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Abstract
Quorum sensing is a widespread mechanism in enormous number of bacteria for 
regulating various gene expression in a cell density-dependent manner through 
production and recognition of small molecules known as autoinducer. Diverse 
kinds of quorum-sensing networks are found in different bacterial species. 
Among various signal molecules, acyl homoserine lactone (AHL) signal mole-
cules are the most and widely studied in bacteria. A number of simple to advanced 
techniques are being used to identify and characterize signal molecules. 
Production of signal molecules in a number of rhizospheric bacteria is docu-
mented. Rhizosphere is an active atmosphere where microbe-microbe and 
microbe-plant interaction is highest due to rich availability of nutrients provided 
in the form of root exudates. Several ecological and interdependent key charac-
ters of bacteria, like antibiotic, siderophore, or enzyme secretion, virulence fac-
tors of phytopathogens, as well as plant-microbe communications, are coordinated 
through quorum sensing (QS). In this chapter, we have provided brief fundamen-
tal aspects of quorum sensing and then addressed the recent trends on the signifi-
cance of quorum sensing and signal molecules in microbe-microbe and 
microbe-plant interactions in the rhizosphere with special reference to plant 
growth-promoting rhizobacteria and plant health.
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16.1	 �Introduction

Since ages, scientist believed that the single cell prokaryotic bacterium lacking true 
nucleus is not capable of establishing a fundamental form of community attitude as 
a consequence of chemical conversation between the members of a community. 
Interdependent behavior by means of autoinducer compounds was first discovered 
in bacteria which are living in symbiotic association with a marine squid (Kaplan 
and Greenberg 1985; Verma and Miyashiro 2013). The fundamental part of this 
molecular conversation, termed as “quorum sensing” (QS), and the signaling mol-
ecules implicated were established through an extremely basic test: via adding 
together a formally habituated supernatant of a heavily developed bacterial culture 
to a fresh, low concentration culture, the characteristics of the high density culture 
were conferred (Eberhard 1972; Waters and Bassler 2005). The signaling com-
pounds implicated in this conversation are called as “autoinducers,” as they were 
derived from within the bacterial cell and controlling their individual expression. 
The signaling compound can be perceived and reimported into these cells, conse-
quently permitting the whole inhabitants to react to altering situation/necessities 
once a significant volume (equivalent to a particular cell density) or “quorum,” i.e., 
the minimum number of bacterial cell accumulated in a given volume to make the 
“decision” to switch on gene expression of QS-regulated genes, is achieved as 
described by Ahmad et al. (2011).

The marine bacterium Vibrio fischeri was the first bacterium to be examined for 
quorum sensing. As a communication compound, N-(3-oxo)-hexanoyl-L-
homoserine lactone (3oxoC6-HSL) was recognized to regulate bioluminescence as 
a readily assessable result of supportive action. Currently, numerous chemical sig-
naling compounds of bacterial origin have been recognized. AHL served as a uni-
versal signal molecule within Gram-negative bacteria (Galloway et  al. 2011). 
Molecules of AHL are created by LuxI homologues, and comprise, clearly with 
LuxR homologues, a transcriptional regulator. AHL comprises a conserved homo-
serine lactone ring with an uneven N-acyl chain (Ahmad et  al. 2008). Bacteria 
belonging to both Gram-positive and Gram-negative groups use QS messaging 
pathways to control a different group of physiological behavior of bacterial cells 
which includes symbiosis, competence, virulence, antibiotic production, conjuga-
tion, motility, sporulation, and biofilm formation (Rutherford and Bassler 2012).

Universally, Gram-negative bacteria utilize acylated homoserine lactones as 
autoinducers, and Gram-positive bacteria exploit processed oligopeptides for inter-
action (Miller and Bassler 2001). Commonly studied autoinducer signals are N-acyl 
homoserine lactones (von Bodman et  al. 2003), although half a dozen of other  
molecules, including diketopiperazines, 4-hydroxy-2-alkylquinolines (HAQs), and 
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autoinducer-3 (AI-3) in various Gram-negative bacteria (Jimenez et al. 2012), fura-
nosyl borate diester in Vibrio harveyi (Chen et  al. 2002), and c-butyrolactone in 
Streptomyces, have also been involved in quantity-based signaling (Yamada and 
Nihira 1998). While quorum-sensing peptides (QSPs) are especially reported from 
Gram-positive bacteria (Wynendaele et  al. 2013), autoinducer-2 (AI-2) has been 
reported from both Gram-positive and Gram-negative bacteria (Pereira et al. 2013). 
Recently, Papenfort and Bassler (2016) have reviewed these aspects in much detail.

Various procedures and protocols used for finding and depiction of signal mole-
cules are described by several authors as compiled by Rumbaugh (2011). Many 
simple techniques such as bioassays and chemical techniques such as thin-layer 
chromatography (TLC) and chromatographic and spectroscopic methods are regu-
larly employed for recognition and classification of signal molecules (Gonzalez and 
Keshavan 2006; Kendall and Sperandio 2007). Fascinatingly, secretion of quorum-
sensing interfering (QSI) molecules by eukaryotic microbes has created huge curi-
osity within the researchers because such molecules are capable of influencing the 
bacterial signaling system positively or negatively. In contrast, production of struc-
tural homologues to the many QS signal compounds has resulted in the improve-
ment of additional QSI molecules that can be employed to manage pathogenic 
bacteria. Additionally, the construction of transgenic plants to facilitate the expres-
sion of bacterial QS genes until now is an effective approach to meddle with bacte-
rial activities (Fray 2002; Hartmann and Schikora 2012).

The rhizosphere comprises an elevated amount of AHL-secreting bacteria in 
comparison to bulk soil, signifying their position in colonization (Elasri et al. 2001). 
This advocates that plants might be employing root-exuded molecules in the rhizo-
sphere to obtain benefit of this bacterial information structure and control coloniz-
ing populations (Lugtenberg and Kamilova 2009; Lopez-Raez et al. 2012). Exudates 
from pea seedlings comprise compounds that impersonate components of QS mol-
ecules which advocate that plants are capable of selecting their microbial colleagues 
(Teplitski et al. 2000; Fatima et al. 2010). Perez-Montano et al. (2013) documented 
that Oryza sativa and Phaseolus vulgaris roots and seeds secrete molecules which 
exclusively meddle with the capability of plant-associated bacteria to develop bio-
films, a crucial feature for bacteria-eukaryotic host communication. Plant host spe-
cies have developed responses to AHLs. Medicago truncatula on contact to a broad 
concentration series of AHLs responded with a primary decline in different protein 
volume followed by increase of the same proteins afterward (Mathesius et al. 2003; 
Hartmann and Schikora 2012). A number of these proteins involved members of 
cytoskeleton structure/function, defense/stress response, isoflavone production, and 
metabolic enzyme families. This presents an interesting area of research as to how 
bacteria communicate among themselves and how plants have developed mecha-
nisms to react to these signal compounds.

In the recent past, many articles and scientific literature have been published 
on the specific and general aspects of quorum sensing in plant pathogens and 
beneficial rhizobacteria (Singh et al. 2012; Hartmann and Schikora 2012; Hartmann 
et al. 2014; Kalia 2015; Schikora et al. 2016). In this chapter, we have reviewed 
extensive and updated literature to address the role of quorum sensing in plant 
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growth-promoting rhizobacteria (PGPR), possible interaction mechanisms, and sig-
naling in the rhizosphere relative to plant-microbe interaction.

16.2	 �Diversity of Quorum-Sensing Signal Molecules and Its 
Detection

Various types of quorum-sensing network, its regulatory mechanism involved in 
production of signal molecules, and gene expression have been reviewed by various 
workers (Atkinson and Williams 2009; Papenfort and Bassler 2016) and are not the 
subject for discussion of this chapter. However, we have briefly summarized here 
important aspect. Among different Gram-negative bacteria, biosynthesis of N-acyl 
homoserine lactones (HSL) takes place in several deviations of the molecular struc-
ture. The range of HSL molecules varies from short (C4-, C6-, and C8-) carbohy-
drate side chains to long (C12-, C14-, or even longer) side chains and consists of 
unsubstituted in addition to OH- and oxo-C3-substituted compounds. Despite the 
fact that HSLs are the universal autoinducers in Gram-negative bacteria, arrange-
ments like AI-2 (alternative autoinducer; furanosyl borate diester), AI3, and quino-
lones (PQS) and a range of extra minute compounds are known as signaling 
molecules (Effmert et al. 2012). Additionally, lipid compounds, like cis-11-methyl-
2-dodecenoic acid (also called as diffusible signal factor or DSF) (Wang et  al. 
2004a) and 3-hydroxy-palmitate methyl ester (3OH-PAME) (Flavier et al. 1997), 
have been recognized as QS-mediating molecules. Moreover, cyclic compounds, 
such as 2-heptyl-3-hydroxy-4-quinolone (PQS) and diketopiperazines (DKZ), also 
have been recommended as QS signals of Pseudomonads (Holden et  al. 1999; 
McKnight et al. 2000). In Gram-positive bacteria, a range of incomplete cyclic pep-
tides, AI-2 and butyrolactone, control cellular functions and activities via perceiving 
the cell quantity. AI-2 was anticipated as a “universal” QS indicator in bacteria, but 
this task is still uncertain since it might just be a secreted product of a common 
metabolic network (Folcher et al. 2001; Winzer et al. 2002; Lyon and Novick 2004). 
Diverse types of quorum-sensing molecules and their corresponding producing bac-
teria are presented in Table 16.1.

Cell-to-cell communication between rhizosphere microbes probably takes place 
universally since several strains obtained from the rhizosphere have been docu-
mented to produce QS signals. For instance, it has become evident that a diversity 
of proteobacterial rhizosphere isolates secrete and/or react to N-acyl homoserine 
lactone (AHL) QS signals, together with strains associated to species or genera of 
Pseudomonas chlororaphis, Pseudomonas putida, Pseudomonas syringae, 
Burkholderia, Serratia, Erwinia, and Ralstonia, in addition to rhizobial species 
(Ferluga et al. 2008). AHLs have also developed to work as interkingdom messen-
ger molecules affecting plant gene interpretation, the initiation of systemic plant 
resistance, and influencing plant growth and development (Venturi and Fuqua 
2013). In recent times, new categories of signals (e.g., pyrones and dialkylresorcin-
ols) secreted by Gram-negative bacteria have been revealed which are predicted by 
LuxR proteins and found to be strongly connected to the AHL-responsive LuxR 
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Table 16.1  Signal molecules of common PGPR

PGPR QS network Major signal molecules References
Acinetobacter sp. AHL N-Acyl-L-HSL; N-(3-oxoacyl)-L-

HSL; N-(3-hydroxyacyl)-L-HSL
Atkinson and Williams 
(2009)

Pseudomonas 
fluorescens

-Do- 3-OH-C6-HSL;3-OH-C7-HSL; 
3-OH-C8-HSL; 3-OH-C10-HSL, 
C 6-HSL, C8-HS

Khan et al. (2005)

P. fluorescens CHA0 Non-AHL QS signal compounds Kay et al. (2005)
Pseudomonas sp. -Do- N-Acyl-L-HSL; N-(3-oxoacyl)-L-

HSL; N-(3-hydroxyacyl)-L-HSL; 
2-heptyl-3-hydroxy-4-quinolone 
(PQS)

Williams and Camara 
(2009) and Hartmann 
and Schikora (2012)

Pseudomonas 
aeruginosa

-Do- N-(3-Oxododecanoyl)-homoserine 
lactone (OdDHL); 
N-butyrylhomoserine lactone 
(BHL); 2-heptyl-3-hydroxy-4-
quinolone (PQS); 
2-(2-hydroxyphenyl)-thiazole-4-
carbaldehyde (IQS)

Lee and Zhang (2015)

Rhodopseudomonas 
sp.

-Do- N-(p-Coumaroyl)-HSL; R = OH 
(pC-HSL)

Atkinson and Williams 
(2009)

Rhizobium sp. -Do- N-Acyl-L-HSL; N-(3-oxoacyl)-L-
HSL; N-(3-hydroxyacyl)-L-HSL

Sanchez-Contreras 
et al. (2007)

Bradyrhizobium sp. -Do- N-(p-Coumaroyl)-HSL; R = OH 
(pC-HSL)

Sanchez-Contreras 
et al. (2007)

Sinorhizobium 
meliloti

-Do- 3-Oxo-C16 Mathesius et al. 2003 
and Hartmann et al. 
(2014)

Mesorhizobium 
huakuii

-Do- C8-HSL Wang et al. (2004b) 
and Braeken et al. 
(2008)

Bacillus subtilis LuxS Peptides Duanis-Assaf et al. 
(2016)

Pantoea 
agglomerans YS19

AHL N-3-Oxooctanoyl-L-homoserine 
lactone

Jiang et al. (2015)

Stenotrophomonas 
maltophilia

Diffusible 
signal factor 
(DSF)

cis-11-Methyl-2-dodecenoic acid 
diffusible signal factor (DSF)

Alavi et al. (2013)
Ryan et al. (2015)

Burkholderia sp. Diffusible 
signal factor 
(DSF)/AHL

cis-11-Methyl-2-dodecenoic acid 
diffusible signal factor (DSF); 
N-acyl-L-HSL; N-(3-oxoacyl)-L-
HSL; N-(3-hydroxyacyl)-L-HSL

Schmid et al. (2012), 
Chapalain et al. 
(2013), Suppiger et al. 
(2013), and Ryan et al. 
2015

Ochrobactrum sp. 
Pv2Z2

AHL 3O-C7-HSL; 3OHC7-HSL Imran et al. (2014)

Serratia plymuthica 
HRO-C48

AHL 3-Oxo-C6 Pang et al. (2009)

Gluconacetobacter 
diazotrophicus 
PAL5

AHL C6-, C8-, C10-, C12-, C14-HSL; 
3-oxo-C10-, C12-, C14-HSL

Nieto-Penalver et al. 
(2012)
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family (Brameyer et al. 2015); it is at present unidentified whether these signals are 
formed by rhizobacteria. One more group of QS signals in Gram-negative bacteria 
is the DSF family (diffusible signal factor, which are cis-2-unsaturated fatty acids); 
more bacterial species are presently being identified which generate DSF, together 
with rhizosphere-inhabiting species such as Burkholderia spp. and Stenotrophomonas 
maltophilia (Ryan et al. 2015). Fascinatingly, bacterial DSF signal molecules have 
also been currently resolved to bring about innate immunity in plants, therefore 
performing as interkingdom signal molecules (Kakkar et al. 2015). Several Gram-
positive bacterial inhabitants in the rhizosphere utilize peptides (also known as 
pheromones) as QS signaling compounds; probably these molecules participate in 
numerous regulatory functions both at the intra- and interspecies level (Bassler 
2002; Monnet et al. 2016).

An accurate, exact, and responsive chemical examination of quorum-sensing 
autoinducer compounds was a necessary requirement for novel studies of quorum-
sensing-associated regulation in bacteria. By employing these methods, a detailed 
tracking of these QS compounds in the habitat and inside eukaryotic cell, populated 
by HSL-producing bacteria, was made possible (Gotz et al. 2007; Hartmann and 
Schikora 2012). In case of quorum-sensing compounds pertaining to N-acyl homo-
serine lactone group, it has been proved lucky for the progress of study in this area 
that the first accessible chromatographic tools were soon aided by extremely sensi-
tive and specific biosensors. These biosensors get benefit of the careful establish-
ment of promoters of HSL-regulated genes by autoinducer molecules. Different 
existing operon fusion constructs of HSL-activated genes with the lux-casette, gfp, 
rfp, or lacZ have been evaluated by Fekete et al. (2010b). Additionally, the quorum-
sensing-controlled violacein secretion by Chromobacterium violaceum can be uti-
lized effectively to initiate HSL production or deterioration, respectively (McClean 
et al. 1997). The indicated constructs are also present on plasmids and can be trans-
mitted to other bacteria. On the other hand, HSL-biosensor bacteria should contain 
their personal HSL-secreting genes deleted or inactivated to circumvent self- 
activation. The constructs generally have different precision for both short and long 
side chain HSLs, but there are also reporter plasmids that permit recognition of most 
HSLs with comparable sharpness (Thomson et  al. 2000; Andersen et  al. 2001). 
However, one has to be cautious in the utilization of these biosensors, as their report 
may be somewhat partial and has to be incremented with other resources of chemi-
cal or immunological metabolite analysis. The existence of HSLs in definite envi-
ronments and their ecological importance have been encouraged by the use of green 
fluorescent protein (GFP) or red fluorescent protein/DsRed (RFP) stuck to HSL-
regulated promoters. The potency of HSL down to 20 nmol l−1 can be identified by 
means of these bioreporter constructs. However, this recognition is relatively dis-
criminatory, because, for example, in the case of the reporter strain Pseudomonas 
putida F117, the confined reporter plasmid pAS-C8 is 100 times extra susceptible to 
3-oxo-C12-HSL than C12-HSL (Steidle et al. 2001). Using these constructs, the in 
situ secretion of HSL compounds can be, for example, discovered on the surface of 
roots, consequently ensuing in the regulation of “landscapes” of HSLs on occupied 
surfaces (Gantner et al. 2006).
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In microcolonies or polymer matrix-surrounded biofilms, where the dispersion is 
limited, the local concentration of HSLs can reach high peak values. By using math-
ematical models for the computation of the autoregulated HSL secretion in bacteria 
and restricted dispersion (Muller et al. 2006), local concentrations in the mmol l−1 
range can be calculated, accepting just a volume of a 5-μm cube with enclosed 
Burkholderia cepacia. This fact can have ecological importance for communication 
with eukaryotic hosts inhabited by HSL-producing bacterial microcolonies or bio-
films that could also add to compensate the potential deterioration of HSL by  
quorum-quenching reactions. With reference to chemical analysis, GC-based meth-
ods of HSL quantification were established first. To amplify the sensitivity of the 
technique, for example, selective ion monitoring of the mass spectrometry (MS) 
detection or derivatization of the ß-oxo group to an oxime was applied (Charlton 
et  al. 2000). As analyzed by Fekete et  al. (2007), reversed-phase HPLC coupled 
with MS for selective detection has been useful in nearly all cases (Morin et  al. 
2003). Frommberger et al. (2004) established a micro-electrospray interface to MS 
after nano-LC separation of the HSLs. Electrokinetic chromatography (MEKC) 
also has been employed effectively for the recognition of HSLs and detection by 
MS. The most effective separation of HSLs is with UPLC analysis, as described in 
detail by Li et al. (2006). The classification of enantiomers of HSLs in biological 
matrices also is achievable by means of an optimized GC-MS approach (Malik et al. 
2009). The maximum precision of molecular mass detection of HSLs has been com-
pleted by using the positive ion Fourier transform ion cyclotron resonance mass 
spectrometry (FTICR-MS) with mass errors of the peaks less than 0.1  ppm, as 
described by Fekete et al. (2007).

Nevertheless, still after employing this highly resolving analytical instrument, it 
is suitable to use two independent analytical approaches (e.g., UPLC and FTICR-MS) 
to clearly recognize HSL molecules, particularly when the recognition is from very 
complex matrices, such as nutrient broth medium, frequently used in microbiology 
(Hartmann and Schikora 2012). One more autonomous technique for the examina-
tion of HSL molecules is based on immunochemistry. From several labs, monoclo-
nal antibodies (MAB) have been produced against several HSL molecules 
(Kaufmann et al. 2006, 2008; Chen et al. 2010a, b). These MABs not only allow the 
research of the biological impact of scavenging HSL but also the investigation of 
reduced sample sizes and the localization of the allocation of HSL secreted by bac-
teria connected with eukaryotes (Park et al. 2007; Hartmann and Schikora 2012). 
For more details, readers are being suggested to read specific review article on the 
subject (Rumbaugh 2011).

16.3	 �Quorum Sensing in Plant Growth-Promoting 
Rhizobacteria

Quorum sensing provides a great competing benefit to bacteria enhancing their like-
lihood to stay alive, while they can explore more difficult habitats. QS in bacterial 
conversation is connected with the manufacturing and discharge of signal 
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molecules, termed autoinducers, into the surrounding medium. On recognition of 
the signal compounds at a given concentration, transcription of definite genes con-
trolled by this system is stimulate or withdrawn in the bacteria. There are different 
microbial mechanisms regulated by QS which include DNA transferase by conjuga-
tion, bioluminescence, siderophore production, biofilm formation, and moving abil-
ity of some bacteria, also termed as “swarming” (Fray 2002; Barriuso et al. 2008b). 
Streptomycetes, with high G+C-content, have been shown to control spore develop-
ment as well as antibiotic manufacturing by a quorum-sensing indicator called 
A-factor. The separation of AHLs from bacteroids of R. leguminosarum advocates 
that quorum sensing might play a role in the mature nodule (Daniels et al. 2002). It 
is hypothesize that quorum sensing influences population flow in connection with 
host plants. Both siderophores and HSLs have been recommended to participate as 
chemical signal molecules for interspecies conversation among bacteria (Guan and 
Kamino 2001). However, insufficient information is available related to interspecies 
conversation in the natural microbial habitat. Mathesius et al. (2003) documented 
better discharge of AHL mimics in exudates of Medicago truncatula. The chemical 
composition of such active quorum sensing mimicking secondary metabolites is 
presently unidentified and also needs additional explanation (Teplitski et al. 2000; 
Chen et al. 2002; Podile et al. 2014).

QS-regulated gene expression is based not only on signal compounds but also on 
bacterial population thickness (Williams 2007). The requirement for a minimum 
level of the primary PGPR inocula to promote plant growth considerably sustains 
the thought that quorum sensing by microorganisms participates in plant- 
rhizobacteria communications (Persello-Cartieaux et al. 2003). Bacteria can respond 
to QS-like molecules secreted by other rhizospheric bacteria (Steidle et al. 2001) 
and by plants (Teplitski et al. 2000) and even eradicate the QS signal compounds 
secreted by other bacterial species (Dong et al. 2002). Other than producing regula-
tory peptides, Bacillus secretes enzymes to degrade the AHL moieties produced by 
Gram-negative bacteria. Genes encrypting for AHL-degrading enzymes, aiiA, have 
been established in B. thuringiensis and different subspecies (Lee et al. 2002). The 
occurrence of such proteins permits Bacillus strains to split the lactone bond of 
AHLs via hydrolysis, signifying a method for autoinducer-degrading activity, per-
mitting these bacteria to struggle with other Gram-negative bacteria. Bacterial func-
tions in the rhizosphere can, therefore, be changed directly by plants or other 
microorganisms via QS molecules (Podile et al. 2014).

In addition to motility and QS, bacterial major outer membrane protein (MOMP) 
also performs a crucial task in initial host identification. The MOMP of Azospirillum 
brasilense demonstrated better adhesion factor to exudates of cereals than exudates 
of legumes and tomatoes and could work as a bond implicated in root adsorption 
and cell accumulation of the bacterium (Burdman et al. 2001). Bacterial lipopoly-
saccharides (LPS), particularly the O-antigen chain, can also cooperate in root 
habitation (Dekkers et al. 1998a, b). On the other hand, it is strain related since 
the O-antigenic side chain of Pseudomonas fluorescens WCS374 does not help in 
potato root attachment (De Weger et  al. 1989), while the O-antigen chain of  
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P. fluorescens PCL1205 is implicated in tomato root colonization (Dekkers et al. 
1998b). Several workers (Simons et al. 1996; Dekkers et al. 1998a; Compant et al. 
2010) also reported that high bacterial growth rate and capability to produce vitamin 
B1 and secrete NADH dehydrogenases help in plant colonization.

Endophytes comprising a vital constituent of plant structure are frequently 
reported assisting in plant defense reactions by quorum-preventing methods. 
Fascinatingly however, endophytes are repeatedly observed to have quorum-sensing  
mechanisms that permit them to sustain their own inhabitation in host plants and 
counteract plant pathogens. For instance, strain PsJNT is described to set up endo-
phytic relations with different plants and acknowledged to develop plant-rooting 
structure with improved vascular arrangements, enhance quantity of chlorophyll 
and phytohormones, and offer resistance to phytopathogens. Fascinatingly, 
Burkholderia phytofirmans strain PsJNT was reported to secrete quorum autoin-
ducer 3-hydroxy-C8-homoserine lactone (Sessitsch et al. 2005). In addition, endo-
phytic Serratia plymuthica with enormous biological control capability was found 
to hold high amount of homoserine lactone (HSL), namely, C4-HSL, C5-HSL, 
C6-HSL, C7-HSL, C8-HSL, 3-oxo derivatives (3-oxo-C6-HSL, 3-oxo-C7-HSL, 
3-oxo-C8 HSL), and 3-hydroxy derivatives (3-hydroxy-C6-HSL, 3-hydroxy-C8-
HSL). These AHL molecules were due to two quorum-sensing mechanisms in S. 
plymuthica (Liu et al. 2011). Additionally, the olive plant epiphyte (Pantoea agglo-
merans) and endophyte (Erwinia toletana) linked with olive knot infection were 
observed for the discharge of signals analogous to AHLs. This chemical communi-
cation changed the virulence of pathogen Pseudomonas savastanoi pv. savastanoi 
blamed for olive knot. This work is an illustration of tripartite connections among 
plant and connected microbes (Hosni et al. 2011).

The genome sequence of endophytic Gluconacetobacter diazotrophicus PAL5 
based on Saccharum officinarum exposed the existence of quorum-sensing mecha-
nisms and identification of eight AHLs, viz., C6, C8, C10, C12, and C14-HSL 
(Nieto-Penalver et al. 2012). A current description from Dourado et al. (2013) dem-
onstrated the exploitation of quorum-sensing compounds for Methylobacterium 
(famous for displaying endophytic lifestyle) communications with plants. A series 
of genes were up- and downregulated in Methylobacterium and host plant at the 
same time facilitating colonization and symbiotic relations, presenting the reliance 
of plant-endophyte relations on quorum-sensing mechanisms. Rhizobacteria are 
extensively recognized to improve production of plants by nitrogen fixation and 
production of siderophores and phytohormone, decrease plant stress, induce sys-
temic resistance, and have capability to attenuate phytopathogenic signals (Liu et al. 
2012). Thus, maintaining quorum-sensing mechanisms and autoinducers may allow 
the endophytic isolates to talk with other connected endophytes in addition to the 
host plant, thus preserving symbiotic relationship and habitation inside the inner 
tissues of plants. Surely, there is a deficiency of information on such organization, 
which needs to be examined in deepness to search for the possible plant physiologi-
cal modifications and resistance reactions such as release of ethylene, salicylic acid, 
and defense proteins during the initial stages of colonization.
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16.4	 �Recent Reports on Quorum-Sensing-Associated 
Functions in Plant Growth-Promoting Bacteria

The rising demand for food and the apprehension related to food quality are the 
compelling activities advancing to new approaches in agriculture. An effective plant 
protection mechanism possesses a huge potential to make certain an adequate and 
high-quality food delivery. Biocontrol agents are well recognized and widely used; 
however their potential is not yet fully exploited. These days numerous products 
based on bacterial inoculum, primarily consisting of Bacillus, Pseudomonas, or 
Serratia spp., arrived at the market. The use of N2-fixing Rhizobia (e.g., 
Sinorhizobium meliloti), with improved secretion of specific AHLs, might augment 
the useful effects of bacteria and increase the effect to plant species generally not 
connected with the specific strain (Zarkani et  al. 2013; Hernandez-Reyes et  al. 
2014). Further, a better comprehension of the communication among bacterial  
quorum-sensing compounds and eukaryotic host cells can unlock novel strategies in 
agriculture. Throughout the infection procedure, QS molecules administer the bac-
terial capability to form biofilms and other density-regulated traits. Those com-
pounds participate in key role in the communication among bacterial and plant 
cells. Several workers documented the role of quorum sensing in plant disease con-
trol and phytopathogen transmission. Some of the reports are summarized briefly.

Barriuso et al. (2008a) reported the role of N-acyl-homoserine lactone (AHL) 
quorum-sensing signaling compounds in plant growth promotion and the initiation 
of defense against salt stress. They utilized two Gram-negative, plant growth- 
promoting rhizobacteria, designated as M12 and M14, and were identified by 16S 
rDNA sequencing as Burkholderia graminis species. Both strains were found to 
produce a diversity of N-acyl-homoserine lactone (AHL) quorum-sensing signaling 
compounds. AHL generation was examined in vitro by thin-layer chromatography 
by applying AHL biosensors, and the characteristic of the AHLs produced was 
decided by liquid chromatography-tandem mass spectrometry. The in situ secretion 
of AHLs by M12 and M14 in the rhizosphere of Arabidopsis thaliana plants was 
distinguished by co-inoculation with green fluorescent protein-based biosensor 
strains and confocal laser scanning microscopy. To establish both plant growth pro-
motion and defense against salt stress, these PGPRs were examined on wild-type 
tomato plants, in addition to their matching transgenics expressing YenI (short-chain 
AHL producers) and LasI (long-chain AHL producers). In wild-type tomato plants, 
it was found that only M12 improved the plant growth and this result vanished in 
both transgenic lines. On the opposing, M14 did not encourage development in 
wild-type tomatoes but did so in the LasI transgenic line. Resistance to salt stress 
was stimulated by M14  in wild-type tomato, but this outcome vanished in both 
transgenic lines. The strain M12, however, did not stimulate salt resistance in wild-
type tomato but did so in LasI tomato plants. These outcomes disclose that AHL QS 
signaling compounds decide the capability of both PGPR strains M12 and M14 to 
enhance plant growth and to activate protection against salt stress.

Johnson and Walcott (2013) reported that Acidovorax citrulli convert from sap-
robic to pathogenic growth for seed-to-seedling distribution of bacterial fruit blotch 
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(BFB) of cucurbits; they speculate that quorum sensing was implicated in the regu-
lation of this procedure. Using aacI (luxI homologue) and aacR (luxR homologue) 
mutants of AAC00-1, they examined the task of QS in watermelon seed coloniza-
tion and seed-to-seedling distribution of BFB. aacR and aacI mutants of AAC00-1 
inhabited germinating watermelon seed at wild-type levels; on the other hand, BFB 
seed-to-seedling distribution was influenced in a cell thickness-attached approach. 
There were no important distinctions in BFB seedling transmission among water-
melon seed penetrated with approximately 1 × 106 CFU of AAC00-1, the aacR or 
aacI deletion mutants (95.2, 94.9, and 98.3% BFB occurrence, correspondingly). 
On the contrary, when seed inoculum was decreased in the order of 1x103 CFU 
seed−1, BFB seed-to-seedling transmission dropped to 34.3% for the aacI mutant, 
which was considerably low than the wild type (78.6%). Fascinatingly, BFB seed-
to-seedling distribution for the aacR mutant was not significantly unusual to the 
wild-type strain. This information advocates that QS takes part in the regulation of 
genes implicated in seed-to seedling spreading of BFB.

Alavi et al. (2013) accounted the role of DSF quorum-sensing system in control-
ling the progressive impact of Stenotrophomonas maltophilia on plants. They 
reported that the quorum-sensing molecule DSF (diffusible signal factor) is account-
able for the directive of phenotypes in pathogenic Stenotrophomonas; to date, no 
helpful results were documented to be managed by it. They examined the role of 
DSF in the plant growth-promoting model strain S. maltophilia R551-3 using func-
tional and transcriptomic analyses. For this intention, these workers correlated the 
wild-type strain with a mutant deficient in the rpfF (regulation of pathogenicity 
factors) gene that is necessary for the synthesis of DSF. Oilseed rape seeds coated 
with the wild-type strain demonstrated a statistically significant enhancement in 
germination rate compared with those coated with the rpfF mutant. Likewise, the 
wild-type strain displayed improved plant growth promotion and a better effective-
ness in colonizing oilseed rape compared to the mutant strain. Furthermore, only the 
wild type was competent of establishing organized cell masses both in vitro and in 
the rhizosphere, a quality decided by DSF. Gene transcription analyses revealed that 
many genes documented to participate in plant inhabitation (e.g., cell motility, che-
motaxis, multidrug efflux pumps, biofilm formation) are controlled by the rpf/DSF 
system in S. maltophilia. Additionally, these workers discovered novel prospective 
traits of spermidine, mainly for both growth enhancement and stress protection. In 
general, these results elucidated an association among the regulation of DSF and the 
constructive communication outcome with the plant host.

Zuniga et  al. (2013) evaluated that by using appropriate mutant strains of 
Burkholderia phytofirmans PsJN, data can be acquired showing the significance of 
N-acyl homoserine lactone-mediated quorum sensing in well-organized inhabita-
tion of Arabidopsis thaliana plants and the organization of an advantageous com-
munication. These workers also noticed that bacterial deterioration of the auxin 
indole-3-acetic acid (IAA) takes part in plant growth-promoting characters and is 
crucial for successful root colonization.

Perez-Montano et al. (2014) found that bacterial surface components, particu-
larly exopolysaccharides, in association with bacterial quorum-sensing molecules 
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are vital for the formation of biofilms within the majority of species as examined 
until now. Biofilm formation permits soil bacteria to inhabit their neighboring terri-
tory and stay alive under frequent ecological stresses such as drought and nutrient 
limitation. This form of life is regularly important for continued existence in bacte-
ria of the genera Mesorhizobium, Sinorhizobium, Bradyrhizobium, and Rhizobium. 
They also established that biofilm construction is essential for a most favorable root 
colonization and symbiosis among S. fredii SMH12 and Glycine max cv Osumi. In 
this bacterium, nod gene-activating flavonoids and the NodD1 protein are necessary 
for the evolution of the biofilm configuration from monolayer to microcolony. QS 
mechanisms are also essential for the complete growth of both types of biofilms. In 
fact, both the nodD1 mutant and the lactonase strain (the lactonase enzyme stop 
AHL buildup) are imperfect in soybean root inhabitation. The destruction of the 
lactonase strain in its colonization capability results in the decline of the symbiotic 
parameters. Fascinatingly, NodD1 jointly with flavonoids induces certain quorum-
sensing mechanisms involved in the growth of the symbiotic biofilm. Therefore, S. 
fredii SMH12 through distinctive key compound, the flavonoid, competently forms 
biofilm, colonizes the legume roots, and induces the production of Nod factors, 
necessary for fruitful symbiosis. Oslizlo et  al. (2015) demonstrated that Bacillus 
subtilis isolated from tomato rhizosphere displayed variety of the ComQXPA  
quorum-sensing mechanisms. This QS mechanism controls the secretion of anti-
pathogenic and biofilm-activating compounds, for example, surfactins, which are 
responsible for the biocontrol activity of this bacterium.

Paungfoo-Lonhienne et al. (2016) established the role of quorum sensing in col-
onization and biofilm formation by Burkholderia Q208. They accounted that 
Burkholderia strain Q208, a PGPR of Australian sugarcane, exhibits an extremely 
conserved quorum-sensing mechanism, nominated as BraI/R, which is programmed 
by a cluster of three genes (braI, rsaL and braR), the results of which create and 
react to N-dodecanoyl-3-oxo-homoserine lactone. In the biofilm Burkholderia braI 
is upregulated (twofold), while, strangely, rsaL and braR are downregulated (to 
0.35- and 0.45-fold of reference levels, respectively). The absolute counts of raw 
reads of rsaL (16,000) and braR (15,500) are higher than the mean (700) read num-
ber over all expressed genes, signifying that even though these genes are downregu-
lated, BraI/R quorum sensing by Burkholderia Q208 continues to be effective in the 
sugarcane rhizosphere.

16.5	 �Role of Quorum Sensing in Rhizosphere Signaling 
and Plant-Microbe Interactions

The rhizosphere is a highly complex microecological niche rich in nutrient released 
by plant root and provides suitable environment for growth and multiplication of an 
array of soil microbial populations. Primary and secondary metabolites released in 
the form of plant root exudates are believed to shape, signal, and interfere with rhi-
zosphere microflora by attracting beneficial microflora and combating pathogenic 
microflora. In a review by Venturi and Keel (2016) described various issues related 
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to signaling in rhizosphere and divided the process in three groups: (i) signaling 
between microbes, (ii) from plants to microbes, and (iii) microorganisms to plants. 
Two major groups of small signaling molecules are recognized. First is the QS mol-
ecules released by bacteria and volatile organic compounds (VOCs) released by 
various bacteria and fungi. VOCs are assumed to play significant task in long- 
distance communication within microbial populations, microbe-microbe, along 
with plant-microbe cooperation within the rhizosphere (Bitas et al. 2013). VOCs are 
also known to also work as intra- and interspecies signals by influencing gene 
expression and microbial functions such as biofilm, virulence, and stress tolerance 
(Audrain et al. 2015). Various rhizobacteria isolated from rhizosphere are known to 
produce QS signal molecules, and respond to these molecules. For example species 
of Burkholderia, Pseudomonas, Rhizobia, and Sinorhizobium as depicted in 
Table 16.1, and impact of QS on plant-microbe interaction is presented in Fig. 16.1.

Phytocompounds secreted by plant roots promote microbial interaction and also 
influence plant-microbe interactions (Zhang et  al. 2015). Plant-produced signals 
have been studied only in well-established association such as legume-rhizobia 
symbiosis and mycorrhizal associations as reviewed by other workers and are not 
topic of discussion here (Downie 2010; Oldroyd 2013). The role of QS in 

Fig. 16.1  Role of quorum sensing in microbe-plant interactions and rhizosphere signaling
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plant-microbe association is now becoming more evident, since many rhizobacteria 
employ QS molecules to colonize plant surface or plant-associated environment 
through QS-mediated gene expression (Von Bodman et al. 2003; Newton and Fray 
2004). On the other hand, plant-derived compounds are reported to interfere in bac-
terial quorum sensing. Recently a bacterial subfamily of LuxRs proteins produced 
by bacteria interacts with plant small molecules and not with QS. LuxRs is expected 
to respond plant signals indicating a more complex interkingdom signaling mecha-
nism (Venturi and Fuqua 2013; Gonzalez and Venturi 2013). Various signals pro-
duced by PGPR are now characterized, and the best studied AHLs are found to 
influence plant physiology and plant-microbe interaction such as induction of plant 
defense against pathogens, pest, and abiotic stressor, which results in promotion of 
plant growth and development (Shoresh et al. 2010; Zamioudis and Pieterse 2012; 
Cameron et al. 2013; Pieterse et al. 2014).

Terrestrial plants related to different genera are recognized to generate AHL-
mimic molecules for defense system in opposition to pathogen and communication 
with connected bacterial communities, both inside and outside the plant tissues 
(Perez-Montano et  al. 2013). Quorum-mimicking AHLs are synthesized and 
secreted in close proximity by different plant species varying from seedlings to a 
mature plant (Teplitski et al. 2011).

Mathesius et  al. (2003) have reported the modulatory role of signaling mole-
cules, AHLs, on plant physiology based on differential proteome analysis and found 
that protein-related defense, stress, flavonoid metabolism, hormones, and many 
regulatory proteins were differentially expressed in plants treated with AHLs. von 
Rad and his colleagues have reported the upregulation of auxin and downregulation 
of cytokinin genes and influence the ratio of auxin and cytokinin in the treated 
model plant with C6-HSL (von Rad et al. 2008). Hartmann and Schikora (2012) and 
Schenk et al. (2012) proposed a double role of the AHL molecules in Arabidopsis 
thaliana. Short acyl chain AHLs, like C4 or C6, were revealed to increase the growth 
rate, primarily elongating the roots (von Rad et al. 2008; Bai et al. 2012; Liu et al. 
2012; Schenk et al. 2012), in contrast to molecules with longer acyl chains (e.g., 
C12 or C14).

Recently, Hartmann et al. (2014) described the impact of AHLs on plant growth 
in plant species and found that it is more complex. However, in some studied cases, 
it may be very specific such as in mung bean and Medicago truncatula plants. Long-
chain 3-oxo-C14-HSL produced by Sinorhizobium meliloti showed increase in root 
nodulation in Medicago truncatula (Veliz-Vallejos et al. 2014). It was interesting to 
note that the increased number of nodules was observed only after a treatment with 
3-oxo-C14-HSL, the predominant AHL of S. meliloti, and treatment with other 
AHLs showed no effect. In mung bean plants, only the 3-oxo-C10-HSL, but not the 
unsubstituted C10-HSL or C12-HSL, was able to induce adventitious roots (Bai 
et al. 2012).

In a study conducted on barley treated with C6-, C8-, and C10-HSLs indicated 
modulatory role in the activity of glutathione S-transferase and dehydroascorbate 
reductase. On the other hand, in yam bean, no influence was measured (Gotz-Rosch 
et al. 2015). Yet another interesting example is the modification of plant cell walls 
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in AHL-primed plants. In this primed stage, plants upregulated the transcription of 
numerous genes pertaining to secondary metabolism (e.g., phenols). In conse-
quence, upon a challenge with pathogens, those plants accumulate callose and phe-
nolic compounds (Schenk and Schikora 2015). In a recent review article, Schikora 
et al. (2016) described the effect of quorum-sensing molecules of the N-acyl homo-
serine lactone group on plant physiology and significance in the development of 
stress tolerance mechanism in plants against stressors (Fig.16.1).

16.6	 �Conclusion and Future Direction

Research carried out in the last decades has shown that quorum sensing is a wide-
spread global regulatory mechanism of gene expression in a density-dependent 
manner among several bacteria including both pathogenic and beneficial species. 
Plant-associated bacteria such as PGPR, both free living and symbiotic, have been 
investigated, which use QS to regulate specific traits. Some of these are important in 
the interaction with other bacteria or the host plant. These bacteria produce small 
molecules called autoinducer. Various types of complex QS network are present in 
bacteria, but the most commonly studied system in Gram-negative bacteria is found 
to possess AHL-based LuxR/LuxI homologous systems. The signal molecules con-
tribute not only in signaling within bacterial population in the rhizosphere but also 
contribute in plant-microbe interactions.

Interestingly plants are able to react or hamper bacterial QS which clearly indi-
cated its significance in plant-bacteria interactions. Many bacteria in rhizosphere 
produce AHL-degrading enzymes, thus exhibiting phenomenon of quorum quench-
ing. On the other hand, plant metabolites can also inhibit QS thus showing QS-mimic 
activity. Recent reports indicated that bacteria produce compounds which act as 
receptor for plant signals. Researchers have provided evidences that the treatment of 
plant with AHLs results in plant response which induces resistance to pathogens 
and stressor. Studying the dynamics of AHL production and degradation and 
response of plant-associated microbial biome will certainly help to fully explore the 
role of QS in plant-microbe interaction.

Now it has been established that plant is able to control the recruitment of root 
microbiome and to select specific microbes of desired function. Therefore, there is 
a greater need to understand how plant root-associated bacteria such as free-living 
PGPR are recruited by plants. Further, the role of QS-mediated signaling and other 
signaling mechanisms in the rhizosphere contributing in the establishment and 
maintenance of dynamic root microbiome needs to be studied. It is expected that an 
enhanced understanding on all these aspects will open new avenues to modulate 
root microbiome through the use of appropriate consortium of beneficial microbes 
for improved crop productivity and soil health.
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