2016). Roots usu-
ally retort by secretion of particular proteins and small molecules (Stotz et al. 2000). 
These secretions are utilized by bacteria present in soil for biomass and energy 
production. Root exudates might exhibit both positive and negative association 
within the rhizosphere. The investigation of these secretions released from roots 
help to have in-depth knowledge of communication among plants and microbes 
(Broeckling et al. 2008; Weir et al. 2004; Bais et al. 2004, 2006). The optimistic 
interaction includes symbiotic relationship with invaluable microbes, correspond-
ing to PGPR. Rhizobia, mycorrhizae, and negative response incorporate organiza-
tion with parasitic and pathogenic microbes. Rhizospheric bacteria are responsible 
to remove these contaminants, while the roots supply nutrients for microbial growth 
(Bais et al. 2008). Workers have explained the enhanced mechanism for isolation of 
microorganisms from soil which have the following properties: (1) breakdown of 
particular contaminant and (2) enriched medium for growth of microorganisms. 
Shukla et  al. (2010) explained the approach “rhizo-remediation” to describe the 
significance of root exudates and the rhizospheric microorganisms. 

23.2.1  Diffusion

The passive process involves transport of natural substances like phenolics, carbox-
ylic acids, sugars, and amino acids according to the formation of gradient of con-
centrations between cytosol of root cells (high concentration) and soil (low 
concentration). Due to membrane permeability for natural compounds, it allows 
movement of compounds through lipid bilayer of the plasma membrane. The fac-
tors accountable for permeability are concentration and polar nature of the com-
pounds. This system allows the transport of lipophilic substances. Under a particular 
cytosolic pH of 7.1–7.4, small polar intracellular molecules together with carbox-
ylic acids and amino acids occur as anions which move slowly through the plasma 
membrane. However, during the process of K+ ion diffusion and the transfer of 
protons with the help of ATPase, there is generation of positive-charge gradient 
which allows influx of cations and efflux of carboxylate anions by diffusion. Root 
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secretion of sugars and amino acids occurs through diffusion under stress (Jones 
and Darrah 1994a, b).

23.2.2  ABC Proteins

They are the proteins that are most widely present in nearly all families. Many sub-
stances like metabolic products, anions, and cations are transported by utilizing 
energy generated by ATP hydrolysis. Hence, they are the primary active transporters 
having the property to drive substances against the electrochemical gradient 
(Krattinger et al. 2009). In eukaryotes, these proteins help in export of substances 
from cytoplasm to apoplast and transfer from cytoplasm to organelles like mito-
chondria. About more than hundreds of ABC transporters were reported in the 
genome of rice and Arabidopsis, and few of them were observed to be associated in 
the transportation of compounds like glutathione (Martinoia et  al. 2002), auxins 
(Noh et al. 2001), and anthocyanins (Goodman et al. 2004) and antifungal compo-
nents. Furthermore, ABCs are assumed to transfer diterpene sclareol from N. plum-
baginifolia leaves (Jasinski et  al. 2002) and the isoflavone genistein (antifungal 
agent) from the roots of soybean (Sugiyama et al. 2007). These proteins also act as 
phytoalexin because of their activities against microbes (Geibel 1994). However, 
around 25 ABC transporter genes showed significant increase in gene expression 
levels in Arabidopsis root which are responsible for exudation processes (Badri 
et al. 2008). In an experiment, such genes were knocked out and secretions released 
from wild type and mutants were analyzed. It was observed that the nature of these 
secretions from wild type and mutants was different. It was concluded that ABC 
transporter proteins were in regulation of exudation process. The other example in 
which a gene responsible for powdery mold resistance in Arabidopsis codes an 
ABC transporter is known as PEN3. It is located in the membrane of the cell, and its 
movement toward infected area on the epidermis and hair of roots is regulated by 
structures present on pathogens like chitin and flagellin (Stein et  al. 2006). This 
active transporter releases antimicrobial substances including derivative of gluco-
sinolates into the apoplast to stop the pathogenic microbial movement further into 
the cell. However, PEN3 (¼AtPDR8) also inhibits toxic effect exhibited by heavy 
metal by transferring cadmium ions from cells of root (Kim et al. 2007) showing 
that the identical transporter protein is responsible for many functions in the other 
tissue.

23.2.3  Multidrug and Toxic Compound Extrusion (MATE) Proteins

Interestingly, MATE proteins facilitate the transportation of secondary metabolites. 
They are expressed in both eukaryotic and prokaryotic species (Hvorup et al. 2003; 
Magalhaes 2010), and some bacterial species and mammals are accountable for 
multidrug resistance. Although not much information is reported about these pro-
teins, MATEs act as secondary transporters that transport ions (H+ and sodium ions) 
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along the electrochemical gradient allowing the transport of substance across the 
membrane. According to data reported, Arabidopsis genome has 58 MATE genes, 
and description about these transporters has been already reported in detail. ALF5 
is expressed in cortical root cells and the epidermis and is suggested to guard 
plants from xenobiotics by removing them from root cells (Diener et al. 2001). In 
a study by Li et al. (2002), Arabidopsis gene named AtDTX1 is found to encode 
a protein located in the plasma membrane and helps in the exportation of antibiot-
ics, alkaloids, and toxic components from roots. Some other MATE genes pres-
ent in different plants like H. vulgare (HvAACT1), Sorghum (SbMATE1), and 
Arabidopsis (AtMATE1) show Al resistance by allowing an Al-activated outward 
movement of citrate ions from root tips (Furukawa et al. 2007; Magalhaes et al. 
2007; Liu et al. 2009).

23.2.4  Aluminum-Activated Malate Transporter (ALMT) Proteins

ALMT proteins are accountable for discharging malate ions from roots, thereby 
providing resistance against aluminum toxicity in both dicotyledons and monocoty-
ledons (Ryan et al. 2011). These protein families are found only in plants and not in 
animals and bacteria. These proteins form anion-transporting networks that create 
pores with selective nature in membranes and initiate flaccid transport of substrates 
along electrochemical gradients (Lynch and Whipps 1990). This clearly elucidate 
that due to movement of anions outward or cations inward along ion channels, there 
is generation of difference in potential across the cell membrane ranging from −100 
to −200 mV or across tonoplast ranging from −10 to −50 mV. They are present on 
the cell membrane of roots and help in Al resistance. Gene TaALMT1 present in 
wheat is shown to be expressed in suspension cultures of tobacco (Nicotiana taba-
cum L.), Arabidopsis, wheat, and barley and is responsible for malic acid transpor-
tation facilitating Al tolerance (Delhaize et al. 2004, 2007; Ryan et al. 2011).

23.2.5  Major Facilitator Superfamily (MFS) Proteins

This family of proteins is among the prevalent class of transporter proteins in bio-
logical systems. The release of phytosiderophores (secondary metabolites) displays 
a substantial part in providing iron (Fe) nutrition to the grasses (Marschner et al. 
1987). The produced secondary metabolites remove Fe+3 from the rhizospheric soil 
and form complex with these ions which is further delivered to plant root cells by 
H+-linked transporters of OPT family (Kim and Guerinot 2007).

MFS proteins are responsible for initial export of the compounds. These are cat-
egorized into different classes based on their function such as antiporters, co- 
transporters, or uniporters. The gene named as TOM1 expanded as “transporter of 
mugineic acid family phytosiderophores1” in rice discharges avenic acid and 
deoxymugineic acid from roots of rice plant (deficient in iron) (Nozoye et al. 2011). 
During decrease in iron supply, the gene expression of TOM1 is enhanced, and 
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overexpression of TOM1 in transgenic plants exhibited enhanced release of deoxy-
mugineic acid with better Fe tolerance.

23.2.6  Hot Spots of Exudations from Root

The spots of exudation from roots are foremost since they show a predominant 
impact on the arrangement of microbial communities alongside the plant roots. The 
most important regions of secretion are the root tip with destructive cells invading 
from the tip region to the region of death of outer cells (Bowen and Rovira 1991). 
Utilizing a 4C-labeling manner, McDougali and Rovira (1970) and Rovira (1973) 
confirmed that both main and lateral roots are among the major areas of root secre-
tion followed by the elongation of roots. Bowen (1979) used Pseudomonas fluores-
cens as a model for identifying areas of secretion on Pinus radiata by coating 
disinfected seedlings with the bacteria and analyzing their spots of progress along-
side roots. From this observation, it was elucidated that cell junctions present in 
longitudinal axis had been the major hot spots. However, the amount of root exuda-
tion of several substances from different sites of roots is inadequate.

23.3  Interaction of Root Exudates

23.3.1  Roots and Rhizosphere Interactions

Plants have the capability to adapt to the local environment by perceiving changes 
in a specific rhizospheric environment. These subsequent changes in a particular 
rhizosphere include variations in the growth of neighboring plants and microbes 
invading in close vicinity. Due to presence of any external organism, roots retort by 
secreting some proteins and molecules (Stotz et al. 2000; Stintzi and Browse 2000). 
Furthermore, the root exudates can show mutualistic or protective roles in positive 
or negative interaction, according to other constituents in the rhizosphere. Although 
numerous reports are present to show plant’s association with microbe and insect in 
the plant organs such as stems and leaves, only a small amount has been concen-
trated during interaction of root with microbes and soil inside the rhizosphere.

Root exudates are also observed as a mode of interaction among plant roots and 
PGPR inside the rhizosphere (Hirsch 2003; Bais et al. 2006) and comprise of pro-
teins, phenolics, organic acids (OAs), and sugars (Bais et al. 2006; De Weert et al. 
2002). Although root secretions deliver nutrients to PGPR, they also differentiate 
microbes inhabiting in soil (Badri et al. 2008). As per the data published about the 
low molecular weight OAs such as malate, fumarate, and citrates exuded from roots 
hairs, it was observed that it allowed PGPR growth (De Weert et al. 2002; Kamilova 
2006; Rudrappa et al. 2008; Ling et al. 2011). Organic acids of tricarboxylic acid 
cycle are also responsible for playing a key role as molecular signals (Jones 1998).
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23.3.2  Root-Root Communication

The occurrence of one root system prevents the invasion to the other by releasing 
some chemical substances. The mechanism of allelopathy inhibits the progression 
of other plant species in vicinity by excreting chemical inhibitors. It also has impor-
tance in agriculture as it does not allow growth of weeds and acts as natural weedi-
cide (Callaway and Aschehoug 2000). Bais et al. (2002c) found that (±)-catechin 
prevents growth of knapweed within rhizosphere by releasing phytotoxin from 
roots. The aforementioned example illustrates how these plant roots interact with 
neighboring roots. Plants have capability to utilize exuded secondary metabolites to 
control the rhizospheric conditions for causing damage to neighboring plants. Plants 
with this nature have the capacity to utilize metabolites released from roots as 
chemical linkers for haustorial growth needed for heterotrophic development of 
plant (Keyes et al. 2000). Some parasites of food crops including rice (O. sativa), 
legumes, millet, and sorghum (S. bicolor) and from Scrophulariaceae family par-
ticularly invade the root of nearby plants to acquire mineral, water, and other benefi-
cial growth-promoting compounds from host plant (Yoder 2001). Some of the 
allelochemicals like flavonoids, quinones, cytokines, and para-hydroxy acids are 
reported to facilitate formation of haustoria (Becard et  al. 1995; Estabrook and 
Yoder 1998; Yoder 2001); however, detailed structures of released compounds for 
formation of haustoria are not still clear.

23.3.3  Root Exudate-Mediated Mutualistic Interactions

Mutualism among plants and microbes is principally mediated by exudation of 
roots. Generally, three specific microbial groups have been observed, i.e., mycor-
rhizal fungi, N2-fixing bacteria, and other beneficial bacteria (Azcon-Aguilar and 
Barea 1996) (Fig.  23.1). One more mode of communication that characterizes 
underground zone is root-microbe interactions. The compounds which play an 
essential part in interaction between roots and microbes are flavonoids existing in 
the exudation from leguminous roots and stimulate genes of Rhizobium meliloti 
involved in the process of nodulation (Peters et al. 1986). Many molecular signaling 
mechanisms are included in the process of identifying plant secretions by bacteria. 
The mutualistic relationship between rhizobia family and their leguminous plant 
hosts from Fabaceae family is attributed to the signals produced and compounds 
secreted by both of them. During this process, the exudation by roots generates 
signals, which further stimulates the genes involved in nodulation process (nod 
genes) (Hirsch et al. 2001). According to the analysis, flavonoids are accountable 
for nod gene activation (Wang et al. 2012; Peck et al. 2006). Flavonoids are known 
to act as agonists for some rhizobia species but inhibitors for other species (Cooper 
2007). Chemical compounds like flavonoids are continuously secreted into the rhi-
zospheric soil, but their concentration is considerably enhanced in the presence of a 
particular Rhizobium species (Becard et al. 1992).
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The symbiotic interactions between Frankia (Actinobacteria) and eight families 
of dicotyledonous plants are known as actinorhizal (Wall 2000). There are series of 
regulatory events happening during the course of symbiosis and they start with an 
infection. Further, a common step both in Rhizobium and Frankia known as curling 
of the root hair is preceding nodule development. However, the phenomenon of 
nodule formation is regulated by phenolic compounds (benzoic and cinnamic acids) 
and flavonoid-like components (flavanone and isoflavanone) (Ishimaru et al. 2011; 
Benoit and Berry 1997). It was reported that curling of the root hair is improved in 
Alnus glutinosa root filtrate (Van Ghelue et  al. 1997; Prin and Rougier 1987). 
Popovici et al. (2010) observed that plants of Myricaceae family regulate their root 
secretions in the presence of Frankia and that flavonoids might determine its micro-
symbiont specificity. The chief plant substances which were modulated by inoculat-
ing Frankia are hydroxycinnamic acids, flavonoids, and phenols. It was reported 
that genes accountable for synthesis of flavonoids are stimulated in A. glutinosa 
when co-inoculated with Frankia (Kim et al. 2003; Hammad et al. 2003).

Among most of terrestrial plants, arbuscular mycorrhizal fungi (AMF) and plant 
roots are considered to form symbiotic associations (Van der Heijden and Sanders 
2002). These relationships facilitate the nutrient and mineral uptake by plants; nev-
ertheless, fungi exploit the lipids and carbohydrates from host root. By increasing 
resistance against pathogens and herbivores, AMF have shown to benefit the plants 
indirectly by modulating its tolerance against pathogens and herbivores in several 

Fig. 23.1 Root exudation-mediated microbial colonization in rhizosphere
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known systems (Pozo and Azcon-Aguilar 2007; Cameron et al. 2013; Bennett et al. 
2006). Since these are obligate organisms, therefore their survival is governed by 
their potentiality to develop rapid symbiotic relation with the roots. The branching 
and hyphae growth prior to infecting the roots need the presence of compounds 
secreted by plant roots (Giovannetti et al. 1996). A number of researches have per-
formed studies on AMF and exudation process by roots (Nagahashi 2000; Nagahashi 
and Doudes 2003; Yu et al. 2003; Vierheilig and Bago 2005; Harrison 2005). Root 
exudates were also shown to involve in the establishment of symbiotic relationships 
of AMF (Vierheilig and Bago 2005). The signals provided by host plant roots facili-
tate the development of infection structure and AMF (Czarnota et al. 2003; Smith 
and Read 1997). As flavonoids persist in root exudates, their connection with signal-
ing in establishing plant-AMF relationships has been explicated. Flavonoids are 
also regarded as a key compound for transforming nonsymbiotic AMF into symbi-
otic one (Besserer et al. 2006). Plentiful data have speculated the effects of flavo-
noids on growth of hyphae, differentiation, and colonization in the roots (Morandi 
1996). Flavonoids show chemical structure-dependent stimulatory impact on growth 
of hyphae in AMF.  However, in occurrence of CO2, the flavonoids’ stimulatory 
effects were found to be more pronounced (Bécard et al. 1992; Chabot et al. 1992; 
Poulin et al. 1993). Recently, in several studies, it is described that flavonoids show 
AMF species-specific effects through pre-symbiotic growth and its exposure to 
plants (Scervino et al. 2005). Colonization of AMF has been observed to amend the 
qualitative and quantitative nature of root exudates in the host system (Azaizeh et al. 
1995) and chemotactic response of soil microbes (Sood 2003; Buee et al. 2000). 
However, strigolactones (carotenoid-derived terpenoids) were reported to promote 
branching in G. margarita, spore germination in Glomus intraradices, and cell pro-
liferation in Gigaspora rosea (Akiyama et al. 2005).

23.3.4  Root-Insect Communication

Root-insect interaction has been localized to stems and leaves, but studies relevant 
to them are very few in numbers because of complex rhizospheric system of and 
unavailability of proper devices for experimentation (Koricheva et al. 2009). Root- 
insect interaction by bugs/pests like aphids can result in major damage to crops 
including Beta vulgaris and Solanum tuberosum (Hutchison and Campbell 1994). 
In observations made by Wu et al. (1999) on in vitro simultaneous cultures of aphids 
and hairy roots, it was elucidated that aphids decreased the vegetative growth and 
enhanced the polyacetylene synthesis with a similar response to phytoalexin (Flores 
et  al. 1988). Fluorescent-carboline alkaloids were characterized from root secre-
tions of O. tuberosa (oca) by Bais et al. (2002a). The main fluorescence showing 
compounds was recognized as harmaline (3,4-dihydroharmine) and harmine 
(7-methoxy-1-methyl-carboline). These alkaloids possess the fluorescence as well 
as phototoxic activities against insects (Larson et al. 1988).
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23.3.5  Root-Pathogen Communication

The survival of root cells against pathogenic microorganisms depends on the 
release of chemicals like phytoalexins and defense proteins (Flores et al. 1999). 
This would have led the scientists to explore the chemodiversity present in root 
exudates for new biological entities including antimicrobials. Rosmarinic acid 
(RA) was found to be released from hairy root tips of cultures of Ocimum basili-
cum when stimulated by extracts of the cellular wall of fungi, i.e., Phytophthora 
cinnamon (Bais et al. 2002b). Roots were elicited to secrete rosmarinic acid by 
incorporation of Pythium ultimum in situ. This secondary metabolite exhibited 
antimicrobial activity against a diverse group of soil microbes including 
Pseudomonas aeruginosa (Bais et al. 2002b). Similarly, in other studies, hairy root 
cultures of the plant Lithospermum erythrorhizon were induced for producing cell-
specific pigmented naphthoquinones and other biochemical entities against bacte-
ria and fungi present in the soil (Brigham et  al. 1999). The abovementioned 
examples proved that RA and naphthoquinones released as root exudates had 
defensive mechanisms against pathogenic microorganisms. Both Gram-positive 
and Gram-negative bacteria comprising of essential plant pathogens such as 
Agrobacterium and Erwinia spp. hold quorum-sensing mechanisms that regulate 
the transcription of genes needed for their pathogenic activities (Fray 2002). It is 
the cell-cell interaction between bacteria controlled by autoinducers. They are pep-
tide-signaling molecules for Gram-positive bacteria and acylated homoserine lac-
tones (AHLs) for Gram-negative bacteria. After reaching to saturation level in 
bacterial growth, it automatically activates certain transcription regulatory proteins 
which regulate particular genes (Teplitski et al. 2000). Hence, these signals allow 
bacterial cells to modulate the expression of genes in variation to population. 
Therefore, roots develop defense mechanism by releasing components in the rhi-
zospheric soil that block quorum-sensing responses in bacteria, like signal block-
ers and signal-degrading enzymes. Further practices in this direction are still 
required to aid the isolation and characterization of these compounds.

23.4  Effects of Root Exudates on Soil Structure and Function

It is well known that roots of plants exude a huge number of biochemicals into the 
rhizosphere. Through this exudation, roots may regulate the microbes available in 
the vicinity of soil, deal with herbivores, restrain the development of competitors, 
and promote useful symbiosis (Rougier 1981). Abiotic stress is one of the severe 
stresses of environment that lowers the growth and yield of any crop even on irri-
gated land throughout the world (Vishwakarma et al. 2017). Root exudates mediate 
the beneficial alternations in soil function and structure by promoting microbial 
richness and facilitating mineral uptake in soil as well as removing of toxic sub-
stances from the soil (Nardi et al. 2000).
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23.4.1  Maintenance of Microbial Diversity

Plants use the exuded molecules to protect themselves against pathogenic and para-
sitic organisms and to attract positive ones. These root exudates are used by bacteria 
present in close vicinity for production of biomass and energy. In addition, 20% of 
photosynthetic products are released by plants which form the basis for plant- 
microbe interactions. These interactions support the growth of plants by increasing 
the accessibility of minerals, promoting synthesis of phytohormones, degrading 
phytotoxic compounds, and suppressing pathogenic activities of microorganisms 
(Bais et al. 2006). The reported demonstrations clearly signify the value of under-
standing the functional attributes of microbial colonies available in the soil and the 
modes by which root exudates affect activity and microbial diversity.

The bacterial and fungal growth in the rhizospheric soil are selectively influ-
enced by root exudates by altering the soil chemistry and allocating specific sub-
strates for microbial growth. In turn, microorganisms affect the constitution and 
amount of various root exudates by influencing its secretion from plant root cells 
along with metabolism and nutrition of plants. Alternations in root exudations and 
rhizodeposition in distinct zones of roots form the foundation of variation of struc-
ture of present microbial communities and other species in different locations of 
roots (Paterson et al. 2007). In addition, soil type, status of nutrition, and environ-
mental factors are also responsible for variation in rhizospheric microbial commu-
nities (Yang and Crowley 2000).

Studies depicting the close connection between root exudation and microbial 
composition in rhizosphere are increasing dramatically (Broeckling et  al. 2008; 
Badri et al. 2008, 2013a; Chapparro et al. 2012, 2013; Micallef et al. 2009). In these 
studies, chemical compounds occurring in the exudates were reported as signaling 
molecules, substrates, or attractants that mediate the variations in microbial com-
munity (Shaw et al. 2006; Jain and Nainawatee, 2002; de Weert et al. 2002; Horiuchi 
et al. 2005; Badri and Vivanco 2009; Bais et al. 2006; Badri et al. 2013a, b; Neal 
et al. 2012). Moreover, it was explicated that root seedlings secrete sugars as sub-
strates for the early development of extensive types of microbes and antimicrobial 
compounds for selecting particular microbial populations present in rhizospheric 
soil (Badri et al. 2013a; Chapparo et al. 2013). Rhizospheric microbial diversity is 
also affected by different varieties of plants (Smalla et al. 2001; Kowalchuk et al. 
2002; Costa et  al. 2006). This perhaps can be correlated with the constituents 
secreted in the form of exudates as it alters with the age, type, and location of plant 
along the root system (Lupwayi et  al. 1998; Hertenberger et  al. 2002; Yang and 
Crowley 2000).

23.4.2  Phytoremediation

Environmental pollution is a problem of concern nowadays and it is harshly affect-
ing the soil-plant systems. Phytoremediation has become the emerging topic in the 
recent days due to its environmentally safe and cost-effective properties. Root 
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exudates facilitate phytoremediation by varying the physicochemical characteristics 
of rhizosphere by affecting absorption of metals (Lebeau et al. 2008). The modes 
through which root exudates scavenge heavy metals include pH modification of 
rhizosphere, chelation, complex formation, and alternation of microbial diversity 
within the rhizosphere. Through these processes, root exudates alter the chemical 
subsistence of heavy metals, enhance their bioavailability, make soil microbes 
active, and thus reduce the pollution. Ectoenzymes present in the root exudates 
mediate the elimination of organic contaminants by either directly degrading the 
pollutants or indirectly invigorating the microbial activity (Kuang et al. 2002). In 
general, the microbial activities occurring in the rhizosphere augment the effects of 
phytoremediation by two pathways:

 1. Direct pathway in which microbes concomitant with plants increase transloca-
tion of metals and hence mediate phytoextraction or decrease mobility of metal 
pollutants from the rhizosphere contributing in phytostabilization

 2. Indirect pathway in which microorganisms attribute metal tolerance to the plants 
or increase the biomass production by plants to arrest/remove the metal 
pollutants.

The rhizosphere bacteria have gained the special interest among microbes par-
ticipating in heavy metal removal owing to their capability to improve the process 
directly by altering availability of metals by changing pH of soil and secreting che-
lators (e.g., siderophores, organic acids) and by redox reactions (Khan et al. 2009a, 
b; Gadd 2000; Kidd et al. 2009; Rajkumar et al. 2010; Ma et al. 2001, 2011; Uroz 
et al. 2009; Wenzel 2009).

There are numerous advantages for using microbe-mediated heavy metal mobi-
lization as compared to chemical methods because metabolites synthesized by 
microbes are degradable, have low toxicity, and can easily be formed under in situ 
conditions in rhizosphere. However, plant growth-enhancing substances like plant 
growth hormones, siderophores, and ACC (1-aminocyclopropane-1-carboxylic 
acid) deaminase synthesized by microbes can interact with plants to help in plant 
growth in heavy metal-polluted soils (Wu et al. 2006; Babu and Reddy 2011; Glick 
2010, 2012; Glick et al. 2007; Kuffner et al. 2010; Luo et al. 2011; Luo et al. 2012; 
Ma et al. 2011; Rajkumar et al. 2010; Miransari 2011) (Fig. 23.2).

23.4.3  Mineral Acquisition

As previously mentioned, the compounds secreted as exudates from roots serve as 
signals for numerous heterogenous, diverse, and active microbial communities 
available in soil. They make the soil system dynamic for nutrient turnover and sus-
tainable for crop productivity with improved physicochemical structure (Chandler 
et al. 2008). By modifying physicochemical properties of soil, root exudates control 
the framework of microbial community present in close proximity of root surface 
(Dakora and Phillips 2002). Few molecules are metabolized by rhizospheric 
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microbes as C and N sources, while other molecules which are secreted out by 
microbes are subsequently utilized by plant species for their development and 
growth (Kang et al. 2010).

Various agricultural soils lack adequate amount of iron, phosphorus, and nitro-
gen that results in minimal growth of plants. Majorly, the nutrients are taken up by 
the plants via rhizosphere when microorganisms interact with compounds in root 
exudates. They contain the combination of inorganic ions, organic acids, enzymes, 
vitamins, and amino acids. Aldonic acid and phenolics released by plant roots of 
N2-fixing legumes trigger the root-nodule-forming bacteria, i.e., Rhizobiaceae. 
These signals activate nod gene expression in symbiotic bacteria and thus facilitate 
nitrogen fixation. Biological nitrogen fixation represents economically and environ-
mentally favorable substitutes to the chemical fertilizers (Munees and Kibret 2014).

Root exudates are utilized by plants growing in the low-nutrition condition not 
only as symbiotic attractants of microbes involved in mineral acquisition but also in 
other ways. Extracellular enzymes present in root exudates release phosphorus from 
organic compounds and other molecules (Richardson 2001). Further by chelation, 
these enzymes make P available to the plants. In addition, organic ions can also 
mediate the mobilization of phosphorus through decreased sorption of phosphorus 
by altering soil topological properties, chelation of cations, and desorption of ortho-
phosphates from a particular region (Bar-Yosef 1991; Jones 1998).

Root exudates

(i) Chelation

Organic acids
(oxalic  acid, citric 

acid,  gluconic
acid etc)

Siderophores

pH 
change

Less soluble metals 

Metal-chelator complex Soluble
metals

Cr+3

Cr+6

(iv) Redox reaction
(iii)  Extracellular 

polymeric  
substances( EPS)

Immobilistion of 
metals by EPS

Metal uptake 
reduction

Soluble 
metals

Rhizosphere
bacteria

Ectomycorrhizae

Root 
vertical 
section

Metal contaminated soil

(a) Phytoextraction (b) Phytostabilization

(ii) Biosorption of
metals

Fig. 23.2 Root exudation-mediated plant-microbe interactions facilitate a phytoextraction b phy-
tostabilization process in metal-polluted soil by (i) chelation, (ii) biosorption, (iii) immobilization 
of metals by EPS, and (iv) redox reactions (modified from Rajkumar et al. 2012)
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23.5  Conclusion

Several researches have elucidated that root exudates act as key factor for establish-
ment of plant-microbe symbiotic relationships. However, there is requirement of 
investigating other factors to understand these relationships in ecological point of 
view. Recent advancements in technology have a significant role in knowing multi-
faceted interactions between plants and microbes. Furthermore, it is also important 
to study the root exudation phenomenon in specific environmental conditions for 
exploring many other soil microbes, biological activities, and related genes to dem-
onstrate their applications in acquiring nutrients, scavenging toxins from contami-
nated soils, attracting plant growth-promoting microbes, and improving the quality 
of soil. Although significant researches have been carried out in exploring the capa-
bility of rhizospheric microbes in heavy metal toxin phytoremediation, more 
advances in this aspect are still required to be anticipated. In this context, future 
researches are required to completely study the genomics of rhizospheric microbes, 
uptake mechanism of metal-chelator complex in plant, signaling cascades involved 
in activation of microbes under stress induced by heavy metal, and various factors 
affecting acquisition of minerals. Such studies might provide sufficient knowledge 
for utilizing these microbes efficiently in scavenging of soil contaminants and 
improving structural and functional properties of soil to facilitate sustainable 
agriculture.
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