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Abstract It is common practice to develop artificial neural network models using
location-based single dataset for both the training and testing. Based on this pro-
cedure, the developed models may perform poorly outside the training location.
Therefore, this study aims at developing generalized higher-order neural network
(GHNN) models for estimating pan evaporation (Ep) using pooled climate data of
different locations under four agro-ecological regions in India. The inputs for the
development of GHNN models include different combinations of daily climate data
such as air temperature, relative humidity, wind speed, and solar radiation.
Comparisons of developed GHNNs were made with the generalized first-order
neural network (GFNN) and generalized multi-linear regression (GMLR) models. It
is concluded that the GHNNs along with GFNNs performed better than the GMLR
models. Further, GHNNs were applied to model development and model testing
locations to test the generalizing capability. The testing results suggest that the
GHNN models have a good generalizing capability.
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Introduction

Accurate estimation of pan evaporation (Ep) is needed to solve various hydrological
and water resources related problems. The influence of several meteorological
parameters [air temperature (Tavg), wind speed (Ws), relative humidity (RHavg), and
solar radiation (Sra)] on Ep makes the modeling of evaporation more complex due
on the nonlinear nature. To deal with the complexity and nonlinearity, the artificial
neural networks (ANNs) are used in Ep modeling. Depending upon the order of
synaptic operation in a hidden neuron, the ANNs are classified as either first order
or higher order (second or third or Nth) (Gupta et al. 2003). The ‘first-order neural
networks’ or ‘linear neural network (LNN)’ models are synonymous to
feed-forward neural network (FNN).

Han and Felker (1997) demonstrated application of ANN in estimation of Ep.
The authors implemented a radial basis function (RBF) neural network to model
daily soil water evaporation using RHavg, Tavg, Ws, and soil water content data as
input. Bruton et al. (2000) developed FNNs to estimate daily Ep with different
combinations of rainfall, Tavg, RHavg, Sra, and Ws as input. Sudheer et al. (2002)
proposed ANN models with back propagation (BP) training algorithm for the
prediction of Class A pan evaporation with different combinations of climate data as
input. Keskin and Terzi (2006) evaluated the potential of ANNs to estimate daily Ep

from measured meteorological data viz. water temperature (Tw), Tavg, sunshine
hours (n), Sra, air pressure (Pa), RHavg, and Ws. Kisi (2009) investigated the abilities
of multi-layer perceptron (MLP), RBF, and generalized regression neural networks
(GRNN) models to estimate daily Ep using climatic variables (Tavg, Sra, Ws, RHavg,
and Pa). Moghaddamnia et al. (2009) explored the ANN and adaptive neuro-fuzzy
inference system (ANFIS)-based Ep estimation methods with an aid of the Gamma
test. Rahimikhoob (2009) considered the MLP models for estimating the daily Ep

by using maximum and minimum air temperatures (Tmax and Tmin) and the
extraterrestrial radiation (Ra) as input. Shirsath and Singh (2010) presented the
application of ANN and multi-linear regression (MLR) models comprising of
various combinations of Tmax, Tmin, n, Ws, maximum and minimum relative
humidity (RHmax and RHmin) to estimate daily Ep.

Tabari et al. (2010) aimed to estimate daily Ep using ANN and multivariate
nonlinear regression methods with varying input (Tavg, precipitation, Sra, Ws, and
RHavg) combinations and various training algorithms. Shirgure and Rajput (2011)
reviewed thoroughly the studies on the Ep modeling using ANNs. Shiri and Kisi
(2011) illustrated the abilities of ANN, genetic programming, and ANFIS models to
improve the accuracy of daily Ep estimation by using various climatic variables
(Tavg, n, Sra, Ws, and RHavg). Kalifa et al. (2012) developed ANN-based models to
predict the Ep from various combinations of Tw, Tavg, Ws, RHavg, and Sra as input.
Kim et al. (2012) demonstrated the accuracy of two types of ANNs, i.e., MLP and
co-active neuro-fuzzy inference system model for estimating the daily Ep. Kumar
et al. (2012) developed ANN and ANFIS models to forecast monthly potential Ep

based on four explanatory climatic factors (RHavg, Sra, Tavg, and Ws) with different
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combinations. Nourani and Fard (2012) examined the potential of MLP, RBF, and
Elman Network for estimating daily Ep using measured climatic (RHavg, Sra, Tavg,
Pa, and Ws) data. Arunkumar and Jothiprakash (2013) developed ANN, model tree,
and genetic programming-based models with varying input data (reservoir evapo-
ration values with different lags) to predict the reservoir evaporation. Chang et al.
(2013) proposed a hybrid model to estimate Ep. The hybrid model combined the BP
ANNs and dynamic factor analysis. Kim et al. (2013) developed MLP, GRNN, and
ANFIS-based ANNs for estimating daily Ep using Tavg, Sra, n, and merged input
combinations under lag-time patterns. Kim et al. (2014) developed soft computing
models, namely MLP, self-organizing map ANN model, and gene expression
programming to predict daily Ep.

All of the above-cited studies used the FNN or LNN to model Ep. These neural
networks are able to extract the first-order or linear correlations that exist between
inputs and the synaptic weight vectors. However, the climatic variables associated
with Ep exhibit high nonlinearity during modeling and these LNN models fail to
extract the complete nonlinearity that is present in the data because of the linear
synaptic operation. The limitations with the existing conventional Ep methods
encourage the researchers to develop higher-order neural network (HNN) network
models. The HNN network is a polynomial model in which the weighted sum of the
products of its input vector is passed to a computational neuron instead of just a
weighted sum of its input vector, as in case of conventional ANNs. This property
makes the superior performance of HNNs over other conventional ANNs. The
HNNs have been widely used in various fields such as pattern recognition, financial
time series forecasting. Further, the HNN models have been successfully applied in
hydrology to a limited extent, e.g., characterizing soil moisture dynamics
(Elshorbagy and Parasuraman 2008), forecasting river discharge (Tiwari et al.
2012), reference crop evapotranspiration estimation (Adamala et al. 2014a, b,
2015a). However, the HNNs application in Ep estimation is not yet reported.

One limitation associated with the FNN and HNN models is their lack of gen-
eralizing capability because they are applicable to data from the locations which are
used in training or model development (these locations are indicated as ‘model
development locations’). When new location data, i.e., data from locations that
were not used during the model development (these locations are represented as
‘model test locations’) are introduced to the developed network, the network fails to
provide good performance, indicating poor generalizing capacity. This limitation
can be overcome by developing generalized FNN (GFNN) and generalized
(GHNN) models which perform well not only for model development locations but
also for model test locations. This can be achieved by considering pooled climatic
data of various locations which have properties of both spatial and altitudinal
variations during model development. Therefore, this study aims to develop GHNN
and GFNN models for the estimation of Ep for different agro-ecological regions
(AERs) of India and to test their generalizing capabilities for both the model
development and testing locations.
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Materials and Methods

Study Area and Climate Data

The climatic data for this study were collected from All India Coordinated Research
Project on Agro-meteorology (AICRPAM), Central Research Institute for Dryland
Agriculture (CRIDA), Hyderabad, Telangana, India. Data (Tmax, Tmin, Sra, RHmax,
RHmin, Ws, and Ep) for 25 climatic stations distributed over the following four
AERs: semi-arid, arid, sub-humid, and humid (Fig. 1) were collected.

Table 1 presents information related to altitude, observation periods, and sta-
tistical summary of the climate data and measured Ep for the chosen locations. The
altitude of selected stations varies from 10 m above msl at Mohanpur to 1600 m

Fig. 1 Geographical locations of study sites in India
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above msl at Ranichauri. The mean Tmin and Tmax range from 9.66 °C at Ranichauri
to 23.38 °C at Thrissur and 20.08 °C at Ranichauri to 35.11 °C at Kovilpatti,
respectively. The mean RHmin and RHmax range from 33.91% at Anantapur to
75.27% at Jorhat and 64.27% at Akola to 96.18% at Mohanpur, respectively. The
mean Ws and Sra range from 1.27 km h−1 at Mohanpur to 9.64 km h−1 at
Anantapur and 3.46 MJ m−2 day−1 at Ranchi to 23.30 MJ m−2 day−1 at Akola,
respectively. The mean Ep ranges from 2.30 mm day−1 at Jorhat in a humid region
to 8.38 mm day−1 at Anantapur in an arid region.

Daily climate data (Tavg, RHavg, Ws, and Sra) of 15 locations were used to
develop GHNN-based Ep models, whereas remaining 10 locations were used to test
the developed models. The correlation coefficients of climatic variables with the Ep

for four AERs are shown in Table 2. Among the four climatic variables, the three
variables (Tavg, Ws, and Sra) show a positive correlation and the remaining one
variable (RHavg) shows a negative correlation with the Ep. The degree of correlation
of these climatic variables with the Ep indicates their sensitivity in estimating Ep.

Artificial Neural Network (ANN) Models

ANNs are represented as parallel distributed units with a crucial ability of learning
and adaptation. The processing of information in any biological or artificial neural
models involves two distinct operations: (a) synaptic operation and (b) somatic
operation. In synaptic operation, different weights are assigned to each input matrix
based on past experience or knowledge with an addition of bias or threshold (Fig. 2).
In somatic operation, the synaptic output is applied to a nonlinear activation function
(/) (Tiwari et al. 2012). Mathematical representation of synaptic and somatic
operations in a neural network is shown in Eqs. (1) and (2), respectively.

y ¼
Xn
i¼0

wixi ¼ w0x0 þw1x1 þ � � � þwnxn ð1Þ

z ¼ / y½ � ð2Þ

where y = neural synaptic output; z = neural somatic output; w0 = threshold
weight; x0 = constant bias (=1); xi = neural inputs at the ith step; wi = synaptic
weights at the ith step; and / = activation function (sigmoid); n = number of
elements in the input vector.

Table 2 Correlation
coefficients of climate
variables with Ep

AER Tavg RHavg Ws Sra
Semi-arid 0.7 −0.6 0.4 0.6

Arid 0.7 −0.6 0.4 0.5

Sub-humid 0.8 −0.7 0.4 0.7

Humid 0.3 −0.4 0.4 0.5
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Generalized Feed-Forward Neural Network (GFNN) Model

The GFNN model provides the neural output as a nonlinear function of the
weighted linear combination of the neural inputs. In GFNN model, the synaptic
operation is of the first order which means that only first-order correlations exist
between the inputs and the synaptic weights of the model. Let N and n be the order
and the number of inputs to the neuron, respectively. For N = 1, according to
Redlapalli (2004) the mathematical expression of GFNN model is given as:

zð ÞN¼1¼ /
Xn
i1¼0

wi1xi1

 !
ð3Þ

where xi1 = neural inputs at the ith1 step; wi1 = synaptic weights at the ith1 step.

Generalized Higher-Order Neural Network (GHNN) Model

The architecture of the GHNN model is accomplished by capturing the higher-order
association as well as the linear association between the elements of the input
patterns. The higher-order weighted combination of the inputs will yield higher
neural performance as they require fewer training passes and a smaller training set
to achieve the generalization over the input domain. The synaptic operation of the
GHNN embraces both the first- and second-order neural input combinations with
the synaptic weights. In GHNN model, the synaptic operation in a neural unit or a

Fig. 2 Architecture of generalized synaptic neural network models (Tiwari et al. 2012)
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node is of the second order which means that there exists not only first order but
also higher-order correlations with second-order terms between inputs and synaptic
weights. For N = 2, the mathematical model of GHNN is represented as:

zð ÞN¼2¼ /
Xn
i1¼0

Xn
i2¼i1

wi1i2xi1xi2

 !
ð4Þ

where xi2 = neural inputs at the ith2 step; wi1i2 = synaptic weights at the i1i
th

2 step
(Redlapalli 2004).

Data Preparation

For the development of GFNN and GHNN models for different AERs, locations
having daily data for the period of 2001–2005 were chosen. The data were divided
into training sets (denoted as Tr and used to adjust the weights and biases during
learning), validation sets (denoted as V and used to avoid overfitting), and testing
sets (denoted as Ts and used to predict with new data). The locations with ‘Tr, V,
Ts’ role (Table 1) were used to develop GFNN and GHNN models (model
development locations). These locations for the model development were selected
because of the availability of a larger set of data during the study period as com-
pared to other locations. In this study, the habitual practice of using a standard hold
out strategy for dividing the data was followed as it is a very common practice in
hydrological modeling (Adamala et al. 2015b). For these locations, 70 and 30% of
data for the period 2001–2004 were used for training and validation, respectively. It
would be more complicated to use different year of dataset for different locations.
Therefore, the same 2005 year data was used for testing the performance of
developed models. However, the data for the same testing (2005) year is different
for the locations considering the different agro-climatic zones.

To develop GFNN and GHNN models for semi-arid, arid, sub-humid, and
humid regions, respectively, the data in Table 1 were pooled as follows:
(i) Parbhani, Solapur, Bangalore, Kovilpatti, and Udaipur; (ii) Anantapur and
Hissar; (iii) Raipur, Faizabad, Ludhiana, and Ranichauri; and (iv) Palampur, Jorhat,
Mohanpur, and Dapoli. To test the generalizing capability of the developed models
(either for practical application or ….), these models were applied to data from the
locations that were not used during model development. The locations with only
‘Ts’ role (Table 1) were used to test the generalizing capability of the developed
models (model testing locations). As an example, for the locations that lie in
semi-arid regions (Parbhani, Solapur, Bangalore, Kovilpatti, and Udaipur), the
pooled data of 2001–2004 were used to train (including validation) the GFNN and
GHNN models, while the data of 2005 were used to test these models. The gen-
eralizing capability of GFNN and GHNN models was tested using data from
Kanpur, Anantapur, and Akola that were not included during development in
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semi-arid region. In a similar way, different GFNN and GHNN models were
developed and tested for their generalization capabilities in arid, sub-humid, and
humid regions.

Criteria for Preprocessing and Estimation of Parameters

As a first step in developing GFNN and GHNN models, normalization before
presenting data as input to network and denormalization after developing optimum
network were performed using a Matlab built-in function called ‘mapstd’ which
rescales data so that their mean and standard deviation become equal to 0 and 1,
respectively. The inputs for developing GFNN and GHNN models were Tavg,
RHavg, Sra, and Ws. This study examined eight combinations of these inputs to both
models. Thus, the sensitivity of Ep on each of these variables was evaluated. The
target consists of the daily values of measured Ep. Only one hidden layer was used
in both the GFNN and GHNN models, as it is enough for the representation of the
nonlinear relationship between climate variables and Ep. The important parameters
for network training are the learning rate, which tends toward a fast,
steepest-descent convergence, and the momentum, a long-range function prevent-
ing the solution from being trapped into local minima. The other parameters are
activation function, error function, learning rule, and the initial weight distribution
(i.e., initialization of weights). A variation in GHNN parameters had a negligible
effect on the performance of these models for estimating Ep (Adamala et al. 2014b).
Therefore, results concerning the model’s parameters are not discussed. Sigmoidal
activation function was employed in the output layer neurons. For developing
GHNN-based daily Ep models, the code was written using Matlab 7.0 programming
language.

Performance Evaluation

The performance evaluation of all the developed models was carried out for both
the training, validation, and testing periods in order to examine their effectiveness in
simulating Ep. The performance indices used for evaluating the models were: the
root mean squared error (RMSE, mm day−1), ratio of average output to average
target Ep values (Rratio), and coefficient of determination (R2, dimensionless).
A description of the aforementioned indices is provided below.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

ðTi � OiÞ2
s

ð8Þ
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R2 ¼
Pn

i¼1 Oi � O
� �

Ti � T
� �� �2

Pn
i¼1 Oi � O
� �2Pn

i¼1
Ti � T
� �2 ð9Þ

Rratio ¼ O

T
ð10Þ

where Ti and Oi = target (Ep) and output (Ep predictions of the GFNN and GHNN
models) values at the ith step, respectively; n = number of data points; T and
O = average of target and output values, respectively.

Results and Discussion

Evaporation estimation requires nonlinear mapping of different climate variables.
The main advantages of using GHNN models are their flexibility and their ability to
model nonlinear relationships. An important aspect of this study is to develop
models for prediction of Ep using available weather data. Sudheer et al. (2002)
concluded that using daily mean values of temperature and relative humidity
instead of minimum and maximum values of both the parameters would not sig-
nificantly reduce the performance. This observation may help to reduce drastically
the data requirement for estimating the evaporation from climatic variables.

Performance of Ep Based GHNN Models

Keeping the findings of Sudheer et al. (2002) in view, in the present study the
GHNN models were developed with the various combinations of Tavg, RHavg, Ws,
and Sra instead of Tmax, Tmin, RHmax, RHmin, Ws, and Sra as inputs to evaluate the
effect of each of these variables on estimated Ep. A total of eight different input
combinations were tried in this study. These included (i) Tavg, RHavg, Ws, and Sra;
(ii) Tavg, RHavg, and Ws; (iii) Tavg, RHavg, and Sra; (iv) Tavg and RHavg; (v) Tavg;
(vi) RHavg; (vii) Ws; and (viii) Sra. Due to poor performance of the GHNN models
developed with a single input variable (input combinations v–viii), the performance
results pertaining to these are not presented here. The GHNN models were com-
pared with the GFNN models to test the relative performance of higher-order over
linear (first-order) neural models. Further, the developed GHNN models were
compared with the generalized multiple linear regression models (GMLR) models
to evaluate the accuracy of the former models.
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The optimum GHNN, GFNN, and GMLR structures were determined for each
input combination and their performance statistics during testing is presented in
Table 3. The comparative results of GHNN models with the GFNN models confirm
the superiority of GHNN models in terms of the various performance criteria
(RMSE, R2, and Rratio) for all the four input combinations under four AERs
(Table 3). The reason for this is probably the capability GHNN models to capture
nonlinearity, as these models use nonlinear approximation functions with the
second-order polynomials (Eq. 4). The GMLR models with various input combi-
nations showed the poorest performance with highest RMSE and lowest R2 values
for different AERs except for the arid region.

Among the all combinations, the GHNN(i) model whose inputs are the Tavg,
RHavg,Ws, and Sra (input combination i) gave the highest accuracy with the smallest
RMSE (mm day−1) values (1.389 for semi-arid, 1.079 for sub-humid, 0.99 for
humid) for all AERs except for arid region where GMLR (i) resulted in minimum
RMSE of 1.429 mm day−1. This shows the strong correlation of Tavg, RHavg, Ws,
and Sra variables with the measured Ep values. The reason for this superior per-
formance might be due to the inclusion of all climatic data as inputs which may
have great influence on generalized models as these were developed using data
from different locations.

Removing Sra (input combination ii) as an input variable increased the RMSE
(mm day−1) to 1.451, 1.117, and 1.035 for semi-arid, sub-humid, and humid
regions, respectively. Further, decreasing the number of input variables in the
GHNN model continued to decrease its accuracy. Removing the climate variableWs

(input combination iii) as an input variable increased the RMSE (mm day−1) to
1.510, 1.167, and 1.224 for semi-arid, sub-humid, and humid regions, respectively,
and decreased the RMSE (mm day−1) to 1.625 for arid region. The GHNN
(iv) model which considers only two inputs furthermore increased the RMSE
(mm day−1) to 1.559, 1.632, 1.198, and 1.281 for semi-arid, arid, sub-humid, and
humid regions, respectively. Similar performance of GHNN models was also
observed with R2 (high) statistical index. These results suggest that the performance
of the developed Ep models decreased with the decrease in the input variables.

Due to the superior performance of GHNN models over the GMLR and GFNN
models, the scatter plots pertaining to the GHNN models with all input combina-
tions (i.e., i to iv) are only shown in Fig. 3, which confirms the statistics given in
Table 3. The results in Fig. 3 illustrate that the agreement between the Ep predic-
tions of the GHNN models and the measured Ep predictions was better for all
regions. Although the GHNN (i) to (iv) models resulted in acceptable R2 values for
all regions except for humid region, their estimates are far from the exact 1:1 fit line.
This can be clearly observed from the coefficients of their fitted equations (y =
a0x + a1) where the values of a0 and a1 coefficients are far away from one and zero,
respectively.
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Application of GHNN Models for Ep Estimation

The best performed GHNN(i) models were applied to 15 model development and
10 model testing locations for four AERs to test their generalizing capability. The
performance indices of GHNN(i) models for the model development locations are
shown in Table 4. The Rratio values (Table 4) suggest that the GHNN(i) model
overestimated Ep values for semi-arid and humid regions and underestimated for
arid and sub-humid regions. The RMSE (mm day−1) values for this model ranged
from 0.673 (at Ranichauri) to 3.227 (at Hissar). The performance indices of GHNN
(i) models for the model testing locations are shown in Table 5. The RMSE
(mm day−1) values for this model ranged from 1.098 (at Samastipur) to 1.830 (at
Bijapur). This indicates that the GHNN models have better generalization capability
for the estimation of Ep for locations that were not used in the model development.
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Fig. 3 Scatter plots of GHNN(i), GHNN(ii), GHNN(iii), and GHNN(iv) models estimated Ep

(mm day−1) with respect to measured Ep (mm day−1) for four AERs
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Conclusions

The ability of GHNN models corresponding to different locations in four AERs in
India to estimate Ep was studied in this paper. The results illustrated that GHNN and
GFNN models performed much better than the GMLR models and GHNN and
GFNN models with the input combination (i), which include all variables as input
performed better as compared to other combinations (ii, iii, and iv, respectively) for

Table 4 Performance of
GHNN(i)-based Ep model for
model development locations

AER Location GHNN(i)

RMSE R2 Rratio

Semi-arid Parbhani 1.174 0.862 1.030

Solapur 1.576 0.728 1.016

Bangalore 0.973 0.625 1.016

Kovilpatti 1.941 0.678 1.048

Udaipur 1.180 0.885 1.022

Arid Anantapur 1.658 0.566 0.976

Hissar 3.227 0.217 0.918

Sub-humid Raipur 1.008 0.929 0.998

Faizabad 1.417 0.640 0.989

Ludhiana 1.049 0.890 0.998

Ranichauri 0.673 0.603 0.980

Humid Palampur 1.098 0.706 1.092

Jorhat 0.907 0.357 1.042

Mohanpur 1.197 0.515 1.079

Dapoli 1.599 0.361 1.028

Note RMSE mm day−1; R2 and Rratio dimensionless

Table 5 Performance of
GHNN(i)-based Ep model for
model testing locations

AER Location GHNN(i)

RMSE R2 Rratio

Semi-arid Kanpur 1.633 0.727 1.026

Anand 1.108 0.808 0.998

Akola 1.662 0.861 1.022

Arid Bijapur 1.830 0.457 0.916

Sub-humid Jabalpur 1.413 0.791 1.019

Samastipur 1.098 0.711 0.983

Bhubaneswar 1.302 0.747 0.985

Ranchi 1.290 0.808 0.983

Rakh Dhiansar 1.103 0.740 1.003

Humid Thrissur 1.283 0.625 1.095

Note RMSE mm day−1; R2 and Rratio dimensionless
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all AERs. During testing of the generalizing capability of GHNN models for the
model development and testing locations, the GHNN models performed better than
the GFNN models for all cases. The performance of the generalized models
increases with the increase of number of input variables during Ep modeling.
Overall, better performance of GHNN models in comparison to GFNN and GMLR
models in different AERs in India showed that these models not only have better
potential but also have good generalizing capability. It may be noted that the main
focus of this study was to evaluate the generalizing capability of higher-order neural
networks in Ep modeling. This study does not intend to replace the well established
models. Further, more studies are required to test the generalizing capability of
GHNN models with limited climate data for different climatic regions of other
countries.
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