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Chapter 14
Murine Gammaherpesvirus 68: A Small 
Animal Model for Gammaherpesvirus-
Associated Diseases

Sihan Dong, J. Craig Forrest, and Xiaozhen Liang

Abstract  Murine gammaherpesvirus 68 (MHV68) is a naturally occurring patho-
gen of murid rodents that is genetically related to the human gammaherpesviruses 
Epstein-Barr virus (EBV) and Kaposi sarcoma-associated herpesvirus (KSHV). 
Viral, immunologic, and disease parameters following experimental infection of 
laboratory mice with MHV68 closely resemble what occurs during primary EBV 
infection of humans, which suggests that MHV68 infection of mice offers a small 
animal model to study in general the pathogenesis of gammaherpesvirus infections. 
Diseases elicited by MHV68 infection include lymphoproliferative diseases, idio-
pathic pulmonary fibrosis, and autoimmune diseases, ailments also associated with 
EBV infection of humans. Furthermore, MHV68 infection also is linked to the 
development of vasculitis, encephalomyelitis, and other disorders that resemble 
pathologies with viral and nonviral etiologies in humans. This review aims to pro-
vide an overview of MHV68-associated diseases in infected mice that may provide 
a model for understanding basic mechanisms by which similar diseases in humans 
occur and can be treated.
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14.1  �Introduction

Murine gammaherpesvirus 68 (MHV68) is a naturally occurring virus that was 
originally isolated from Slovakian bank voles and is endemic in European wood 
mice [1–3]. MHV68 is genetically related to the human gammaherpesviruses 
(GHVs), Epstein-Barr virus (EBV), and Kaposi sarcoma-associated herpesvirus 
(KSHV), possessing a genome that is collinear with those of EBV and KSHV and 
contains large blocks of conserved genes with interspersed unique genes as well [1, 
4, 5]. Following intranasal infection of mice, MHV68 undergoes acute infection in 
the lungs and nasal epithelium and establishes latency, a nonproductive, quiescent 
infection characterized by minimal viral gene expression and maintenance of the 
viral genome, in cells of the spleen and blood [6–9]. Productive replication mainly 
involves epithelial and mononuclear cells in the lungs, with acute infection resolv-
ing by approximately 2 weeks post-infection [10]. Acute replication precedes and is 
thought to be necessary for lifelong latent infection in lymphoid tissues, where B 
cells serve as the major latent reservoir for MHV68 in the spleen [6]. Peritoneal 
macrophages and lung epithelial cells also harbor latent MHV68 genomes [10, 11].

MHV68 infection of mice results in a variety of pathologies that resemble EBV-
associated diseases and other human disorders. Mice chronically infected with 
MHV68 develop a marked splenomegaly and lymphoproliferative diseases (LPDs), 
similar to what is observed in patients infected with EBV [12–14]. MHV68 infec-
tion induces multi-organ fibrosis and vasculitis in interferon gamma receptor knock-
out (IFNγR-/-) mice [15–17]. In other disease models, MHV68 infection promotes 
systemic inflammation, exacerbates autoimmune encephalomyelitis, and influences 
development of other pathologies [18, 19]. Here, we will discuss MHV68-related 
diseases and the potential value of this small animal model for the study of similar 
diseases associated with infections by human GHVs.

14.2  �MHV68-Associated Diseases

14.2.1  �MHV68-Associated Lymphoproliferative Diseases

Infection of laboratory mice with MHV68 leads to a variety of pathological changes 
that mirror EBV-associated LPDs and other malignancies. Following intranasal 
infection of wild-type mice with MHV68, acute infection in the lung develops and 
is subsequently cleared, followed by the establishment of latency in the spleen [20, 
21]. Latency establishment is accompanied by splenomegaly, which is character-
ized by a two- to threefold increase in the number of spleen cells, with the largest 
increase occurring in the CD8+ T cell population [13]. Polyclonal B-cell activation 
and autoantibody production also occur [13]. This is similar to what occurs during 
EBV-induced infectious mononucleosis in humans [22, 23]. Development of sple-
nomegaly in MHV68 infection requires CD4+ T cells and organized secondary 
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lymphoid tissue [13, 24, 25]. CD25-mediated IL-2 signaling also is necessary for 
the CD8+ T cell mononucleosis that occurs [26].

BALB/c mice chronically infected with MHV68 develop LPDs, including high-
grade lymphomas that resemble centroblastic or plasmablastic non-Hodgkin lym-
phomas seen in humans [12]. MHV68-associated lymphomas primarily occur in 
older mice (0.75–3  years of age), and lymphoma incidence is greatly increased 
when infected mice are treated with the immunosuppressive drug cyclosporin A 
[12]. Since cyclosporin A functions chiefly through inhibition of T cell function, 
this finding strongly suggests that T cells are important for limiting tumor growth in 
MHV68-infected mice. Indeed, adoptive transfer of CD4+ T cells from infected 
mice promotes regression of lymphomas that developed following subcutaneous 
injection of an MHV68-positive B-cell lymphoma line, S11, isolated from a tumor-
bearing BALB/c mouse [27]. Although MHV68 does not appear to transform pri-
mary murine B cells in culture, murine fetal liver-derived B cells are transformed by 
MHV68 into plasmablast-like B cells in vitro [28]. Similar to S11 cells, when these 
plasmablast-like B cells are injected into immunodeficient mice, the transformed B 
cells induce lymphomas that can be controlled by both CD4+ and CD8+ T cells 
[29]. Together, these findings illustrate (i) that MHV68 infection can cause lympho-
mas and (ii) that T cells are important for controlling infection-associated 
lymphomas.

MHV68 infection of BALB/c2 microglobulin (B2M)-deficient mice (BALB 
B2M-/-) also results in B-cell lymphoma and an atypical lymphoid hyperplasia 
(ALH) [14]. ALH pathologically is differentially regulated by MHV68 genes and 
resembles posttransplant lymphoproliferative disease observed in some EBV-
infected individuals that are immune suppressed for solid organ transplants [30, 31]. 
B2M is a critical component of the major histocompatibility I (MHCI) complex, a 
cell surface receptor necessary for CD8+ T cells to engage target cells [32]. This 
further illustrates the importance of T cells in preventing MHV68-associated LPDs.

Lymphomatoid granulomatosis (LYG) is a rare systemic angiodestructive LPD 
caused by the combination of EBV infection and immunosuppression [33, 34]. LYG 
mostly affects the lungs and is recently characterized as B-cell lymphomas with 
prominent pulmonary involvement [33]. MHV68-infected IFNγR-/- mice also 
develop pulmonary B-cell lymphomas which closely mimic EBV-associated LYG 
in human [35].

Nevertheless, there are differences between EBV-associated LPDs in humans 
and MHV68-associated LPDs in mice. For example, CD8+ T cell lymphocytosis 
associated with EBV-induced mononucleosis is predominantly an outgrowth of T 
cells responding to viral lytic epitopes [36, 37]. In contrast MHV68-induced mono-
nucleosis in C57BL/6 mice represents expansion of CD8+ T cells that encode a Vβ4 
T cell receptor that is not reactive to viral epitopes and appears to be stimulated by 
latently infected B cells [38, 39]. However, the striking pathological similarities 
between EBV-associated LPDs and the corresponding syndrome in MHV68-
infected mice highlight MHV68 as a valuable small animal model for studying fun-
damental issues in gammaherpesvirus-associated LPD pathogenesis in a natural 
host.

14  MHV68 as a Disease Model



228

14.2.2  �MHV68-Associated Fibrosis

Several reports associate EBV infection with idiopathic pulmonary fibrosis (IPF), a 
chronic, progressive, fibrotic lung disorder of unknown etiology that is a risk factor 
for lung cancer development [40–43]. Although EBV is frequently detected in lung 
tissues of patients with IPF, an etiologic role for EBV in IPF is not established 
REF. Interestingly, MHV68 infection of IFNγR-/- mice leads to multi-organ fibro-
sis, which occurs in the lung, spleen, mediastinal lymph nodes, and liver of these 
mice [15, 16, 44, 45]. Lung fibrosis in MHV68-infected IFNγR-/- mice shares simi-
lar pathology to IPF in humans [45]. Mechanistic studies show that both viral and 
cellular factors are involved in MHV68-induced fibrosis in IFNγR-/- mice. Persistent 
MHV68 lytic replication apparently is essential for induction or exacerbation of 
IPF, because severe fibrosis is ameliorated in MHV68-infected IFNγR-/- mice that 
receive antiviral treatment and in IFNγR-/- mice infected with a reactivation-
defective MHV68 mutant that fails to express v-cyclin [46]. Moreover, MHV68 
superantigen-like M1 protein and activated Vβ4+ CD8+ T cells, which are driven to 
expand by M1, also are required for MHV68-induced inflammation and fibrosis in 
IFN-γR-/- mice [47, 48]. Additionally, inhibition of NF-κB signaling reduces virus 
persistence and pulmonary fibrosis in MHV68-infected IFNγR-/- mice, indicating 
that NF-κB signaling also is important for MHV68-induced pulmonary fibrosis 
[49]. Thus, MHV68 infection of IFNγR-/- mice could be used to model the associa-
tion of gammaherpesvirus infection with IPF and define underlying molecular 
mechanisms of disease.

MHV68 infection of bleomycin-resistant BALB/c mice has also been used to 
study the association between GHV infection and IPF. Bleomycin-induced fibrosis 
is widely used experimental model for lung fibrosis occurring during chemotherapy 
[50]. BALB/c mice are inherently resistant to lung fibrosis due to bleomycin treat-
ment and do not develop pulmonary fibrosis when infected with MHV68. However, 
when BALB/c mice are simultaneously infected with MHV68 and treated with 
bleomycin, lung fibrosis occurs [51], indicating that MHV68 functions as a cofactor 
in bleomycin-induced fibrosis. Another study demonstrated that TLR9 signaling 
protects against MHV68-induced exacerbation of lung fibrosis induced by bleomy-
cin in BALB/c mice [52]. These findings support the role of GHV infection in 
human IPD, and future development of the MHV68/bleomycin model should fur-
ther explore mechanisms by which GHV infection functions as a cofactor in the 
pathogenesis of pulmonary fibrosis.

Finally, MHV68 infection of IFNγ deficient (IFNγ-/-) mice on the BALB/c 
genetic background results in acute lethal pneumonia that is dependent on MHV68-
encoded v-cyclin and v-bcl-2 [53]. However, whether MHV68-induced pneumonia 
in IFNγ-/- mice is pathologically similar to EBV-associated pneumonia, which 
mainly occurs in children and transplant patients, is not yet clear [54–57].

In addition to lung fibrosis, MHV68 infection of IFNγR-/- mice also induces 
fibrosis in the spleen. The prominent feature of splenic pathology in infected IFNγR-
/- mice is a loss of B cells and CD4+ and CD8+ T cells, which correlates with 
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significant changes in cytokines and chemokines in spleens. In contrast, a dramatic 
increase in T and B lymphocytes in peripheral blood occurs [15, 44]. CD8+ T cells 
are the major mediators of splenic damage, since depletion of CD8+ T cells com-
pletely reverses the pathological and histological changes in spleens of these mice. 
However, although removal of CD4+ T cells reverses the weight loss and reduces 
the number of infective centers, some pathological changes are still observed in 
CD4+ T cell-depleted mice. This suggests that CD4+ T cells are not the dominant 
mediators but still play an important role in splenic fibrosis [44].

Furthermore, MHV68 infection of IFNγR-/- mice leads to enhanced production 
of Th2 cytokines IL-5, IL-13, and IL-21 and increased expression of CCR4 in the 
spleens of infected mice [16]. This drives alternative activation of macrophages to 
produce arginase 1 (ARG1) and found in inflammatory zone 1 (FIZZ1)/resistin-like 
molecule-α (RELMα) to promote fibrotic disease in the spleen [16, 58]. Though 
EBV infection is not directly linked to fibrotic disease of the spleen in humans, the 
data from MHV68 infections suggest a role for GHV infection in such diseases. 
This model may therefore hold future relevance for understanding how viruses 
influence splenic fibrosis in general.

14.2.3  �MHV68 Impact on Autoimmune Diseases

Multiple sclerosis (MS) is an autoimmune disorder in which the immune system 
attacks the central nervous system (CNS), damaging the myelin sheath of nerve 
cells in the brain and spinal cord. EBV is etiologically linked to MS [59–61]; how-
ever mechanisms by which EBV influences MS pathogenesis are not known. In 
mice induction of inflammatory immune responses in the brain triggers an MS-like 
syndrome known as experimental autoimmune encephalomyelitis (EAE) [62, 63]. 
Because MHV68 replicates in the mouse brain, infecting microglia and astrocytes 
[64, 65], and globally influences immune activation in infected animals [66], the 
impact of MHV68 infection on EAE pathogenesis was evaluated. Latent MHV68 
infection enhances EAE pathogenesis and central nervous system pathology in a 
manner reminiscent of human MS [19, 67]. This observation demonstrates that 
GHV infection can influence the course of disease in CNS autoimmune disorders 
and highlights the potential of these small animal models in facilitating an under-
standing of mechanisms by which EBV influences MS.

EBV infection also is linked to development of lupus in humans, an autoim-
mune disease in which healthy tissues are attacked by the individual’s immune 
system, leading to swelling and damage of various tissues of the body. In contrast 
to EAE models, MHV68 infection protects, rather than exacerbates, lupus-prone 
mice from the development and progression of autoimmunity [68]. Together, these 
findings demonstrate that GHV infection influences the course of CNS autoim-
mune disease. However, the data also demonstrate that pathogenesis is likely a 
multifactorial process in which GHV infections may have pleiotropic impacts on 
disease progression.

14  MHV68 as a Disease Model
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The impact of MHV68 infection in other mouse models of autoimmune disease 
also has been evaluated. For instance, IL10−/− mice are prone to developing inflam-
matory bowel disease (IBD), and infection with MHV68 promotes more rapid and 
severe disease in these mice [69]. This finding is similar to the observation that EBV 
infection correlates with disease severity in some IBD patients [70–74]. In contrast, 
MHV68 infection of nonobese diabetic (NOD) mice, a mouse model for evaluating 
type I diabetes (T1D), significantly delays diabetes onset [75], which supports the 
hypothesis that viruses are potential regulators of T1D [76–78]. Furthermore, trans-
genic mice expressing MHV68 chemokine decoy receptor M3  in beta cells are 
remarkably resistant to diabetes induced by multiple low doses of streptozotocin 
[79]. This suggests the importance of specific viral factors in regulating 
T1D. Together, these data highlight the manner in which MHV68 studies could be 
employed to define roles for GHVs in intestinal diseases and diabetes.

14.2.4  �MHV68-Related Vascular and Ductal Disorders

In addition to lymphoma development and fibrosis, MHV68 causes severe large-
vessel arteritis associated with lipid accumulation in the vessel wall and luminal 
thrombosis in IFNγR-/- mice. Lesions that develop are similar to those seen during 
the acute inflammatory phase of Takayasu arteritis, the nongranulomatous variant of 
temporal arteritis and Kawasaki diseases [17], suggesting possible GHV etiologies 
in these pathologies and demonstrating the utility of MHV68 infection of mice in 
dissecting GHV roles in human vasculitis. Furthermore, MHV68 induces chronic 
inflammation of intrahepatic bile ducts in infected IFNγR-/- mice, which is patho-
logically similar to the human fibrotic liver disorder primary sclerosing cholangitis 
[80]. Additionally, MHV68 reactivation from latency induces neointimal lesions in 
pulmonary arteries of S100A4/Mts1-overexpressing mice. These lesions are associ-
ated with elevated neutrophil elastase, which is produced by pulmonary artery 
smooth muscle cells and linked to experimental and clinical pulmonary vascular 
disease [81, 82]. Finally, MHV68 infection in mice also induces phenotypes that 
mimic rare diseases such as systemic lymphocytosis following gastric instillation 
and fatigue [83, 84]. MHV68 may therefore provide a useful model for the study of 
fatigue and other physiologic and behavioral perturbations that occur during acute 
and chronic infection with gammaherpesviruses.

14.3  �Remarks and Perspectives

Human gammaherpesviruses are exquisitely species restricted, which limits possi-
ble approaches for defining precise mechanisms by which these viruses cause dis-
ease. The beauty of small animal models of viral pathogenesis is that they enable 
evaluations of both viral and host determinants of disease in experimentally 

S. Dong et al.



231

controlled settings. In contrast, analogous studies of GHV infections in humans 
would require the presence of naturally occurring mutations in either virus or host, 
paired with the ability to identify individuals and viruses that possess such genetic 
variants. Even then, the studies would be necessarily associative, observational, and 
potentially influenced by numerous outside variables due to environment, lifestyle, 
additional genetic variations, age, coinfections, etc. The use of humanized mice, 
immunodeficient animals in which the immune system is reconstituted by human 
stem cells, allows an experimental system for evaluating certain aspects of GHV 
infection in human cells. But again the system is still genetically limited and may 
not faithfully recapitulate natural cellular development and cell-cell interactions, 
and not all tissues in the reconstituted mouse are of human origin. Humanized mice 
are also very expensive. Hence, the capacity to study a genetically related pathogen 
(MHV68) in a natural host (rodents) offers a powerful tool for understanding virus-
host interactions in GHV infection-associated diseases. Here, infections of inbred 
mice with MHV68 provide a simplified and standardized analysis of immune 
responses against the virus and eliminate many potential experimental variables. 
Moreover, the ease of genetically manipulating both virus and host further high-
lights the tractability of the MHV68 system. Indeed, genetically modified mice and 
viruses enable many of disease models described above.

However, this is not to say that infection of mice with MHV68 is identical to 
human infections with EBV or KSHV. Clearly mice are not humans, and it is naïve 
to think that all aspects of the host response will be identical in two quite divergent 
species. Further, while genetic diversity is an experimental problem, genetic poly-
morphisms from human to human and population to population undoubtedly influ-
ence the pathogenesis and outcome of infection by GHVs.

Along these same lines, MHV68 is not EBV or KSHV. While all GHVs (and 
herpesviruses in general) possess blocks of conserved genes, each virus also encodes 
unique proteins that are not shared with their GHV relatives. These genes maintain 
no vestige of sequence homology and may have developed through convergent evo-
lution to satisfy unique requirements of the virus-host relationship. It is however 
interesting to note that the products of these divergent genes likely perform con-
served functions, for instance, both LMP2a of EBV and M2 of MHV68 manipulate 
B-cell survival and differentiation [85]. If these unique genes are under selection 
from the host, it is equally possible that they have simply diverged over millennia at 
a rate that made them nonhomologous at the sequence level by modern informatics 
techniques while maintaining critical functions. Perhaps the key take-home points 
are these: MHV68 provides a highly tractable experimental system for understand-
ing how GHVs influence disease in a variety of experimental models. Though obvi-
ous differences exist between human and mouse infections, the data produced in the 
mouse models are real and may offer invaluable insights into factors that influence 
similar diseases in humans. As such, MHV68 infection of mice can serve as power-
ful tool in the arsenal for illuminating previously unappreciated factors and cofac-
tors that influence human disease and allow for preclinical testing of novel 
hypotheses for treating related diseases.

14  MHV68 as a Disease Model
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