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Chapter 15
Infection of KSHV and Interaction with HIV: 
The Bad Romance

Jie Qin and Chun Lu

Abstract  Kaposi’s sarcoma-associated herpesvirus (KSHV), namely, human her-
pesvirus 8 (HHV-8), is considered as the pathogen of Kaposi’s sarcoma (KS), the 
most frequent cancer in untreated HIV-infected individuals. Patients infected with 
HIV have a much higher possibility developing KS than average individual. 
Researchers have found that HIV, which functions as a cofactor of KS, contributes 
a lot to the development of KS. In this article, we will give a brief introduction of 
KS and KSHV and how the interaction between KSHV and HIV contributes to the 
development of KS. Also we will take a glance at the development of treatment in 
KS, especially AIDS-KS.
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15.1  �Kaposi’s Sarcoma-Associated Herpesvirus 
and Pathogenesis

15.1.1  �Kaposi’s Sarcoma and Kaposi’s Sarcoma-Associated 
Herpesvirus

With complex histology feature, Kaposi’s sarcoma (KS) shows abnormal vascular 
proliferation peculiarity. There are four types of KS, including classical KS, mainly 
affecting elderly men of Mediterranean or eastern European Jewish ancestry; AIDS-
related KS, as its name shows, happens to AIDS patients; iatrogenic KS, usually 
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happens to immunosuppressive patients after organ transplant; and African endemic 
KS, existing in parts of Central and Eastern Africa [1–4].

Investigation on KSHV seroprevalence shows that distribution of KSHV-positive 
individuals differs in regions and subpopulations. A report has been made that all 
forms of KS are more common in men than in woman, and further investigation 
showed that men from sub-Saharan Africa (50% KSHV prevalence) but not men 
from other district have a higher prevalence of KSHV than women [5, 6]. KSHV 
prevalence also shows distinct district differences. In endemic district, such as 
Uganda, KSHV prevalence of 50% has been reported, while in the USA, the report 
is 6% or even lowers [7–9]. Also in Xinjiang Uyghur Autonomous Region, China, a 
traditional endemic area, KSHV prevalence is much higher than other districts in 
China, with Han group showing a distinct lower rate [10]. Outside the endemic 
district, men who have sex with men (MSM) show a much higher KSHV prevalence 
than the average population. All around the world, KSHV prevalence are much high 
in MSM [11–14]. KSHV can also be found in saliva, and it is also reported as the 
highest shedding place; oral exposure to infectious saliva can be the transmission 
route of KSHV both sexually and nonsexually [15–17]. More researches have 
proved that in nonendemic districts, KS is more likely to happen to HIV-infected/
AIDS population [18]. A recent study shows that HIV-1-infected children and ado-
lescents in nonendemic districts have a higher possibility of KSHV seroprevalence 
[19].

Infectious saliva is the major route of KSHV transmission. However, increasing 
infection of KSHV among MSM strongly suggests that KSHV might transmit 
through sexual contact. More research has to be done to validate though [20].

Despite the fact that the discovery of KS is early in the late nineteenth century by 
Hungarian dermatologist Moritz Kaposi, it was not until the 1990s that KSHV, now 
considered as the pathogen of KS, was detected in KS tissues. In 1994, Chang and 
Moore identified KSHV genome in KS lesions [21]. They used representational dif-
ference analysis (a PCR-based technique) to identify and characterize alien DNA 
sequences in KS tissues. Sequences homologous to, but distinct from, capsid and 
tegument protein genes of the gammaherpesvirus Saimiri and Epstein-Barr virus 
were found in these tissues [21]. Now, 20 years has gone since this remarkable dis-
covery. The characteristics of this virus have been mapped out by numerous scien-
tists. Except KS, KSHV is also related to other two malignancies, primary effusion 
lymphoma (PEL) and multicentric Castleman disease (MCD) [21, 22].

15.1.2  �KSHV Genome and Life Cycle

Soon after the discovery of KSHV, the genome of KSHV was mapped with cosmid 
and phage genomic libraries from the BC-1 cell line [23]. This group from New York 
found that the BC-1 KSHV genome consists of a 140.5-kb-long unique coding 
region flanked by multiple G+C-rich 801-bp terminal repeat sequences [23]. Now it 
has been found that KSHV encodes at least 86 open reading frames (ORFs), which 
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are expressed during distinct phases of KSHV infection [23]. It is believed that 
among these ORFs, 22 of them have the capacity of modulating immune response, 
such as K3, K5, K7, and K11.1 [24].

As a member of the γ-herpesvirus, KSHV has two distinct phases of infection as 
well, the latent and lytic phases [24]. After primary infection, both latent and lytic 
genes are expressed. Expression of lytic genes is shut down after a few rounds of 
replication to avoid immune surveillance, and latent infection of KSHV is estab-
lished. During latency, KSHV expresses a few viral genes, ORF73 (latency-
associated nuclear antigen 1 [LANA-1]), ORF72 (viral cyclin [vCyclin]), ORF71 
(K13/vFLIP), and ORFK12 (kaposins A, B, and C), along with at least 12 distinct 
microRNAs [24, 25]. These all together facilitate the establishment of KSHV 
latency in hosts for a lifetime, survival against the host innate, and adaptive immune 
surveillance mechanisms, contributing to KSHV-related malignancies [24]. These 
genes and miRNAs expressed during latency also aid malignant transformation and 
oncogenesis by coping with several signaling pathways [26]. Among them, KSHV 
LANA directly deregulates signaling pathways such as MAPK, JAK/STAT, MEK/
ERK, PI3K/AKT, Notch, and Wnt signaling to help establish latent infection [24, 
27, 28].

Multiple chemicals, including tetracycline [29], are able to trigger KSHV reacti-
vation. Once lytic replication is activated, immediate early (IE), early and late genes 
are expressed [30]. Production of lytic genes switches infected cell into intense viral 
replication, contributing to KSHV-induced tumorigenesis [24, 30]. These proteins 
encoded by KSHV lytic genes are also involved in modulating immune system or 
pathogenesis. For instance, K2-encoded vIL-6 can regulate B-cell proliferation by 
activating JAK/STAT, MAPK, and PI3K/Akt signaling pathways [31].

15.1.3  �Noncoding RNA Encoded by KSHV

KSHV also expresses noncoding genes during latent or lytic phase. During lytic 
production, a 1.1-kb-long long noncoding RNA, which is now known as polyade-
nylated nuclear RNA (PAN RNA), is produced to facilitate KSHV lytic production 
[32]. Recent study also shows that this particular noncoding RNA encodes three 
peptides [33]. And with chromatin isolation by RNA purification coupled with next-
generation sequencing (ChIRP-seq), PAN is found binding to KSHV genome to 
initiate lytic phase [33].

MiRNAs are expressed in latent cells, helping establish lifetime infection in host 
cells. MiRNAs are a group of small, about 22 nt in length, noncoding RNAs that are 
capable of regulating gene expression posttranscriptionally [34, 35]. The mecha-
nism of how these small RNAs works has been studied since its discovery. It is 
believed that miRs can regulate gene expression through inhibiting transcription or 
destabilizing target genes by targeting complementary sequences in the 3′ untrans-
lated regions (3′UTR) [34–37].
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Discovery of KSHV miRNAs went through a history of a half decade. In 2005, 
Pfeffer et  al., Cai et  al., and Samols et  al. identified 11 precursor-miRNAs (pre-
miRNA) coded by KSHV by cDNA cloning strategies [38–40]. Later, with the help 
of a combined computational and microarray-based approach, Grundhoff et  al. 
uncovered a different hairpin that leads to the 12th pre-miRNA, miRNA-K12, as 
well as most of the miRNAs discovered before [40]. With more digging, in 2010, 
different groups ascertained that there were at least 25 mature miRNAs deriving 
from those previously found pre-miRNAs [41]. No more miRs have been found 
ever since.

In 2013, a group in the USA found out that KSHV miRNAs are essential for 
tumorigenesis of KS. In this particular research, they found that deletion of KSHV 
miRs fails to transform, and instead it caused cell cycle arrest and apoptosis [26]. 
These results show that KSHV miRs are of great significance in the tumorigenesis 
of KS. And in this same research, NF-κB pathway is found to be the critical path-
way targeted by KSHV miRs [26].

Moreover, these miRNAs are capable of regulating viral life cycle and gene 
expression, facilitating the tumorigenesis of KS. In a project done by Lu et al., they 
discovered that KSHV miR-K3 regulates viral latency by targeting nuclear factor 
I/B (NFIB), which indicates that KSHV miRNAs play a significant role in KSHV 
life cycle [42]. Also, miR-K3, miR-K4, miR-K7-5p, and miR-K9 have been reported 
to be related with the KSHV lytic switch protein (RTA)-regulated KSHV life cycle 
[42–45]. Moreover, a recent study showed that KSHV miRNA miR-K12-6-5p 
(miR-K6-5) can directly target and suppress a human gene, breakpoint cluster 
region (Bcr), resulting the activation of Rac1-mediated angiogenesis [46]. MiR-K1 
also target IκBα, leading to NF-κB-dependent viral latency [47].

Researches on miRs are developing rapidly. A lot of the target genes or pathways 
regulated by miRs have been confirmed. For example, by inhibiting SH3BGR, 
miR-K6-3p activates STAT3 pathway to aid the malignancy of KS [48]; and by 
targeting GRK2, miR-K3 activates the CXCR2/AKT pathway, which influences the 
angiogenesis, migration and invasion of KSHV-infected primary human umbilical 
vein endothelial cells (HUVECs) [49]. A lot more targets of KSHV miRs have been 
confirmed, parts of the targets are shown in Table 15.1.

15.2  �Interaction Between KSHV and HIV Viral Proteins

Although KSHV is the pathogen of KS, KSHV alone is not sufficient for the tumori-
genesis of KS. HIV infection is thought as the cofactor in tumorigenesis of KS [50]. 
Epidemiology research on KSHV showed that KS is of higher possibility develop-
ing in AIDS patients [51, 52]. The HIV-KSHV interaction must have a place in KS.

HIV genome encodes 16 viral proteins, which all play essential roles in HIV life 
cycle. In the coinfected hosts, more cytokines are induced by HIV-1 effecting KSHV 
life cycle. Experiment done on BCBL-1 cells found that cytokines, like OSM, 
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HGF/SF, and IFN-γ, can induce KSHV lytic reactivation [50]. Same results are 
shown in other two PEL cell lines, BC-1 and BC-3 [50].

Multiple signaling pathways are involved in HIV-1 induced KSHV reactivation. 
HIV-1-infected BCBL-1 activated several pathways, including phosphatidylinositol 
3-kinase/AKT (also called protein kinase B, PKB), mitogen-activated protein kinase 
(MAPK), and nuclear factor-κB (NF-κB) signaling pathways [53]. All these three 
pathways are involved in KS pathogenesis. In HIV-1-infected BCBL-1 cells, phos-
phorylation of PI3K and AKT is dramatically increased, and meanwhile the nega-
tive regulator of PI3K and PTEN is decreased, all leading to the activation of the 
PI3K/AKT pathway [53]. Moreover, HIV-1-infected BCBL-1 cells showed 
increased expression of Ras and phosphorylation of c-Raf, MEK1/2, and extracel-
lular signaling-regulated kinase (ERK), which all represent their activation [53]. 
Furthermore, activation of the Ras/c-Raf/MEK1/2 MAPK pathway leads to the acti-
vation of KSHV lytic production [53]. However, the role of NF-κB in the reactiva-
tion of KSHV remains a controversy.

15.2.1  �HIV-1 Tat and Its Function in the Oncogenesis of KS

The HIV-1 Tat is a polypeptide with a length of 86–104 amino acids (aa) [54]. With 
its ability to transactivation, HIV-1 Tat is vital for HIV replication [54]. Extracellular 
Tat is capable of entering uninfected cells and transactivate endogenous genes, such 
as tumor necrosis factor, interleukin-2 (IL-2), and IL-6 [55]. Tat is positively 
charged, and with this feature, it is able to bind to negatively charged molecules, 
such as VEGFR-2, which significantly promotes angiogenesis in vivo [54]. With 

Table 15.1  KSHV miRNAs and confirmed target genes

miRNA Related pathways or genes Ref.

miRNA-K12-1 Nuclear factor-κb (NF-κB) [109, 110]
Signal transducer and activator of transcription 3 (STAT3)
Casp3

miRNA-K12-3 G protein-coupled receptor (GPCR) kinase 2 [49, 110, 111]
Casp3
Nuclear factor I/B (NFIB)

miRNA-K12-4 Casp3 [110]
miRNA-K12-5 Tumor suppressor protein tropomyosin 1 (TPM1) [112]
miRNA-K12-6 Breakpoint cluster region (Bcr) protein [46, 48]

SH3 domain-binding glutamate-rich protein (SH3BGR)
miRNA-K12-7 Replication and transcription activator (RTA) [44]
miRNA-K12-9 Interleukin-1 receptor (IL-1R)-associated kinase 1 

(IRAK1)
[113]

MiRNA-K12-11 SMAD5 [114]
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this effect, there is high possibility that Tat contributes to KSHV-inducing abnormal 
angiogenesis in KS formation.

Researches confirmed that Tat, regulatory protein encoded by HIV, is involved in 
several activities of KSHV. It has been proved that Tat, as a cofactor in pathogenesis 
of AIDS-KS, is a growth factor for KS spindle cells [56, 57]. Transgenic expression 
of Tat in mice helps in the formation of KS-like lesions [58]. Researches so far have 
found that HIV Tat can affect KSHV life cycle and facilitate AIDS-KS by inducing 
cellular proliferation and pro-inflammatory genes. In 2007, our group found that, by 
inducing human interleukin-6 (huIL-6) and its receptor (huIL-6Ra), Tat enhances 
KSHV lytic replication through modulation of the JAK/STAT pathway [59].

Far in the late 1990s, it is demonstrated that, for Tat being capable of inducing 
pro-inflammatory and proliferative genes in KS, it might contribute to the pathogen 
of KS [60]. Tat enhances the expression of IL-6, MCP-1, ICAM-1, and VCAM-1 in 
cultured KS cells [60]. Among these cytokines, IL-6 is a cytokine that activates 
leukocytes and induces the proliferation of KS cells [60]. The expression of MCP-1 
and other cellular adhesion molecules could in return promote the expression of 
IL-6 [60].

In cooperation with a 13-amino-acid peptide corresponding to the basic region of 
Tat, HIV-1 Tat enhances KSHV infectivity by aiding KSHV entering into endothe-
lial cells and other cells [61]. This might be the reason AIDS-KS is far more aggres-
sive than KS in other immunodeficiency or immunocompromised states. In the 
pathogenesis of KS, HIV-1 Tat may cooperate with KSHV-encoded genes to facili-
tate KS tumorigenesis. Research found that HIV-1 Tat may enhance KSHV kaposin 
A-mediated tumorigenesis in vitro and in vivo through several signaling pathways, 
such as MEK/ERK, STAT3, and PI3K/Akt signals [58]. However, it is not only that 
kaposin A-mediated tumorigenesis is enhanced by Tat but also vIL-6. Through acti-
vating PI3K and AKT and inactivating PTEN and GSK-3β, Tat significantly pro-
motes vIL-6-induced angiogenesis and tumorigenesis of fibroblasts and human 
endothelial cells in a chicken chorioallantoic membrane (CAM) model [62].

Most of the cells in KS are under latent infection; however, a few KSHV-infected 
cells are activated and express lytic genes, such as Orf-K1 and Orf-K2 [63]. Soluble 
Tat or ectopic expression of Tat enhanced K1-induced cell proliferation and angio-
genesis in vitro and in vivo [63]. In synergy with K1, Tat induces the expression of 
miR-891a-5p of host cells, which activates NF-κB by targeting IκBα 3′ untranslated 
region [63]. Activation of NF-κB in turn contributes to the malignancy of KS.

Moreover, ectopic expression of HIV-1 Tat promotes HSV-2-induced KSHV 
reactivation, resulting in KSHV going into lytic phase [64].

15.2.2  �HIV-1 Nef and Its Role in Tumorigenesis of KS

Nef, expressed during the early stage of infection, is encoded by the nef gene, which 
only exists in primate lentiviruses [65]. In 1991, Kestler et  al. infected Rhesus 
macaques with a mutated strain of SIVmac239 lacking the Nef ORF, which proved 
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that the nef gene is vital in maintaining high viral load and viral infection [66]. Nef 
is structurally multifunction. Far in the 1990s, multiple groups confirmed that in 
HIV-1-infected cells, Nef assembles on the cell surface or in cytoplasm [67, 68]. 
Myristoylation of Nef and basic amino acids on its N-terminal helps the interaction 
between Nef and membrane [68, 69], which facilities its coping with host contents 
and helps the replication of HIV-1 [70]. Different groups confirmed that Nef is also 
able to enhance the infectivity of HIV-1 [70, 71]. Recent study shows that Nef is 
also involved in the localization of Gag, resulting in transferring viruses cell to cell 
[72]. With its ability to interact with multiple host factors, Nef displays remarkable 
ability in connecting with the cellular vesicular trafficking machinery and to perturb 
cell signaling [65].

Not only is HIV-1 Nef of great importance in HIV-1 infection, but also it 
plays significant roles in the oncogenesis of KSHV. Based on the fact that Nef 
localizes in the pulmonary arterial endothelial cells of AIDS patients, our group 
validated that in cooperation with KSHV viral interleukin-6 (vIL-6), HIV-1 Nef 
facilitates angiogenesis and oncogenesis of KSHV by manipulating AKT signal-
ing pathway [73]. The experiment in  vivo shows Nef boosts vIL-6-induced 
angiogenesis and tumorigenesis [73]. In this particular research, we found that 
exogenous Nef is able to penetrate endothelial cells, without impacting the 
apoptosis of endothelial cells [73]. That corresponds with Nef being able to get 
to cell membrane.

Despite vIL-6, HIV-1 Nef works in synergy with KSHV K1 to promote cell pro-
liferation and tubulogenesis of human umbilical vessel endothelial cells (HUVEC) 
[74]. HIV-1 and KSHV K1 together induce cellular miR-718, which in turn regu-
lates the PTEN/AKT/mTOR signaling pathway [74].

Moreover, Nef is capable of regulating KSHV life cycle. Our recent investigation 
shows that soluble and ectopic Nef can suppress KSHV lytic replication to promote 
latency in PEL cells [75]. Mechanism study revealed that cellular miR-1258 
enhances Nef inhibition of KSHV reactivation [75].

Besides Tat and Nef, HIV-1 viral protein R (Vpr) is another viral protein that is 
involved in regulating KSHV life cycle. Researchers found that Vpr is able to acti-
vate KSHV transcription [76]. And with its ability of internalizing into PEL cells, 
Vpr can activate NF-κB signaling pathway, and cellular miR-942-5p directly target 
inhibitor of NF-κB, revealing the role of NF-κB in balancing KSHV latency and 
lytic production [77].

15.2.3  �KSHV Affects HIV

HIV influences KSHV in multiple ways and plays important roles in the oncogen-
esis of KS; KSHV in turn influences host cell susceptibility of HIV-1 and replication 
in few ways as well [78]. The receptor for KSHV, DC-SIGN, is expressed on acti-
vated macrophages, B cells, and monocyte-derived dendritic cells (MDDCs). Also, 
isoform of DC-SIGN, DC-SIGNR, is also expressed on endothelial cells [79]. 
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Among them, dendritic cells are of great significance in HIV-1 infection, which 
indicates the relationship of KSHV and HIV-1 in their coinfection.

KSHV plays a role in HIV viral transportation. Research found that dendritic 
cells stimulated by KSHV capture more HIV viral particles and enhance HIV-1 
transport to CD4+ T cells, which is a key route of HIV-1 transfer between cells [80].

KSHV is also involved in regulating HIV-1 life cycle. KSHV ORF50 (encodes 
RTA) is an important gene in KSHV reactivation [81]. In KSHV and HIV coinfec-
tion case, KSHV ORF50 increases cell susceptibility of HIV-1 infection in vitro and 
is capable of transactivating the HIV-1 LTR in synergy with HIV-1 tat gene [81, 82]. 
In susceptible cell, like T cells and B cells, the expression of ORF50 activates HIV-1 
replication, and in unsusceptible cells, HIV-1 alone is not able to launch reactiva-
tion, while transformed with ORF50, HIV-1 infection is more persist in parent cell 
and leads to low level of HIV-1 virus production, infecting susceptible cell by direct 
contact [83]. Meanwhile, KSHV ORF57 is found being able to activate HIV-1 rep-
lication by regulating ORF50 or other unidentified mechanism [82].

Despite OFR50, researchers found that KSHV-encoded ORF45 was the most 
robust in mediating transcriptional activation of HIV-1 TLR via the cellular p90 
ribosomal S6 kinase (RSK2) as well [83].

In addition, KSHV-encoded viral FLIP (Fas-associated death domain-like IL-1 
beta-converting enzyme inhibitory protein) K13 can activate the HIV-1 LTR in 
cooperation with HIV Tat [84]. The activation is done via K13 activating NF-κB 
pathway [84].

Moreover, KSHV latency-associated nuclear antigen (LANA) is constantly 
expressed in KSHV-infected cells. Research found that by functioning as a regulator 
of transcription, LANA is able to transactivate HIV-1 LTR in multiple cell lines, 
including human B-cell line BJAB, human monocytic cell line U937, and the human 
embryonic kidney fibroblast cell line 293 T [84]. And HIV-encoded Tat protein is in 
cooperation with LANA in the reactivation [84].

15.3  �Effect of Antiviral Treatment on KS Development 
and New Treatment of KS

After the epidemic of HIV infection and outbreak of AIDS, till now, multiple anti-
HIV drugs have been approved by US Food and Drug Administration (FDA). And 
in HIV-infected individuals, antiretroviral treatment (ART) is sufficient to prevent 
transmission [85–87]. At the same time, HAART has significantly reduced KS inci-
dence in HIV-positive patients, while in Africa, where antiretroviral drugs are not 
easily accessible, KS remains a problem for HIV-infected patients [88, 89]. Effects 
of HAART on AIDS-KS are diverse, including inhibition of HIV replication, 
improved immune response, or direct inhibition of HIV-1 Tat [90]. However, no 
scant evidence or clinical evidence shows that HAART alone is sufficient to treat 
KS [89, 90]. KS several treatment methods have development in treating KS, while 
no standard methods have been made.
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HAART, in combination with systemic and local therapy, is efficient in control-
ling KS, resulting in regression of KS both in size and number of KS lesions [88, 91, 
92]. Such regimens include cytotoxic chemotherapy and protease inhibitor [90]. A 
trail involving chemotherapy and HAART elucidated that a combination of HAART 
and chemotherapy achieved higher overall KS response, resulting in higher overall 
survival and improved quality of life [93]. Chemotherapy is strongly recommended 
in treating KS, especially KS with pulmonary involvement [20]. HAART mainly 
controls HIV, while chemotherapy is specific to KS.

Together with HAART, FDA-approved chemotherapeutic drugs including 
pegylated liposomal doxorubicin (PLD), liposomal daunorubicin, and taxane pacli-
taxel are proved impactful in treating KS. PLD plus HAART showed better KS 
response after 48-week treatment than HAART alone, and it shows equal efficiency 
in advanced KS [20, 94, 95]. Later year, in 2005, researcher found that this combi-
nation can induce effective tumor remission and recovery of CD4+ cells [96]. The 
comparison between paclitaxel and PLD showed similar response toward KS (a rate 
of 50–60%), with paclitaxel showing hematologic toxicity and more alopecia and 
sensory neuropathy [97]. And liposomal daunorubicin was approved by US FDA as 
the first-line treatment of KS [98]. And KS patients benefit from higher cumulative 
chemotherapeutic doses without significant cardiotoxicity [99]. However, HAART 
in combination with chemotherapy is not as effective as expected. Still 51% of the 
patients have persistent KS 36 months after diagnosis.

New drugs targeting KSHV regulated pathways or factors are developed during 
recent decades. Rapamycin, an mTOR signaling pathway inhibitor, is proved effec-
tive in transplant-related KS, and in AIDS-KS, its effect still needs further investiga-
tion [100, 101]. And also there is a report on classic-KS regression after treatment 
with rapamycin [102]. Drugs or immune modulators like interferon-a, interleukin-
12, thalidomide, and lenalidomide are effective either alone or in combination with 
other treatment [103–106]. Other drugs targeting KSHV-encoded genes regulated 
signaling or KSHV-induced angiogenesis; apoptosis is also under investigation 
[90].

15.4  �Remarks and Perspectives

In this article, we made a discussion on KSHV and the heated topic of KSHV miR-
NAs during the last few years. These products of KSHV latency are of great signifi-
cance in the angiogenesis, migration, and invasion of KS. This leads us one more 
step closer to the myths of KSHV and KS. However, cell origin of KS is still con-
troversial and haunting around. The establishment of KSHV-infected MSCs is the 
first step in searching the secret behind KS [107, 108]. Besides that, the network of 
interaction between KSHV miRNAs and its target genes deserves more digging to 
clarify the underlying secrets of KSHV miRNAs in the tumorigenesis of 
KS. Researches on HIV and KSHV coinfection now mainly focus on the HAART 
treatment. Drugs and methods in treating AIDS-KS have been found and proved 
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effective, saving thousands of lives. However, works on prevention of KS is still 
slow. No vaccines or other drugs have been found or developed in preventing KSHV 
infection or KS development. And works on non-AIDS-related KS still need more 
attention.
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