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Chapter 1

Informatics for Precision Medicine

and Healthcare

Jiajia Chen, Yuxin Lin, and Bairong Shen

Abstract The past decade has witnessed great advances in biomedical informatics.

Biomedical informatics is an emerging field of healthcare that aims to translate the

laboratory observation into clinical practice. Smart healthcare has also developed

rapidly with ubiquitous sensor and communication technologies. It is able to

capture the online patient-centric phenotypic variables, thus providing a rich

information base for translational biomedical informatics. Biomedical informatics

and smart healthcare represent two interrelated disciplines. On one hand, biomed-

ical informatics translates the bench discoveries into bedside, and, on the other

hand, it is reciprocally informed by clinical data generated from smart healthcare.

In this chapter, we will introduce the major strategies and challenges in the

application of biomedical informatics technology in precision medicine and

healthcare. We highlight how the informatics technology will promote the precision

medicine and therefore promise the improvement of healthcare.
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1.1 Introduction

In the 2015 State of the Union address, US President Barack Obama launched

Precision Medicine Initiative (PMI) with a national investment of $215 million

[1]. PMI will pioneer biomedical research that takes into account the individual

variability in genes, environment, and lifestyle [2], thereby leading to the patient-

centered healthcare. Precision medicine falls within the scope of P4 medicine,

which is preventive, predictive, personalized, and participatory [3]. It will change

the healthcare from its current reactive mode to a more proactive and rational one.

In P4 medicine, clinicians focus on prevention rather than disease management.

They can determine a priori the risk and therapeutic responses of each patient based

on unique genetic makeup and customize medical treatment. P4 medicine also

enables individuals to become active and responsible participants in their own

health [4].

P4 medicine is highly dependent on the availability of trustable biomedical data

and the ability to manage the heterogeneous datasets with high levels of dimen-

sionality. Translational biomedical informatics (TBI) is a rapidly emerging field of

health informatics to advance P4 medicine. High-throughput technologies

represented by next-generation sequencing have generated myriad of biomedical

information at different levels, from the molecules to tissues, individuals, and all

the way to population [5]. The fields of molecular, imaging, clinical, and public

health informatics are converging into the emerging field of TBI [6]. TBI mainly

exploits the heterogeneous data wealth from the bench to formulate knowledge for

bedside application [7].

The prospect of applying P4 medicine has been boosted still further by the recent

development of smart healthcare technologies [8]. Smart healthcare is a recent term

for healthcare practice. It typically refers to the use of smart devices with the

capability to generate and disseminate health information to deliver healthcare

services. Smart devices are a set of advanced electronics, sensors, and ubiquitous

computing devices connected via different network protocols that can operate

interactively and autonomously [9].

In addition to smart healthcare, there are several competing terms including

eHealth, mHealth, telemedicine, and connected health, each of which has their own

definitions. The WHO’s definition of eHealth is the “cost-effective and secure use

of information and communications technologies in support of health and health

related fields.” [10] This is a broad definition including several subfields such as

telemedicine, mHealth, and connected health. Telemedicine employs modern com-

munication technologies to transfer medical information among treatment sites

improving healthcare [11]. mHealth is the successor to telemedicine, which

describes the delivery of healthcare services via mobile devices [12, 13] such as

cell phones and laptops. Connected health also originates from telemedicine, which

is a healthcare delivery model that uses advanced technologies to provide

healthcare remotely [14, 15]. Although smart healthcare partially overlap in
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definition with mhealth, it is distinguished from mhealth by a wider range of sensors

and consumer electronic goods and more ubiquitous computing properties.

Technological advances in sensing and communication are two enablers for the

delivery of smart healthcare services. Sensing technology enables a smart physical

environment in which nontraditional data on individual activities and lifestyle are

recorded by smart sensors [16]. Networking and communication increase the reach

and mobility of healthcare providers and also enable users to access pertinent

services anywhere and anytime. Therefore, smart healthcare represents a frame-

work integrating innovative networking and communication technologies, medical

sensor, and ubiquitous computing devices for improved healthcare delivery and

services. The penetration of smart device has been substantial within the medical

community and continues to grow. As a result, smart healthcare is transforming the

delivery of healthcare in virtually all areas of medicine.

Information is the bedrock upon which translational biomedical informatics

drives translation. The increasing amount and variety of data from smart healthcare

on one hand has widen the TBI’s arsenal to acquire relevant data and, on the other

hand, inevitably added to data complexity [17]. In this paper we describe how the

partnership between TBI and smart healthcare is expected to catalyze a new era of

P4 medicine. We also discuss the fundament issues and challenges in the integra-

tion of two domains for improved healthcare delivery.

1.2 Search Strategy

For this literature review, we searched MEDLINE citations and Web of Science for

all papers that discuss the use of smart health technologies by healthcare pro-

fessionals or patients. We performed a complex query which included various

search terms appearing in the title or abstract. The search terms used for eligible

articles were “smart, sensors, healthcare, informatics, vital signs, P4 medicine,

translational, internet.” The search was restricted to journal papers that were written

in English and published until September 20, 2015. To be fully inclusive, we also

searched reference lists in the retrieved papers. Titles and abstracts were reviewed

by a human for eligibility. Papers were excluded if they were not directly related to

smart healthcare. Full-text papers were retrieved followed by a full-text review.

1.3 TBI and Smart Healthcare

Technological innovations in high-throughput experimental techniques, e.g., next-

generation sequencing and molecular imaging have produced unprecedented vol-

ume of biomedical data. This data wealth is making the research community,

including biomedical scientists and clinicians well informed on the genetic, geno-

mic, clinical, and environmental background of the patient. However, such high-
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dimensional data spans multiple disciplines and are often difficult to apply in

practice.

Translational biomedical informatics is an emerging field of healthcare that

supports the transfer of biological observations from bench into rational care at

the bedside. Translational biomedical informatics encompasses four subdisciplines:

bioinformatics, imaging informatics, clinical informatics, and public health infor-

matics [18]. Each subdiscipline aims at a unique research domain and therefore

features domain-specific informatics tools and output formats. Table 1.1 summa-

rizes the spectrum of TBI disciplines. The four subdisciplines of TBI are contrasted

according to research methodologies and output data formats.

1.3.1 Bioinformatics

Simply defined, bioinformatics is the use of computational tools to interpret infor-

mation from genomes and their derivatives (e.g., transcriptomes, proteomes, and

metabolomes). Thus, bioinformatics approaches can readily identify molecules or

cellular components as targets of clinical interventions, allowing for better knowl-

edge of the mechanism of the disease.

The bioinformatics tools have generated a variety of health data at molecular

level, including gene sequences, mutations, rearrangements, and changes in the

expression of RNA and proteins. The multidimensional research data have been

cataloged by an expanding array of public databases. A number of research projects

such as TCGA, the Therapeutically Applicable Research to Generate Effective

Treatments (TARGET) Initiative, and the Cancer Target Discovery and Develop-

ment (CTD2) Network, Tumor Microenvironment Initiative (TMEN), and the

Integrative Cancer Biology Program (ICBP) have been conducted. These global

data collection programs would support the genomics study and translational

investigation.

1.3.2 Imaging Informatics

Imaging technologies use visualization approaches to measure and monitor the

pathogenesis of diseases at the tissue or organ level [19, 20]. It focuses on the

interpretation of the information derived from imaging devices.

Imaging informatics is expected to provide high-value medical information from

the visual images for early diagnosis and treatment of diseases. The large amount of

medical images have also been organized and cataloged for public access through

programs such as NCI’s Quantitative Imaging Network and The Cancer Imaging

Archive (TCIA). In addition to data collection, these open archives also deploy a

number of imaging informatics tools such as the National Biomedical Imaging

Archive and RSNA Clinical Trials Processor to enable the sharing of medical

images across multiple research groups.

4 J. Chen et al.



Table 1.1 Spectrum of data types for TBI and smart healthcare

Domains Research methodologies Dada types

Bioinformatics Expression analysis SNPs

Sequence analysis CNV

Mutation analysis Methylation data

Phylogenic analysis Microarray profile

Structure analysis Heatmaps

Pathways and network

analysis

Gene sequence

Haplotypes

Imaging

informatics

X-ray radiography DICOM

Magnetic resonance

imaging

Ultrasonography

Endoscopy

Thermography

Medical photography

Positron emission

tomography

Electroencephalography

(EEG)

Magnetoencephalography

(MEG)

Electrocardiography (ECG)

Clinical

informatics

Decision support HER

Information access HL7

Electronic record system SOMED

Public health

informatics

Infectious disease

surveillance

PHCDM-based health information

Outbreak management and

prevention

Interventions assessment

Risk factor prediction

Health promotion

Smart healthcare Electronic health records Behavioral, physiological, and environ-

mental parametersDecision support

Telemedicine

Consumer health

informatics

Virtual healthcare

Mobile health
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1.3.3 Clinical Informatics

Clinical bioinformatics involves the use of informatics in the management of

personal clinical data [21–23]. Clinical informatics covers a broad range of topics,

including clinical risk assessment, clinical decision support, and clinical documen-

tation and involves a variety of health professional group. How to accommodate the

large, diverse, and distributed clinical information into a queryable database rep-

resents a real challenge to clinical bioinformatics. The adoption of electronic health

record (EHR) comes to address the problem. Electronic health record refers to an

electronic record of data on personal health. EHR compiles the paper-based clinical

information from multiple sources and transforms them to a digital format

according to interoperability standards [24, 25]. EHR also provides storage systems

whereby clinical data are organized according to phenotypic categories.

A number of research programs are underway that aim at extracting large-scale

health record datasets from various communities around the globe. A fine example

includes the NIH’s NSF BIGDATA program which is a support action that aims to

promote a large-scale data collection and analysis. INBIOMEDvision [26] also

serves as a coordination resource for genomic, imaging, and population-based

information in addition to phenomena data. Other initiatives have enabled

phenotypic-genotypic association study of a given population. For instance, the

eMERGE Network organized and funded by NIH [27] is a national consortium that

combines large-scale, high-throughput genetic datasets with EHR systems [28]. In

eMERGE Phase I, participants conducted the study of the relationship between

genetic variations and human phenotypes of interest, using the technique of

genome-wide association analysis (GWAS). eMERGE Phase I has now been

completed with success and proceeded to Phase II to find the optimum way to

integrate genomic testing results with EMR for clinical application [29].

1.3.4 Public Health Informatics

Public health informatics focuses on population-based health information

[30, 31]. Public health activity is extremely broad such as pandemics surveillance,

outbreak management, prevention, and health promotion. Disease Surveillance

System (NEDSS) [32] is an Internet-based information system that facilitates the

efficient transfer of public health data over the Internet. It promotes timely sharing

of the surveillance data, disease reports, and lab results across officials to guide

decisions making.

6 J. Chen et al.



1.3.5 Smart Healthcare: Patient-Centric Informatics

Smart healthcare is an emerging field devoted to informatics from the patient point

of view. The technological advents of sensor communication as well as smart

healthcare devices have enabled easy access, quick transfer, and tracking of highly

personalized health information. The ability to collect real-time, context-aware, and

patient-generated parameters through smart healthcare devices has opened new

possibilities for translational biomedical informatics.

Sensing and imaging represent two major data acquisition technologies for smart

healthcare. The health data generated by smart healthcare devices can be variational

due to the dynamic and ever-evolving biological system. For example, vital phys-

iological parameters for general disease alone include heart rate, blood pressure,

electrocardiography, pulse, temperature, respiratory rate, etc.

According to the classification of big data [33], smart healthcare data also

comprises following categories of information [34].

(A) Machine-generated data: readings from sensors, meters, and other devices

(B) People-generated data: structured data from EHRs, physicians’ prescriptions,
and paper documents

(C) Web-generated data: clickstream data from healthcare websites and smart

phone apps, interactive data from social medias, e.g., Facebook, Twitter,

LinkedIn, PatientsLikeMe, etc.

1.4 The Partnership Between TBI and Smart Healthcare

1.4.1 Smart Healthcare: Ease of Information Access

With the help of smart technology, medical devices previously found only in

hospitals have now become smartphone-compatible making their way into patients’
hands. For example, ophthalmoscope, otoscope, spirometer, ECG, stethoscope, and

even ultrasound can now be conducted using peripheral hardware and applications

[35]. Smart healthcare has provided an additional level of patient-centric data that

could be used by translational biomedical informatics to cross the translational

barrier.

The application of smart healthcare has been recognized to benefit medical

Imaging. For example, wearable physiological imaging devices are much faster

to produce high-resolution images, posing particular advantages in occasion of

emergency. Mobile apps have been developed to view clinical images. Such

medical imaging apps have been found to outperform the conventional monitor

1 Informatics for Precision Medicine and Healthcare 7



systems, e.g., PACS or LCD monitor systems in pulmonary embolism and intra-

cranial hemorrhage diagnosis [36, 37].

Smart healthcare also shows promise as a means of enhancing clinical care.

Mobile apps have been developed that provide easy access to EHR for both

physicians and patients. HealthVault developed by Microsoft allows patients to

record personal health data on mobile devices [38], conduct risk assessments of

their own health, and share it with clinicians. This facilitates the interactions

between patients and the healthcare delivery system. DocbookMD app allows

physicians to easily exchange messages and images, enhancing the physician-

physician interaction.

In addition, smart healthcare technologies hold great promise for public health

surveillance. A study performed by Peru et al. provided an example of how basic

mobile phone technology can improve the detection and treatment of malaria [39]

in the hard-to-reach district. The Internet is revolutionizing how public health

intelligence is gathered [40]. Web-based data streams allow us to detect the first

evidence of an outbreak with reduced cost and increased transparency. For exam-

ple, Ginsberg et al. [41] demonstrated that an Internet-based approach assists in the

detection of influenza outbreaks. They analyzed over 50 million Google search

queries to track influenza in the USA and found a correlation of Google queries

frequency with the influenza activity. Web-based information, when coupled with

local knowledge and field support, can offer health officials and decision makers

with evidence-based information and improve the effectiveness of epidemic sur-

veillance systems.

1.4.2 TBI: Making Sense of the Data

As biomedical data increase in size, the focus of TBI has shifted from simple

reasoning of sensor signals to their deep interpretation and integration.

Physiological attributes provided by smart sensors are often sequential data, i.e.,

time series. TBI is essential in finding the associations between periodic behavior of

the time series and functional alterations [42]. The main steps of the data interpre-

tation process include data preprocessing, feature extraction and modeling. In the

preprocessing step, data are gathered from numerous smart sensors and undergo

normalization and synchronization. Feature extraction aims to identify the charac-

teristics which are representative of the sensor data [43]. After feature extraction, a

model learning the input features will be built to perform the tasks of data inter-

pretation including outlier detection, prediction, and decision-making.

The task of outlier detection essentially belongs to the pattern recognition. It

aims to identify deviations that don’t conform to the expected pattern of the data

[44], e.g., irregular episodes in ECG pulses and blood glucose level. Outlier

detection relies on classification algorithms to divide the dataset into “normal”

8 J. Chen et al.



and “outliers” [45]. Popular outlier detection methods include support vector

machines [46], Markov models [47], Wavelet analysis [48], and density-based

techniques [49, 50]. Prediction process is made to identify data behavior which

has not yet occurred. This approach uses supervised learning algorithms [51] to

model sequential patterns acquired from vital signs and predict risks of chronic

diseases. Decision-making process retrieves knowledge from sensor data, elec-

tronic health records, and other metadata to make decisions [52]. The task of

decision-making could be done by using decision trees, Gaussian mixture model,

Hidden Markov model, and rule-based reasoning.

When multiple smart devices are used, the data is multivariate with possible

dependencies. Combining information simultaneously collected from multiple sen-

sors can be challenging. Further, vital signs should be further integrated with other

descriptive metadata such as electronic health records and expert knowledge

[53]. To this end, the core set of informatics methodologies must be developed

and deployed to assimilate different health data across scales.

In translational science, there are existing informatics frameworks that facilitate

interdisciplinary research collaboration. i2b2 [54], an NIH-funded biomedical

computing center, has established a scalable data analytic platform that enables

investigators to manage clinical data in combination with genomic information.

SHRINE [55] is an open-source software tool that allows federated query of EHR

data housed in i2b2 nodes across multiple independent institutions, supporting

collaborative data sharing. PRIME [56] is an open-source data management system

for collecting, archiving, and distributing clinical data along with basic bimolecular

data microarray data information, DNA sequencing information, and others. A

number of multi-omics analytic tools that integrate genomics, transcriptomics,

proteomics, and metabolomics data have been developed, such as iCluster [57],

PARADIGM [58], factor analysis [59], and integrative personal omics profile

(iPOP) [60]. PARADIGM integrates multiple omics data types to identify pathway

activities. In contrast, iCluster and factor analysis use joint latent variable models to

infer grouping structures in the data. iPOP combines physiological monitoring and

multi-omics data to generate a personalized health and disease states of a subject.

The use of such tools by basic and clinical investigators would improve the

effectiveness of collaboration.

To conclude, the smart healthcare technologies have the potential to capture a

wide range of patient-centric phenotypic data and have dramatically extended the

information base for TBI. To gain full benefits of smart healthcare activities,

patient-generated clinical variables must be incorporated into the existing transla-

tional biomedical informatics analysis pipeline. It’s envisioned that TBI and smart

healthcare, two seemingly independent domains, form a translational cycle and

develop synergistically. The synergistic relationship between TBI and smart

healthcare is illustrated in Fig. 1.1.
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1.5 P4 Medicine and Smart Healthcare Technology

The emergent Internet, social media, and communication technologies have built a

global network environment to improve the delivery of smart healthcare services.

The smart healthcare represents more than a technical term, but also a lifestyle and

a way of thinking to improve healthcare. A partnership between smart healthcare

and TBI forms the basis of the P4 medicine that is predictive, preventive, person-

alized, and participatory. It is proactive rather than reactive in nature. It focuses on

each individual rather than average patient. Notably, patients become real partners

in the healthcare process.

1.5.1 Prediction

Smart healthcare significantly improves the capabilities to predict disease suscep-

tibility and risk at an individual level and help to screen people who are at high risk

for a certain disease.

Remote monitoring has recently become an integral part of many smart

healthcare programs [61]. Mobile health monitoring devices, when connected to

widely available Internet infrastructures, can provide continuous and real-time

sensing data [62]. The biometric data vary from noninvasive physiologic parame-

ters to invasive parameters like blood oxygen saturation and intra-cardiac pressures

[63]. These vital signals could be collated by a laptop, PC, or local server and

transmitted to medical professionals.

Fig. 1.1 The synergistic relationship between smart healthcare and the translational biomedical

informatics subdisciplines
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This evidence-based information, when combined with predictive models, will

facilitate timely prediction of a patient’s disease risk, particularly in acute disease

events such as stroke, heart attacks, and epilepsy.

Several recent analyses have provided examples of how remote monitoring

programs can assist timely detection of symptoms of acute diseases. For example,

Zhang et al. [64] has proposed a prediction model to assess the risk of acute

cardiovascular event. This model uses real-time physiological parameters from

unobtrusive devices and body sensors in addition to traditional risk factors as the

data inputs, allowing remote on-site monitoring of cardiovascular patients.

Connected Cardiac Care Program (CCCP) [65] is another heart failure

telemonitoring program that incorporates regular measurements of physiologic

parameters, timely feedback by monitoring physicians, and structured education

sessions. This care model empowers heart failure patients in self-management and

thus improves heart failure outcomes. The iGetBetter system [66] is a cloud-based

heart failure remote monitoring program. It monitors the patient’s everyday clinical
status and offers specialist and customizable care plans to large patient groups.

Remote monitoring has provided an alternative to traditional face-to-face

healthcare. As a result, people living in remote or underserviced areas have easier

access to just-in-time intervention at lower cost.

1.5.2 Prevention

Smart healthcare is transforming the current healthcare from reactive to preventive.

Instead of reacting to disease, smart healthcare detects perturbations in healthy

population long before the true onset of disease, thus preventing the chronic

disease, e.g., diabetes mellitus, depression, and cardiovascular and chronic respi-

ratory diseases.

The best way to prevent chronic diseases is the appropriate management of

health activities through monitoring of individuals [67]. It is widely accepted that

patients who comply with treatment regimens would have improved disease out-

come [68]. Advances in unobtrusive and wearable monitors and mobile health

technologies can provide information on health and fitness, such that individuals

can closely track their own health status and detect health risk at an earlier stage.

1.5.3 Personalized Healthcare

Smart healthcare carves a niche for personalized care “as unique as one’s own

body.” Personal genomics has long been established to enable individualized

treatments. It employs different techniques, e.g., SNP analysis, GWAS, or genome

sequencing to investigate the individual’s genotype. Some genetic testing firms are

already making genotype-based predictions about whether an individual is at

1 Informatics for Precision Medicine and Healthcare 11



significantly increased risk for cancer or about which treatments will most benefit a

particular patient.

While personal genomics is concerned with the genetic makeup of an individual,

smart healthcare focuses on the individual differences in the environments and

lifestyles. This is because medical conditions are multifactorial and highly

influenced by lifestyle and environmental components. Recent advances in mobile

technologies have made it feasible to determine the likelihood of disease onset and

select the most effective treatment, which ultimately result in customization of

patient care.

1.5.4 Participation

The emerging social media and mobile devices have changed individual patients

from passive actors into active participants in healthcare.

An increasing proportion of the public is looking online for health information.

The Internet is now the second most esteemed source of health information after a

personal doctor. The person-centered information has encouraged individuals to

take an active part in their healthcare and decision-making process.

Large numbers and varieties of mobile health apps are available today. The

number of health-related apps is more than 40,000 [69] and over one-third of the

smartphone users are running mobile healthcare apps. Some of the apps are

originally designed for health professionals, and now being adapted to individual

patients. Some of new consumer health apps are tailored specifically to patients and

the general public. These apps offer a variety of functions, including lifestyle

management, data sharing, self-monitoring, and even self-diagnosis.

The largest category of the mobile health apps belong to the exercise and weight

management. Many other apps are geared toward chronic disease, e.g., diabetic

mellitus. They help patients keep track of medication schedule to ensure medication

compliance. Some apps facilitate the symmetric information exchange between

consumers and healthcare professionals. The patient would log physical activity

and daily behaviors into an online diary, which can be accessed by remote therapist

professionals [70] to facilitate decision-making. Patients could also interact directly

with healthcare providers by asking questions and raising health-related concerns,

so as to participate in decision-making. Several studies have reported the benefits of

using Internet-based patient-provider communication services. For example,

WebChoice is a web-based and nurse-administered support system for cancer

patients. With WebChoice, patients ask questions and raise concerns related to

symptoms, fear of relapses, and experience in everyday life [71]. The patient-

provider communication service of WebChoice was rated as valuable by

patients [72].

The increasing patient participation in healthcare is driven further by the inten-

sive use of social networking sites, e.g., Facebook and Twitter, which are free, user-
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friendly, interactive, and accessible to anyone with a smartphone or laptop

connected to the Internet. Therefore, social media are among the most popular

applications on the web. Social media have created platforms for which public

interaction and information exchange therefore hold great promise for delivering

peer-to-peer health support and online self-management. There is an increasing use

of health-specific social networking sites in the medical field by both individuals

and organizations. Facebook alone hosts more than a thousand of social networking

pages created by US hospitals. PatientsLikeMe is a patient-centered research

network on which patients share their own experiences with people who have the

same disease like them [73–75]. During the process of data sharing, they generate

real-world data on the disease, which will help researchers develop more effective

treatment.

When equipped with adequate tailored smart healthcare tools, patients will

become real partners in the healthcare process.

1.6 Challenges and Future Directions

Despite the proven value, effective deployment of smart healthcare activities is

confronted with several fundamental challenges: (1) lack of interoperable stan-

dards; (2) data security and privacy; (3) data quality; (4) data presentation;

(5) patient engagement and adoption. Figure 1.2 provides a schematic representa-

tion of these challenges lying in the research pipeline of smart healthcare.

Fig. 1.2 Challenges in the deployment of smart healthcare activities
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1.6.1 Lack of Interoperable Standards

Health information from different platforms can be highly heterogeneous, having

their own formats and communication protocols. Standards are needed to represent

disparate health information in a uniform manner. Much work has been done to

address the interoperability problem in biological, imaging, clinical, and public

health domains.

MIAME [76] is a standard for representing gene expression arrays data within

the bioinformatics community.

Within the imaging informatics realm, DICOM defines the international stan-

dards for representing and exchanging data associated with medical images [77].

Standards associated with clinical research include Health Level 7 (HL7) standards,

SNOMED CT, The Clinical Bioinformatics Ontology (CBO) and CDISC.

In the field of public health informatics, standard protocols such as the ICD

funded by WHO ensure the interoperability of morbidity and mortality

statistical data.

As for smart healthcare, The HL7 Clinical Document Architecture has been used

to represent sensor data. ISO/IEEE 11073 (X73) defines communication standards

to facilitate communication between medical, healthcare and fitness devices, and

external systems.

However, these standards are domain-specific and are not sufficient to support

intercommunity data exchange. Therefore, intercommunity standard will be essen-

tial in the future.

1.6.2 Data Security and Privacy

Security and privacy are among the biggest challenges with smart healthcare

systems. Since smart healthcare system has open wireless links and shared

resources, the inherent security risks are tremendous. The health information

exchange employs a significant risk of privacy breach. Different safeguards will

be required to ensure information confidentiality.

To secure data communication, the most critical issue is data encryption. Much

research attention has been afforded to secure the data communication among

sensors. Cryptographic algorithm based on elliptic curves has been adopted for

data communication between embedded mobile medical devices [78]. Tan et al.

described the implementation of an identity-based cryptography approach on body

sensor network [79]. Recently biometrics traits, e.g., physiological signals, have

also been adopted in the encryption schemes. Poon et al. used the interpulse

intervals (IPIs) as the authentication identity to encrypt the symmetric key [80].

The system secures the inter-wireless body area sensor network (BASN)

communications.
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Also, authorized accessibility to patient medical records is required to prevent

information disclosure and protect the patient privacy.

1.6.3 Data Quality

Quality and reliability of healthcare data remains another formidable challenge yet

to be resolved. Various medical devices have generated extensive amount of

information. The reliability of the data may be affected by external factors such

as operating conditions, expertise level of operators, honesty in recording, timeli-

ness of information, etc. The inability to manage data quality will result in sub-

standard and inaccurate data, which in turn leads to poor decisions. Validation

protocols and quality control methodologies are urgently required to improve the

data quality.

1.6.4 Data Presentation

Another challenge is how to present the data in a relevant and dynamic way to users.

Healthcare analysts face a flood of dynamically changing and possibly relevant

information. Some looks interesting, yet other data lay on the periphery of the

researchers’ real interests. Still others might just look like junk. Not all patient data

is relevant all the time, and the relevance change with the context of presentation.

Effective data annotation will enhance data relevance to researchers. For example,

the operational data and parameters used when they data is generated should be

documented along with the data. In this way, the data can be cross-referenced

against other projects and analyzed in the way they were originally intended to be

analyzed, which makes the data of long-term value.

Smart healthcare often involves the study of time series to look at trends of

diseases and effect of treatment. However, users who are not specialized in com-

puter are often discouraged by the long lists of alphanumerical values. To combat

this problem, dynamic data representation is needed that display information in

animated and visual formats. Dynamic representation can help reveal trends over

time or global properties as well as assist immediate and continuous feedback.

1.6.5 Patient Adoption and Engagement

Finally, concern exists about the patient adoption and engagement. Too often,

providers invest in a healthcare application and assume consumers will use it

appropriately. Yet most of them have not yet achieved broad adoption, despite

user-friendly interface, consumer-oriented design, and obvious health benefits. One
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reason of this scenario is that many patients do not pay adequate attention to the

management of their own care. Marketing and education often are overlooked or

insufficiently addressed. Since patient engagement has a positive impact on the

disease outcome, providers should invest on new care delivery models that educate,

engage, and empower participants to drive better patient outcomes and improved

satisfaction.

1.7 Conclusions

Although dramatic progresses in smart healthcare have been made, most of them

are still in their prototype stages. Collaborative efforts between smart healthcare

and multiple disciplines will accelerate biomedical translation and ultimately guide

us into an era of P4 medicine.
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Chapter 2

Genetic Test, Risk Prediction, and Counseling

Maggie Haitian Wang and Haoyi Weng

Abstract Advancement in technology has nurtured the new era of genetic tests for

personalized medicine. In this chapter, we will introduce the current development,

challenges, and the outlook of genetic test, disease risk prediction, and genetic

counseling. In the first section, we will present the success cases in the areas of

molecular classification of tumors, pharmacogenomics, and Mendelian disorders,

and the challenges of genetic tests implementations. In the second section, common

methods for genetic risk prediction models and evaluation measures will be intro-

duced, as well as challenges in feature reliability, risk model stability, and clinical

utility. In the final section, key components of genetic counseling will be intro-

duced, covering individual communications, psychosocial concerns, risk assess-

ments, and follow-ups. Current evidences have shown a promising future for

genetic testing and risk prediction; we expect that the advancement of analytical

methods, technology, integration of omics data, and the increasing clinical imple-

mentation and regulation will continue to pave the way for precision medicine in

future.

Keywords Genetic test • Disease risk prediction • Genetic counseling

2.1 Genetic Test

In this section, we provide an overview of genetic test, including its history,

technological development, and advances in clinical implementation for the past

decades. Besides current developments and achievements, we will discuss the

challenges and uncertainties in implementing genetic testing, including knowledge

constraint of disease molecular mechanism, cost of genetic test, and reliability of

genetic risk prediction models. Finally, we will discuss the future roles that genetic

test would play in the era of precision medicine.
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2.1.1 Introduction

After more than a decade of work and at a cost of at least US$3 billion, the Human

Genome Project completed the first DNA base sequence of a representative human

genome in 2001. The past 15 years have witnessed substantial advances in under-

standing the genetic basis of biomedical importance to many phenotypes

[1]. Genetic test, also known as DNA testing of a person with diagnostic purpose

to contribute to clinical care, has become increasingly sophisticated. At present,

genetic tests focus mostly on single Mendelian variants of large effect, in which

effective diagnosis benefits are being observed. For complex disorders, the pheno-

type or disease trait is determined by polygenic and environmental risk factors,

which yields limited explanatory value of many genetic tests based on certain genes

[2]. However, the landscape is changing; the next-generation sequencing technol-

ogy reduced the cost of sequencing an individual genome at around US$1000.

Figure 2.1 illustrates the technological leap of sequencing since the completion of

Human Genome Project [3]. In near future, the whole-genome sequencing (WGS)

and whole-exome sequencing (WES) will become more affordable and with proper

analytical methods, disease information carried by human genome could be better

utilized to aid clinical diagnosis, prognosis and treatment design.

In the USA, genetic tests are regulated and evaluated in Clinical Laboratory

Improvement Amendments (CLIA). The objective of the CLIA program is to

ensure quality laboratory testing and provide federal standards for sites offering

testing on human specimens [4]. Laboratories offering genetic testing must be

CLIA certified before a formal test report is provided to the patient or clinician

for the use of treatment or management. In this way, a safe, secure, healthy, and

sustainable environment for genetic testing is guaranteed. Since 2007, personal

genome tests have been offered to consumers via the Internet to educate and

empower consumers about the risk of common diseases, which is called direct-to-

consumer (DTC) genetic test [5]. DTC genetic tests to assess disease risk provides

information about a person’s genetic risk of 20–40 common polygenic diseases,

ranging from tests for breast cancer alleles to mutations linked to cystic fibrosis

[6]. But controversy has been provoked due to its safety and accuracy concerns.

Critics of DTC testing argue against the risks involved, the unregulated advertising

and marketing claims, and the overall lack of governmental oversight [7].

Today, genetic test has grown from a diagnostic approach for Mendelian disor-

ders to a broad scope of applications for complex disorders and personal use; the

definition of a genetic test has also changed as the applications evolved. Applica-

tions of clinical genetic testing span medical disciplines, including prenatal testing,

newborn screening for highly penetrant disorders, diagnostic and carrier testing for

inherited disorders, predictive and presymptomatic testing for adult-onset and

complex disorders, and pharmacogenetic testing to guide individual drug dosage,

selection, and response [2]. To find more details about a genetic test, the Genetic

Testing Registry (GTR) (https://www.ncbi.nlm.nih.gov/gtr/) can provide a central

location for voluntary submission of genetic test information by providers. The
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Fig. 2.1 Technological leap of sequencing. The cost of sequencing has decreased dramatically

since the adoption of next-generation sequencing in 2008. As the cost reduces over time, the

number of sequences held in publicly accessible databases such as GenBank has risen [3]

(Reprinted by permission from Macmillan Publishers Ltd: Nature 537 (7619), copyright 2016)
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scope covers purpose of the test, methods, validity, utility, and laboratory informa-

tion. It is important to note that instead of a substitute for medical advice, the GTR

is proposed to assist healthcare providers and researchers navigating the landscape

of genetic tests. Therefore, patients with specific questions about a genetic test

should turn to a healthcare provider or a genetic counselor.

2.1.2 Testing Technologies

Regardless of which sequencing technology is used, researchers and clinicians face

an important decision about whether to sequence an entire genome or to take a more

targeted approach [3]. They can choose to focus on a specific region of interest in a

particular chromosome or to examine only the genes that actually code for proteins

or functional RNA molecules. The exome, for example, is the part of the genome

comprising only the stretches of DNA called exons that code for protein molecules.

The whole-exome sequencing (WES) targets the coding regions of the genome,

compared to the whole-genome sequencing (WGS) in which almost all of the

human genome is evaluated. Considerable case studies prove that WES is a fast

and accurate tool for Mendelian disease gene discovery [8] and is available in

several clinical laboratories for unexplained genetic disorders [2]. It is no doubt that

the WGS can discover most genomic variance, but targeted sequencing such as

WES is of sufficiency for many clinical applications since it has the advantage of

sequencing larger sample sizes with lower cost and easier data processing [3]. In a

recent review of the current status of sequencing technologies, the author discusses

some of the factors that influence choices for which technologies and methods to

use [9].

2.1.3 Promising Applications in Clinical Practice

There is great potential for genome sequencing to enhance patient care through

improved diagnostic ability and more precise therapies [10]. To achieve these, a

broad range of genomic medicine activities which use an individual patient’s
genotyping information in his/her clinical care have been conducted [11], even

before the term “precision medicine” was first given by a publication from the US

National Research Council [12]. Now in the era of precision medicine, genetic tests

are widely applied in various medical areas, incorporating the genetic information

with other clinical, family, and environmental information to tailor interventions on

disease prevention, diagnosis, and treatment. In this section, we review three

promising areas that have shown high value of changing medical practice based

on the genetic testing results.

24 M.H. Wang and H. Weng



Cancer Genomics The advent of genetic testing in tumor cells has enabled detailed

and clinically actionable molecular pathology genetic tests for numerous cancers

[13]. The fairly easy access to somatic tissue that we are interested in also increased

the potential of medical oncology for personalized medicine, and clear relationship

has been confirmed among specific genetic mutations, cancer progression, and drug

selection [14]. Today, oncology has moved toward molecular classification. Testing

target driver mutations with specific agents has been successfully applied to several

cancers with promising personalized therapy effect and prognostic utility

[10, 13]. Over the past few years, cancer genomics has provided considerable

insights into the molecular pathology of cancers. This field will continue to progress

rapidly with accumulating cases of improved treatment resulting from genetic

discoveries [13].

Pharmacogenomics In the era of evidence-based medicine, drug therapy was

rather nonspecific: patients diagnosed with the same disease were generally sub-

scribed to standard drugs [14]. However, there is increasing awareness that patient’s
response to drug treatment differs due to genetic variations. Pharmacogenomics is

the area in which genetic variant information can be used to prescribe certain

medications according to the individual’s genetic predisposition, such that adverse

events can be minimized [13]. Over the decades, the number of gene variants found

to influence drug responses has been steadily increasing [15]. By genetic testing,

these important genetic variations can be used to inform clinical treatment

[10, 13]. For example, individuals carrying the HLA-B*5701 allele are warned

against taking abacavir, and the beta blocker propranolol can cause adverse reaction

in subjects with variants conferring compromised CYP2D6 function

[13]. Pharmacogenomics may have a deep influence to current medical practice

as it may inform every individual for taking any medication [10]. Omics data in

addition to genomic information which may improve prediction of drug response

will be routinely available in the near future [16]. As evidence builds up, the use of

pharmacogenetics may become a common practice in hospitals and pharmacies

around the world [15].

Mendelian Disorders Next-generation sequencing has enabled rapid and cost-

effective multiplex assays that require little DNA materials. Given the high positive

predictive value of these variants, genetic testing in such diseases can modify

clinical treatment of these Mendelian disorders [13]. For example, cystic fibrosis

is caused by mutations of CFTR; specific therapies such as ivacaftor and a combi-

nation of lumacaftor and ivacaftor will help to improve the CFTR mutant channel

[10]. The targeted sequencing using SGS technology on the known disease gene

regions can reliably identify pathogenic variants, thereby facilitating tailored inter-

vention measures.

In summary, current applications of genetic information to clinical practice in

cancer genomics, pharmacogenomics, and Mendelian diseases demonstrate that

genetic tests are promising to promote the efficiency, accuracy, and utility of health

care toward precision medicine. However, the picture of the link between DNA and
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disease variation is not yet complete, which personalized genetic test based upon.

The march toward the widespread use of personalized gene sequence analysis in

clinical practice is still under way [3].

2.1.4 Challenges in Implementation

Numerous challenges and barriers have been encountered in transforming genetic

testing information to medical practice. The challenges include providing causal

evidence of genetic variants that contribute to disease traits, refining categorization

of disease subtypes, reliable analytical methods for complex disease prediction, and

improving accuracy in clinical genomics. In many clinical cases, we are often

facing answers that are far from certain [13, 17]. The genetic test needs to be

clinically actionable and provide information that could not otherwise be obtained

by normal medical means [18]. The relative risks for the majority of genes rarely

exceed 1.5, which added limited predictive power to traditional risk prediction

algorithms [19]. Research is acutely needed to generate, collect, and make widely

available the evidence needed to explain more genetic risk factors in order to guide

tailored interventions for individuals.

We also need to address the cautions in interpreting genetic testing results. Given

that our understanding of relationship between genetic variance and disease trait is

still insufficient, we should be extremely careful when applying genomic informa-

tion to clinical medicine. Reliable interpretation will require additional experience

and validation before it reaches the clinics on a large scale, particularly for

diagnosis of complex traits [20]. Training will be needed to develop specialist

(e.g., genetic counselors) capable of interpreting genomic information and advising

clinicians on appropriate actions to be taken in a given clinical setting [11].

The availability of genetic test depends both on the development of sequencing

techniques and cost for the genetic testing service [2]. The cost of sequencing per

genome has already declined to around US$1000 [3], but there might be increasing

cost of long-term data storage, analysis, and clinical interpretation of genomic

variation, by which the utility of genetic test might be restricted. Considering the

economic restrains, the question of how to assess the cost-effectiveness of genetic

test needs to be fully clarified in the future [21].

The application of genetic testing to personalized medicine provokes many

important social and ethical questions. The psychological impact of genetic test

on patients and their families has traditionally been addressed by the informed

consent process [11]. This is usually done by the genetic counselors prior to

diagnostic testing or therapeutic intervention. Generally, the genetic counselor

explains the procedure to the patients, along with the risks, benefits, and alterna-

tives, so that the patient can voluntarily make informed decisions about diagnostic

and treatment options [22]. The informed consent should be a communication
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process that requires genetic counselors to tailor the presentation of key compo-

nents to the individual patient, based on his/her learning style, education and

cultural background, and family situations. Meanwhile, researchers are trying to

figure out what to do when the genetic test indicates potential medical problems

while there is nothing to do to prevent or treat the disease. Many patients say that

the genetic testing brings them peace: with a molecular diagnosis, patients get a

clear answer to their conditions and a label helps them find new communities

[23]. The emotional comforts are especially distinct for patients receiving genetic

testing in rare diseases, where the NGS is making contribution to diagnosing rare

diseases, giving a clear answer to patients with medical mysteries that in some cases

have troubled them for years. Afterward, they might seek for help on a reference

platform called Orphanet (http://www.orpha.net/), which provides information on

rare disease and orphan drugs to help improve the diagnosis, treatment, and care of

patients with rare diseases.

2.1.5 Conclusion and Future Direction

The continued reduction of sequencing costs and the improvement in biomedical

sciences suggest that conducting genetic tests and incorporation of personal geno-

mic information is likely to play a critical role in future clinical practice [24]. To

date, there are several areas where genetic information has shown promise for

improving clinical care, including cancer genomics, pharmacogenomics, and Men-

delian disorders. The three areas enjoy more success in applying genetic informa-

tion to medical practice than other applications because the underlying genetic

architecture behind these medical traits is relatively simple. Those disease traits are

in large part driven by some certain mutations, thus they are reasonably predictive

of disease trajectory and chemotherapy response [13]. However, in common dis-

eases, the currently identified genetic variants only contribute a small proportion of

total disease variation, and further development of accurate risk prediction models

and algorithms are needed. This could be done through incorporating more poly-

genic risks and possibly other predictive factors, such as clinical, demographic, and

environmental data. On the other hand, we are likely to face complex ethical, legal,

financial, and social issues raised by the implementation of precision medicine,

such as informed consent and the privacy concerns regarding genetic information. It

will be vital to address those questions to establish an appropriate regulatory

environment for the use of genetic tests. With the explosion of genomic medicine

practice and advances of testing technologies, specialized genetic training to foster

more professional genetic counselors will be in urgent need in the future. In the

following, we would review the current development of genetic risk prediction in

Sect. 2 and the genetic counseling in Sect. 3.
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2.2 Disease Risk Prediction

One of the most critical goals of genetic test and genetic counseling is to classify

patients according to their genetic risk for disease or make risk predictions based on

their personalized profiles. In clinical practice, some typical questions are as

follows: “Is this person affected?” “Will this patient have serious side effects

from using the drug?” In each case, a dichotomous yes/no decision has to be

made. In risk prediction, in contrast, questions about probabilities are usually

asked, e.g., “What is the probability that this individual is affected or will be

affected in 3 years from now?” To answer such questions, the development of a

good-performance genetic risk predictive model is needed. Building an appropriate

and accurate risk predictive model plays a central role during the process of genetic

testing and genetic counseling, for it aims to assist better diagnosis for diseases by

accounting for genetic information where current diagnostic approaches are not

effective. Furthermore, genetic risk predictive models are expected to prospectively

identify individuals at increased risk of disease, thus early interventions can be

proposed. In this part, we will begin with the introduction and background of

genetic risk prediction model, then is the description of popular adopted methods

for genetic risk prediction. Next, the principles and criteria of model evaluation will

be demonstrated. We also provide several case studies to illustrate the clinical

application of genetic risk prediction. In the last section, we summarize the recent

effort and progress in genetic risk prediction, conclude the current challenges, and

discuss several opportunities in the future.

2.2.1 Introduction and Background

Health risk assessment is not a new concept in clinical practice. However, recent

advances in GWAS through which thousands of common genetic variants associ-

ated with disease traits are identified have fueled the interest in adding genetic

variants to classical clinical and environmental risk factors for the improvement of

risk prediction assessment. The possibility of informative disease risk prediction

has gained widespread attention in recent years because it has a great potential for

improved diagnostic procedures and individual-level risk estimation for early

intervention.

In risk prediction, a main concern is validity and robustness of model predic-

tions. Figure 2.2 shows a general approach to develop and validate predictive

models [25]. Typically there are two stages in building a risk prediction model.

First, predictive models are developed using a set of training data and, in which, an

assessment of several candidate models in cross-validation is performed. Second,

once the final model has been selected, it is taken forward into a validation phase,

which comprises independent external data that is used to assess predictive
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performance and to reduce potential problem of over-fitting. Moreover, the cost-

effectiveness of the prediction model will also be considered for its clinical utility.

Building a risk predictive model serves for the purpose of maximizing the

predictive power, so that early interventions can be carried out against disease

progress. We have already made breakthroughs in unraveling the molecular mech-

anisms of many Mendelian diseases; however, complex diseases depend on a

multiple genetic and environmental factors, many of which are currently poorly

understood or may indeed be stochastic in nature [25]. Currently, the replicable

susceptible alleles in combination account for only a moderate amount of disease

heritability [13]. There are still substantial challenges to constructing and

implementing genetic risk prediction models for complex disorders with high utility

[13]. The predictive ability and resulting clinical utility of risk evaluation from

common genetic variation depends on the number and effect size of the susceptible

loci; nongenetic factors such as diet and other exposures will still continue to be

important predictors for multifactorial phenotypes [26]. As a result, a future role for

Fig. 2.2 Typical workflow for developing and validating a predictive model. Two stages are

required to build and validate a predictive model. First, we use a set of training data to develop the

predictive model, and there is an assessment of performance of all candidate models to select the

model based on the performance criteria. Typically, cross-validation is used to reduce the potential

problem of over-fitting. Second, once the final model is determined, it is then taken to the next

stage of validation, by using independent external data set to assess the predictive performance.

Finally, the relative costs and benefits of both correct and incorrect prediction are considered [25]
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using personal genetic variation in disease risk prediction will need to integrate

multiple medical data and to optimize prediction models for many common med-

ical problems. To achieve these goals, innovations and developments in methodol-

ogies will be critical to fulfill the requirement.

2.2.2 Methods for Genetic Risk Prediction

Due to the complex nature of common diseases, accurate prediction models need to

be able to integrate multiple genetic variants together with other conventional risk

factors. Over the past decades, several methods have been proposed to accomplish

this task, including genetic risk scores, various types of regression-based models,

and machine learning methods.

Feature Selection Feature selection in genotype data refers to the procedure of

selecting effective single-nucleotide polymorphisms (SNPs) in determining the

disease traits, which will be incorporated in a prediction model [13]. The simplest

and most common approach of feature selection is to select SNPs that reaching

genome-wide significance levels in previous GWAS [27, 28]. However, the total

heritability of a disease could be composed of hundreds and even thousands of

genetic variants each with modest effect size. In such cases, selecting SNPs with

only large effect size is insufficient to achieve better classification [13]. It is

plausible to improve the predictive power by including additional genetic variants

that are under genome-wide significance level, although the inclusion is actually a

trade-off between the contribution of “signals” from new added variants and the

increased noise from SNPs that are not truly associated with the disease [27]. Con-

sequently, the inclusion threshold should be seriously considered to balance the

signal-to-noise ratio for the best of predictive power. In practice, the optimal cutoff

can be determined based on the performance of the model in an independent sample

set, or using cross-validation techniques, and the performance can be evaluated

based on model fit, using statistical approaches such as the Akaike and Bayesian

information criteria (AIC and BIC) [13, 27]. There have been arguments about the

efficiency of including more number of SNPs on improved risk prediction for

common complex diseases. Some suggest that no major effects can be observed

in the empirical assessment through GWAS, which may be due to the limited

knowledge regarding the genetic architecture of complex disorders [27, 28],

while others claim that there are significant gains for the diseases like bipolar

disorder, schizophrenia, and multiple sclerosis, of which the fraction of total

heritability caused by genetic variance is quite high and the underlying genetic

architecture may involve tens of thousands of susceptible SNPs [27]. Studies with

large sample size are needed to identify disease associated genetic variants and to

find out the source of the missing heritability [28].

Aside from statistical and computational methods, incorporation of external

information, including biological, functional, and annotation information, may
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contribute to the feature selection and thus improve the predictive power and

robustness of the proposed model [13, 27]. The potential value of including external

information to prioritize SNPs can be illustrated by a simple example in developing

a genetic risk prediction model for Crohn’s disease response to IL-17 monoclonal

antibody therapy [13]. Higher prioritization should be given to the variants within

IL-17-related genes or those SNPs that are known to modify T-helper cells

expressing IL-17 (Th17) activity. Inclusion of such variants may provide important

supplementary information and result in higher utility of the risk prediction model.

Various methods can be employed to allow the incorporation of external informa-

tion to inform “priors” for the distribution of effect size among SNPs in GWAS

data [27].

Genetic Risk Scores Genetic risk score (GRS) or polygenic risk score (PRS) is one

of the simplest methods used for genetic risk prediction. It is defined as a quanti-

tative measure of the genetic risk burden of the disease calculated based on multiple

genetic variants [27]. The majority of the GRS approach constructs the predicting

risk score by summing of polygenic risk alleles that each individual carries, either

weighted or not [13]. The simplest form is to count the number of risk alleles among

all genetic variants, which assumes that all the SNPs have the same predictive value

and are treated equally without weight to calculate the score. However, the assump-

tion is not true in most genetic architectures [25]. A more realistic approach is to

give an appropriate weight to each risk allele and take the weighted sum of alleles as

the genetic risk score. Weights are usually determined for each risk allele by the

effect size from the literatures, e.g., from meta-analysis studies in GWAS [13, 28],

while others are obtained from the estimated odds ratio or log odds of disease

according to an underlying model [25, 27, 28]. To illustrate the weighted GRS

approach, suppose that there are k SNPs selected for the estimation of GRS and the

weights are denoted as wi for the ith SNP. Then the formula is taken as GRS ¼
Xk

i¼1

wiRi , where Ri is the number of risk alleles at the ith SNP. The distribution of the

GRS between cases and controls is usually checked by statistical methods, i.e.,

Tukey’s honest significant difference (HSD) and the resulting risk scores are

partitioned and ranked into quintiles or deciles to create a categorical variable.

The extreme groups, both top and low risks, are compared to see if there are any

significant overrepresentation or increased risk of disease in the high-risk group

[13, 29, 30]. Furthermore, the GRS could be applied to new data to produce hazard

ratios and predicted phenotypes [25, 27].

There are also some assumptions for the weighted GRS method. The first is that

the selected SNPs are assumed to be independent of each other. Nonetheless, many

SNPs are correlated with each other due to the existence of linkage disequilibrium

(LD). Violation of independent assumption may lead to decreased predictive

performance of models [31]. To solve the problem, the common strategy is to

adjust SNPs, i.e., removing one SNP of each correlating pair with a certain

threshold using the popular whole-genome association analysis toolset PLINK
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[27, 28]. Strict LD-pruning, however, will also reduce the model power by exclud-

ing susceptible variants that are in LD but contain independent association signals

[27]. Methods have been proposed to allow the modeling of independent associa-

tions accounting for LD for more accurate GRS models [32]. Apart from indepen-

dence assumption, the GRS approach also assumes that the effects of all the alleles

are additive. The controversy still exists, but there has been evidence showing that

additive effects account for many of the genetic effects across almost all complex

disease [27]. In summary, building a model for the calculation of GRS remains

challenging, which requires careful consideration of the criteria for feature selec-

tion and weight estimation for selected SNPs and the potential bias caused by

linkage disequilibrium [27].

Regression Methods As one of the most popular statistical methods, regression

models are widely employed for constructing predictions, both for continuous and

dichotomous traits. Predictive models based on regression methods can lead to a

more general disease prediction than simply using GRS. For dichotomous disease

traits in case-control studies, the logistic regression is the typical model to be used

to specify disease risk in the logit scale [27]. In such studies, odds ratio of the

genotype information estimated from logistic regression, when incorporating

covariates and interaction effects, can be used to evaluate the contribution of

genetic variance in shaping the disorders. Currently, regression model is still

commonly used for the prediction of various diseases, including age-related mac-

ular degeneration, hypertrophic cardiomyopathy, and cerebrovascular disease

[13]. However, how to incorporate genetic variants together with other traditional

risk factors in the framework of the regression needs further consideration. Because

simply including genetic risk factors as covariates may drastically increase model

size and complexity [28]. A possible strategy is to first propose a GRS or PRS to

summarize the contribution of various SNPs to the susceptibility to a disease, and

then develop a model for hazard ratios accounting for the joint effects of the GRS

and other risk factors for a disease [27, 28].

Assumptions are made when modeling the joint effects of multiple risk factors in

linear or logistic regression, and these assumptions may not be satisfied in clinical

genomics. The first issue is multicollinearity between adjacent genetic variants that

are all considered for risk prediction. As discussed before, the independence of

genetic markers is usually caused by linkage disequilibrium (LD). For markers in

high LD, a common strategy is to include only the variant with lowest p-value in the

regression model [13]. Principal component regression is another approach to solve

the problem of multicollinearity. This method showed good performance when

applying to multiple SNPs in a candidate gene [33]. Another concern is the possible

interactions between the risk factors, including both gene–gene and gene–environ-

ment interactions. Typically, logistic regression can manage interaction effects,

although the test for interactions may not be significant in many cases [27]. Never-

theless, the result doesn’t mean that the interaction effect is not important but, in the

contrary, reflects the considerable challenges to detect the interaction effect in

relatively small sample size and with limited computational efficiency
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[13, 34]. Model misspecification owing to the ignorance of interactions can affect

the calibration performance models [27]. Therefore, more investigations with large

samples are needed in the future to improve the precision of the risk predictive

model by accounting for interactions.

Many studies indicate that risk prediction would be further improved if more

predictors are added in the model [13], although the improvement is achieved at the

cost of reducing the model conciseness. The question is that the confidence interval

(CI) of the risk estimation is rarely provided or even estimated in the risk model.

However, the confidence intervals can, to a large extent, represent the degree of

uncertainty in risk estimation, of which the cumulative calculation leads to uncer-

tainty of the total disease risk estimates [13]. As a result, when provided unbiased, a

more precise risk estimate with a smaller CI from a concise model with fewer

predictors is better than that with larger CI and more predictors [35].

Machine Learning Methods Diagnosis or prognosis of disease traits with genetic

information are classical problems of the classification and clustering in machine

learning [13]. Hence, approaches from the machine-learning community have

received more attention for constructing classification and risk estimation. Machine

learning aims at constructing a genotype–phenotype model by learning such genetic

patterns from a training data set that will also provide accurate phenotypic pre-

dictions in new cases with similar genetic architecture [36]. Compared to traditional

analysis of GWAS data, machine learning-based models have been shown to

provide improved means of learning such as multilocus panels of genetic variants,

environments, as well as their interactions or even other nongenetic factors that are

most predictive of complex disorders, thus providing opportunities for individual-

ized risk prediction based on personalized profiles [36]. Most machine learning

approaches are built for good classification, and only a few have been adapted to

probability estimation. None of them are meant to statistically test for association

[37]. Popular machine learning approaches, including boosting, neural networks,

support vector machines, tree-based methods, and random forests, have been

described in detail and applied to different types of data sets. More details of the

most popular machine learning methods and corresponding references could be

found in the review paper by Kruppa et al. at pp. 1644 [37]. Genetic risk prediction
through machine learning models shows versatile utilities compared to traditional

statistical approaches. However, machine learning models also come with pitfalls,

such as increased computational complexity and the tendency of yielding over-

fitting, result reproducibility, which must be seriously addressed and used with

caution in order to avoid reporting unrealistic prediction models or over-optimistic

prediction results in clinical applications [36].

Both statistical and machine learning approaches have benefited a lot from each

other and will come closer in future. The choice of which approach to adopt when

building a predictive model will depend on different aims of studies and

interpretations [37].
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2.2.3 Model Evaluation

The ultimate evaluation would be replicated results on independent data sets. When

building a risk prediction model, a small part of the data can be separated from the

original data to serve as an independent test set [38]. Once the risk prediction model

has been built, a method to assessing the discrimination and calibration ability of

the model is required to validate its utility.

Discrimination It describes the ability of a model to distinguish individuals from

risk and non-risk groups. A prominent measure is the area under the receiver

operation characteristic (ROC) curve (AUC), which is defined as the probability

that a randomly selected individual with a disease will have a higher risk than a

randomly selected individual without the disease. The AUC values ranges from

50% (the model is completely uninformative) to 100% (the model has perfect

discrimination ability between affected and unaffected individuals). In complex

diseases, susceptible SNPs identified through GWAS provide low (AUC< 60%) to

modest (AUC ¼ 60–70%) phenotype discrimination [27], which indicates that the

substantial area of improvement remains in the future. Apart from AUC, other

performance measures, such as positive and negative predictive value (PPV and

NPV, respectively), are also used to better understand the behavior and modes of

failure for the predictive model [25].

As the AUC evaluates performance of the model for all possible thresholds of

the predictive scores, which is done regardless of the clinical meaning of each

threshold, it has limited clinical interpretation. Researchers have recently attempted

to define more clinical relevant criteria for evaluating risk models. For the appli-

cation that targets high-risk population for screening, one may evaluate the propor-

tion of population and the proportion of future cases that may be identified, based

on a model, as exceeding a certain risk threshold [39]. Even models with only

modest discrimination ability can identify a large fraction of the population that

could be at meaningfully higher risk than the general population [27].

Calibration Calibration of a model refers to the agreement of predicted and

observed risks across subgroups with varying baseline risk—that is, the ability to

produce unbiased risk estimation. In general, only predicted risks that are well

calibrated are useful for clinical management, because clinical decision-making

usually depends on the estimated disease risk [28]. Model calibration needs to be

evaluated in a representative sample that is independent of the studies that contrib-

uted to the model building procedure. Subjects can be classified into strata based on

their predicted risks, and the observed and expected number of cases can be

compared within different strata to evaluate the calibration of models at different

risk levels [27]. Graphical displays can be used to assess model calibration. For

example, a graphical assessment of calibration is possible with predictions on the

x-axis and the outcome on the y-axis. Perfect predictions should be on the 45� line.
It is also feasible to plot results for subjects with similar probabilities and thus

compare the mean predicted probability to the mean observed outcome [40].
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Reclassification Improvement This describes an improvement in classification of

cases and controls when comparing an updated model against the former one. It is

commonly used when new risk factors are added into the existing model. Methods

such as net reclassification index (NRI) have been proposed to quantify the degree

to which the model could achieve more accurate classification, which means the

ability of shifting the cases to high-risk categories and the controls to low-risk

categories. Also, a measure that integrates the NRI over all possible cutoffs for the

probability of the outcome was proposed (integrated discrimination improvement,

IDI) [41]. However, changes of risk categories do not necessarily result from

clinical important risk categories [28]. Therefore, the results produced by the

model especially the negative results should be interpreted carefully to avoid

unnecessary clinical interventions.

2.2.4 Case Studies

In this section, we will discuss some case studies that demonstrate the potential

value of genetic risk prediction in personalized disease prevention, diagnosis, and

treatment. With this purpose, three diseases are chosen, among which the

Huntington’s disease is selected as a representative of Mendelian disease, while

breast cancer and cardiovascular disease represent common complex disease. They

all have varying underlying genetic architectures, different knowledge of risk

factors, and diverse intervention strategies.

Huntington’s Disease Huntington’s disease (HD) is an autosomal-dominant, pro-

gressive neurodegenerative disorder caused by expansion of the trinucleotide

cytosine–adenine–guanine (CAG) in the first exon of the Huntington (HTT) gene

[42]. It’s normal that individuals have some CAG repeats in the region, but when

these repeats exceed 41 or more, the disease is fully penetrant. Incomplete pene-

trance happens when CAG repeats are between 36–40, and 35 or less are not

associated with the disease [43], thus the volume of HD risk could be broadly

identified by the categories of CAG repeat sizes. Furthermore, numerous studies

have discovered the inverse association between length of CAG repeats and age of

disease onset. There has been great enthusiasm toward better prediction of manifest

Huntington’s disease with clinical measures and features before diagnosis to guide

preventive clinical trials and prognostic counseling. A retrospective cohort study

was conducted by developing a parametric survival model based on CAG repeat

length to predict the probability of neurological disease onset at different ages for

individual patients [44]. This study provided estimated probabilities of onset

associated with CAG repeats between 36 and 56 for individuals of different ages

with narrow confidence intervals. For example, the model predicted that the chance

of a 40-year-old individual with 42 CAG repeats who would manifest the disease by

the age of 60 was 80%, with a 95% confidence interval from 78 to 82%. However,

the number of CAG repeats explains about 60% of the variation in age of onset,
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with the remainder represented by other risk factors such as modifying genes and

environment [43].

In another prospective observational study, the authors used joint modeling of

longitudinal and survival data to assess the ability of 40 measures in different

domains (motor, cognitive, psychiatric, functional, and imaging) to predict time

to motor diagnosis of HD, while controlling for CAG repeat length, age, and the

interactions between them [42]. Most of the measures were significant predictors of

motor diagnosis beyond CAG repeat length and age, among which the strongest

were in the motor, imaging, and cognitive domains. For instance, an increment of

one SD in the total motor score (motor domain) resulted in an increasing risk of a

motor diagnosis by 3.07 times. Therefore, it’s plausible that the prediction of HD

can be further improved by additional risk factors beyond CAG repeat length

and age.

Breast Cancer Breast cancer is common in women in the USA and other Western

countries, and its incidence rates are now rapidly increasing in many developing

countries [27]. Risk prediction models have long been proposed to women who

consider reducing their risk of breast cancer and clinicians developing health

policies to reduce population incidence rates. However, none of the models dem-

onstrated consistently outstanding discrimination ability, although a few risk alleles

may distinguish women who are at high risk for breast cancer from those who are at

low risk, which would be valuable in population screening [28, 45, 46].

A recent study investigated the value of using 77 breast cancer-associated SNPs

for risk stratification [47]. The study constructed a 77-SNP polygenic risk score

(PRS) for breast cancer and found that women in the highest 1% of the PRS had a

threefold increased risk of developing breast cancer compared with women in the

middle quintile. The PRS is effective to stratify breast cancer risk in women both

with and without a family history. However, the study didn’t incorporate the PRS

with other risk factors such as lifestyle and environmental factors, and the model

calibration should be evaluated through independent prospective cohort studies.

Another recent research evaluated whether a 76-locus polygenic risk score

(PRS) was independent risk factors within three studies, by using logistic regression

models [48]. This study incorporated the PRS odds ratio (OR) into the Breast

Cancer Surveillance Consortium (BCSC) risk prediction model and the results

observed additional independent information after incorporating PRS into the

BCSC model, and there was improved discriminatory accuracy with modest AUC

improvement. The drawback of the study is that the model was only well calibrated

in case-control data; independent cohort data are required to test calibration in the

general population.

To figure out how stable the predicted risks are as additional loci are discovered

in the GWAS for breast cancer, a more recent study was conducted to quantify the

reclassification of genetic risk based on past and anticipated future GWAS data

[26]. The investigators calculated the genomic risk for a simulated cohort of

100,000 individuals using cumulative GWAS-identified SNPs at four time points

from 2007 to 2013. The results uncovered that the risk prediction for breast cancer
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showed large reclassification rate with an increasing number of susceptible SNPs

identified in GWAS, which suggests that we should be very cautious of the

decision-making based on genetic risk prediction and the discovery of new loci

will result in better stratification of disease risk.

Cardiovascular Disease The risk of cardiovascular diseases (CVD) depends on

multiple factors, among which many are known and can be modified. Adoption to a

healthy lifestyle (e.g., a healthy diet, adequate physical exercise, and no alcohol and

smoking) to lower the risk of CVD has already proved its clear health benefits

without associated harms [27]. In this context, the key clinical issue related to risk

prediction in CVD is not diagnosis but to identify group of individuals with

elevated risk who are most likely to benefit from early preventive interventions

such as lifestyle changes or initiation of statin treatment [25, 27]. Current clinical

scores achieve moderately high discrimination ability with AUC exceeding 0.8

over time horizons of 5–10 years across the general population [25]. However, there

is still substantial interest in further improving the predictive power of the existing

risk models through incorporating genetic variants, because it is reported that

heritable factors may account for as much as 30–60% of the variation in risk of

CVD [49].

One of the first studies to propose incorporating SNPs into risk scores for CVD

was conducted using large prospective population cohorts [50]. The study modeled

a genetic risk score based on 13 SNPs associated with CVD and used Cox

proportional hazards models to estimate the association of genetic risk score with

incident CVD. The results that GRS did not improve C-index over traditional risk

factors nor did it have a significant effect on NRI indicated that potential clinical

use of this panel of SNPs remained to be defined. Similar conclusions were drawn in

several independent studies that the combination of genetic variants in risk predic-

tion models achieved only modest improvements in predictive power than tradi-

tional risk factors [51–53].

Nevertheless, the value of genetic risk on preventive interventions for CVD is

still of great potential and was illustrated by a recent empirical study that analyzed

several statin therapy trials by risk stratification based on a 27-SNP polygenic risk

score while adjusting for traditional clinical risk factors [49]. The study showed that

the reduction of absolute risk for individuals in higher genetic risk categories was

greater than those in lower polygenic risk. For each 1% absolute risk reduction

achieved with statin therapy in the intermediate genetic risk category, there would

be a 1.71% absolute risk reduction in the high genetic risk category but only 0.29%

reduction in the low risk category. The threefold decrease in the number people

with high CVD risk from statin therapy, suggested that the stratification of risk

groups facilitates both relative and absolute clinical benefits.

2 Genetic Testing and Disease Prediction 37



2.2.5 Summary: Challenges and Opportunities

Current development of genetic-based predictive models to common diseases is in

early stage from both theoretical and empirical lines of evidence. A systematic

review analyzed recent high-quality publications on common complex diseases risk

prediction, including tumors, cardiovascular diseases, and diabetes mellitus

[28]. The study concluded that a considerable number of reports indicating that

genetic data could contribute to the improvement of prediction models. The major-

ity of studies observed moderate benefit in prediction by adding genetic markers,

and some report significantly enhanced prediction by considering common SNPs

with large effect size. Other factors that may influence the predictive ability include

appropriate weights for PRS, achievable sample sizes for the training data set, the

underlying genetic architecture, and the inclusion of information on other risk

factors, though controversy exists for some of the factors, such as family history

[28, 30, 54].

Future polygenic risk models will need to take genetic variants that have a wide

range of allele frequencies into consideration, including common, low-frequency,

and rare variants. It is clear that rare and high-penetrant variants will play an

important role in determining the disease traits as WES/WGS is becoming wide-

spread [13, 27]. It has been suggested that rare and low-frequency variants have the

potential to explain additional missing heritability other than common variants

[36, 55]. Fully utilizing these rare genetic markers has been a challenge since

classical statistical tests lacks power to detect these rare variants. A few association

tests especially configured for the rare variants have been proposed since 2008 [56–

59]. However, there is still much room to improve their power, and novel approach

is needed [70]. Genetic variants included in the model should be comprehensive

and well validated. Considering that numerous genetic associations are reported

each year, the genetic variants should be regularly updated and employed into the

risk prediction model [25, 28]. Large sample prospective cohort studies will be

necessary for the development of dynamic models to improve prediction utility

[27, 54]. There are other elements besides DNA sequencing which are inherited and

contribute to phenotypic variance, thus the integration of omics data, including

DNA methylation patterns, histone modifications, metagenome, and other factors

correlated with disease traits, will help to refine the prediction model [13].

Development in statistical approaches will be essential to maximize the predic-

tive power of fitted model. Other progress in the field of machine learning, where

robust methods have been developed for feature selection will be a further boost for

risk prediction [36]. Applying them to genetic data in combination with existing

laboratory tests, imaging data, and other established medical tests will offer the best

chance of creating viable prognostics [13, 36].

There have been resources aggregating the information of human disorders and

other phenotypes with a genetic component to serve stakeholders by providing

centralized access to diverse types of content. For example, the MedGen platform

(https://www.ncbi.nlm.nih.gov/medgen) integrates various terms used for

38 M.H. Wang and H. Weng

https://www.ncbi.nlm.nih.gov/medgen


particular disorders into a specific concept and then offers a growing collection of

attributes about that concept, including a definition or description, clinical findings,

causal genetic variants, available genetic tests, molecular resources, literature

reviews, etc. Such convenient access is making it available to synthesize and

apply the latest knowledge to disease risk prediction.

As risk prediction accelerates, two issues will become increasingly important:

one is the transformation of genetic risk to interventions such as lifestyle and

behavior changes, and the other is the maximization of the effectiveness of such

interventions for those at high disease risk [25]. However, current evidence doesn’t
see a significant motivation of behavioral change for individuals at high genetic

risk, even among diseases with known interventions such as type-2 diabetes [60–

62]. Researches into how genetic risk information changes individuals’ behavior
and how to design and promote interventions for high-risk individuals are in need to

address the issue.

2.3 Genetic Counseling

Genetic counseling is a relatively new profession. During the past decades, it has

been continuously evolving driven by advances in medical knowledge, changes in

society, and increases of human demand for better health [63]. In this part, we will

first address the basic concepts of genetic counseling, followed by some key

components. Then, we will discuss the possible changes of roles of genetic

counseling as we move toward a new era where whole-genome sequencing is

available to individuals.

2.3.1 Genetic Counseling: An Emerging Profession

Genetic counseling is the process of educating patients and/or the family members

of patients about genetic conditions and the chances of those genetic conditions

being present in themselves or their family members [64]. It is an emerging

specialty which derives since four decades ago when the first program to train

master-level genetic counselors was founded by Sarah Lawrence College

(New York) in 1971 [22]. Due to the increasing demand for genetic counseling

services in the era of genomic medicine, there have been thousands of genetic

counselors working directly or nondirectly with patients, and the needs for more

professional genetic counselors are still growing. Currently, in the USA, genetic

counselors complete specialized graduate training programs with focused education

and clinical rotations. They work in many different clinical settings including

prenatal pediatric, adult, and cancer clinics [64]. There are also many counselors

who work in laboratories or other non-patient contact areas [22].
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Generally, the process of genetic counseling includes collecting and interpreting

the family and medical history, risk assessment, a comprehensive educational

process for potential genetic testing, informed consent, and psychosocial assess-

ment and support [65]. Genetic counseling requires the counselors to interpret

personalized sequencing information from the laboratory, to translate the results

into genetic risks, and to provide appropriate advice with a user-friendly language

which can be easily digested, both intellectually and emotionally, by individuals

and families [63].

2.3.2 Key Components in Genetic Counseling

Every genetic session is slightly different since they are tailored to the specific

patient’s needs. A genetic consultation covers many different aspects and involves a

variable number of meetings. It will take different forms depending on the nature of

the disorder [63]. All types of genetic counseling share some similarities of key

components, which are listed as follows:

Goal Setting The first portion of a genetic counseling is to establish the goals of the

consultation. The counselor should focus the purpose of the consultation. How and

when the idea of a consultation arose? What triggered the idea and who was

wanting it? The initial thoughts and questions help the counselor to understand

the underlying motivation behind a request from individual for a consultation, and

thus the goal of the counselor and the family will be able to achieve.

Information Gathering Since the goal of the counseling has been set up, more

information will be needed for better understanding of the counseling client. The

counselor will review the medical records, discuss with the client about the family

histories, as well as other necessary records to confirm reported diagnoses or to

improve the accuracy of risk prediction.

Risk Assessment By using the information provided in medical and family histo-

ries, it is possible for the counselor to assess the risk of a specific disorder.

Statistical methods, medical pedigree, and medical literature review will be essen-

tial during the risk assessment process [22].

Communication with Patient A central element in a genetic consultation is the

transformation of technical information. Counselors should explain medical and

scientific information to the patient, such as the test result or the personal risk

assessment. However, such information could not be given in any standardized

manner, but has to be personally tailored to meet the particular request and also take

into account the individual’s educational and psychological profile [63]. For exam-

ple, when the counselor has to tell the patients that they do carry a problem gene,

how could the “bad news” being appropriately delivered to the patient without

harming them? Besides, counselors are also responsible to discuss with the patients

about disease management, treatment, and surveillance options [22]. Various
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information are given to the patients in the most appropriate manner through

in-depth communications to facilitate decision-making process and help them

make the best possible adjustment to the condition.

Psychosocial Concern This is present in each step of the counseling session

[64]. The counselor should always be aware of the emotional state of the patient

and family. It is important because the mental status of patient may influence in the

decision-making process. Genetic counselors are responsible to address the psy-

chosocial impact on patients and their families. Necessary psychosocial support to

the patient or other family member yields to a better understanding and digestion of

genetic information, which are vital to achieve the counseling goal. Additionally,

the focus on the psychosocial adaption to genetic conditions or genetic risk also

separates genetic counselors from other health professionals [16].

Follow-Up In this stage, counselors summarize the discussion in written form for

referring healthcare providers and consultants, share information about support

groups or patient-friendly information on the Internet, and provide referrals to

psychotherapies or family therapists if necessary [22]. This is critical for long-

term patient education as well as the communicating with the patient’s other

healthcare providers [64].

2.3.3 Changing Roles of Genetic Counseling in the New Era

Precision medicine is a new era that will require widespread genetic testing and

integration of genetic data, with other clinical information, such as environmental

and demographic, into new practice models [66]. Debate about how is genetic

counseling likely to change has been fueled as we move toward precision medicine.

Genetic counseling for Mendelian disease is a critical component of genetic

counseling practice. Traditionally, genetic testing and counseling focus on a spe-

cific single gene that contributes a lot to disease trait. Examples of single-gene

gastrointestinal diseases for which genetic counseling is well established include

cystic fibrosis, Lynch syndrome, and familial adenomatous polyposis [66]. This

genetic counseling process involves family and medical history interpretation,

patient education, and nondirective decision facilitation. Today, more advanced

genetic tests are available for Mendelian disease, and we are acquiring enormous

amount of medical information to provide new insight and direction. Consequently,

the process of genetic counseling for Mendelian disease must adapt to fit the

technology, data interpretation, and objectives. At least, counselors need to learn

to understand variant interpretation and, in many cases, annotate the newly detected

variants reported by a laboratory based on latest sequencing technology.

With the rising interests in common and complex diseases genetic testing, it is

certain that there will be an exploding need for genetic counselors in complex

diseases in the coming few years. This reflects rapid advancements in the scope and

cost of genetic test, the knowledge of how genetics contributes to common and
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complex diseases such and diabetes, and the enormous complexity of genome

science in medicine today [66]. The question is, what are the roles for genetic

counselors in such diseases?

The greatest challenge for genetic counseling in common diseases is that the

underlying mechanisms of the diseases are still largely unknown and the genetic

information explains limited additional disease variance. Moreover, the increasing

volume of information brings us with much more uncertainty than ever before.

Therefore, it will be necessary for genetic counselors to become more specialized in

the near future. Qualified genetic counselors must be able to address the psychoso-

cial issues associated with complex diagnosis, prognosis, reproductive planning,

and risk to family members for both simple and complex disorders [66]. The future

training and continuing education processes will need to ensure that genetic coun-

selors are proficient in variant interpretation and understand the laboratory and

bioinformatics processes [65].

It is believed that whole-genome or whole-exome sequencing data will become

indispensable to genetic counselors, even more important than the family history

and any physical examination by experienced doctors [67]. In view of the decreas-

ing cost, it’s likely that WGS/WES will become routine and that, eventually, most

people will undergo genetic testing and counseling, not only those into clearly

elevated genetic risks. The rapid advancement in genomics is likely to result

shortage of professionals who are capable of interpreting and using genetic infor-

mation [66]. Therefore, future genetic counselors should be equipped with the skills

of choosing appropriate genetic testing approach based on the costs and benefits of

testing, interpreting of negative results, and the follow-up steps needed based on the

results. Furthermore, it will be important for genetic counselors to be able to

manage with unknown and rare variants in complex diseases [66]. Genetic coun-

selors should have a major role in managing the influx of genetic information in

both the clinical and laboratory settings.

The landscape of genetic testing and genetic counseling has changed consider-

ably with the emergence of direct-to-consumer (DTC) genetic testing. With DTC

testing, consumers can order genetic tests directly, and results are often returned

without involvement of any health provider [68]. Genetic counselors employed by

DTC genetic testing companies are responsible to provide education and risk

interpretation for consumers [69]. Although there have been discussions about the

emerging but important roles of health education and promotion for genetic coun-

selors [66], much work should be done in outlining a clear, standard framework for

genetic counseling in the new era of precision medicine. At least, genetic coun-

selors will need to improve the ability of individual genetic risk prediction for

common diseases and become more familiar with health promotion models, apply

them in practice, and perform longitudinal outcomes studies to determine their

utility and effectiveness [65, 68].
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2.3.4 Summary

Genetic counseling has arisen in the context of advances in medical knowledge. It is

the process of addressing the genetic information and conditions to individuals and

their families through an appropriate approach that is tailored to their own charac-

teristics and providing essential psychosocial support to facilitate health decision-

making. Although each genetic counseling is naturally unique, the key components

for most individuals include the following six parts: goal setting, information

gathering, risk assessment, communication with patient, psychosocial concern, as

well as follow-ups, which together illustrate how a genetic counseling is usually

carried out.

As genetic technologies inevitably continue to expand and multiply and our

understanding of human genome has pinpointed the importance of genetic variants

in complex diseases, there is likely to be more genetic testing ordered by nongenetic

medical providers for disease prevention and prediction. Consequently, genetic

counseling will shift from the germ theory paradigm to a personalized medicine

paradigm of disease modeling [66]. Genetic counseling for Mendelian diseases will

remain important while much more attention will center on common disorders in

the era of precision medicine. Widespread incorporation of genetic information into

the healthcare system requires careful integration of both genetic and environmen-

tal risks into health models [66]. It means that future genetic counselors should be

proficient in variant interpretation and risk assessment. The shift of genetic counsel-

ing also presents an emergent need for genetic counselors to become more familiar

with disease prevention and health promotion interventions. Education regarding

primary care against common diseases is likely to be a large part of the genetic

counseling at the time when whole-genome sequencing data is incorporated into

mainstream health care as one of the regular medical records.
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Chapter 3

Newborn Screening in the Era of Precision

Medicine

Lan Yang, Jiajia Chen, and Bairong Shen

Abstract As newborn screening success stories gained general confirmation dur-

ing the past 50 years, scientists quickly discovered diagnostic tests for a host of

genetic disorders that could be treated at birth. Outstanding progress in sequencing

technologies over the last two decades has made it possible to comprehensively

profile newborn screening (NBS) and identify clinically relevant genomic alter-

ations. With the rapid developments in whole-genome sequencing (WGS) and

whole-exome sequencing (WES) recently, we can detect newborns at the genomic

level and be able to direct the appropriate diagnosis to the different individuals at

the appropriate time, which is also encompassed in the concept of precision

medicine. Besides, we can develop novel interventions directed at the molecular

characteristics of genetic diseases in newborns. The implementation of genomics in

NBS programs would provide an effective premise for the identification of the

majority of genetic aberrations and primarily help in accurate guidance in treatment

and better prediction. However, there are some debate correlated with the wide-

spread application of genome sequencing in NBS due to some major concerns such

as clinical analysis, result interpretation, storage of sequencing data, and commu-

nication of clinically relevant mutations to pediatricians and parents, along with the

ethical, legal, and social implications (so-called ELSI). This review is focused on
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these critical issues and concerns about the expanding role of genomics in NBS for

precision medicine. If WGS or WES is to be incorporated into NBS practice,

considerations about these challenges should be carefully regarded and tackled

properly to adapt the requirement of genome sequencing in the era of precision

medicine.

Keywords Newborn screening • Precision medicine • Whole-genome

sequencing • Whole-exome sequencing • Genomics

3.1 Introduction

Newborn screening (NBS) is one of the nation’s most successful public health

programs. In the 50 years since their inception, state-mandated NBS programs have

saved thousands of children’s lives and prevented disabilities in countless more

cases by early identification and treatment of children with phenylketonuria (PKU)

or congenital hypothyroidism. The introduction of tandem mass spectrometry in the

late 1990s allowed for programs to screen for multiple conditions using a single

blood spot. As NBS program has expanded, it can also involve some inherited

diseases [1], including cystic fibrosis, sickle cell disease, Duchenne muscular

dystrophy, tuberous sclerosis, etc. Secretary’s Advisory Committee on Heritable

Disorders in Newborns and Children currently recommends that states screen for

31 disorders [2].

Early detection can help families avoid the lengthy and stressful “diagnostic

process” involved in finding out what pester their child. While this can be accom-

plished only for the metabolic and endocrine disorders, there could not be even

greater benefit from NBS for genetic disorders in general, including a large scale of

non-metabolic genetic disorders. Nowadays, the development of next-generation

sequencing (NGS) technologies has substantially reduced both the cost and the time

required to sequence an entire human genome. With the prospect of the availability

of NGS technologies and consequently the greater facility to conduct whole-

genome sequencing (WGS), we could predict that the current practice of medicine

and public health will be greatly changed due to more accurate, sophisticated, and

cost-effective genetic testing results provided by these technologies [3] (Fig. 3.1).

In the era of precision medicine, accurate clinical information and evidence will

be demanded to be used to manage a patient at an individual level or at a community

level appropriately [4]. If the sequencing or genome technologies are to be incor-

porated in NBS program in the future, it can be predicted that this implementation

will not only improve diagnosis and management of some disorders at a strong

heritable level but also improve the quality of screening for current NBS conditions

by providing the predictive value of NBS results [5]. Furthermore, great expecta-

tions arise from massive parallel or high-throughput next-generation sequencing.

However, although genomics has already revolutionized our knowledge of genetic

diseases with molecular pathology and will help us improve personalized diagnosis

and individual treatment or prediction for NBS, there are still controversies about

the widespread application of WGS in NBS. Concerns have been raised about the
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potential impact of WGS on NBS [6–8], for example, the unwanted secondary

findings it may reveal, counseling, result interpretation, cost and access to follow-

up, etc. When, by whom, and even whether these results should be disclosed is still

uncertain. To date, limited research has been performed to assess opinions of using

WGS/WES in the newborn period. In this review, we will discuss current critical

issues about the potential use of genome sequencing during NBS in the era of

precision medicine, including the application of new DNA sequencing technology,

its value and policy-making of NBS, prospective trial designs, as well as the

clinical, ethical, and psychosocial challenges it poses when applied to newborn

screening (Fig. 3.1).

3.2 Objective and Implications of NBS

Overall, NBS is a public health program aimed at the early identification in

newborns without symptoms, for which we can take early and timely interventions

to eliminate or reduce mortality, morbidity, and disabilities. Nowadays, in some

countries, although whole-genome sequencing is not used widely in newborn

screening programs, sometimes it only seems as a secondary method to confirm

genetic disorders for positive results such as cystic fibrosis or sickle cell disease; in

the next decade, experts have predicted that sequencing technologies could be in

widespread availability for all healthy newborns [7].

Despite many techniques including current immunoassays (e.g., DELFIA),

enzyme assays, and other molecular methods have been applied to analyze the

Fig. 3.1 Concerns about NBS in the era of precision medicine. Abbreviations: PKU phenylke-

tonuria, CH congenital hypothyroidism, CAH congenital adrenal cortical hyperplasia
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test procedures in NBS laboratories [9], with the integration of WES or WGS into

NBS programs, a great wider range of genetic diseases would be screened [10],

which could also provide more accurate information about newborns. Besides,

genome sequencing can provide health-related information for NBS, by which

newborns could be supplied with the risk prediction about adult-onset disorders.

However, the focused goals of NBS would be changed due to the large amount and

high complexity of data that are available through genomic screening [6]. In the era

of precision medicine, considering the original intention of NBS, we suggest that

the application of new sequencing technologies or genome sequence approaches

firstly focus on the identification of highly penetrant disease-causing variants, by

which we can reach a high risk of preventable or treatable conditions during the

newborn and childhood period. Secondly, according to the main objective of NBS,

as for those unintended sequencing results of unknown clinical significance that

would be troublesome to many families, if the unwanted sequences are not health-

related information which go beyond disease-causing risks to the newborn, it

should not be considered as critical contexts. It will remain to the genetic coun-

selors to make appropriate interpretation and give proper advisement to the parents.

In general, we recommend that NBS should put emphasis on providing benefits

including information for the family, by which it will contribute to family health

through preparing for the possible progressive disability in the child and giving

genetic counseling for family planning and prenatal or preconceptual diagnosis in

future pregnancies.

3.3 Policy-Making of NBS for Precision Medicine

Although individual states’ methods varied, each state utilized a set of criteria

developed by the World Health Organization as well as local legislative input to

determine whether a disorder should be included in NBS. Regarding scholars’
expertise, evaluation for additions to the recommended uniform screening panel

(RUSP) is based on a set of criteria which include the natural history of the

condition, availability of screening and diagnostic tests, potential treatment, cost-

effectiveness, as well as the analytic validity (test accuracy), clinical validity

(ability of the test to predict disease), and clinical utility (ability of the test to

lead to improved outcomes) of the screening method used for each condition

[11]. Besides, the policy of NBS programs differentiates from one to the other in

variant states or countries owing to various structures in health-care systems,

available funds, local politics, input from professional groups, parent groups, and

the acceptability of general public. In recent years, programs in the European Union

(EU) are heterogeneous and aim to identify between 1 and 30 treatable conditions

[12]. Nowadays, the number of disorders offered on NBS panels has increased in

both North America and Europe [13, 14]. The diversity of number of conditions is

large; the policy of screening program in NBS is also based on two models:

mandatory and optional. For instance, Canada has no national strategy on NBS,
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and there is no mandatory policy but a wide variation between provincial programs.

It often includes a certain number of diseases about newborn screening accompa-

nied with information and consent given to parents [15]. In the USA, the Discre-

tionary Advisory Committee on Heritable Disorders in Newborns and Children

currently recommends 57 conditions for screening, including 31 core disorders and

26 secondary disorders [16]. By contrast, in some developing countries of Asia

Pacific, the conditions of NBS are only focused on PKU and congenital hypothy-

roidism. Although there is the largest population in India all over the world, NBS is

still not a health-care priority [17]. As extended NBS programs were nonexistent in

these countries, the diseases offered in NBS did not include a large range of genetic

conditions, which will be incorporated when large-scale genomic technologies such

as WGS and WES are applied into NBS program.

Concerning the issues that are demanded in precision medicine, the more

diseases with effective intervention or treatment and more accurate results a NBS

program could detect, the better extension and augmentation of newborn screening

would be available. Meanwhile, the goal of newborn screening is primarily to

identify diseases in which early treatment is necessary to improve outcome in an

efficient and cost-effective manner. As for those diseases of early onset that require

immediate medical actions, despite NBS is justifiable as a compulsory, state-

supported activity aim to protect the benefit of newborn children by identifying

diseases so as to avert a disastrous outcome [18], in some mandatory screening

programs, ethical concerns will rise due to timely treatment unavailable. For

example, during the early years of mandatory screening, lack of comprehensive

insurance coverage for PKU formula left some children with a diagnosis but no

means to treat it [19].

In a word, toward accelerating the implementation of NBS program in the era of

precision medicine, policy-makers should be prudent while considering whole-

genome sequencing of NBS. They should make appropriate policy about screening

program, regarding testing platform, assessment criteria, confirmative diagnosis,

genetic counseling service, effective treatment, as well as follow-up systems based

on principles of cost-effective, accurate, available, and predictive value according

to different situations of economic, technology development, education, and social

conditions. If genome sequencing technology is to be applied into NBS, firstly, new

models of informed consent in the context of NBS will have to be developed. In some

scholars’ opinions, appropriate model of informed consent can not only increase the

information provided as well as the right time with provision but also can maximize

participation rates [20]. Secondly, regarding expansion of NBS to incorporate

genomic sequencing, policy of NBS should include additional education both in

genetic counselors and parents or other relevant stakeholders prior to initiating

WGS into NBS. As for the sequencing data, which would be helpful to genetic

information of newborns for predictive value, a clear protocol for the safe storage in

electronic medical files also should be elaborated. No matter whether the results are

analyzed or not, these data should be handled and treated like all clinical informa-

tion included in patients’ medical file and be protected by adequate privacy and

confidentiality procedures, which are supported by Heidi Carmen et al. [21].
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3.4 Prospective Trial Design of NBS in Precision

Medicine Era

In the next decade, we can predict that the application of sequencing technologies in

newborns will become a routine part in NBS [8]. However, the approach chosen

will depend on the determined goal of the NBS program, and it will also impact on

the resulting of practical and ethical issues, including not only benefits but also

disadvantages. As stated byWade et al. [22], only when a clear health-care program

has been specified, meaningful assessment including the population target and

purpose of testing with P-WGS (pediatric whole-genome sequencing) can be

accomplished. In line with the main objective of NBS in precision medicine

mentioned above, the primary goal of genome sequencing and other genetic

technologies in NBS should be able to identify the gene variants predicting pre-

ventable or treatable conditions with high risks, for which treatment has a mean-

ingful intervention in the newborn period or in early childhood. Thus we suggest the

trial design be capable of detecting variants and genes with disease-causing which

are known to have a high penetrance with effective and appropriate preventive or

therapeutic interventions. Also if indications from early diagnosis are lacking or

uncertain, screening tests should not be recommended. It is the same to the

conditions in which the test is unsuitable or cannot detect those cases despite of

predictive advantage [11, 23].

It is expected that when sequencing technologies are sufficiently robust and

affordable, we can make the genomes of all newborns (at least part of) sequenced at

birth. Although these molecular technologies have the potential tendency to replace

current tandem mass spectrometry assays and any additional single-gene tests

which could be needed in NBS [6], some scholars considered that WGS should

not be used in traditional NBS within the same framework; instead, it should be

considered in the setting of pre- and posttest counseling. Also it should not be

mandatory, and parental consent should be demanded [8]. And as for endocrine

disease, such as congenital hypothyroidism, which is not a genetic condition, it

cannot be diagnosed by genome sequencing. Therefore, for the condition not

belonging to genetic disease, the present methods of NBS cannot be replaced by

sequencing technologies [24].

In the era of precision medicine, the trial design of NBS may include the

integration of traditional test and current WGS sequencing panel, which could be

performed in a certain prioritized order, for instance, higher-risk individuals receiv-

ing higher intensity of screening with the aim of reduced mortality through earlier

detection of curable lesions and lower-risk individuals being spared unnecessarily

frequent or invasive tests. Besides, the design selection should depend on many—

and very different—factors and must concern adequately not only about such

characteristics as sensitivity, specificity, and positive and negative predictive

value but also demonstration of accurate, exercisable, and beneficial impact of

using the test on patients’ health or on health-care service according to individual-

ized situation in different states.
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3.5 NBS and Current Genetic Technologies

Blood spot cards have been widely used as an alternative sampling method to large

epidemiology studies mainly due to their low cost and ease of transportation and

storage [25]. Today, great advantages arise from a further technical advancement,

represented by massive parallel or high-throughput next-generation sequencing

(NGS). In precision medicine, current genetic technologies differ from each other

(Table 3.1). As for the newborn screening specimen, it is possible for us to sequence

the exome or the entire genome owing to the rapid development of NGS [26]. NGS

is based on deep sequencing, which produces billions of short sequences at a time.

The recent technologies for the investigation of genomes, transcriptomes, and DNA

methylation are revolutionizing our ability to detect mutations of almost all types,

from single-nucleotide variation to gene fusion and chromosomal rearrangements.

Many studies have confirmed that NGS could dramatically increase the number of

disorders identified by newborn screening as well as identify genetic variations

(especially through targeted sequencing) that indicate risk of the infant for subse-

quent development of many disorders. Besides, it can detect the same variations of

family members by extension. Microarray expression data (develop from array

comparative genomic hybridization, ACGH) were based on the use of probes,

which implied a semiquantitative determination of RNA and a partial representa-

tion of the human genome, limited to selected genomic features chosen a priori. As

for WGS/WES, although the exome is also covered by WGS, WES provides better

sequencing coverage of the coding regions and is superior to WGS in finding DNA

changes of known medical significance [27]. However, WGS has its own advan-

tages. By covering the genome, WGS identifies not only variations in the coding

regions but also sequence variations in noncoding regions that may alter the

expression of a gene, substantially increasing the likelihood and comprehensive-

ness of genetic diagnosis.

Table 3.1 Differences in current genetic technologies in precision medicine

Technology

Percentage of

genome sequenced

Descriptions of

features Spectrums of detection

Targeted

sequencing

0.005% ~ 0.1%

(100 s ~ 1000s of

genes)

Based on deep

sequencing

Limited genes of target

disease

Whole-exome

sequencing

(WES)

1% (about 25,000

genes)

Provides better

sequencing coverage

of the coding regions

Capable of finding DNA

changes of known medical

significance

Whole-genome

sequencing

(WGS)

100% Based on covering

the whole genome

Variations in the coding

regions accompanied by

sequence variations in non-

coding regions

Array compara-

tive genomic

hybridization

(ACGH)

Variant (according

to selected genomic

features chosen

priori)

Based on the use of

probes, a partial rep-

resentation of the

genome

The presence of copy number

variations within the genome
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Although NGS can improve personalized diagnosis and personalized therapy

along with treatment, in fact, study has noted that DNA test is not a routine part of

NBS and that only a very small proportion of babies have a DNA test currently in

certain countries [13, 28]. The probable reason was that patients can only afford a

limited number of tests due to financial burden and thus do not have the necessary

genetic workup and early intervention, while failure to obtain an accurate diagnosis

will likely miss a critical time window for clinical management. When molecular

testing is given into wide application in NBS, it is anticipated to be frequent to

identify more than one disease in one individual. Fortunately, it is possible for us to

obtain a relatively comprehensive genetic workup through one assay which can

detect not only point mutation but also copy number variations designed for a set of

different genes [29]. It has been predicted that as sequencing technologies are

getting mature and analysis standards are better defined, WGS seems to ultimately

promise a better opportunity for DNA diagnosis, where in a single laboratory test

can focus on either a single variant, single gene, or a panel of genes, the exome.

Once all of the analytical challenges have been resolved, analysis can also be

expanded as needed to cover the entire genome [30]. In the coming years, we will

need to expand novel NBS trials that incorporate sequencing and establish shared

databases to centralize genomic data for precision medicine.

3.6 The Role of Genetic Counseling and Education in NBS

With the utility of genetic testing in NBS, it can bring more education to primary

care providers as well as the benefit obtained during the learning process [31]. The

success of a newborn screening system should be measured not only by its capacity

to identify potential disorders but also by its ability to communicate results in an

effective and sensitive manner. Now most parents have shown interest in genetic

screening of their newborns [32]; as stated previously, integration of next-

generation sequencing into NBS program could generate incidental findings of

uncertain value to parents, children, and clinicians; it is vital for offering appropri-

ate genetic counseling to parents at the appropriate time (Fig. 3.2).

As the clinical phenotype might be apparent at different periods, at birth or

within the first weeks or months of life, or maybe later in onset, appearing in

childhood or the adult years, it is often difficult to ascertain the correlation between

the phenotype and the genotype. As a result, many alterations identified by WGS or

WES remain undefined due to the uncertain functional consequence and associated

therapeutic implications. In NBS, when screening confronts the prospect of WGS,

especially as the context of a public is not in accordance with basic genetic

concepts, it is important and challenging for us to transform this into effective

action and meaningful outcome [33]. Careful and intelligent planning should be

designed; otherwise the consequences could be extremely disruptive to many

families. Then who should disclose and interpret the test results? Based on Ulm

E’s study, it is suggested that the physician–geneticist be selected as the preferred
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provider to disclose the result as well as disclose the carrier status and also genetic

counselors be chosen most frequently [8].

Interpretation will vary among screening laboratories; when routine genetic

screening identifies many more variants than currently known to us, some scholars

considered this will derive from the uncertainty of many genetic variants, which will

not only continue but likely increase [34]. With the integration of WGS into NBS, it

is a major challenge in the application of which in precision medicine for classifying

and prioritizing variants identified through integrated genomic analysis [35], and

then genetic counselors should be trained professionally and be highlighted of being

a well-prepared workforce to interpret and counsel for these results to patients. It

was suggested that we need further education and information about the diseases on

the panels, their genotypic and phenotypic variation, and the potential for receiving

variants of unknown significance [36]. Educational opportunities were emphasized

to provide updated information about WGS/WES along with its use in NBS.

Typically, we should make policies conformed to a standardized medical model,

with which we can obtain genetic information with health implications.

3.7 Future Challenges in NBS Program in the Era

of Precision Medicine

3.7.1 Unanticipated Information

Although the numerous sequencing results obtained from genome sequencing are

more accurate and robust than that of most current traditional NBS, not all sequenc-

ing data result in clear, comprehensible disorder. Mardis has stated that dealing with

Fig. 3.2 The role of genetic counseling and education in NBS in the era of precision medicine
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the deluge of data generated from WGS or WES is a very redundant task and has

been a cost of “the $1000 genome” and “the $100,000 analysis” [37]. Therefore,

concerning about the economic cost, the use of WGS or WES in NBS is not suitable

due to the limited available public health-care budgets at present. Furthermore, the

interpretation of DNA data in a population of healthy newborns is a challenge

(Table 3.2). Besides, the genotype–phenotype relationship in metabolic conditions

is often not straightforward.

There are several high-throughput sequencing platforms, with many emerging

applications for sequencing. These platforms and applications offer different trade-

offs of cost, speed, throughput, read lengths, error rates, and bias. Currently,

challenges remain in fully characterizing variations in human genomes. Precise

and individualized diagnosis is often limited by current knowledge of disease

etiologies. The large number of diseases, broad and incompletely understood

phenotypic spectrums, and various genetic heterogeneity all contribute to hamper

the diagnostic yield. However, ultimately with the maturation of sequencing

Table 3.2 Challenges of integration of WGS/WES into NBS program

Aspects of

challenges Results of influence Recommended managements

Unanticipated

information

Difficult counseling due to inability

to interpret DNA data properly

(a) Using publicly available

databases

(b) Being well versed with geno-

mics and computational tools and

methodologies

(c) Developing standards or

criteria for analysis and

interpretation

Ethical issues Affecting public trust and privacy,

consent, as well as issues about uti-

lizing residual samples for research

(a) Access to care

(b) Health disparities

(c) Ownership of genetic

information

(d) The desire or nondesire for

public policy must be heavily

considered

Social issues Potential discrimination from

insurers and employers and issues of

storage of genetic information and

subsequent outcomes

(a) Highly selective reporting of

findings

(b) Requirement of informed con-

sent for genetic screening and

promise of privacy protection

(c) Concerning about affordable

treatment, follow-up of long-term

medical outcomes

Health behaviors

or environmental

impacts on NBS

Influences on the epigenome owing

to dietary, physical, social, chemi-

cal, or unknown effects

(a) Early intervention, prevention,

and closer monitoring of health

behaviors

(b) Genomic risk profiling and

genetic susceptibility prediction
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technologies and standardization in analysis, some of these challenges will be

resolved [38]. For example, using publicly available (as well as private) databases

may be helpful in terms of determining whether these variants have been identified

previously. Also it would require a new breed of clinicians with good clinical

acumen and are equally well versed with genomics and computational tools and

methodologies (Table 3.2).

Study has declared that precision medicine has a significant impact on medical

knowledge, and also it will focus on genetic evidence based on medicine with the

aim of improving the health of mankind [39]. It can be predictive that genome

sequencing will be incorporated into NBS for expanding program; thus developing

standards or criteria for analysis and interpretation should be taken into account

according to the rationale of being helpful to the precise diagnosis and treatment or

predictive value of diseases in newborn or early childhood, along with those

conditions onset in adulthood. As for prediction of risk in genetic disorders, parents

should be conveyed with the idea that genomic profiling would be a risk test—not a

diagnostic test—and the cognition of the limitations of accurate prediction, the

putative benefits and drawbacks, and the possible personal, family, and social

implications [40].

3.7.2 Ethical and Social Issues of Integration WGS into NBS

It has demonstrated that neonatal dried blood spot samples (DBSS) collected

shortly after birth and stored for decades comprise an excellent resource for NGS

studies of disease. The integration of WGS or WES into state NBS programs may

be appealing given the possibility of sequencing technologies to improve the

quality of screening, reduce costs, and open the potential to utilize the programs

to screen children for a much wider range of conditions. However, with the

expanding of NBS, it will raise a number of ethical, legal, and social issues

involving public trust, privacy, and consent as well as broader questions about

utilizing residual samples for research. With a positive or uncertain NBS result, it

will inevitably cause distress or lingering anxiety to parents, which would be even

worse due to counselors’ practical inability to interpret all of the WGS data in a

clinically useful manner. Besides, another concern about the provision of genetic

susceptibility test results involves potential discrimination from insurers and

employers [40].

As for the unwanted results brought by WGS/WES, it prefers to select mean-

ingful reporting of the findings prudently in order to reduce the psychic burden of

parents. However it would be in contradiction with the rights of the family to be

fully informed. Furthermore, there will rise a number of questions through storage

of genetic information such as governance and privacy protection associated with

the stability and accessibility of the data [41]. For instance, based on Aaron J’s
study, within a state’s NBS program, although there is a high interest in WGS

offered as an option at first, when parents were informed that identified data
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generated from sequencing might be stored and used in future research, their

interest dropped off finally [42]. Also very few parents opt out of current NBS;

nevertheless, there will be an influence on universal NBS owing to the requirement

of informed consent for genetic screening. So health education challenges are faced

not only with the proper interpretation of genomic information but also its disclo-

sure. Concerning about the importance of screening for adult-onset disorders,

which was an expanded part in NBS, we recommend NBS programs should be a

long-standing public health enterprise and aim at rapid transformation with numer-

ous implications for practice and policy [36]. To improve the quality and maintain

the integrity of NBS, it is critical to keep a follow-up of long-term medical out-

comes, no matter if the disorders could be provided with affordable treatment or

not. To sum up, when implementing these NBS programs for precision medicine,

the ethical issues (access to care, health disparities, ownership of genetic informa-

tion, and the desire or nondesire for public policy) that involve genetics must be

heavily considered.

3.7.3 Health Behaviors or Environmental Impacts on NBS

With the development of epigenome, it is viewed that environmental factors

including social, chemical, and physical exposures have diverse influences on the

phenotypes and could provide individuals with disease risk prediction [36]. As the

number of disorders detected by NBS increases, there appear shifts in the types of

disorders and in the care provided by NBS programs. A large amount of challenges

correlated with public health, ethical, and policy emerged during NBS. PKU is a

classic example of this perspective shift. Treatment for PKU requires consumption

of a diet with low phenylalanine. However, it was revealed that when the phenyl-

alanine levels in mothers with PKU elevated, there was a tendency of increased risk

of having a child with birth defects and cognitive impairment [43]. Based on a

public health perspective, the value of genomic information primarily focused on

its potential prevention efforts. Thus, a suggestion of phenylalanine-restricted diet

was recommended to all women of childbearing age. By genomic risk profiling,

participants would be given prediction of genetic susceptibility so as to improve

early intervention, prevention, and closer monitoring. Thus, through individual

guide of health behaviors and appropriate genetic counseling with different find-

ings, it will contribute equally to human health.

3.8 Conclusion

The opportunity to perform extensive genotyping on DNA extracted from DBSS

used in the newborn screening programs has opened new avenues in newborn

screening as well as for the study of the genetic influence of many complex

58 L. Yang et al.



disorders. As the most obvious advantage would be the possibility of identifying

virtually any metabolic and non-metabolic genetic disorder in the newborn, the use

of genomic sequencing in newborns would represent a new approach to precision

medicine. With the potential to provide vast amounts of genome sequencing results

about physical and psychological health information at the beginning of life, we

face numerous challenges such as clinical analysis, interpretation, and communi-

cation of clinically relevant mutations to clinicians and patients. In spite of signif-

icant promise and more accurate information, NBS in precision medicine faces with

a number of issues—social, ethical implications, stakeholder education, technical

(cost and widespread implementation), interpretation and infrastructure (data stor-

age and management), etc.

As public health officials work to come to a conclusion on WGS/WES for

newborns, it is important to make cogitative concerns at the forefront of the

discussion. In the era of precision medicine, policy-makers should firstly make

appropriate NBS policies and trial designs according to the main goal of NBS.

Secondly, they need to tackle such challenges as storing vast amounts of sequence

data securely, developing genetic counseling techniques for better advisements,

educating families and involved stakeholders, acquiring long-term follow-up sys-

tems, and establishing ethical standards for the practice as a whole. These chal-

lenges will also apply to prenatal and carrier testing initiatives. Before the

application of WGS/WES into NBS, the public health community must decide

whether the benefits of adding WGS/WES to well-established newborn screening

programs outweigh the associated ethical pitfalls in precision medicine.

Coupled with advances in data handling and analysis, genome sequencing is on a

path to becoming a standard tool in research and NBS of clinical genetics. In

addition, this sequencing technology has prodigious potential for disease diagnos-

tics and in the screening of newborns. We can predict that there will be an inevitable

trend about integration genome sequencing into NBS in the era of precision

medicine.
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Chapter 4

Trace Elements and Healthcare:

A Bioinformatics Perspective

Yan Zhang

Abstract Biological trace elements are essential for human health. Imbalance in

trace element metabolism and homeostasis may play an important role in a variety

of diseases and disorders. While the majority of previous researches focused on

experimental verification of genes involved in trace element metabolism and those

encoding trace element-dependent proteins, bioinformatics study on trace elements

is relatively rare and still at the starting stage. This chapter offers an overview of

recent progress in bioinformatics analyses of trace element utilization, metabolism,

and function, especially comparative genomics of several important metals. The

relationship between individual elements and several diseases based on recent

large-scale systematic studies such as genome-wide association studies and case-

control studies is discussed. Lastly, developments of ionomics and its recent

application in human health are also introduced.

Keywords Trace element • Metal • Ionome • Bioinformatics • Comparative

genomics • Systems biology • Disease

4.1 Introduction

Biological trace elements refer to those dietary elements which are required in very

small amounts (less than 100 mg/day) for the proper growth, development, and

physiology of an organism [1]. These micronutrients include iron (Fe), zinc (Zn),

copper (Cu), molybdenum (Mo), cobalt (Co), nickel (Ni), manganese (Mn), chro-

mium (Cr), vanadium (V), selenium (Se), iodine (I), and probably other elements.

The majority of trace elements are metals. They provide proteins with unique

coordination, catalytic, and electron transfer properties and are involved in critical

enzymatic activities, immunological reactions, and physiological mechanisms

[2, 3]. Due to the important roles these trace elements play in cells, efficient and

specific mechanisms are needed to maintain and regulate their concentration,
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utilization, and storage, especially for those elements whose soluble forms are

present in trace amounts in natural environments.

Trace element deficiencies are life-threatening health problems in some regions

and populations of the world, which are responsible for a variety of clinical

disorders, such as Fe deficiency in anemia patients [4]. Some groups of individuals,

such as children, pregnant women, and the elderly, are more likely to develop trace

element deficiency. On the other hand, accumulation of inappropriate amounts of

certain metals (such as Cu) may result in overload disorders because of high

toxicity of these metals [4]. Some trace elements may interact and could interfere

with the essential functions of each other. For example, large doses of Zn supple-

mentation can disrupt Cu uptake and lead to neurological problems [5]. In addition,

trace element status can be altered in some clinical conditions and may interfere

with the efficacy of the treatment [6]. Therefore, homeostasis of trace elements

within the body should be carefully maintained to offer their adequate but not toxic

levels for biological processes.

Research during the past 20 years has provided lots of evidence of how trace

elements are utilized for humans. Marginal or severe trace element imbalances

could be considered as risk factors for a variety of diseases, but mechanism of such

cause and effect relationships needs a more complete understanding of basic

metabolism, regulation, and function of these micronutrients. Previous studies of

trace elements and genes involved in trace element metabolism have revealed the

complexity of trace element utilization and function in nature. In the recent decade,

with the rapid increase in the amount of biological data available (such as genomes,

transcriptomes, proteomes, etc.) and a corresponding increase in computational

approaches, omics-based and/or bioinformatics analysis of the relationship between

trace elements and health or disease has become more and more important.

Attempts have been made at a genome-wide level based on high-throughput

sequencing techniques, which could improve our understanding of the utilization

of trace elements in normal physiological conditions and their variations or

dyshomeostasis in disease [7–12]. Very recently, the term ionome has been intro-

duced, which is defined as all mineral nutrients and trace elements found in an

organism. Several ionome-based studies have identified new features of elemental

network for complex diseases such as diabetes and neurodegenerative diseases [13–

15]. These contributions may not only provide important mechanistic insights into

the metabolism and homeostasis of trace elements but facilitate development of

new drugs and therapeutic strategies against some of the imbalanced elements.

This chapter focuses on the metabolism and function of several important trace

elements in human health as well as their association with the onset and develop-

ment of diseases mainly from the perspective of bioinformatics and systems

biology, such as comparative genomics, genome-wide association study (GWAS),

and population and/or cohort studies. Such information may achieve a more

integrated and system-level picture of the critical roles these elements play in

both physiological and pathological conditions. Recent developments in the study

of ionome in diseases (disease ionomics) are also discussed.
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4.2 Computational Resource for Trace Elements

4.2.1 Databases

Integration of genes/proteins that bind one or more trace elements for their biolog-

ical function (say, metalloproteins) and those involved in trace element metabolism

from multiple resources (such as large nucleotide/protein databases and literatures)

is the basis for understanding their utilization and function in different organisms.

In recent years, several trace element-specific web databases have been success-

fully built up, including MDB, MeRNA, MINAS, dbTEU, MetalPDB, and some

other databases.

MDB (the Metalloprotein Database and Browser) is the first web-accessible

resource for metalloprotein research, which offers quantitative information on

metal-binding sites in protein structures available from the Protein Data Bank

(PDB) [16]. MDB also provides tools for analysis of patterns in the metal-binding

sites and for prediction of potential metal-binding sites from new protein structures.

MeRNA (metals in RNA) is a database of metal-binding sites identified in RNA

structures. It focuses on eight known binding motifs and is used to aid in the study

of the roles of metals in RNA biology such as RNA folding and catalysis

[17]. Recently, another database of metal ions in nucleic acids (MINAS) has been

developed to list all nucleic acid-bound metal ions contained in the PDB, which will

be useful to identify new possible metal-binding motifs in nucleic acids [18].

Metal-MACiE is a web-based database that aims to collect the known informa-

tion on the properties and the roles of metals in catalytic mechanisms of

metalloenzymes [19]. This database can be used to advance our understanding of

the chemistry underlying metal-dependent catalysis.

dbTEU (DataBase of Trace Element Utilization) is a large protein database of

trace element utilization [20]. This manually curated database contains ~16,500

known transporters and user proteins for five trace elements (Cu, Mo, Co, Ni, and

Se) in more than 700 organisms from the three domains of life. It also offers

interactive tools for search and browse of trace elements, proteins, organisms,

and sequences.

Mespeus is a newly developed database of metal interactions with proteins

[21]. It lists metal and protein interactions whose geometry has been experimentally

determined and could be further visualized.

MetalPDB is a novel resource of metal sites in biological macromolecular

structures [22]. This database is achieved through the systematic and automated

representation of metal-binding sites in proteins and nucleic acids by way of

minimal functional sites (MFSs). The web interface allows access to a comprehen-

sive overview of metal-containing structures, providing a basis to investigate the

basic principles governing the properties of these systems.

SelenoDB provides full annotations of Se-containing protein (or selenoprotein)

genes in at least 58 animal genomes, which is a valuable resource for addressing

medical and evolutionary questions in Se biology [23].
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4.2.2 Computational Tools for Trace Element Utilization

Identification of trace element-dependent proteins is not only useful for the infer-

ence of protein function but also important for understanding the roles of trace

elements. To date, several bioinformatics algorithms and tools have been developed

for identification of genes encoding metalloproteins (particularly for Zn and Fe) or

selenoproteins in different organisms including humans. Unfortunately, consider-

ing that metal-binding properties still remain difficult to predict at the whole-

proteome level, it is currently not possible to identify complete sets of

metalloproteins in most organisms. Further efforts are needed to identify additional

and reliable common features.

An early study reported a software named Zincfinder for the prediction of the

Zn-binding proteins based on support vector machine (SVM) learning method

[24]. This predictor identified some unprecedented Zn-binding sites and proteins

which were further validated through structural modeling. Another SVM and

homology-based algorithm was reported to provide higher precision at different

levels compared to Zincfinder [25].

TEMSP (3D TEmplate-based Metal Site Prediction) is a structure-based method

to predict Zn-binding sites in proteins [26]. This tool improves previously reported

methods in predicting Zn-binding proteins with minimum overpredictions. In

addition, TEMSP can also predict the Zn-bound local structures, which is helpful

for functional analysis.

Zincidentifier software integrates multiple sequence and structural properties

and graph-theoretic network features, followed by an efficient feature selection

using random forest to improve prediction of Zn-binding sites and proteins

[27]. This method can not only be applied to large-scale prediction of Zn-binding

sites using structural information but also give valuable insights into new features

for characterizing the Zn-binding sites.

ZincExplorer is a new hybrid method for the prediction of Zn-binding sites from

protein sequences, which combines the outputs of different types of predictors

[28]. It could also identify the interdependent relationships of the predicted

Zn-binding sites bound to the same Zn ion.

SIREs (search for iron-responsive elements) is a user-friendly web-based tool

for the prediction of iron-responsive elements (IREs) in query genome [29]. This

web server provides structure analysis, predicted RNA folds, and an overall quality

flag based on properties of well-characterized IREs.

HemeBIND is the first algorithm for heme (an Fe-porphyrin complex)-binding

residue prediction in proteins by integrating structural and sequence information

such as evolutionary conservation, solvent accessibility, depth, and protrusion

[30]. A better performance has been reported when compared with individual

classifier alone.

SCMHBP is a novel tool for the prediction and analysis of heme-binding pro-

teins using propensity scores of dipeptides [31]. This approach is based on a scoring

card method for predicting and analyzing heme-binding proteins from sequences.
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SCMHBP performs well relative to comparison with such methods as SVM,

decision tree, and Bayes classifiers and improves our understanding of heme-

binding proteins rather than merely improves the prediction accuracy in

predicting them.

FINDSITE-metal is a threading-based method which is specifically used to

detect metal-binding sites in protein structures [32]. It integrates evolutionary

information and machine learning for structure-based metal-binding site prediction

at the proteome level. An accuracy of 70–90% could be achieved for Fe, Cu, Zn,

and some other metal ions. This algorithm was applied to quantify the metal-

binding proteins of the human proteome.

Compared to metalloprotein prediction, computational identification of

selenoproteins and the complete set of selenoproteins (selenoproteome) in different

organisms, including humans, have been reported. Several programs have been

widely used for selenoprotein prediction in different kingdoms, such as SECISearch

and bSECISearch tools for prediction of selenoprotein genes in eukaryotes and

bacteria, respectively [33, 34]. In addition, a method named Seblastian was also

developed to predict new selenoprotein genes in eukaryotes [35].

4.3 Metabolism and Homeostasis of Trace Elements

and Their Association with Disease

Trace elements play important roles in all types of cells; as a consequence, the

ability of the cell to tightly manage their homeostasis is very important. In eukary-

otes, the major processes related to the metabolism of trace elements (especially

transition metals) are similar, which include uptake, compartmentalization, storage,

and export [36]. High-affinity transport systems have been identified for several

metals [37]. Some metal ions could also be transported via unspecific cation influx

systems [38]. Excessive uptake of certain elements can be toxic to cell growth.

Thus, storage of these elements in inactive sites or forms and export systems are

needed to prevent their overload in the cell. It is clear that homeostasis of trace

elements should be carefully maintained to provide sufficient levels while

preventing accumulation to toxic levels.

The majority of trace elements are directly incorporated into target proteins,

whereas some have to form trace element-containing cofactors or complexes (e.g.,

molybdopterin for Mo, vitamin B12 for Co, and selenocysteine for Se) prior to their

insertion into user proteins. A general scheme of metal utilization in eukaryotes is

shown in Fig. 4.1. The following sections will focus on several essential trace

elements and discuss recent progress on bioinformatics research of their metabo-

lism, physiological roles, and correlation with diseases.
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4.3.1 Iron

4.3.1.1 Iron Metabolism and Iron-Binding Proteins

Fe is the second most abundant metal (after aluminum) in the Earth’s crust and is an
absolute requirement for all living organisms. This metal is needed for the function

of a wide range of enzymes and pathways related to its rich coordination chemistry

and redox properties [39]. Besides Fe ions, proteins can bind different forms of

Fe-containing cofactors, such as heme or Fe-S clusters. In mammals, Fe is essential

for cellular respiration, oxygen transport, energy production, xenobiotic detoxifi-

cation, and DNA synthesis. On the other hand, redox properties of Fe contribute to

its toxicity, which produces reactive oxygen species (ROS) that are harmful to

biological molecules. To maintain Fe homeostasis at both the systemic and the

cellular levels, mammals have developed a complex machinery to control its intake,

utilization, and recycling. In the past several decades, several key findings have

shaped our current understanding of Fe metabolism, including the identification of

the transferrin (Tf) receptor (TfR), the iron-responsive element/iron-regulatory

protein (IRE/IRP), the Fe-regulatory hormone hepcidin, and its target ferroportin

(Fpn) [40–43]. Nevertheless, our current knowledge of Fe biology remains

incomplete.

Fig. 4.1 A general scheme of metal metabolism in eukaryotes. The major components

involved in metal metabolism and homeostasis include transporters (importers and/or exporters),

metal-binding chaperones, and user proteins (metalloproteins). Some metals (such as Mo and Co)

have to form metal-containing cofactors prior to their insertion into user proteins
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In general, inorganic Fe is initially reduced to Fe2+ by ferrireductase and

transported through the cellular membrane by the divalent metal transporter

1 (DMT1) [44]. Organic heme Fe is transported into the cytosol and released by

heme oxygenase 1. Excess intracellular Fe is then stored in the storage protein

ferritin [45]. Cytosolic Fe is exported into the plasma by the basolateral Fe exporter

Fpn [43]. Export of Fe from enterocytes into the blood requires the ferroxidase

hephaestin, a multicopper oxidase that oxidizes Fe2+ to Fe3+ [46]. In the plasma, Fe
3+ is bound to Tf which delivers Fe to different cells. Most cells acquire Fe via TfR1

(a high-affinity ubiquitously expressed receptor) and TfR2 (restricted to certain cell

types with much lower affinity than TfR1). Fe is imported into mitochondria (the

major site of Fe utilization) for heme biosynthesis by the transporter protein

mitoferrin [47]. However, the mechanism by which heme passes through the

mitochondria is poorly understood. Fpn is believed to be the only ferrous Fe

exporter. In addition, hepcidin, the key circulating hormone mainly produced by

the liver, can systematically modulate Fe homeostasis, which regulates cellular Fe

efflux from different cells by binding to Fpn and inducing its internalization and

degradation [42, 48].

Recent advances in the study of Fe metabolism have revealed multiple intricate

pathways that are essential for maintaining Fe homeostasis. Thus, bioinformatics

and systems biology approaches may represent a new strategy for understanding Fe

metabolism and its function in proteins. Several computational and dynamic

models have been developed to describe the Fe metabolic network and its homeo-

stasis based on microarrays, high-throughput sequencing, and proteomics data,

which may shed light on the mechanistic foundations of Fe regulation [49–

51]. However, key parts of the system remain poorly understood.

To understand the function of Fe in various processes, a more important issue is

to identify all Fe-binding proteins. So far, it is very difficult to identify the complete

Fe-dependent metalloproteomes by computational approaches. Several bioinfor-

matics studies have been conducted for understanding ferroproteomes, at least

partially, in some organisms including humans. One comparative study investigated

the occurrence of nonheme Fe-binding proteins based on Fe-binding pattern rec-

ognition in a selected number of organisms and found that 90% of Fe-binding

proteins have homologs in all three domains of life [52]. The majority of Fe-binding

proteins were involved in electron transfer or enzymes performing oxidoreductase

functions, suggesting that Fe is mostly used in redox catalysis. Fe-S clusters were

the cofactors in about 40% of nonheme Fe proteins retrieved. Another structural

analysis of the protein environment around Fe-binding sites revealed that similar

sites could be found in unrelated proteins [53]. Very recently, a new algorithm

named MetalPredator has been developed for the prediction of the Fe-S

proteome [54].

Heme constitutes 95% of functional Fe in the human body. It is a prosthetic

group, comprising a ferrous Fe and protoporphyrin IX, and is an essential cofactor

in various biological processes [55]. Heme-binding proteins (or hemoproteins)

carry out a variety of important functions, such as oxygen transport, electron

transfer, and enzyme catalysis. The utilization of heme requires a complex
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machinery for its biosynthesis, insertion into hemoproteins, and uptake from exter-

nal sources [55, 56]. Several bioinformatics tools, such as SCMHBP and

HemeBIND, have been developed to predict hemoproteins [30, 31]. A genome-

wide study investigated the processes of heme biosynthesis and uptake in several

hundreds of prokaryotic organisms, which allowed to identify organisms capable of

performing none, one, or both processes [57]. Many Gram-positive pathogens

support heme uptake from the host, implying that this process can be a potential

target for a wide range of antibiotics. Another bioinformatics analysis of all known

genes in the heme biosynthesis pathway in animals revealed that these genes are

under strong purifying selection from cnidarians to mammals and that multiple-

level controls on the activity of this pathway depend on the linear depth of these

genes [58]. Further studies on hemoproteins in higher eukaryotes such as mammals

are needed.

4.3.1.2 Iron Homeostasis and Diseases

Our knowledge of diseases associated with Fe mainly depends on our understand-

ing of Fe homeostasis. Levels of Fe can be affected by many factors such as genetic

variations, diet that contains insufficient or excessive Fe, reduced intake or absorp-

tion of Fe, and hemolysis. Therefore, a lot of epidemiological and omics-based

studies have focused on examining the association of dietary Fe intake and gene

mutations with the risks of common diseases. Many Fe-associated diseases or

disorders are attributable to genetic malfunctions that influence the hepcidin/Fpn

trait.

Fe overload may lead to Fe deposition in the liver, heart, brain, and some other

organs, which promotes the formation of hydroxyl radicals and causes damage to

DNA and protein or even cell death. Long-term Fe overload increases the risk of

cancer, diabetes mellitus, liver cirrhosis, arthritis, cardiac arrhythmia, heart failure,

retinal degeneration, neurodegenerative diseases, and premature death [59, 60]. The

main treatments for Fe overload include phlebotomy and Fe chelation therapy [61].

Hemochromatosis is the most common genetic Fe overload disorder and results

from mutations in several genes including hemochromatosis protein HFE (involved

in transcriptional regulation of hepcidin), TfR2, hemojuvelin, Fpn, and hepcidin, all

of which affect the hepcidin/Fpn regulatory axis [62–65]. The main characteristic of

hemochromatosis is the Fe accumulation in vital organs where it may cause cell

injury and organ dysfunction.

Aceruloplasminemia is an autosomal recessive disease caused by mutations in

the gene encoding ceruloplasmin, a ferroxidase involved in the oxidation of Fe2+

into Fe3+, therefore assisting in Fe transport across the cell membrane [66]. This

disease is characterized by a total absence of ceruloplasmin in the blood and

accumulation of Fe in hepatocytes, neurons in the brain, and pancreatic islet cells,

which in turn leads to diabetes mellitus, neurologic diseases, dementia, and some

other diseases.
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Fe deficiency is the major cause of anemia. Considering that the majority of total

body Fe is used in hemoglobin synthesis, Fe deficiency may affect the production of

healthy red blood cells. In addition, deficiency in this metal can result in premature

birth, poor growth development, and weak cognitive skills and also affects the

nervous system. Changes in diet and Fe supplements can treat minor Fe deficiency,

while severe patients may require transfusion of red blood cells or intravenous Fe. It

has been reported that a rare mutation in the gene TMPRSS6 encoding matriptase-2

may lead to Fe-refractory Fe-deficiency anemia [67]. As a result, Fe absorption

from the intestine and Fe release from macrophages are inhibited, causing severe Fe

deficiency [63].

Fe dyshomeostasis in cancer is well known for a long time. The relationship

between elevated Fe levels and increased cancer incidence has been debated for

years [68]. However, dietary Fe deprivation and Fe chelators have been suggested

in cancer therapy, which implies a strong link between Fe-rich environment and

cancer [69, 70]. Moreover, levels of TfR1 were observed to be elevated in cancer,

which could be used as an anticancer drug target [71]. It was also found that levels

of hepcidin were increased and levels of Fpn were decreased in both breast cancer

cell lines and patients, implying a direct relationship between intracellular Fe

homeostasis and tumor growth [72, 73]. A recent computational study defined the

Fe regulatory gene signature which includes TfR1, HFE, and some other genes for

outcome prediction in breast cancer patients [74]. Although cancer is definitely

more than an Fe disorder, these findings indicate a clear relationship between Fe

metabolism and cancer development.

4.3.2 Zinc

Zn plays a pivotal role as a structural, catalytic, and signaling component that can

be found in numerous proteins, including enzymes, structural proteins, transcription

factors, cytokines, and ribosomal proteins. A global search within the human

genome with a bioinformatics approach showed that about 2800 proteins (10% of

the human proteome) consist of potential Zn-binding sites [75]. In addition, Zn was

suggested to be a fundamental element in the origin of life, and its bioavailability

may have been a limiting factor in eukaryotic evolution [76]. Thus, it is expected

that Zn metabolism and homeostasis in an organism are tightly controlled. Imbal-

ance in Zn homeostasis has been found to be associated with a variety of human

diseases.

4.3.2.1 Zinc Metabolism and Zinc-Dependent Proteome

The biological functions of Zn-binding proteins are maintained through cellular Zn

levels, which are mainly regulated by Zn transporters, Zn-sensing molecules (such
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as metallothioneins), and metal-response element-binding transcription factor-1

(MTF-1) [77–79].

In mammals, two groups of Zn transporters have been identified on the basis of

their structural and functional features: solute carrier family 39A (SLC39A) that

includes mammalian ZRT/IRT-related proteins (ZIPs) [80] and solute carrier fam-

ily 30A (SLC30A) that comprises mammalian ZnTs [81]. Fourteen ZIP homologs

(Zip1 to Zip14) have been identified in the human genome, all of which mediate Zn

uptake from the extracellular environment or intracellular vesicles into the cyto-

plasm. Ten members of the ZnT family (ZnT1 to ZnT10) are responsible for Zn

efflux from the cytoplasm toward intracellular vesicles or the extracellular space.

The expression of specific ZIPs and ZnTs is tissue dependent and related to specific

cellular functions. A recent bioinformatics analysis of the distribution and evolu-

tionary trends of all ZIP family members in eukaryotes suggested that Zip11 is the

most ancient Zn transporter that might have originated in early eukaryotic

ancestors [82].

Metallothioneins (MTs) are a class of small cytosolic metal-binding proteins that

contain one-third cysteine (Cys) residues [83]. These proteins can bind Zn and some

other metal ions with high affinity. MTs are thought to be involved in the intracel-

lular regulation of Zn concentration and detoxification of nonessential heavy metals

[84]. Four isoforms have been identified so far, the most widely expressed isoforms

in mammals being MT1 and MT2. Synthesis of MT is strongly induced by metals,

mediated by MTF-1, an important transcription factor for liver development and

cell stress response [85]. Under pathological conditions, MTF-1 seems to be

involved in tumor angiogenesis and drug resistance. It thus seems generally advis-

able to monitor MTF-1 activity in stress-related processes including aging and

carcinogenesis.

Identification of Zn-binding proteins is important for understanding how Zn is

used by different organisms. Thousands of genes encoding Zn-binding proteins

have been reported, especially after the completion of genome projects, implying

that a great number of biological processes are Zn dependent. In recent years,

several comparative genomic studies have been carried out for prediction of

Zn-dependent metalloproteomes in the human genome and in genomes of other

organisms. Based on known Zn-binding domains and patterns, an early study

investigated Zn proteomes in several organisms from the three domains of life

[86]. The number of Zn-binding proteins correlated with the proteome size in an

organism. In eukaryotes, the majority of Zn proteins are involved in performing

enzymatic catalysis and in regulating DNA transcription, especially Zn-finger-

containing transcription factors that are almost exclusively a privilege of

eukaryotes.

The Zn-binding motifs could also be affected by different functions of

Zn-dependent proteins. Four-ligand motifs are often observed in structural sites

where Zn contributes to the stability of protein structure, whereas three-ligand

motifs (the fourth is often water) are associated with catalytic sites where Zn

participates in enzymatic reactions [87]. Moreover, conserved residues in these

motifs are quite different. For example, among all predicted Zn-binding proteins in

human, 97% have a structural Zn site with at least one Cys ligand and 40% have
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four Cys ligands [75]. On the other hand, one-third of human Zn proteins containing

a three-ligand motif have three histidine (His) residues. The conservation of Zn-

finger-binding sites could be associated with their more recent origin, whereas the

differentiation of the catalytic Zn-binding sites could be the result of evolutionary

processes that led to the development of different enzymatic reactions targeting

different physiological substrates [88].

4.3.2.2 Zinc Homeostasis and Diseases

The importance of Zn in human metabolism is illustrated by increasing evidence

that points to Zn metabolism as a critical player in the onset or progression of a

growing number of multifactorial diseases such as diabetes, Alzheimer’s disease
(AD), and asthma. While Zn deficiency is commonly caused by dietary factors,

several genetic causes of Zn deficiency have been reported. Therefore, in order to

evaluate the influence of Zn on disease risk, it is important to adopt population-

based approaches that take into consideration the Zn status and/or genetic variations

in the genes encoding proteins that regulate Zn metabolism.

Diabetes is a common metabolic disease characterized by impaired glucose

homeostasis and long-term damage, dysfunction, and failure of various organs. It

comprises several forms, all of which are associated with varying degrees of

hyperglycemia. Type 1 diabetes (T1D) is caused by an autoimmune destruction

of islet beta cells leading to little or no insulin production, whereas type 2 diabetes

(T2D) is characterized by hyperinsulinemia caused by a failure in the insulin

signaling pathway triggered by the activation of the insulin receptor [89]. Zn ions

are essential for the normal processing and storage of insulin. Several epidemio-

logical studies have demonstrated that whole-body Zn status is associated with

diabetes, including significantly decreased serum Zn levels and increased urinary

Zn excretion [90–93]. Zn supplementation could improve T2D symptoms, both in

mice and diabetic patients [94]. However, there is no clear evidence if the use of Zn

supplementation would have an effect for the prevention of T2D [95]. On the other

hand, Zn imbalance can result not only from insufficient dietary intake but also

from impaired function of proteins that regulate Zn metabolism. The first compre-

hensive GWAS study for T2D demonstrated a link between T2D development and

a single nucleotide polymorphism (SNP) rs1326663 in the SLC30A8 gene encoding

ZnT8 transporter in diabetic patients [96]. In recent years, several other SNPs in this

gene were reported [97, 98]. It is unclear if some of these SNPs can affect glucose

homeostasis. Other genetic mutations were also identified, such as a SNP in the

promoter region of the MT2A gene which is closely associated with hyperglycemia

in old patients with T2D [99]. These human genetic studies highlight the relation-

ship between Zn and glucose homeostasis and diabetes, and further investigation in

this direction is very important.

AD is an age-related neurodegenerative disease, characterized by progressive

impairment of memory and cognitive abilities. It is commonly thought that AD is
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caused by the abnormal accumulation and deposition of extracellular senile plaques

composed of Cu-Zn aggregates of the amyloid β-peptide (Aβ) [100]. Excess Zn was
found to be associated with amyloid plaques, and several studies have indicated that

Aβ deposition could be inhibited by Zn chelation [101, 102]. Expression levels of

several Zn transporters such as ZnT1, ZnT4, and ZnT6 were increased in early- and

late-stage AD subjects [103, 104]. To date, studies on Zn homeostasis and related

genes in neurodegenerative diseases are still few and preliminary. Some of these

proteins in maintaining brain Zn homeostasis are thought to be important in the

onset and progression of AD. In the future, identification of genetic variations in

genes controlling Zn homeostasis is essential to establish possible functional links

between Zn metabolism and AD.

Asthma is a common chronic inflammatory disease of the airways caused by a

combination of genetic and environmental factors. Zn deficiency may play a role in

the pathogenesis, control, and severity of asthma [105, 106]. In addition, hair Zn

levels were found to be significantly lower in wheezy infants than in healthy

controls, implying that Zn deficiency may influence the risk of wheezing in early

childhood [107].

Mutations in genes responsible for Zn metabolism have been reported to be

associated with additional inherited disorders of Zn deficiency. For example,

variations in two Zn transporters Zip4 and ZnT4 are linked to the Zn deficiency

diseases acrodermatitis enteropathica syndrome in humans and lethal milk syn-

drome in mice, respectively [108, 109]. A point mutation in ZnT2 is associated with

transient neonatal Zn deficiency [108]. Another population-based study on the

genetics of Zn metabolism suggested that a SNP in the MTF-1 gene was associated

with lymphoma susceptibility [110]. Mutations in some other human Zn trans-

porters were also observed to be related to a range of diseases, including heart

disease and mental illnesses [111]. To date, the functional consequences of these

mutations and their interactions with dietary Zn are not known. It remains unclear

whether some variations only increase the risk for diseases if dietary Zn levels are

inadequate or exceeded.

4.3.3 Copper

Cu is essential for approximately a dozen of proteins and enzymes that carry out

fundamental biological functions required for growth and development, such as

mitochondrial oxidative phosphorylation, free-radical detoxification, pigmentation,

neurotransmitter synthesis, and Fe metabolism [112]. As free cuprous ions react

readily with hydrogen peroxide to yield the deleterious hydroxyl radical, it is

important for Cu-dependent organisms to have a complex Cu regulatory network

to prevent its deficiency and to limit its toxicity. Disrupted Cu homeostasis may

lead to excess or toxicity of Cu, which is associated with the pathogenesis of hepatic

disorder, neurodegenerative changes, and other disease conditions [113].
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4.3.3.1 Copper Metabolism and Cuproproteins

In eukaryotes, cellular Cu trafficking and homeostasis are tightly regulated via a

complex system which contains Cu transporters, chaperones, and other compo-

nents. Cu is acquired by the high-affinity Cu transporter (Ctr) family [114]. Differ-

ent organisms may possess multiple Ctr proteins located in different biological

membranes. In humans, two Ctr proteins (hCtr1 and hCtr2) are identified. hCtr1 is

the main Cu importer, which is located predominantly at the plasma membrane, but

may also be present in intracellular vesicular compartments [115]. hCtr2 is local-

ized in late endosomes and lysosomes and may be involved in the delivery of Cu

ions to the cytosol [116]. Cu export is mediated by an important category of

ATP-dependent transporters, the ATP7 family [117]. Mammals have two isoforms:

ATP7A and ATP7B [118]. ATP7A is expressed in most tissues (such as the

intestinal epithelium, heart, and brain) except the liver, which is required for the

transport of Cu into the trans-Golgi network for biosynthesis of several secreted

cuproproteins and for basolateral efflux of Cu in the intestine and other cells

[119]. ATP7B is predominantly detected in the liver and is required for Cu

metalation of ceruloplasmin and biliary Cu excretion [119].

Within the cell, Cu is delivered to specific compartments or cuproproteins by

different metallochaperones, including CCS, COX17, and Atox1 [120]. CCS is the

Cu chaperone for Cu-Zn superoxide dismutase (Cu-Zn SOD), which delivers Cu in

the cytoplasm and intermitochondrial space. COX17 delivers Cu to mitochondria to

cytochrome c oxidase (COX) via additional chaperones COX11, SCO1, and SCO2.

Atox1 (antioxidant protein 1) is responsible for shuttling Cu from the cytosol to

exporters ATP7A and ATP7B. Other proteins involved in Cu homeostasis may

exist and might include COMMD1 (Cu metabolism MURR1 domain),

metallothionein, and amyloid precursor protein [119, 120]. Plasma protein transport

of Cu from the intestine to liver and in systemic circulation probably includes

albumin and alpha-2-macroglobulin. Changes in the expression of some of these

proteins may help to monitor Cu status of humans.

To date, a number of cuproproteins have been characterized in various organ-

isms. The Cu sites in these proteins could be divided into three types based on

spectroscopic and structural properties, and some cuproproteins (such as

multicopper oxidases, MCOs) may contain multiple types of Cu centers

[121, 122]. Type 1 Cu proteins play important roles in electron transfer in the

respiratory and photosynthetic chains of bacteria and plants, including plastocya-

nin, plantacyanin, and several other proteins [121]. Type 1 Cu center is also found

in some larger cuproproteins, such as COX I and COX II, nitrite reductase, and a

variety of MCOs (ascorbate oxidase, hephaestin, ceruloplasmin, etc.). Type

2 cuproproteins include Cu-Zn SOD, Cu amine oxidase (CuAO), peptidylglycine

R-hydroxylating monooxygenase (PHM), and dopamine β-monooxygenase (DBM)

[122]. Other cuproproteins include tyrosinase, hemocyanin, galactose oxidase, and

Cnx1G. A list of known cuproprotein families in eukaryotes is shown in Table 4.1.
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Table 4.1 Known user protein families for selected trace elements in eukaryotes

Trace

element Trace element-dependent protein family

Cu Plastocyanin family

Plantacyanin family: plantacyanin, umecyanin, mavicyanin, stellacyanin, etc.

Cytochrome c oxidase subunit I

Cytochrome c oxidase subunit II

Cu-Zn superoxide dismutase

Cu amine oxidase

Peptidylglycine R-hydroxylating monooxygenase

Dopamine β-monooxygenase

Multicopper oxidases: laccase, Fet3p, hephaestin, ceruloplasmin, ascorbate oxi-

dase, etc.

Tyrosinase (or polyphenol oxidase)

Hemocyanin

Cnx1G

Galactose oxidase

Mo Xanthine oxidase family: xanthine dehydrogenase, aldehyde oxidase

Sulfite oxidase family: sulfite oxidase, nitrate reductase

Mitochondrial amidoxime-reducing component mARC family: mARC1,

mARC2

Se Selenoproteins in mammals:

Deiodinase (Dio) family: Dio1, Dio2, and Dio3

Glutathione peroxidase (GPx) family: GPx1, Gpx2, Gpx3, Gpx4, and GPx6

Thioredoxin reductase (TR) family: TR1, TGR, and TR3

15-kDa selenoprotein

Methionine-R-sulfoxide reductase 1

Selenophosphate synthetase 2

Selenoprotein P

Selenoprotein W

Selenoprotein H

Selenoprotein I

Selenoprotein K

Selenoprotein M

Selenoprotein N

Selenoprotein O

Selenoprotein S

Selenoprotein T

Selenoprotein V

Others:

Methionine-S-sulfoxide reductase

Protein disulfide isomerase

Selenoprotein U

Selenoprotein J

Selenoprotein L

(continued)
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In recent years, several bioinformatics studies have been carried out to charac-

terize important features of Cu utilization and cuproproteomes (the whole set of

cuproproteins) in a variety of organisms [123–126]. Based on a set of Cu-binding

motifs derived from known cuproprotein sequences and domain recognition

methods, a computational strategy was developed for examining the occurrence

of cuproproteins in several sequenced prokaryotes and eukaryotes [124, 125]. The

size of the cuproproteome is generally less than 1% of the total proteome. Recently,

several comparative genomic studies examined the Cu utilization trait and

cuproproteomes in hundreds of sequenced organisms, which revealed a more

clear view of Cu utilization, especially in eukaryotes [123, 127]. Almost all

sequenced eukaryotes could utilize Cu. Among all examined cuproprotein families,

MCOs, COX I, COX II, and Cu-Zn SOD were the most abundant cuproproteins.

The largest cuproproteomes in eukaryotes were found in land plants (e.g., 62 and

78 cuproproteins in Arabidopsis thaliana and Oryza sativa, respectively). Mam-

mals may have approximately 20 known cuproproteins [127].

4.3.3.2 Copper Status and Human Diseases

There are few reports of Cu excess or deficiency in the general population except

for formerly obese patients after Roux-en-Y gastric bypass surgery, in whom Cu

deficiency was reported with an incidence of 18.8% [128]. On the other hand,

several studies have indicated the relationship between dietary Cu and health issues.

High Cu level in the serum has been considered as a potential risk factor for

cardiovascular disease in several case-control and population-based studies [129–

131]. However, dietary Cu intake was not predictive of cardiovascular mortality in

a cohort study of older British people [132]. In a cross-sectional study, a negative

relationship between dietary or serum Cu and total and LDL (low-density lipopro-

tein) cholesterol was observed, implying that a high Cu intake and status are

associated with a better lipoprotein profile [133]. A second cross-sectional study

showed that serum Cu was positively associated with HDL (high-density lipopro-

tein) cholesterol [134]. Limited evidence also suggests that low Cu diet may lead to

premature ventricular discharge and cardiac arrhythmia [135].

Table 4.1 (continued)

Trace

element Trace element-dependent protein family

Fish 15 kDa selenoprotein

SAM-dependent methyltransferase

Peroxiredoxin-like

Thioredoxin-fold protein

Membrane selenoprotein

Other hypothetical proteins
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The hypothesis that Cu intake might be linked to cognitive decline (such as AD)

is based on the well-recognized age-dependent accumulation of some metals

(including Cu, Zn, and Fe) in key sites of the brain [136]. An inverse linear

association between serum Cu concentrations and cognitive performance was

observed in a large cohort of elderly healthy women [137]. A recent study showed

a significant inverse correlation of the serum levels of free Cu with both Mini-

Mental State Examination (MMSE) and attention-related neuropsychological test

scores, suggesting that free Cu appears to be a player in cognitive decline

[138, 139]. However, a controversy point was also reported that free serum Cu

may increase even when total body Cu decreases, which questions the relevance of

free Cu as a marker of Cu exposure [140]. In addition, Cu may promote Aβ
aggregation in the brain, and unusually high concentration of Cu has been observed

in AD senile plaques [141]. Cu-induced oxidative stress is another mechanism that

may lead to profound neurodegenerative processes in AD [142].

The relationship between Cu and cancer has been investigated by some groups.

For example, two cohort studies examined the link between Cu intake and lung

cancer and lymphoma. In one large cohort study (482,875 subjects), there was no

significant association between total Cu intake and lung cancer risk [143]. In

another cohort study, no link could be identified between total or dietary Cu and

the risk of non-Hodgkin’s lymphoma, diffuse large B-cell lymphoma, or follicular

lymphoma [144]. In a study of diet and early breast cancer, the ceruloplasmin/total

blood Cu ratio was found to be significantly related to the disease [145]. For other

types of cancer, no cohort studies have assessed Cu intake. Thus, no conclusion can

be drawn regarding Cu intake and cancers so far.

One cohort study reported that there was no relationship between total (diet and

supplements) or dietary Cu intake and risk of rheumatoid arthritis [146]. In spite

that the use of Cu supplements showed a weak but significant inverse association

with rheumatoid arthritis, such association did not persist after further adjustment

for confounders. Thus, no conclusion can be made regarding Cu intake and rheu-

matoid arthritis.

It has been suggested that Cu may influence the immune system. Animals with

severe Cu deficiency have reduced populations of neutrophils and T cells, impaired

proliferation of T lymphocytes in response to mitogens, and decreased activity of B

lymphocytes, phagocytes, and natural killer cells. However, in humans, the impact

of Cu supplementation on immune function is less well documented. The effect of

low-Cu diets on immune function has been examined in healthy men, which could

significantly inhibit the proliferation of peripheral blood mononuclear cells and

increase the fraction of circulating B cells [147]. It seems that the impact of Cu on

the immune system can only be observed in specific situations where Cu malab-

sorption may be combined with low Cu intakes, such as post-bariatric gastric

bypass surgery patients [128].

Besides dietary Cu amounts, mutations in genes involved in Cu homeostasis and

cuproprotein genes are also associated with severe pathology. It is well known that

genetic variations in ATP7A and ATP7B underlie Menkes disease and Wilson’s
disease, respectively [148]. Menkes disease is an X-linked inherited disorder, and it

78 Y. Zhang



is caused by a mutation in the ATP7A gene. Mutations in this gene lead to

hypothermia, neuronal degeneration, mental retardation, abnormalities in hair,

bone fractures, and aortic aneurysms. Wilson’s disease is an autosomal recessive

genetic disorder whose clinical manifestations are liver disease and neurological

damage and is caused by disabling mutations in both copies of the ATP7B gene. In

addition, mutations of Cu-Zn SOD have been connected with amyotrophic lateral

sclerosis, where a gain of function is responsible for the underlying neurological

symptomatology [149]. As mentioned above, mutations in the ceruloplasmin allele

may lead to aceruloplasminemia [66].

4.3.4 Molybdenum

Mo is an essential transition metal for many living organisms as it is a key

component of the active site of molybdoenzymes catalyzing key redox reactions

in the metabolism of carbon-, nitrogen-, and sulfur-containing compounds [150–

152]. With the exception of bacterial nitrogenase, all known molybdoenzymes use

the pterin-based Mo cofactor (Moco) [150].

4.3.4.1 Molybdenum Uptake, Molybdenum Cofactor Biosynthesis,

and Molybdoproteins

Studies on Mo uptake in eukaryotes are quite limited. Only two types of eukaryotic

Mo transporters have been characterized, MOT1 and MOT2 [153, 154]. Mammals

only have MOT2 protein. The function of MOT2 in Mo transport or homeostasis is

not clear and needs to be examined in the future.

Moco is synthesized by a conserved multistep pathway which includes

(i) conversion of GTP into cyclic pyranopterin monophosphate (cPMP),

(ii) transformation of cPMP into molybdopterin, and (iii) adenylylation of

molybdopterin and subsequent Mo insertion. At least seven proteins (MOCS1A,

MOCS1B, MOCS2A, MOCS2B, MOCS3, GEPH-G, and GEPH-E as named in

humans) are involved in Moco biosynthesis [155]. Details of these processes have

been described in many review articles [150–152, 155]. In addition, a Moco

sulfurase, catalyzing the generation of the sulfurylated form of Moco that is

essential for activation of the xanthine oxidase family of proteins such as xanthine

dehydrogenase (XDH) and aldehyde oxidase (AO), has been identified in plants and

humans [156].

To date, more than 50 different molybdoenzymes have been found in bacteria. In

contrast, only a limited number of molybdoenzymes are present in eukaryotes and

can be divided into three classes: the xanthine oxidase (XO) family which is

represented by XDH and AO, the sulfite oxidase (SO) family which includes SO

and nitrate reductase (NR), and the mitochondrial amidoxime-reducing component

mARC family (Table 4.1) [155, 157]. There are five different molybdoenzymes

4 Trace Elements and Disease 79



known in humans: XDH, AO, SO, and two isoforms of mARC (mARC1 and

mARC2). SO and XDH catalyze catabolic reactions in Cys and purine metabolism,

and their structures and reaction mechanisms have been studied intensively. In

contrast, functions of AO and mARC enzymes remain unclear, both of which have

been suggested to function in drug metabolism [157, 158].

In the recent decade, several bioinformatics studies have focused on the identi-

fication of genes involved in Mo uptake and Moco biosynthesis and genes encoding

molybdoenzymes in a wide range of sequenced organisms [127, 159, 160]. In

eukaryotes, Mo utilization pathway was mainly observed in animals, plants,

algae, and certain fungi, whereas parasites and yeasts lack the Mo utilization trait.

Essentially all Mo-utilizing organisms have members of the SO and XO families.

Plants appeared to have the largest number of molybdoproteins among eukaryotes

(10–11 molybdoproteins) [127].

4.3.4.2 Molybdenum Cofactor and Molybdoenzyme Deficiencies

Moco deficiency (MoCD) is a rare inborn error of metabolism causing the loss of all

molybdoenzyme activities. The clinical manifestations of MoCD involve intracta-

ble neonatal seizures, severe developmental delay, progressive microcephaly with

brain atrophy, and even early childhood death [161]. Most of the symptoms of

MoCD are very similar to isolated SO deficiency, which is caused by mutations in

the SUOX gene (the gene encoding SO) leading to the accumulation of sulfite.

Therefore, SO is considered as the most important Moco-dependent enzyme, and

sulfite accumulation presents the primary cause of neurological impairment in both

disorders [162].

XDH deficiency results in the excessive excretion of xanthine in urine leading to

a disease called xanthinuria, which includes type 1 and type 2 [163]. Type

1 xanthinuria is caused by the loss of activity of XDH resulting in an accumulation

of xanthine. In contrast, type 2 xanthinuria is caused by the simultaneous loss of

activities of XDH and AO due to mutations in the MCSU gene, whose protein

product is essential for the sulfuration of Moco in enzymes of the XO family

[164]. A very low level of plasma uric acid and high levels of xanthine are

hallmarks of both types of xanthinuria. Patients of both groups have similar clinical

presentation, mostly due to increased xanthine deposition; however, the mechanism

involved in the disease is less clear.

MoCD is mainly caused by mutations in any steps of Mo biosynthetic pathway.

Previous studies have identified two types of MoCD: type A and type B. It has been

found that MoCD type A patients carry mutations in the MOCS1 gene, while type B

patients are defective in MOCS2 [165]. Mutations in the gephyrin gene cause very

severe forms of MoCD due to impaired synaptic inhibition.
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4.3.5 Selenium

Se is an important metalloid in many organisms from bacteria to humans. This

micronutrient is known primarily for its functions in redox homeostasis and is

recognized as one of the promising cancer chemopreventive agents [166]. It also

has a role in antivirus activity, in anti-inflammatory activity, in preventing heart

disease and other cardiovascular and muscle disorders, and in delaying the pro-

gression of AIDS [167–169]. In addition, Se is required for mammalian develop-

ment, male reproduction, and immune function.

4.3.5.1 Selenocysteine Biosynthesis and Selenoproteins

Se exerts its functions in the form of selenocysteine (Sec), which is

co-translationally incorporated into selenoproteins [170]. The biosynthesis of

Sec and its incorporation into selenoproteins, which have been reviewed in many

other articles, require a complex molecular machinery that recodes UGA codons

from stop signals to Sec function [170–172]. In eukaryotes, this process needs

a cis-acting Sec insertion sequence (SECIS) element which is located in the

30-untranslated region (30-UTR) of selenoprotein mRNAs, tRNA[Ser]Sec, and several

trans-acting factors dedicated to Sec incorporation. In mammals, proteins and

enzymes that are involved in Sec biosynthesis include selenophosphate synthetase

2 (SPS2), Sec synthase (SecS), O-phosphoseryl-tRNA[Ser]Sec kinase, eukaryotic

Sec-specific elongation factor (eEFSec), Secp43, SECIS-binding protein 2, and

ribosomal protein L30 [173]. Moreover, Sec is usually present in the active site

of selenoproteins, being essential for their catalytic activity.

In the past several years, remarkable progress in genome sequencing projects

provided an opportunity and resources for selenoprotein identification. Several

bioinformatics algorithms have been developed to predict selenoprotein genes in

a variety of prokaryotic and eukaryotic genomes [33–35]. The general strategy of

these approaches is to find candidate SECIS elements and then analyze upstream

regions to identify selenoprotein genes. Besides, additional SECIS-independent

approaches were developed, which employ Cys-containing proteins and compre-

hensive protein databases to search nucleotide sequence databases for selenoprotein

genes [174]. Based on these tools, a number of novel selenoproteins have been

discovered in various organisms [23, 175–177]. A complete list of known eukary-

otic selenoproteins is shown in Table 4.1. In mammals, a total of 25 and

24 selenoproteins were identified in human and mouse, respectively [175]. The

main selenoprotein families include glutathione peroxidases (GPxs) that have

oxidoreductase functions and also regulate immune response, thioredoxin reduc-

tases (TRs) which modulate transcription and signal transduction functions,

iodothyronine deiodinases (Dios) that participate in thyroid hormone metabolism,

selenoprotein P (SelP), 15-kDa selenoprotein (Sep15), SPS2, and methionine-R-
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sulfoxide reductase 1. However, the functions of many eukaryotic selenoproteins

are unknown.

Recent comparative analyses of eukaryotic selenoproteomes revealed that sig-

nificant differences in the composition of selenoproteomes could be seen even

among related organisms [176, 178]. The number of selenoproteins varied from

0 (plants, fungi, and some protists) to 56 (Aureococcus anophagefferens)
[179]. Among all selenoproteins, selenoprotein K (SelK) and selenoprotein W

(SelW) were the two most widespread selenoproteins which are present in most

eukaryotes that utilize Sec. The origin of many selenoproteins in mammals can be

traced back to the ancestral, unicellular eukaryotes [176]. Many of these

selenoproteins were preserved during evolution and remain in mammals and

green algae, whereas many other organisms, including land plants, fungi, nema-

todes, insects, and some protists, manifested massive, independent selenoprotein

gene losses. It seems that large selenoproteomes mainly occur in aquatic organisms,

whereas the organisms that lack or have few selenoproteins are mostly terrestrial

(with the exception of mammals) [176].

4.3.5.2 Selenium Metabolism and Human Disease

As an essential micronutrient, the range of Se intake for human health is narrow,

such that low Se intake is associated with developmental defects and disease states

and high Se results in toxicity. Recent Se supplementation trials have found that

moderately higher Se intake may influence redox status through selenoprotein

synthesis to cause T2D [180, 181]. Thus, Se homeostasis needs to be tightly

regulated in humans.

Several diseases have been reported to be associated with severe Se deficiency,

such as Keshan disease, Kashin-Beck disease, and myxedematous endemic cretin-

ism. Keshan disease was first described as endemic cardiomyopathy with multiple

foci of necrosis in the early 1930s in northeastern China, with higher incidence in

women and children [182]. It was suggested that Se deficiency in combination with

coxsackie virus infection might be required for the development of Keshan disease

[182]. Kashin-Beck disease is a chronic, endemic osteochondropathy accompanied

by joint necrosis, which affects individuals in Se-deficient areas of China, Siberia,

and North Korea [183]. A polymorphism in the GPx1 gene was reported as a

potential genetic risk factor in the development of this disease [184]. Myxedema-

tous endemic cretinism is induced by thyroid atrophy and results in mental retar-

dation, which has been observed in those areas of the world with both severe I and

Se deficiencies [185].

Se toxicity (selenosis, blood Se level > 100 μg/dL) can be acute or chronic. The
symptoms include vomiting, abdominal pain, diarrhea, hair loss, fatigue, irritabil-

ity, and neurological impairment [186]. Selenosis in humans is a rare event except

in very high-Se areas. The famous Se and Vitamin E Cancer Prevention Trial

(SELECT) that involved more than 35,000 men revealed the potential risk of

T2D, alopecia, and dermatitis due to Se supplements [180].
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Se supplementation is prioritized for brain development and function as almost

all selenoproteins are expressed in neurons [187]. Recently, mutations of the SecS

gene were reported to cause autosomal-recessive progressive cerebellocerebral

atrophy (PCCA) in Jews of Iraqi and Moroccan ancestry, which disrupt the biosyn-

thesis of Sec and thus the production of selenoproteins [188]. This disease repre-

sents the first clinical syndrome related to Sec biosynthesis in humans.

As mentioned above, previous Se supplementation trials for cancer prevention

revealed an over two-fold increase in T2D incidence in the Se-supplemented

compared to the placebo group [181, 189, 190]. The SELECT project revealed a

similar trend [180]. A recent study reported that SelP is associated with the

development of T2D, which may induce insulin resistance in the liver and muscle,

resulting in hyperglycemia [191]. Overproduction of GPx1 in mice also resulted in

a T2D-like phenotype [192]. In addition, some selenoproteins that are related to ER

stress, such as selenoprotein S (SelS) and Dio2, have been found to be involved in

the development of T2D. Increased expression of SelS mRNA was observed in

human subcutaneous adipocytes from T2D patients [193]. A SNP of human Dio2

(A/G at codon 92) has been identified, which is associated with greater insulin

resistance in T2D patients [194].

The association between Se and other diseases, such as cancer, cardiovascular

disease, neurodegenerative disease, thyroid disease, and reproductive system dis-

ease, has been reported in numerous studies [166, 195, 196]. Among different types

of evidence, identification of genetic variants in selenoprotein genes or Se-related

genes has shed light on the relationship between Se and disease risk, especially for

cancer. Although the mechanistic links between Se levels, selenoproteins, and

carcinogenesis are not clear, a significant number of GWAS studies have shown

that a small number of SNPs in several selenoprotein genes may influence risk of

several cancers, including colorectal, prostate, lung, breast, or bladder cancers

[197]. For example, mutations in the coding regions or UTRs of GPx1, GPx4,

and SelP genes have functional consequences and could be associated with breast

cancer [197, 198]. More SNPs in the promoter, coding region, and UTRs of GPx1,

GPx4, SelP, Sep15, SelK, SelS, TR1, and TR2 genes were considered as prostate

cancer and/or colorectal cancer risks [197, 198]. Furthermore, mutations in SPS2

and SecS genes were significantly associated with Crohn’s disease [199]. Thus,

continued research to study the effects of these mutations on selenoprotein synthe-

sis and Se homeostasis could help to understand the relationship between Se

metabolism and different diseases.

4.3.6 Other Trace Elements

Co is mainly used in the form of cobalamin (vitamin B12), a water-soluble cofactor

involved in methyl group transfer and rearrangement reactions [200]. A recent

comparative genomic analysis revealed that most B12-utilizing eukaryotic organ-

isms are animals (except insects) [201]. Mammals have a unique absorption,
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delivery, and activation system for vitamin B12. In humans, only two enzymes bind

vitamin B12: methionine synthase (MetH) and methylmalonyl coenzyme A mutase

(MCM), both of which are important for health. MetH is essential in folate-

mediated one-carbon metabolism, including DNA synthesis and chromatin meth-

ylation, whereas MCM catabolizes branched-chain and odd-chain fatty acids.

Vitamin B12 is required for erythropoiesis, and the classic presentation of vitamin

B12 deficiency is hematologic: megaloblastic anemia [202]. Vitamin B12 deficiency

also leads to neurologic manifestations which may be irreversible. Cobalamin C

disease (CblC) with methylmalonic aciduria and homocystinuria is the most fre-

quent genetic disorder associated with vitamin B12 metabolism, which is caused by

an inability of the cell to convert vitamin B12 to its active forms. The typical

symptoms may include intrauterine growth retardation, microcephaly, failure to

thrive, hypotonia, hydrocephalus, neurological deterioration, hematological abnor-

malities, and hemolytic uremic syndrome. The MMACHC gene is responsible for

the CblC, which may act both as an intracellular vitamin B12 trafficking chaperone

and as a decyanase catalyzing the reductive decyanation of cyanocobalamin

[203]. To date, more than 75 mutations have been reported in this gene [204].

I is a chemical element required for thyroid hormone production. Early defi-

ciency of this element in life impairs cognition and growth, but its status is also a

primary determinant of benign thyroid disorders in adults, such as goiter, nodules,

and hyper- and hypothyroidism [205]. In contrast, the role of I intake in thyroid

cancer remains unclear, despite decades of studies and debates. To date, studies of

thyroid cancer epidemiology in different populations are very challenging because

it is still a relatively rare and, in most cases, indolent cancer. The available

evidences from several case-control studies imply that I deficiency is a risk factor

for thyroid cancer and that it particularly increases risk for follicular thyroid cancer

and, possibly, anaplastic thyroid cancer [206].

With regard to other trace elements, a great number of experimental studies have

been conducted for understanding their metabolism and function. However, bioin-

formatics analysis of their utilization in human health and disease is almost

completely blank. Therefore, more research efforts are needed in this area.

4.4 Ionomics and Human Health

4.4.1 An Overview of Ionome and Ionomics

In the recent decade, a new term, ionome, has been introduced, which is defined as

the mineral nutrients and trace elements of an organism [207]. Ionomics, the study

of the ionome, involves quantitative analyses of elemental composition in living

systems using high-throughput elemental analysis technologies and their integra-

tion with bioinformatics tools [208]. Such an approach has been widely applied in

plants in response to physiological stimuli, developmental state, and genetic
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modifications. It has been shown that ionomics has the ability to help identify genes

and gene networks that directly control the ionome. In addition, it may provide a

powerful tool to investigate more complex gene networks that control developmen-

tal and physiological processes and influence the ionome indirectly [209].

The majority of experimental techniques for elemental analysis include induc-

tively coupled plasma mass spectrometry (ICP-MS), inductively coupled plasma

optical emission spectroscopy (ICP-OES), and X-ray fluorescence. Among them,

ICP-MS is the most frequently used approach, which is capable of detecting metals

and several nonmetals at very low concentration (such as part per trillion). Com-

pared to ICP-OES, ICP-MS allows for a smaller sample size owing to its greater

sensitivity and has the ability to detect different isotopes of the same element.

Currently, ICP-MS has been successfully used for large-scale ionomic studies in

yeast, plants, and mammals, which illustrate the power of ionomics to identify new

aspects of trace element metabolism and homeostasis and how such information

can be used to develop hypotheses regarding the functions of previously

uncharacterized genes [210–213].

As large-scale ionomic studies may produce large amount of data due to the

analysis of hundreds or thousands of samples over a period of time, it is important to

develop appropriate information management systems and tools for genome-scale

data acquisition, validation, storage, and analysis. The Purdue Ionomics Informa-

tion Management System (PiiMS) is an example of such a workflow control system,

which provides an open-access platform for data processing, mining, and discovery

[214]. This system (http://www.ionomicshub.org/home/PiiMS) provides integrated

workflow control, data storage, and analysis to facilitate high-throughput data

acquisition, along with integrated tools for data search, retrieval, and visualization

for hypothesis development. To promote rapid knowledge generation about the

ionome and related genes/networks, it is also important that such information

should be correctly annotated for further discovery. However, systems to allow

researcher-driven annotation of genes involved in trace element metabolism and

homeostasis are very limited. With the increase in the number of novel trace

element-related genes and their functions, new approaches allowing for such

systematized annotation are needed.

Very recently, mechanisms that regulate different trace elements in human HeLa

cells were characterized by a genome-wide high-throughput siRNA/ionomics

screen [213]. A computational strategy was developed for data processing and

advanced analysis. Based on the primary screen data and gene network analysis,

a secondary screen was performed, which revealed additional candidate genes

involved in the homeostasis of Cu, Se, Fe, and some other trace elements. This

ionomic dataset should be useful for further studies on trace element metabolism

and homeostasis in humans.
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4.4.2 Recent Application of Disease Ionomics

Before the birth of ionomics, ICP-MS has been applied to quantify the levels of

multiple trace elements in samples of different diseases for years. For example, an

early ICP-MS-based study examined 20 elements in brain tissue, cerebrospinal

fluid, serum, and aqueous humor from AD patients and matched control subjects

[215]. Another study which determined concentrations of 14 trace elements in

blood samples of patients with coronary heart disease (CHD) showed that patients

had elevated Co plasma as well as diminished Cu blood concentrations [216]. In

recent years, ICP-MS-based elemental distribution analysis has been reported for

some other diseases, such as T2D, Parkinson’s disease, viral infection, autism,

atherosclerosis, and cancer [217–221]. In spite that related elements were reported

for each of these diseases, the associations and interactions among these elements

are unknown due to methodological limitation.

With the rapid development of systems biology and statistical approaches,

advanced computational strategies have recently been used for systematic analysis

of the ionome in several diseases such as T2D, which improves our understanding

of the complex interactions among different elements.

Sun et al. measured the fasting plasma elemental concentrations to investigate

associations of ion modules/networks with overweight/obesity, metabolic syn-

drome, and T2D in 976 middle-aged Chinese men and women [13]. Based on

mutual information analysis, they constructed disease-related ion networks and

found that Cu and phosphorus always ranked the first two among three specific

ion networks associated with the above situations. In addition, three ionome

patterns were also observed, which provide new clues for studying the relationship

between plasma ionome and metabolic disorders. Very recently, another

population-based study which analyzed urine ionome of 2115 Chinese aged

55–76 years revealed that increased urinary Ni concentration is associated with

elevated prevalence of T2D [14].

Considering that disturbance in metal homeostasis is among many of the factors

that lead to the development of malignancy of cancer, one study investigated the

relationship between cancer risk and element status in order to support diagnosis of

cancer [222]. They analyzed both essential elements (such as Ca, Mg, Zn, Cu, Mn,

and Fe) and toxic metals (such as cadmium and lead) in the samples of hair and

nails obtained from patients with larynx cancer and healthy subjects. Levels of the

majority of examined essential elements were significantly decreased in patients,

while the opposite trend was observed for the heavy metals. In addition, a variety of

statistical data mining approaches have been used for the prediction of cancer

probability, and the best results were obtained using logistic regression, artificial

neural networks, and canonical discriminant analysis. These constructed classifiers

can be useful for estimating cancer risk and early screening of the disease.

The utilization of ionomic techniques was also reported for some other diseases.

For example, very recently one study examined the concentration of metals in

saliva and blood for periodontal disease [223]. They used clustering approaches in
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the classification of samples of saliva based on the concentration of selected metals.

The results of cluster analysis suggested that the metal profiles of saliva in those

with periodontal disease are different from the controls, which may become a basis

for the future development of diagnostic and prognostic biomarkers for periodontal

disease. In another study, researchers quantified the concentrations of multiple trace

elements in plasma from 238 patients of Parkinson’s disease and 302 controls,

which is so far the largest cohort for measuring plasma levels of these elements

[15]. It was found that lower plasma Se and Fe levels might reduce the risk for this

disease, whereas lower plasma Zn was probably a disease risk factor. Finally, a

SVM model was built to predict patients based on the plasma concentrations of

several trace elements as well as other features such as sex and age, which achieved

a good performance. In the future, new computational strategies and algorithms

should be developed to improve ionomic studies.

4.5 Conclusions

Bioinformatics and system-level approaches have given powerful support for

studying the metabolism, homeostasis, and function of trace elements as well as

their relationship with a variety of diseases. This chapter describes recent studies

that used bioinformatics and related methods to better understand the general

principles of utilization of several essential trace elements. In addition, recent

case-control- or population-based studies of individual elements in different dis-

eases and disease ionomics have provided significant advances in discovering new

relationship between trace element homeostasis and disease onset and progression.

Nevertheless, it should be admitted that the usage of bioinformatics in the field of

trace element research is still limited. In the future, with the increased availability

of genome/transcriptome/proteome data and improved techniques for ionomics,

bioinformatics and computational systems biology will play a significant role in

studies on the roles that trace elements play in human health and disease.
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70. Corcé V, Gouin SG, Renaud S, Gaboriau F, Deniaud D. Recent advances in cancer treatment

by iron chelators. Bioorg Med Chem Lett. 2016;26:251–6.

71. Faulk WP, Hsi BL, Stevens PJ. Transferrin and transferrin receptors in carcinoma of the

breast. Lancet. 1980;2:390–2.

72. Pinnix ZK, Miller LD, Wang W, D’Agostino R Jr, Kute T, Willingham MC, Hatcher H,

Tesfay L, Sui G, Di X, et al. Ferroportin and iron regulation in breast cancer progression and

prognosis. Sci Transl Med. 2010;2:43ra56.

90 Y. Zhang



73. Pan X, Lu Y, Cheng X, Wang J. Hepcidin and ferroportin expression in breast cancer tissue

and serum and their relationship with anemia. Curr Oncol. 2016;23:e24–6.

74. Miller LD, Coffman LG, Chou JW, Black MA, Bergh J, D’Agostino R Jr, Torti SV, Torti

FM. An iron regulatory gene signature predicts outcome in breast cancer. Cancer Res.

2011;71:6728–37.

75. Andreini C, Banci L, Bertini I, Rosato A. Counting the zinc-proteins encoded in the human

genome. J Proteome Res. 2006;5:196–201.

76. Dupont CL, Butcher A, Valas RE, Bourne PE, Caetano-Anollés G. History of biological

metal utilization inferred through phylogenomic analysis of protein structures. Proc Natl

Acad Sci U S A. 2010;107:10567–72.

77. Gaither LA, Eide DJ. Eukaryotic zinc transporters and their regulation. Biometals. 2001;14

(3–4):251–70.

78. Maret W. The function of zinc metallothionein: a link between cellular zinc and redox state. J

Nutr. 2000;130:1455S–8S.

79. Andrews GK. Cellular zinc sensors: MTF-1 regulation of gene expression. Biometals.

2001;14:223–37.

80. Eide DJ. The SLC39 family of metal ion transporters. Pflugers Arch. 2004;447:796–800.

81. Palmiter RD, Huang L. Efflux and compartmentalization of zinc by members of the SLC30

family of solute carriers. Pflugers Arch. 2004;447:744–51.

82. Yu Y, Wu A, Zhang Z, Yan G, Zhang F, Zhang L, Shen X, Hu R, Zhang Y, Zhang K, et al.

Characterization of the GufA subfamily member SLC39A11/Zip11 as a zinc transporter. J

Nutr Biochem. 2013;24:1697–708.

83. Kimura T, Kambe T. The functions of Metallothionein and ZIP and ZnT transporters: an

overview and perspective. Int J Mol Sci. 2016;17:336.

84. Vasák M, Hasler DW. Metallothioneins: new functional and structural insights. Curr Opin

Chem Biol. 2000;4:177–83.

85. Lichtlen P, Schaffner W. The “metal transcription factor” MTF-1: biological facts and

medical implications. Swiss Med Wkly. 2001;131:647–52.

86. Andreini C, Banci L, Bertini I, Rosato A. Zinc through the three domains of life. J Proteome

Res. 2006;5:3173–8.

87. Vallee BL, Auld DS. Cocatalytic zinc motifs in enzyme catalysis. Proc Natl Acad Sci U S

A. 1993;90:2715–8.

88. Andreini C, Bertini I, Rosato A. Metalloproteomes: a bioinformatic approach. Acc Chem

Res. 2009;42:1471–9.

89. Chausmer AB. Zinc, insulin and diabetes. J Am Coll Nutr. 1998;17:109–15.

90. El-Yazigi A, Hannan N, Raines DA. Effect of diabetic state and related disorders on the

urinary excretion of magnesium and zinc in patients. Diabetes Res. 1993;22:67–75.

91. Garg VK, Gupta R, Goyal RK. Hypozincemia in diabetes mellitus. J Assoc Physicians India.

1994;42:720–1.

92. Basaki M, Saeb M, Nazifi S, Shamsaei HA. Zinc, copper, iron, and chromium concentrations

in young patients with type 2 diabetes mellitus. Biol Trace Elem Res. 2012;148:161–4.

93. Jansen J, Rosenkranz E, Overbeck S, Warmuth S, Mocchegiani E, Giacconi R,

Weiskirchen R, Karges W, Rink L. Disturbed zinc homeostasis in diabetic patients by

in vitro and in vivo analysis of insulinomimetic activity of zinc. J Nutr Biochem.

2012;23:1458–66.

94. Vardatsikos G, Pandey NR, Srivastava AK. Insulino-mimetic and anti-diabetic effects of

zinc. J Inorg Biochem. 2013;120:8–17.
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Chapter 5

Tongue Image Analysis and Its Mobile App

Development for Health Diagnosis

Ratchadaporn Kanawong, Tayo Obafemi-Ajayi, Dahai Liu, Meng Zhang,

Dong Xu, and Ye Duan

Abstract Computer-aided diagnosis provides a medical procedure that assists

physicians in interpretation of medical images. This work focuses on computer-

aided tongue image analysis specifically, based on Traditional Chinese Medicine

(TCM). Tongue diagnosis is an important component of TCM. Computerized

tongue diagnosis can aid medical practitioners in capturing quantitative features

to improve reliability and consistency of diagnosis. Recently, researchers have

started to develop computer-aided tongue analysis algorithms based on new

advancement in digital photogrammetry, image analysis, and pattern recognition

technologies. In this chapter, we will describe our recent work on tongue image

analysis as well as a mobile app that we developed based on this technology.

Keywords Computer-aided diagnosis • Tongue image analysis • Traditional

Chinese Medicine • Mobile app

5.1 Introduction

Traditional Chinese Medicine (TCM) has a long history in the treatment of various

diseases in East Asian countries, and it is also a complementary and alternative

medical system in Western countries. TCM takes a holistic approach to medicine

with emphasis on the integrity of the human body and the close relationship

between a human and its social and natural environment [1]. TCM applies different

therapeutic methods to enhance the body’s resistance to diseases and prevention.

TCM diagnosis is based on the information obtained from four diagnostic
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processes, i.e., looking, listening and smelling, asking, and touching. The most

common tasks are taking the pulse and inspecting the tongue [2]. For thousands of

years, Chinese medical practitioners have diagnosed the health status of a patient’s
internal organs by inspecting the tongue, especially the patterns on the tongue’s
surface. The tongue mirrors the viscera. The changes in the tongue can objectively

manifest the states of a disease, which can help differentiate syndromes, establish

treatment methods, prescribe herbs, and determine prognosis of disease. They can

also indicate the overall health status without any significant disease, which pro-

vides a basis for preventive medicine and lifestyle adjustment.

ZHENG (TCM syndrome) is an integral and essential part of TCM theory. It is a

characteristic profile of all clinical manifestations that can be identified by a TCM

practitioner. ZHENG is an outcome after analyzing all symptoms and signs (tongue

appearance and pulse feeling included). All diagnostic and therapeutic methods in

TCM are based on the differentiation of ZHENG, and this concept is as ancient as

TCM in China [3]. ZHENG is not simply an assemblage of disease symptoms but

rather can be viewed as the TCM theoretical abstraction of the symptom profiles of

individual patients. For example, patients suffering from the same disease may be

grouped into different ZHENGs, whereas different diseases may be grouped as the

same ZHENG. The cold ZHENG (cold syndrome) and the hot ZHENG (hot

syndrome) are the two key statuses of ZHENG [3]. Other ZHENGs include Shen-

Yang-Xu ZHENG (kidney yang deficiency syndrome), Shen-Xu ZHENG (kidney

deficiency syndrome), Xue-Yu ZHENG (blood stasis syndrome), etc. [4].

In this work, we explore new modalities for the clinical characterization of

ZHENG using various supervised machine-learning algorithms. Using an auto-

mated tongue image diagnosis system, we extract objective features from tongue

images of clinical patients and analyze the relationship with their corresponding

ZHENG data and disease prognosis (specifically stomach disorders, i.e., gastritis)

obtained from clinical practitioners. We propose a system that learns from the

clinical practitioner’s assessment data on how to classify a patient’s health status by
extracting meaningful features from tongue images using a rich set of features

based on color space models. Our premise is that Chinese medical practitioners

usually observe the tongue color and coating to determine ZHENG such as hot or

cold ZHENG and to diagnose different stomach disorders including gastritis.

Hence, we propose using machine-learning techniques to establish the relationship

between the tongue image features and the ZHENG by learning through examples.

We are also interested in the correlation between the hot and cold patterns observed

in ZHENG gastritis patients and their corresponding symptom profiles.

Various types of features have been explored for tongue feature extraction and

tongue analysis, including texture [5], color [6–8], shape [9], spectrum [8], etc. A

systematic tongue feature set, comprising of a combination of geometric features

(size, shape, etc.), cracks, and textures, was later proposed by Zhang et al. [10].

Computer-aided tongue analysis systems based on these types of features have also

been developed [11, 12]. Our goal is to provide a set of objective features that can

be extracted from patients’ tongue images, based on the labeling of ZHENG by
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TCM experts, which improves the accuracy of an objective clinical diagnosis. Our

proposed tongue feature set is based on an extensive color model.

5.2 Tongue Diagnosis in TCM

TCM believes that the tongue has many relationships and connections in the human

body, both to the meridians and the internal organs. It is therefore very useful and

important during inspection for confirming TCM diagnosis as it can present strong

visual indicators of a person’s overall physical and mental harmony or disharmony.

In TCM, the tongue is divided into tongue tip, tongue margins, tongue center, and

tongue root. Figure 5.1a shows each part of the tongue and its correspondence to

different internal organs according to TCM, while Fig. 5.1b illustrates how we

geometrically obtain an approximation of these regions from the tongue image. The

tongue tip reflects the pathological changes in the heart and lungs, while the

bilateral sides of the tongue reflect that of the liver and gallbladders. The patho-

logical changes in the spleen and stomach are mirrored by the center of the tongue,

while changes in the kidneys, intestines, and bladder section correspond to the

tongue root.

In this work, we focus on the patients with stomach disorders, gastritis. Hence,

we are interested in extracting features not just from entire tongue image but also

specifically from the middle region, as this corresponds to the stomach organ,

according to TCM. We extract the middle rectangular region, illustrated in

Fig. 5.1b, as our approximation for the tongue middle region.

The practitioner examines the general and local shape as well as the color of the

tongue and its coating. According to TCM, the normal tongue is pale red with thin

white coating. Some signs of imbalance or pathology are red body, yellow coating,

or thick coating like mozzarella cheese, etc. Some characteristic changes occur in

Fig. 5.1 Tongue areas and their correspondence to internal organs in TCM. (a) Organ layout of

tongue regions. (b) Geometrical layout of tongue regions
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the tongue in some particular diseases. Most tongue attributes are on the tongue

surface. A TCM doctor observes several attributes of tongue body: color, moisture,

size, shape, and coating. These signs reveal not only overall states of health but

correlate to specific organ functions and disharmonies, especially in the digestive

system.

The two main characteristics of the tongue in ZHENG diagnosis are the color

and the coating. The color of the patient’s tongue color provides information about

his/her health status. For example, dark red color can indicate inflammation or

ulceration [13], while a white tongue indicates cold attack, mucus deposits, or a

weakness in the blood leading to such conditions as anemia [12]. Moreover, a

yellow tongue points out a disorder of the liver and gallbladder, and blue or purple

implies stagnation of blood circulation and a serious weakening of the part of the

digestive system that corresponds to the area of the tongue where the color appears.

The coating on the tongue is discriminated by not only its presence but also its

color. The color could be yellow, white, and other colors. However, the color in

image is not the exact true color of the tongue. To properly identify the color of the

tongue coating, we applied the specular component technique presented in our prior

work on tongue detection and analysis [2]. Figure 5.2 illustrates different tongue

images of patients and their corresponding ZHENG class.

5.3 Tongue Feature Extraction and Classification

5.3.1 Feature Extraction for Tongue Image Analysis

Our goal is to compute a set of objective features ~Fj ¼ Fnf g from each tongue

image j that can be fed into our learning system so that we can predict not only the

color and coating on the tongue but also different ZHENGs of the gastritis patients.

Fig. 5.2 Tongue images of patients with different ZHENG classifications. “Normal” represents a

healthy person: (a) hot ZHENG, (b) cold ZHENG, (c) normal
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These features are designed to capture different color characteristics of the tongue.

While a single feature may not be very discriminative, our premise is that the

aggregation of these features will be discriminative. We leave it to the learning

algorithm to determine the weight/contribution of each feature in the final

classification.

Most color spaces are represented in tuples of number, normally three or four

color components. Color components determine the position of the color in the

color space used. Many color spaces are defined for different purposes. We

designed a set of 25 features that span the entire color space model. They can be

grouped under eight categories: RGB, HSV, YIQ, Y’CbCr, XYZ, L*a*b*, CIE
Luv, and CMYK.

To train our classification model using this set of features, we need to combine

the features per pixel into one composite feature vector~Fj ¼ Fnf gper tongue image

(or region) j. We aggregate the pixel features using two different statistical averages

(mean and median) and the standard deviation values. We derive five variations of

feature vectors for our automated tongue ZHENG classification system using

the following operators: mean, median ðmed~FÞ, standard deviation ðσ~FÞ,
“mean plus standard deviation” ( μ~F; σ~F

� �
), and “median plus standard deviation”

( med~F; σ~F
� �

).

Let N denote the number of pixels in a given tongue image (or region)j. The

mean feature vector is denoted by μ~Fj ¼ μFnf g, where μFn is given by

μFn ¼
PN
i¼1

f in

N
, n ¼ 1, . . . , 25:

The median feature vector, denoted by med~Fj ¼ medFnf g, is computed as

medFn¼mid{sort(Fset)}, n¼ 1 , . . . , 25. Standard deviation depicts the margin of

difference between a given feature value and its average value among all the

pixels in the given region. Thus, the standard deviation feature vector is denoted

by σ~Fj ¼ σFnf g, where σFn is given by

σFn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

f in � μFn

� �
N

2

vuuut
, n ¼ 1, . . . , 25:

The “mean plus standard deviation” denoted by μ~F; σ~F
� �

is a concatenation of

the mean feature vector and the standard deviation feature vector. Similarly, the

“median plus standard deviation” feature vector, denoted by med~F; σ~F
� �

, is a

concatenation of the median feature vector and the standard deviation feature

vector. Thus, the total number of features in both concatenated feature vectors is

50 each.
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5.3.2 Supervised Learning Algorithms for ZHENG
Classification

We apply three different supervised learning algorithms (AdaBoost, support vector

machine, and multilayer perceptron network) to build classification models for

training and evaluating the proposed automated tongue-based diagnosis system.

Each model has its strength and weakness, which we describe briefly below. We

empirically evaluate their performance over our dataset.

AdaBoost

An ensemble of classifiers is a set of classifiers whose individual predictions are

combined in some way (typically by voting) to classify new examples. Boosting is a

type of ensemble classifier which generates a set of weak classifiers using instances

drawn from an iteratively updated distribution of the data, where in each iteration

the probability of correctly classified examples is increased and the probability of

the incorrectly classified examples is decreased. The ensemble classifier is a

weighted majority vote of the sequence of classifiers produced.

The AdaBoost algorithm [14] trains a weak or base learning algorithm repeat-

edly in a series of round t¼ 1 , . . . , T. Given a training set{xi, yi}i¼ 1 , . . , n, where xi
belongs to some domain X and yi2 Y¼ {�1, +1} (the corresponding binary

class labels), we denote the weight of i-th example in round t by Dt(i). Initially,

all weights are set equally and so D1 ið Þ ¼ 1
n ,8i. For each round t, a weak

learner is trained using the current distribution Dt. When we obtain a weak

hypothesis ht with error Et ¼ Pri�Dt

�
ht xið Þ 6¼ yi.], if Et> 1/2, we end training;

otherwise, we set αt ¼ 1
2
ln 1�Et

Et

� 	
and update Dt+ 1 as

Dtþ1 ið Þ ¼ Dt ið Þ
Zt

� e�αt if ht xið Þ ¼ yi
eαt if ht xið Þ 6¼ yi



, where Zt is a normalization factor.

The final hypothesis is given by H xð Þ ¼ sign
XT
t¼1

αtht xð Þ
 !

.

Support Vector Machine

The support vector machine (SVM) [15] is one of the best-known general purpose

learning algorithms. The goal of the SVM is to produce a model that predicts target

values of data instances in the testing set given a vector of feature attributes. It

attempts to maximize the margin of separation between the support vectors of each

class and minimize the error in case the data is nonlinearly separable. The SVM

classifiers usually perform well in high-dimensional spaces, avoid over-fitting, and

have good generalization capabilities. In our work, we utilize the sequential mini

mal optimization (SMO) algorithm [16], which gives an efficient way of solving the

dual problem of the support vector machine optimization problem.

Multilayer Perceptron Networks

The multilayer perceptron (MLP) network [17] is a feed-forward neural network

with one or more layers that are hidden from the input and output nodes. Neural
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networks have the ability to learn complex data structures and approximate any

continuous mapping [18]. The model of each neuron in the network includes a

nonlinear activation function that is differentiable such as the sigmoid. The units

each perform a biased weighted sum of their inputs and pass this activation level

through the transfer function to produce their output given by

φ xð Þ ¼ f wTxþ θ
� �

;

where w is the synaptic vector, x is the input vector, θ is the bias constant, and T is

the transpose operator. For K-class classification, the MLP uses back propagation to

implement nonlinear discriminants. There are K outputs with softmax as the output

nonlinearity.

5.3.3 Petechia Dot Identification

Petechia dot is a tiny dot in the tongue with color undetermined. It can be detected

by comparing the dot color with the color of the surrounding area as petechia dot,

which usually has deeper color than the area surrounding it. Consequently, petechia

dots on the tongue surface can be extracted by using high-pass filtering. There are

many kinds of high-pass filters in image processing area. This research used the

difference of Gaussian (DoG) filter to detect the petechia dot appearance on the

tongue. Gaussian kernel is widely known as smoothness kernel that can be

implemented as a convolution kernel. Figure 5.3 shows a difference of Gaussian

kernel with kernel size 21 by 21. Figure 5.4 shows the detected petechia dots.

5.3.4 Petechia Dot Geometry Feature Extraction

After the petechia dots have been extracted from the tongue, the next step is to

represent the petechia dots in the geometric feature vector for use in the

Fig. 5.3 Difference of Gaussian kernel with kernel size 21 � 21
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classification models. There are three criteria we consider: size, size ratio, and the

distributed distortion criteria.

The size criterion consists of seven sub-features, as follows:

1. The dot number feature: This is computed by counting the number of dots

present on the tongue.

2. The cumulative dot area feature: This refers to the total size (in pixels) of the

area of the tongue where petechia dots are found.

3. The average spot size feature: This refers to the average size of dots in pixels.

4. The median spot size feature: This is the median of dots size in pixels.

5. The mode spot size feature: This is the mode of dots size in pixels.

6. The STD spot size feature: This refers to the standard deviation of spot size.

7. The largest spot size: This is the largest spot on the tongue.

The size ratio criterion features represent scale invariance features that are

exclusively related to the area of the tongue. There are six sub-features described

as follows:

1. The cumulative dot area ratio: This means the proportion between the cumula-

tive dot area feature and area of the tongue.

2. The average spot size ratio: This refers to the proportion between the average

spot size feature and area of the tongue.

3. The median spot size ratio: This is equal to the proportion between the median

spot size feature and area of the tongue.

Fig. 5.4 (a) An original tongue image and (b) petechia dot extraction result
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4. The mode spot size ratio: This is the proportion between the mode spot size

feature and area of the tongue.

5. The STD spot size ratio: This is the proportion between the STD spot size feature

and area of the tongue.

6. The largest spot size ratio: This is the proportion between the largest spot size

feature and area of the tongue.

The distributed distortion criterion identifies the distance and direction of the mass

point and the midpoint transform from the centroid of the tongue. There are three

terms that are similar in meaning. The first term is the centroid that means the center

point of tongue which we compute by averaging all pixels in the tongue region. The

second term is the mass point which is the center position when we average all

pixels belonging to the petechia dot. The third term is the midpoint which means the

median point of all petechia dot pixels. The distortion criterion has four

sub-features:

1. The mass distorted direction: This is the angle between the vector from the mass

point to the centroid and horizontal line.

2. The middle distorted direction: This is the angle between the vector from the

midpoint to the centroid and horizontal line.

3. The mass distorted distance: This is the distance between the mass point and the

centroid.

4. The middle distorted distance: This is the distance between the midpoint and the

centroid.

5.3.5 Dataset Labeling and Preprocessing

Our proposed system relies on a labeled dataset, to effectively build an automated

tongue-based ZHENG classification system. Our dataset is comprised of tongue

images from 263 gastritis patients and a control group of 48 healthy volunteers. The

data collection for this study was approved by a human ethics committee (Tsinghua

University, Beijing, China) with informed consent from patients. Most of the

gastritis patients have been classified as hot or cold ZHENG and are identified

with a color label (yellow or white) based on the color of the coating of their tongue,

as determined by their Chinese doctors. The doctors also carry out a detailed profile

of the ZHENG symptoms for each patient based on clinical evaluations. The list of

the main symptom profile terms is summarized in Table 5.1.

We are also interested in the relationship between TCM diagnosis and Western

medicine diagnosis; hence, for a subset of the patients, we are provided with their

corresponding Western medical gastritis pathology. They are grouped into two

categories: superficial vs. atrophic. In Western medicine, the doctors are also

interested in knowing whether the Helicobacter pylori (HP) bacterium found in

the stomach is present (positive) or absent (negative) in the patients with chronic

gastritis. Thus, we are provided with that information for a subset of the patients. It
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was not feasible to obtain all the different information collected per patient.

Table 5.2 summarizes the population of each subset for four different labels

(ZHENG, coating, pathology, and HP).

5.4 Results and Analysis

5.4.1 Experimental Setup

In this section, we evaluated the performance of our proposed ZHENG classifica-

tion system using the three classification models (AdaBoost, SVM, and MLP)

described in Sect. 5.3. We compared the performance of training the classifier

models using the set of features extracted from the entire tongue image vs. the

middle tongue region only. As mentioned in Sect. 5.2, in TCM, it is believed that

the middle tongue region provides discriminant information for diagnosing stomach

disorders. Hence, we extract features from the middle tongue region, as described in

Figure 5.1b, to evaluate the performance compared to extracting features from the

entire tongue region. In training and testing our classification models, we employ a

threefold cross-validation strategy. This implies that the data is split into three sets:

one set is used for testing and the remaining two sets are used for training. The

experiment is repeated with each of the three sets used for testing. The average

accuracy of the tests over the three sets is taken as the performance measure. For

each classification model, we varied the parameters to optimize its performance.

We also compare the results obtained using the five different variations of the

feature vector (mean ¼ μ~F, median ¼ med~F, standard deviation ¼ σ~F,
mean + standard deviation ¼ μ~F; σ~F

� �
, and median + standard deviation ¼

Table 5.1 Symptom profile terms of cold ZHENG and hot ZHENG

Subjects Terms (keywords)

Cold ZHENG related

symptoms

Cold (chill, coldness), hot diet/drink preferred, desires warm envi-

ronment, pale flushing of face, not thirsty, no bad mouth breath, no

acidic saliva, clear urine, loose stool, high and short pitch voice, and

feeling cold at limbs

Hot ZHENG related

symptoms

Fever (heat, hot), cold diet/drink preferred, desires cold environment,

red flushing of face, thirsty, obvious bad mouth breath, acidic saliva,

yellow urine, hard stool, constipation, and feeling hot at limbs

Table 5.2 Data label

summary for the gastritis

patients

Data labels Population

ZHENG: hot/cold 132/68

Coating: yellow/white 147/67

Pathology: superficial/atrophic 84/144

HP bacterium: positive/negative 72/167
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med~F; σ~F
� �

). We also apply information gain attribute evaluation on the feature

vectors to quantify and rank the significance of individual features. Lastly, we apply

the best-first feature selection algorithm to select the “significant” features before

training the classifiers to compare the performance of training the classifiers with

the whole feature set against selected features.

The performance metrics used are average F-measure, precision¼TP/(TP +FP),
and recall¼TP/(TP +FN), where

TP (true positive): the number of positive samples correctly predicted by the system

TN (true negative): the number of negative samples correctly predicted by the

system

FP (false positive): the number of false detections of positive samples by the system

FN (false negative): the number of actual positive missed by the system

F-measure is defined as

F-measure ¼ 2 ∙Recall ∙Precision
Recallþ Precision

5.4.2 Classification Results Based on Tongue Coating
and ZHENG for Gastritis Patients

The experimental results presented in this section analyze the discrimination among

the gastritis patients based on their tongue coating color and ZHENG category.

Table 5.3 summarizes the results obtained using our proposed color space feature

vector to train the classifiers to automatically classify the color of the coating of a

gastritis patient’s tongue as yellow or white. We can observe from Table 5.3 that the

combination of the median and standard deviation feature values ( med~F; σ~F
� ��

yields the best result for both the entire tongue region and the middle tongue region

only. The results for both regions are also comparable.

Table 5.3 Tongue coating color classification: yellow vs. white for gastritis patients

Feature 
Vector

Entire Tongue Middle Tongue

AdaBoost SVM MLP AdaBoost SVM MLP

F-meas CA F-meas CA F-meas CA F-meas CA F-meas CA F-meas CA

0.681 69.16 0.757 76.64 0.752 76.17 0.761 77.57 0.796 80.84 0.773 78.04

{ , } 0.743 74.77 0.792 79.44 0.774 77.57 0.764 76.64 0.799 80.37 0.767 77.10

0.758 76.64 0.728 74.30 0.724 72.90 0.735 74.77 0.789 79.44 0.766 77.10

{ , } 0.763 76.64 0.801 80.37 0.767 77.10 0.781 78.50 0.775 77.10 0.811 81.31

0.747 75.70 0.797 79.91 0.783 78.50 0.747 74.77 0.777 77.57 0.783 78.97
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When using the entire tongue region, the top three significant features for the

color coating classification, ranked by the information gain attribute, were {σF9,

medF12, σF2}, which denote the standard deviation of Q chroma (YIQ model), the

median of Cr component (YCbCr), and the standard deviation of green channel

(RGB), respectively. For the middle tongue region only, the top three were {σF9, σ
F20,medF4} which denotes the standard deviation of Q chroma (YIQ model), the

standard deviation of u component (L*u*v*), and the median of the hue (HSV). It is

also interesting to observe that out of the top ten significant features using the entire

region vs. the middle tongue region, they both have six of those features in

common.

The result obtained on ZHENG classification between the hot and cold groups is

shown in Table 5.4. For the ZHENG classification, using the standard deviation

feature values (σ~F
�
performs the best when dealing with the entire tongue region,

while the med~F; σ~F
� �

feature vector is the top performer for the middle tongue

region only.

For ZHENG classification between hot and cold syndromes for gastritis

patients, when using the entire tongue region, only one feature was considered

significant by the information gain attribute: σF9, i.e., which is the standard

deviation of Q chroma (YIQ model). For the middle tongue region, the most

important feature is σF20, the standard deviation of u component (L*u*v*). Even

though the noteworthy feature in the entire tongue area and the middle tongue area

is not the same, both Q component in YIQ color space and u component in L*u*v*

color space show the difference from green to red in chromaticity diagram.

Table 5.5 summarizes the results obtained when we train different classifiers to

detect the presence of the HP bacteria in a gastritis patient using the color feature

vector. The classification result obtained in learning the pathology groups of the

patients (superficial vs. atrophic) is shown in Table 5.6. Both cases are not very

strong, which illustrates a weak correlation between the western medicine diagnosis

and the tongue information utilized by Chinese medical practitioners. No feature

was identified as significant in either case.

Tables 5.7, 5.8, 5.9, and 5.10 illustrate how experimental results reflect the

analysis of the classification between two pathology types of gastritis patients

Table 5.4 ZHEN classification between hot and cold syndromes for gastritis patients

Feature 
Vector

Entire Tongue Middle Tongue

AdaBoost SVM MLP AdaBoost SVM MLP

F-meas CA F-meas CA F-meas CA F-meas CA F-meas CA F-meas CA

0.618 63.50 0.716 71.50 0.710 71.00 0.622 63.50 0.710 70.50 0.663 67.00

{ , } 0.750 75.00 0.680 67.50 0.723 72.00 0.664 68.00 0.735 73.50 0.740 74.00

0.647 65.50 0.649 64.50 0.676 68.00 0.684 71.00 0.661 67.00 0.690 69.00

{ , } 0.738 74.50 0.665 66.00 0.726 72.50 0.685 70.00 0.708 72.00 0.761 76.00

0.763 76.50 0.709 71.00 0.709 71.00 0.676 69.00 0.704 70.00 0.719 72.00
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according to ZHENG category. Table 5.7 summarizes the results obtained using our

proposed color space feature vector to train the classifiers to automatically classify

between superficial group and atrophic group for patients labeled as cold ZHENG.

The results obtained on classification between superficial group and atrophic group

for hot ZHENG patients are shown in Table 5.8. We can observe from Table 5.7

that the σ~F feature vector performed best for the entire tongue region, while the

med~F; σ~F
� �

feature vector yielded the best result for the middle tongue region.

Similarly, Table 5.8 shows that for the hot ZHENG patients, for the middle

tongue region, the med~F; σ~F
� �

feature vector also performed best. However,

μ~F; σ~F
� �

feature vector performs best when dealing with the entire tongue region.

When using the entire tongue region, the top three significant features for the

pathology classification between superficial and atrophic in cold ZHENG, ranked

by the information gain attribute, were {σF9, σF6, σF1} which denote the standard

deviation of Q chroma (YIQ model), the standard deviation of value component

(HSV), and the standard deviation of red channel (RGB), respectively. In Table 5.8,

when using the entire tongue region, the top three significant features for the

pathology classification between superficial and atrophic in hot syndrome, ranked

by the information gain attribute, were {μF22, μF25, μF3} which denote the mean of

cyan ink (CMYK model), the mean of black ink (CMYK model), and the mean of

Table 5.5 Detection of presence of HP bacteria (positive vs. negative) in gastritis patients

Feature 
Vector

Entire Tongue Middle Tongue

AdaBoost SVM MLP AdaBoost SVM MLP

F-meas CA F-meas CA F-meas CA F-meas CA F-meas CA F-meas CA

0.679 71.97 0.681 68.20 0.673 68.20 0.696 71.97 0.686 70.29 0.682 70.29

{ , } 0.644 66.11 0.680 67.78 0.713 71.97 0.632 64.85 0.681 68.20 0.681 67.78

0.655 67.78 0.666 67.36 0.666 67.78 0.699 71.55 0.644 69.04 0.676 68.20

{ , } 0.655 67.78 0.686 68.20 0.695 69.87 0.633 65.27 0.631 64.44 0.684 68.20

0.661 68.20 0.695 71.13 0.702 70.29 0.594 61.09 0.669 66.95 0.649 65.27

Table 5.6 Classification between superficial and atrophic pathology of the gastritis patients

Feature 
Vector

Entire Tongue Middle Tongue

AdaBoost SVM MLP AdaBoost SVM MLP

F-meas CA F-meas CA F-meas CA F-meas CA F-meas CA F-meas CA

0.604 63.16 0.642 64.47 0.627 63.16 0.658 66.67 0.631 63.16 0.622 62.72

{ , } 0.633 65.35 0.662 65.79 0.702 71.05 0.604 61.40 0.630 63.60 0.621 62.28

0.633 64.47 0.601 62.72 0.640 64.04 0.623 65.79 0.632 63.16 0.623 62.28

{ , } 0.657 66.23 0.660 65.79 0.697 69.74 0.613 62.72 0.645 64.47 0.663 66.23

0.637 64.91 0.697 70.18 0.659 66.23 0.631 64.04 0.629 63.16 0.639 64.47
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blue channel (RGB), respectively. For the middle tongue region only, the top three

were {σF22, σF25,medF25}, which denote the standard deviation of cyan ink

(CMYK model), the standard deviation of black ink (CMYK model), and the

median of black ink (CMYK model).

The next set of experimental results focuses on training our classifier using our

proposed color space feature vector to discriminate hot ZHENG from cold ZHENG

in each pathology group. Table 5.9 summarizes the results obtained to train the

classifiers to automatically classify between hot and cold ZHENG for superficial

gastritis patients. Table 5.10 reflects the results for gastritis patients. We can

observe from Table 5.9 that both μ~F; σ~F
� �

and med~F; σ~F
� �

feature vectors

perform the best for both the entire tongue region and the middle tongue region.

From results in Table 5.10, using the standard deviation feature values ( μ~F; σ~F
� �

)

performs best when dealing with the entire tongue region, while the ( μ~F; σ~F
� �

)

feature vector is the top performer for the middle tongue region.

When using the entire tongue region, the top three significant features for the

ZHENG classification between hot syndrome and cold syndrome in the patients

who are superficial, ranked by the information gain attribute, were {σF9,medF3,

medF18}, which denotes the standard deviation of Q chroma (YIQ model), the

median of blue channel (RGB), and the median of the blue sensitivity Z component,

Table 5.7 Tongue classification between superficial and atrophic in cold syndrome patients

Feature 
Vector

Entire Tongue Middle Tongue

AdaBoost SVM MLP AdaBoost SVM MLP

F-meas CA F-meas CA F-meas CA F-meas CA F-meas CA F-meas CA
0.579 58.33 0.658 66.67 0.633 63.33 0.651 65.00 0.639 65.00 0.633 63.33

{ , } 0.716 71.67 0.647 65.00 0.680 68.33 0.643 65.00 0.649 65.00 0.662 66.67

0.600 60.00 0.714 71.67 0.733 73.33 0.633 63.33 0.613 66.67 0.633 63.33

{ , } 0.717 71.67 0.698 70.00 0.700 70.00 0.684 68.33 0.598 60.00 0.667 66.67

0.701 70.00 0.761 76.67 0.745 75.00 0.579 58.33 0.598 60.00 0.601 60.00

Table 5.8 Tongue classification between superficial and atrophic in hot syndrome patients

Feature 
Vector

Entire Tongue Middle Tongue

AdaBoost SVM MLP AdaBoost SVM MLP

F-meas CA F-meas CA F-meas CA F-meas CA F-meas CA F-meas CA

0.768 77.06 0.755 75.23 0.735 73.39 0.710 71.56 0.735 76.15 0.680 67.89

{ , } 0.741 74.31 0.845 84.40 0.764 76.15 0.680 68.81 0.777 77.06 0.780 77.98

0.718 72.48 0.708 72.48 0.718 71.56 0.686 68.81 0.706 70.64 0.736 73.39

{ , } 0.715 71.56 0.817 81.65 0.815 81.65 0.672 67.89 0.774 77.06 0.808 80.73

0.770 77.06 0.818 81.65 0.817 81.65 0.675 67.89 0.792 78.90 0.781 77.98

112 R. Kanawong et al.



respectively. For the middle tongue region only, the top three were medF24, σF19,

and medF5 which denote the median of yellow ink (CMYK), the standard deviation

of lightness component (Luv model), and the median of saturation (HSV). It is also

interesting to observe that by comparing the set of the top five significant features

using the entire region vs. the set from the middle tongue region, they both have the

yellow ink (CMYK) in common.

When using the entire tongue region, there is only one significant feature

difference for the ZHENG classification between hot syndrome and cold syn-

drome in patients who are atrophic, ranked by the information gain attribute, σF9,

which denotes the standard deviation of Q chroma (YIQ model). For the middle

tongue region only, there were two significant features: {μF19, μF3} which denote

the mean of the blue sensitivity Z component (XYZ) and the mean of the blue

channel (RGB).

Table 5.9 Tongue classification between hot syndrome and cold syndrome in superficial patients

Feature 
Vector

Entire Tongue Middle Tongue

AdaBoost SVM MLP AdaBoost SVM MLP

F-meas CA F-meas CA F-meas CA F-meas CA F-meas CA F-meas CA

0.583 59.68 0.773 77.42 0.705 70.97 0.705 70.97 0.773 77.42 0.726 72.58

{ , } 0.740 74.19 0.839 83.87 0.765 77.42 0.690 69.35 0.839 83.87 0.757 75.81

0.628 62.90 0.740 74.19 0.743 74.19 0.675 67.74 0.710 70.97 0.658 66.13

{ , } 0.774 77.42 0.839 83.87 0.755 75.81 0.774 77.42 0.839 83.87 0.774 77.42

0.834 83.87 0.757 75.81 0.838 83.87 0.819 82.26 0.791 79.03 0.750 75.81

Table 5.10 Tongue classification between hot syndrome and cold syndrome in atrophic patients

Feature 
Vector

Entire Tongue Middle Tongue

AdaBoost SVM MLP AdaBoost SVM MLP

F-meas CA F-meas CA F-meas CA F-meas CA F-meas CA F-meas CA

0.539 55.14 0.642 63.55 0.645 64.49 0.572 58.88 0.762 75.70 0.615 61.68

{ , } 0.662 67.29 0.681 69.16 0.698 70.09 0.638 64.49 0.702 69.16 0.685 68.22

0.612 61.68 0.646 63.55 0.666 66.36 0.611 62.62 0.606 62.62 0.638 64.49

{ , } 0.704 71.03 0.657 64.49 0.677 68.22 0.604 60.75 0.701 69.16 0.703 70.09

0.696 70.09 0.691 68.22 0.734 73.83 0.650 64.49 0.675 66.36 0.645 63.55
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5.4.3 Classification Results for Gastritis Patients vs. Control
Group

The experimental results presented in this section analyze the discrimination

between the gastritis patients and control group. Table 5.11 summarizes the results

obtained using our proposed color space feature vector to train the classifiers to

automatically classify patients with coating on tongue vs. healthy patients with

normal tongue (without coating). We can observe from Table 5.11 that the

med~F; σ~F
� �

feature vector yields the best result for the entire tongue region,

while for the middle tongue region, it was the σ~F feature vector.

When using the entire tongue region, the top three significant features for

distinguishing between normal tongue and tongue with coating, ranked by the

information gain attribute, were {σF1, σF6, σF25} which denote the standard devi-

ation of red channel (RGB), the standard deviation of value component (HSV), and

the standard deviation of black ink (CMYK), respectively. For the middle tongue

region only, there were only two significant features: {σF13, σF14}, which denote

the standard deviation of lightness component (L*a*b) and the standard deviation

of a* component (L*a*b*). It is also interesting to observe that by comparing the set

of the top ten significant features using the entire region vs. the set from the middle

tongue region, they both have the lightness and a* component (L*a*b*) in

common.

The results obtained from the classification between the normal group and the

entire set of patients with ZHENG syndrome are shown in Table 5.12. The

μ~F; σ~F
� �

feature vector performs best when dealing with the entire tongue region,

while the med~F; σ~F
� �

feature vector is the top performer for the middle tongue

region.When using the entire tongue region, the top three significant features for the

classification between the normal group and the gastritis group, ranked by the

information gain attribute, were {σF1, σF6, σF25} which denote the standard devi-

ation of red channel (RGB), the standard deviation of value component (HSV), and

the standard deviation of black ink (CMYK), respectively. For the middle tongue

Table 5.11 Classification between normal tongue and tongue with coating

Feature 
Vector

Entire Tongue Middle Tongue

AdaBoost SVM MLP AdaBoost SVM MLP

F-meas CA F-meas CA F-meas CA F-meas CA F-meas CA F-meas CA

0.803 82.82 0.831 82.44 0.795 80.53 0.771 78.63 0.774 77.48 0.764 75.95

{ , } 0.829 83.59 0.851 85.11 0.848 85.50 0.812 81.68 0.814 81.68 0.816 82.44

0.785 80.53 0.803 83.21 0.814 83.21 0.776 80.53 0.791 78.63 0.784 79.39

{ , } 0.814 83.21 0.835 83.59 0.861 86.26 0.817 83.59 0.823 82.06 0.824 82.44

0.818 83.21 0.839 83.59 0.851 85.11 0.837 84.73 0.786 79.39 0.818 82.44
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region only, the top three were {medF1,medF6, σF13} which denote the median of

red channel (RGB), the median of value component (HSV), and the standard

deviation of lightness component (L*a*b*).

Tables 5.13 and 5.14 show the results of training our classifiers to discriminate

between the normal group and the hot ZHENG patients only and then normal group

vs. cold ZHENG patients only. Table 5.13 illustrates the results for normal vs. hot

ZHENG.We can observe that theσ~F feature vector performs best both for the entire

tongue region and the middle tongue region. From Table 5.14, when only the

normal vs. cold ZHENG patients is considered, the same feature vector,

μ~F; σ~F
� �

, performs best for both cases, however considering only the middle

tongue region outperforms using the entire tongue region.

When using the entire tongue region, the top three significant features for the

classification between the normal group and the gastritis patients with hot syn-

drome, ranked by the information gain attribute, were {σF1, σF6, σF25} which

denote the standard deviation of red channel (RGB), the standard deviation of

value component (HSV), and the standard deviation of black ink (CMYK), respec-

tively. For the middle tongue region only, there were only two significant features:

{σF13, σF14} which denote the standard deviation of lightness component (L*a*b)

and the standard deviation of a* component (L*a*b*). When the set of the top ten

Table 5.12 Tongue classification between normal group and ZHENG gastritis group

Feature 
Vector

Entire Tongue Middle Tongue

AdaBoost SVM MLP AdaBoost SVM MLP

F-meas CA F-meas CA F-meas CA F-meas CA F-meas CA F-meas CA

0.765 78.63 0.809 80.24 0.784 78.63 0.781 79.44 0.770 76.61 0.762 76.61

{ , } 0.836 84.68 0.852 84.68 0.857 85.89 0.820 82.66 0.798 80.65 0.826 82.26

0.756 77.82 0.795 81.45 0.784 78.63 0.772 78.23 0.817 81.45 0.785 78.63

{ , } 0.802 81.45 0.845 84.27 0.844 84.68 0.779 79.44 0.837 83.47 0.869 87.10

0.826 83.47 0.849 84.68 0.843 84.27 0.799 81.05 0.780 77.02 0.833 83.87

Table 5.13 Tongue classification between normal group and hot ZHENG

Feature 
Vector

Entire Tongue Middle Tongue

AdaBoost SVM MLP AdaBoost SVM MLP

F-meas CA F-meas CA F-meas CA F-meas CA F-meas CA F-meas CA

0.671 70.00 0.781 77.78 0.708 72.22 0.741 75.00 0.773 77.22 0.755 76.11

{ , } 0.804 80.56 0.792 79.44 0.816 81.67 0.780 78.89 0.764 77.22 0.799 79.44

0.721 72.78 0.711 72.22 0.739 75.00 0.727 73.89 0.739 73.33 0.744 74.44

{ , } 0.796 80.00 0.814 82.78 0.797 80.00 0.781 79.44 0.752 75.00 0.798 79.44

0.768 77.22 0.828 82.22 0.826 82.78 0.736 75.00 0.766 77.22 0.805 80.56
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significant features using the entire region vs. the set from the middle tongue region

are compared, they both have the lightness and a* component (L*a*b*) in common.

When using the entire tongue region, the top three significant features for the

classification between the normal group and the gastritis patients with cold syn-

drome, ranked by the information gain attribute, were {σF25, σF22, σF1} which

denote the standard deviation of black ink (CMYK), the standard deviation of

cyan ink (CMYK), and the standard deviation of red channel (RGB), respectively.

For the middle tongue region only, the top three were {σF13, μF22, σF14} which

denote the standard deviation of lightness component (L*a*b), the mean of cyan ink

(CMYK), and the standard deviation of a* component (L*a*b*).

When using the entire tongue region, the top three significant features for the

classification between the normal group and the superficial group, ranked by the

information gain attribute, were {σF1, σF6, σF25} which denote the standard devi-

ation of red channel (RGB), the standard deviation of value component (HSV), and

the standard deviation of black ink (CMYK), respectively. For the middle tongue

region, the top three were {medF9,medF1,medF6} which denote the median of Q

chromatic component (YIQ), the median of red channel (RGB), and the median of

value component (HSV).

When using the entire tongue region, the top three significant features for the

classification between the normal group and the atrophic group, ranked by the

information gain attribute, were {μF25, μF22, μF1} which denote the mean of

black ink (CMYK model), the mean of cyan ink (CMYK model), and the mean

of red channel (RGB), respectively. For the middle tongue region, the top three

were {medF16, σF13, σF23} which denote the median of red sensitivity X compo-

nent (XYZ), the standard deviation of lightness (L*a*b*), and the standard devia-

tion of cyan ink (CMYK).

We also applied the geometric features extracted from the petechia dot as shown

in Sect. 5.3.4, which is segmented by convoluting the DOG filter and then

thresholding via the Otsu’s method. Classification experiments showed that the

geometric feature of petechia dot did not show a higher performance than the color

features of Sect. 5.3.1 (Tables 5.15 and 5.16).

Table 5.14 Tongue classification between normal group and cold ZHENG

Feature 
Vector

Entire Tongue Middle Tongue

AdaBoost SVM MLP AdaBoost SVM MLP

F-meas CA F-meas CA F-meas CA F-meas CA F-meas CA F-meas CA

0.690 68.97 0.759 75.86 0.676 68.10 0.714 71.55 0.741 74.14 0.731 73.28

{ , } 0.742 74.14 0.785 78.45 0.748 75.00 0.826 82.76 0.759 75.86 0.750 75.00

0.686 68.97 0.745 75.00 0.757 75.86 0.672 67.24 0.750 75.00 0.742 74.14

{ , } 0.759 75.86 0.774 77.59 0.734 73.28 0.768 76.72 0.733 73.28 0.811 81.03

0.741 74.14 0.733 73.28 0.734 73.28 0.679 68.10 0.723 72.41 0.708 70.69

116 R. Kanawong et al.



5.4.4 Analysis of Classification Results

From the experimental results presented above, we can draw the following conclu-

sions. Firstly, concerning the performance of the different classification models, we

observe that the MLP and SVM models usually outperform the AdaBoost model.

The multilayer perceptron neural network seems most adequate for learning the

complex relationships between the color features of the tongue images and the

ZHENG/coating classes. However, both the MLP and SVM models have many

parameters to consider and optimize, while the AdaBoost is a much simpler model.

In the AdaBoost model, we use a decision tree as our base weak learner and vary the

number of classifiers to optimize its performance.

Secondly, we observe that when making discriminations within the gastritis

patient group (hot vs. cold ZHENG, yellow vs. white coating, etc.), it was more

profitable to apply the feature vectors on the entire tongue image. When classifying

the normal groups vs. the ZHENG groupings, usually, it improved classifier per-

formance by applying the feature vectors to the middle tongue regions only.

Thirdly, we also observe that from the evaluation of the variations of the feature

vectors used, taking into account both the average and the standard deviation

usually resulted in an excellent performance. It seemed like the mean outperformed

Table 5.15 Tongue classification between normal group and superficial patients

Feature 
Vector

Entire Tongue Middle Tongue

AdaBoost SVM MLP AdaBoost SVM MLP

F-meas CA F-meas CA F-meas CA F-meas CA F-meas CA F-meas CA

0.655 65.91 0.737 74.24 0.754 75.76 0.694 69.70 0.687 68.18 0.704 70.45

{ , } 0.679 68.18 0.751 75.00 0.774 77.27 0.749 75.00 0.744 74.24 0.719 71.97

0.675 67.42 0.737 74.24 0.737 73.48 0.733 73.48 0.677 67.42 0.739 73.48

{ , } 0.695 70.45 0.759 75.76 0.811 81.06 0.749 75.00 0.762 75.76 0.726 72.73

0.687 68.94 0.735 74.24 0.706 70.45 0.726 72.73 0.742 74.24 0.749 75.00

Table 5.16 Tongue classification between normal group and atrophic patients

Feature 
Vector

Entire Tongue Middle Tongue

AdaBoost SVM MLP AdaBoost SVM MLP

F-meas CA F-meas CA F-meas CA F-meas CA F-meas CA F-meas CA

0.733 75.52 0.803 80.21 0.781 79.17 0.754 77.08 0.770 78.13 0.699 70.83

{ , } 0.736 73.96 0.772 78.13 0.837 83.85 0.798 80.73 0.782 78.65 0.802 80.21

0.726 73.96 0.754 77.08 0.751 75.52 0.726 75.52 0.749 74.48 0.753 75.52

{ , } 0.738 74.48 0.816 82.29 0.818 81.77 0.751 75.52 0.792 78.65 0.848 84.90

0.761 77.08 0.787 79.69 0.799 80.21 0.772 78.13 0.798 80.21 0.791 79.69
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the median slightly, overall, i.e., μ~F; σ~F
� �

. In a few cases, simply considering

variation of the spread of the values over the region ( σ~F
� �

) yielded the best

performance. Thus, we can conclude that when deriving a feature vector for the

tongue image, the mean (or median), as well as the standard deviation (which takes

into account the variation of the spread on the region), is very important.

Lastly, we observe that though we were not able to effectively discriminate

between the pathology groups (superficial vs. atrophic) and also the presence of the

HP bacterium using our color space feature vectors, we were able to classify them

much better when we took into account the ZHENG classes. This further

strengthens the notion that our proposed color space feature vectors are able to

discriminate between the hot and cold ZHENG patients in addition to discerning a

ZHENG patient from a non-ZHENG (healthy) patient.

5.4.5 Applying Feature Selection Algorithm

The classification results presented above were obtained using the whole feature

set. For each experiment carried out on the entire tongue region, we also applied

information gain attribute evaluation to rank the significance of the features. In this

section, we apply feature selection algorithm (best first) to select only a subset of

features, which are deemed significant, before training the classifiers. Our goal is to

see if this would yield a better result than using the whole feature set. The best-first

algorithm searches the space of attribute subsets by greedy hill climbing augmented

with a backtracking facility.

The summary of the results obtained is shown in Table 5.17. The normal group

refers to the healthy (non-ZHENG) control group. We present the best classification

result obtained for each experiment based on using the five variations of the feature

vectors (μ~F, med~F, σ~F, μ~F; σ~F
� �

, med~F; σ~F
� �

) and the three different classifi-

cation models (AdaBoost, SVM, and MLP). As we can observe from Table 5.17,

using the whole feature set to train the classifiers yielded a better result in all cases

except for the atrophic patient (hot vs. cold ZHENG) experiment. Thus, we can

conclude the overall, using the aggregate of the proposed feature sets has a more

discerning power even though some features are more significant than others.

5.4.6 iTongue Mobile App

iTongue is a mobile app that is implemented on both iOS and android systems. It is

currently available for free download at the Apple App Store and Google Play.

Users are able to monitor their health conditions in a convenient way with iTongue.

What the users need to do is using their mobile device to take a picture of his/her

tongue and the iTongue system will be able to diagnose his/her health status and
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send back the information. This system consists of the client side and server side

program. The client side of the system is a mobile app that can run on any mobile

device with a camera. The server side runs Linux as the operating system and

Apache as the web server. Mysql is the database and php is the script language.

When a user uploads his or her tongue image, the web server receives this tongue

image and save the image in a database. The system architecture is illustrated in

Fig. 5.5.

The system contains the following five components:

1. User Management. Users are able to sign up, log in, and log out. From the tongue

image analysis results, the system can provide the users with suggestions that are

beneficial to their health condition. Also, by signing up an account, the user can

keep track of his or her long-term health condition.

2. Photo Management. Users can take photos of their tongues and send the photos

to the server for analysis. The images are processed on the server side. After the

processing, results will be sent back by push notification, and the client side

recommends food accordingly.

3. Questionnaire System. An optional questionnaire that contains 60 questions is

offered to the users when the first time he or she creates a new account on the

iTongue system. The users only need to answer the questions once. After that, a

smaller questionnaire containing only eight questions will display each time

after the user takes photo of his or her tongue. The answers for these questions, if

available, are factored into the final health assessment. With the answers of these

questions, iTongue may provide more accurate results.

Table 5.17 Comparison between using selected features vs. whole feature set for classification

Classification Experiment Type Feature Selection Whole Feature

F-measure Accuracy F-measure Accuracy

Coating (Yellow vs. White)  0.764 77.10% 0.801 80.37%

ZHENG (Hot vs. Cold) 0.642 65.00% 0.763 76.50%

HP Bacteria (Positive vs. Negative) 0.636 72.38% 0.713 71.97%

Gastritis patients (Superficial vs. Atrophic) 0.656 68.42% 0.702 71.05%

Cold ZHENG Patients (Superficial vs. Atrophic) 0.750 75.00% 0.761 76.67%

Hot ZHEN Patients (Superficial vs. Atrophic)  0.776 77.98% 0.845 84.40%

Superficial Patients (Hot vs. Cold ZHENG) 0.807 80.65% 0.839 83.87%

Atrophic Patients (Hot vs. Cold ZHENG) 0.782 78.50% 0.734 73.83%

Normal Tongue vs. Tongue with Coating 0.833 85.88% 0.861 86.26%

Normal group vs. ZHENG patients 0.834 84.68% 0.857 85.89%

Normal group vs. Hot ZHENG 0.808 81.11% 0.828 82.22%

Normal group vs. Cold ZHENG 0.750 75.00% 0.785 78.45%

Normal group vs. Superficial Patients 0.765 76.52% 0.811 81.06%

Normal group vs. Atrophic Patients 0.762 78.13% 0.837 83.85%
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4. Health Monitoring System. Registered users are able to monitor their health

conditions every day. After a user uploads an image of his or her tongue, the

system compares the new image with the previous one. It first gets the charac-

teristic values of the images and then matches them. The resulting image is

provided according to the variation of color in different positions on the tongue.

5. Dietary System. iTongue is able to recommend a list of food that is good for

health. There are a number of dietary menus stored in the database. The proper

dietary regimen is provided to the user according to his or her health.

5.5 Conclusion

In this work, we propose a novel color space-based feature set for use in tongue

image analysis using various supervised machine-learning algorithms. Using an

automated tongue image diagnosis system, we extract these objective features from

tongue images of clinical patients and analyze the relationship with their

corresponding ZHENG data and disease prognosis (specifically gastritis) obtained

from clinical practitioners. Given that TCM practitioners usually observe the

tongue color and coating to determine ZHENG (such as cold or hot ZHENG) and

to diagnose different stomach disorders including gastritis, we propose using

machine-learning techniques to establish the relationship between the tongue

image features and ZHENG by learning through examples. In addition, we also

developed a mobile app, iTongue, based on these techniques. Our future work will

focus on improving the performance of our system by exploring additional tongue

image features that can be extracted to further strengthen our classification models.

Fig. 5.5 Overview of iTongue system architecture
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Chapter 6

Physical Exercise Prescription in Metabolic

Chronic Disease

Laura Stefani and Giorgio Galanti

Abstract Metabolic syndrome as a consequence of the association to overweight,

hypertension, and diabetes is at high risk of coronary events. Regular physical

training has been recently promoted to reduce cardiovascular risks factors, by the

improved lifestyle and also by the “anti-inflammatory effectiveness.” A positive

impact has been shown in case of cancer survived patients either with or without

comorbidities and especially in those subjects where the inflammatory process is

globally represented. The American College of Sports Medicine (ACSM) guide-

lines and more recently a new Italian model both support the role of “exercise as

therapy” at moderate level of energy expenditure. The importance to establish the

individual level of physical exercise, like a drug’s dose, has induced authors in

investigating this aspect in diverse diseases and in different clinical fields associ-

ated to an incorrect lifestyle habits. To reach this goal, a specific research strategy is

important to spread the knowledge.

Keywords Aerobic and resistance exercise • Noncommunicable chronic disease

6.1 Introduction

The term noncommunicable chronic diseases (NCDs, noncommunicable diseases)

includes several diseases of long duration and generally characterized by a slow

progression. The four largest groups of NCDs are represented by cardiovascular

diseases, chronic respiratory disease, diabetes, hypertension, metabolic syndrome,

and more recently also cancer. As reported by the World Health Organization

(WHO), updated in January 2015, NCDs are the cause of more than 38 million

annual deaths in the world’s population [1]. It is noted that either the reduced level
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of physical activity or sedentarism in the population plays a relevant role in the

onset and in the progression of these diseases [1, 2].

On the other hand, normal or high levels of “spontaneous motor activity” and

programmed physical activity associated with a reduction of the bodyweight and

addressed to the prevention of the obesity or overweight are currently considered to

be important in reducing the incidence of NCDs as well as the risk factors such as

other incorrect lifestyle as the consumption of tobacco [3–5]. The American

College of Sports Medicine (ACSM) in the United States and the WHO in Europe

are the current international official organizations to define the applicability criteria,

indications, and eventual contraindications of physical exercise prescription (PEF).

Despite the first organization to promote physical activity has been structured

initially and developed primarily in the United States, Canada, and South America,

and also in Europe and in Italy, the programs for exercise prescriptions are

going on.

In the European and also in Italian context, the current guidelines for the exercise

prescription model are extrapolated from the US world. The American society is

anyway very different from the Italian one, especially for the population’s type and
prevalence of the races and therefore for the predominance of the diseases. At

present, the most part of neoplastic diseases, if clinically stable, as well the

posttransplantation syndrome, are considered chronic diseases as well as diabetes,

hypertension, and metabolic syndrome and therefore included into the exercise

program with the same criteria of applicability of the foreign models.

The modern concept of the prescribing physical exercise (PPE) considers phys-

ical exercise as a real drug that requires a multidisciplinary medical knowledge, and

it is not merely confined “inside the clinical necessities,” but it is hopefully

extended to a primary prevention context and secondary and tertiary education.

The complexity of the program necessarily must involve organs and political and

social structures that allow its practicability and its effective applicability.

6.2 Epidemiology and Definition of NCCDs

The sedentary lifestyle and incorrect dietary habits of the Western world are

principally responsible for the onset and the spread of metabolic syndrome. Met-

abolic syndrome can be considered the overall cause of NCCD. This condition

coincides with the achievement of obesity epidemic, in the last 20 years producing a

remarkable increase in its prevalence (Fig. 6.1).

The metabolic syndrome refers to a pathological framework consisting of some

risk factors including abdominal obesity, insulin resistance, hyperglycemia,

dyslipidemia, and hypertension. These risk factors predispose to the development

of cardiovascular disease, type 2 diabetes mellitus, liver disease, inflammatory and

autoimmune disorders, and also cancer [7, 8].

The current definition of the metabolic syndrome for adults requires the presence

of at least three of the following criteria (AHA/NHLBI and IDF 2005):
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• Increased waist circumference (visceral obesity index) with specific reference

values for the country

• Triglycerides �150 mg/dl

• HDL cholesterol �40 mg/dl in men and �50 mg/dl in women

• Systolic blood pressure � 130 mmHg and diastolic BP � 85 mmHg

• Fasting blood glucose > 100 mg/dl

• Antihypertensive therapy, hypoglycemic, or lipid profile control in place

The metabolic syndrome is not, however, a disease restricted exclusively to the

adult population, but it is also widespread in the younger population. Starting from

the universally accepted criteria, two different definitions for the metabolic syn-

drome in this patient population are currently used in consequence of the childhood

or adolescent population prevalence. The first exception comes from by the

National Cholesterol Education Program-Adult Treatment Panel III (NCEP-

ATPIII) reviewed by Cook /Ford, and it is based on the diagnostic criteria where

at least three of the following risk factors are present [9]:

• Waist circumference above the 90th percentile, adjusted for gender and age.

• Fasting blood glucose �100 mg/dl.

• Triglycerides �110 mg/dl.

• HDL cholesterol �40 mg/dl.

• Systolic blood pressure or diastolic blood pressure above the 90th percentile,

adjusted for gender and age. According to the definition of the International

Diabetes Federation (IDF), however, metabolic syndrome is diagnosed in

Fig. 6.1 Prevalence of the metabolic syndrome in the population � 20 years in the United States,

as defined by AHA/NHLBI 2005 and the revision IDF which eliminated the waist circumference

by the inclusion criteria [6]
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children and adolescents when the waist circumference is greater than the 90th

percentile, and there are at least two of the following criteria:

– Fasting blood glucose �100 mg/dl or previous diagnosis of type 2 diabetes

mellitus

– Triglycerides �150 mg/dl

– HDL cholesterol �40 mg/dl

– Systolic blood pressure� 130 mmHg or diastolic blood pressure� 85 mmHg

Described for the first time in 1988 by Reaven, who called it “syndrome X,”

metabolic syndrome does not originally included obesity among the pathology

criteria, considering insulin resistance as the common denominator of the

syndrome.

Metabolic syndrome can therefore be defined a global pathology “,” being

widespread, with almost the same prevalence rates both in industrialized and in

developing countries. It derives from very different socioeconomic situations.

The prevalence of the metabolic syndrome in children and adolescents in Europe

seems to follow a north-south gradient, with a higher prevalence in the Mediterra-

nean region.

From a global report, metabolic syndrome, as defined by the NCEP-ATIII,

corresponds to 5.7% of the population, while according to the IDF definition, it is

equal to 3.8%; in Scandinavia, the corresponding rates were 2.1% according to

NCEP-ATIII and 2.4% according to IDF (Table 6.1) [9].

Table 6.1 Prevalence of metabolic syndrome between NCEP-ATIII and IDF definitions

Table II

Prevalence of metabolic syndrome and concordance between the two definitions

NCEP-ATPIII (95% CI) IDF (95% CI) Kappa

Total 5.7% (3.33–8.07) 3.8% (1.85–5.75) 0.815

Sex

Females 3.2%(1.4–5.0) 1.9% (0.51–3.29) 0.774

Males 7.6%(4.89–10.31) 5.2% (2.93–7.47) 0.836

p-value 0.072 0.105

Age

12–14.9 years old 5% (2.77–7.23) 3.6% (1.7–5.5) 0.835

15–16.9 years old 6.7% (4.15–9.25) 4% (2.0–6.0) 0.790

p-value 0.51 0.857 0.790

BMI

Normal weight 1.5% (0.26–2.74) 0.4% (0.24–1.04) 0.497

Overweight 12.0% (8.68–15.32) 7.8% (5.06–10.54) 0.688

Obesity 28.6% (23.98–33.22) 28.6% (23.98–33.22) 1

p-value <0.001 <0.001

BMI body mass index, 95% CI confidence interval at 95%, Kappa kappa coefficient, p-value
significance level
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6.3 Etiology of Metabolic Syndrome

The exact etiology of the metabolic syndrome is not yet well known; however, the

most common interpretation is that the disease is a dysfunction of adipocytes as a

consequence of genetic and lifestyle factors. The metabolic imbalance of the

adipocyte cells is directly related to visceral obesity and insulin resistance, which

therefore play a central role, even synergistic, in determining and in maintaining the

inflammatory cascade from which the metabolic syndrome and its complications

are derived.

Such inflammation is characterized by the absence of concomitant infections or

autoimmune diseases, and it is always at low grade.

According to these characteristics, this process is also called

“metainflammation,” or “metabolically activated inflammation” or

“parainflammation,” to indicate the intermediate state between baseline and inflam-

mation itself. This mechanism of action is not yet anyway completely understood.

The negative impact associated with modern lifestyle, sedentary behavior,

excessive caloric intake and poor quality, and physical and mental stress has led

to an increase in the number and size of adipocytes, predisposing to all those

conditions that determined their disruption.

This leads to a local organ damage and systemic increase of circulating free fatty

acids (FFA) and insulin resistance. The increase of nonesterified fatty acids (NEFA)

in the circulation reflects the inability of the adipose tissue, which is a metabolically

active tissue, to reduce and to contrast the excess of nutrients. This is the principal

mechanism responsible to the typical dyslipidemia of metabolic syndrome.

The subcutaneous adipose tissue has a much greater capacity, if compared to the

visceral adipose tissue, to store lipids. This is due to its peculiar protective function.

In case the storage capacity is exceeded in both deposits, the subcutaneous

adipose tissue reduces the production of very low-density lipoproteins in favor of

triglycerides, with a consequent increase of their plasma concentration.

In parallel the liver increases the production of apoB which, in turn, increases the

intake of triacylglycerols in same adipose tissue, inducing the production of

low-density lipoproteins (LDL); other tissues are progressively affected by the

accumulation of lipids (liver, muscle, heart, pancreas) resulting in local

lipotoxicity.

Some types of lipids can also activate some innate immune cells. The status of

hyperlipidemia connected to the metabolic syndrome therefore results in an

increased production of inflammatory cytokines such as TNF-α by these cells,

with consequent maintenance of the inflammatory state [10]. Insulin resistance

itself is the most important etiopathogenic factor to trigger and maintain the

inflammatory cascade. It normally changes toward hyperinsulinemia and hypergly-

cemia, inducing vasoconstriction and retention of sodium and predisposing to

hypertension and to atherosclerosis (Fig. 6.2).

Metabolic syndrome is therefore a cardiovascular disease at very high risk of

acute events. The pathophysiological mechanism that links metabolic syndrome to
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cardiovascular risk is not fully understood, but it is certainly due to the

prothrombotic and proinflammatory state, induced visceral obesity, and insulin

resistance; the inflammatory cascade, low grade but constantly activated, is respon-

sible for endothelial injury and atherogenic responses.

The cardiovascular risk associated with metabolic syndrome appears three times

higher in women than in men, and it is believed that this may be dependent on

several factors: first, the central adiposity tends to be more pronounced in women

after menopause than in men.

The approach to identify this high risk is complex and predominantly

multidisciplinary. One of the most widely used global managements follows the

ABCDE mode: assessment of cardiovascular risk and aspirin therapy, blood pressure

control, cholesterol management, diabetes prevention and diet therapy, and exercise

therapy, which combines drug therapy with prescribing physical activity [11].

Starting from this high-risk condition, the importance to start and to continue

the treatment of the metabolic syndrome using “physical exercise” at moderate

intensity is relevant.

6.4 Aerobic and Resistance Exercise

6.4.1 Physical Exercise Definition and Measurement

“Exercise” is defined as any bodily movement produced by skeletal muscles that

requires energy expenditure [12]. Measuring the levels of physical exercise in the

Fig. 6.2 The figure summarizes the complex interaction between the pathogenic mechanisms

underlying the metabolic syndrome
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general population is extremely complex; none of the methods currently available

are capable to accurately quantify all the variables of the exercise, especially in case

of the measurement of the levels of exercise in sedentary patients with chronic

diseases [13, 14]. The gold standard to globally measure the exercise is calorimetry.

Even if this method is applicable only in an” outpatient setting,” it can be consid-

ered a laboratory measurement. The most frequently used methods are so indirect,

such as motion sensors (pedometers, accelerometers) and the questionnaires. The

last are normally completed on behalf of the patients, and even if they are validated,

however, both are still not free from potential bias. The questionnaires are largely

used for their cost-effectiveness and applicability of wide samples, in order to

classify different levels of physical activity among patients and to monitor any

changes. On the other hand, they have some limitations, due to difficulties of

interpretation by the patient, in consequence of the erroneous perception of their

lifestyle. In parallel the “wearable systems” like pedometers or accelerometers can

be used in addition to the questionnaire to better quantify the spontaneous and the

programmed physical activity, especially where the resistance component and the

programmed physical exercises are included. The movement sensors are simple to

use and relatively inexpensive. However, even with the most advanced and specific

systems (e.g., 3-axis accelerometers), some specific movements such as pedaling,

the slow pace walking less than 4 km/h, or particular activities such as swimming

are not easily detected [15, 16].

6.4.2 Aerobic Exercise

Aerobic exercise has been largely studied in the context of the NCCD. It is noted as

an exercise inducing multi-organ responses including vessels, heart, and muscles,

all involved in the metabolic syndrome and also in the NCCD in general. Especially

for the myocardial function, the progressive workload indced by the exercise,

participate to the heart’s remodeling with a progressive VO2 max increase associ-

ated to a reduced global cardiovascular risk. The ACSM guidelines normally

suggest almost 150 min/week of aerobic exercise to produce a positive impact in

general population and also in healthy subjects. The normal rate of the physical

activity is around 3 up to 5 sessions per week for at least 30 min where fast walking

or jogging can be considered as a model of regular training. The intensity can be

addressed around the moderate level and therefore at the 60% or 70% of the

maximal peak of the effort achieved during the treadmill test.

6.4.3 Resistance Exercise

New evidences are reported in the use of resistance exercise. Especially in diabetes,

the resistance exercise has been highlighted. It improves insulin sensitivity and
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glucose tolerance, and therefore it seems to be an effective measure to ameliorate

the overall metabolic health and to reduce metabolic risk factors in such patients. It

has been confirmed that the combining aerobic exercise with counter resistance is

associated with many physical and mental benefits in people of all ages of both

sexes. The combination of both types of exercises, aerobic and resistance, reduces

the risk of developing coronary heart disease, stroke, type 2 diabetes mellitus, and

some forms of cancer (such as colon and breast) [17].

The subjects who regularly practice physical activity have a better control of

blood pressure and lipid profile, as well as of the inflammatory markers. Resistance

exercise improves also insulin sensitivity and makes it easier weight

management [18].

It has been also promoted in the recent exercise guidelines for “healthy people”

and also for all the NCCD [19]. Resistance exercise increases the excess

postexercise oxygen consumption. The increases in VO2 after a resistance session

enhance the energy expenditure during the recovery period and also the expression

of the insulin receptor protein in response to resistance exercise. This aspect needs

to be considered as another important adaptation responsible for the insulin-

sensitizing effect of training [20].

6.5 Exercise as Prescription: Indications

and Contraindications

Since most chronic degenerative diseases occur in old age, it is desirable that the

population in the higher age groups adopt healthier behaviors, such as increasing

the amount of physical activity, in order to reduce the risk factors and to prevent or

delay the onset of disability. It is well known that some risk factors such as being

overweight, central obesity, and overall obesity increase with age, while on the

contrary, the levels of physical activity normally decrease [21–23].

6.5.1 Indications

Regular physical activity is considered as a valuable weapon in the treatment of

metabolic syndrome, in consequence of the fact that it is feasible and easy for many

patients, which moreover often do not interpret this as a therapeutic action in the

strict sense and do not have the perception to be medicalized. Exercise reduces the

morbidity and mortality associated with the metabolic syndrome not only because

of its known action on body composition but also by “acute” effects, such as

reducing post-prandial lipemia [24]. The effect of anti-inflammatory process deter-

mines an increasing anti-inflammatory cytokines (IL-1ra and IL-10) while simul-

taneously decreasing the levels of TNF-α [25]. The positive effect of “chronic”
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training results to a constant improvement of the morpho-functional characteristics

of the cardiovascular system and restoration of a normal state of the organs

potentially damaged by metabolic syndrome [26–28].

It has been proved that exercise in the elderly, particularly exercise of mixed

type (aerobic and against resistance), plays an important role, as it keeps longer

good quality of life and autonomy: in more active subjects, the bone and muscle

mass are maintained, with a positive impact in reducing the risk of falls and

osteoarthritis and also in the cognitive function decline and dementia [29–31]

(Table 6.2).

The benefits obtained correlate with the amount of exercise performed; it is

believed that there is a dose-response relationship between the amount of constant

exercise and the benefits obtained: “higher volume of physical activity is associated

with a greater positive effects” (Fig. 6.3). Literature, however, reports that exercise

volumes equal to the half of those recommended can produce significant reductions

in cardiovascular risk. Therefore, a small amount of daily exercise, despite not up to

the recommended levels, can substantially improves quality of life [33].

Even the exercise intensity is directly proportional to the health benefits, espe-

cially in sedentary subjects, glucose metabolism improves when training is

performed by high-intensity exercises, rather than moderate. Subsequent reviews

have confirmed this finding [34]. Specific considerations have to be added for the

Table 6.2 Effects of constant physical activity, aerobics, and resistance on health determinants

[32]

Effects of aerobic and strength training on selected health parameter

Variable Aerobic exercise Resistance exercise

Bone mineral density "" ""
Body composition

% body fat ## #
Fat-free mass $ ""
Strength $ """
Glucose metabolism

Insulin response to glucose challenge ## ##
Basal insulin levels # #
Insulin sensitivity "" ""
Blood lipid levels

HDL cholesterol " "$
LDL cholesterol # #$
Stroke volume "" $
Blood pressure at rest

Systolic #$ $
Diastolic #$ #$
VO2 max """ ""
Endurance performance """ ""
Basal metabolic rate " ""
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role that a sedentary lifestyle has on health. Sedentary lifestyle is not merely the

absence or lack of exercise but is an independent parameter of the amount of

physical activity. The concept includes a situation where a person, who is able to

daily introduce the recommended physical activity, on the contrary, spends many

hours sitting or supine, in front of the television or computer monitor or desk. It will

still be burdened by high levels of physical inactivity, with the inevitable increase

of risk factors [35]. Sedentarism is one of the most important limits of the current

society. It is globally associated with an increased mortality and morbidity for all the

causes of death. During the last 50–60 years, the remarkable change in lifestyle

imposed by industrialization and economic growth over the previous 5 years has

resulted in a steady increase in sedentary levels in the general population decreased

the intrinsic physical activities many work activities, both domestic and not. Simul-

taneously there was the increase of sedentary activities, thus leading to a reduced

daily energy expenditure, estimated at about 120 Kcal/day less (140 kcal/day in men

and 120 kcal/day in women). The phenomenon, incidentally, has long been known as

reported by Kraus and Raab that had coined the term “hypokinetic” referring to

diseases caused or exacerbated by reduced physical activity [32]. More recently the

concept has been considered as composed of two separate entities “spontaneous

physical activity” and “programmed physical activity. The latter utilizes time dedi-

cated exclusively to the practice of physical activity. In defining “spontaneous motor

activity,” physical activity is intrinsically linked to our daily actions and therefore

more influenced by lifestyle. It is therefore well understood how physical fatigue can

be perceived only in those moments of programmed activity, which generally

coincide with the practice of a more intense activity near to the sport activity. Sport

Fig. 6.3 Dose-dependent effect of physical exercise: the benefits are larger with the greater the

volume of exercise performed [33]
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is not a commonly practiced in all cultures, and few time is normally dedicated to

this activity in our daily lives.

Large population-based studies including INTERHEART- INTERSTROKE

have confirmed that a sedentary lifestyle constitutes a major risk factor for devel-

opment of cardiovascular disease, diabetes, obesity, and cancer [36, 37]. Globally,

the population tends to be sedentary, and sedentary life was responsible for the

prevalence of most NCDs, one cause of death in industrialized countries. The

sedentary lifestyle seems to be present across all age groups: among children

aged 6–17 years, it is carried out less than half of the recommended exercise

quota; about half of men and two-thirds of females between 12 and 21 years do

not exercise regularly, and only 22% of adults engaged in regular physical activity

[38]. The general perception is that most of the subjects are below the

recommended levels of physical activity for optimal protection from chronic

diseases. In the literature, there are several evidences of the fact that part of this

phenomenon is now certainly be attributed to the diffusion of technological inno-

vations such as television, especially in the last three decades: it is shown that

spending more than 3 h a day in front of the TV is associated with an increased

incidence of overweight, obesity, and metabolic syndrome as it not only reduces the

time devoted to physical activity but also increases the caloric intake mainly due to

foods rich in sugar and fat [39].

A literature review of the last 50 years has confirmed the importance of the term

“sedentary death syndrome (SEDS),” coined by Pr. Frank Booth. From the review,

in fact the following evidences emerged:

• Noncommunicable chronic diseases have increased due to the sedentary life-

style: in the United States, the prevalence of type 2 diabetes mellitus has

increased by nine times compared in 1958, and obesity has doubled since 1980.

• The SEDS correlates with the following conditions: increased levels of triglyc-

erides, glucose, and LDL cholesterol in the blood, type 2 diabetes mellitus,

hypertension, myocardial ischemia, arrhythmia, congestive heart failure, obe-

sity, breast cancer, depression, chronic low back pain, and vertebral and femoral

fractures.

• Clinical conditions related to SEDS have also increased in the young population;

in the United States, a number of obese young adults suffering from type

2 diabetes mellitus have increased too.

• SEDS will cause the premature death of an estimated 2.5 million Americans in

the next decade.

• Interventions to decrease the time spent in front of television screens and, if

coupled with an increase in the levels of daily physical activity, could substan-

tially decrease the prevalence of metabolic syndrome. Individuals who do not

play any kind of moderate or vigorous physical activity in their free time are

about twice as likely to be affected by metabolic syndrome compared to those

who practice 150 min or more of weekly exercise [40].
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6.5.2 Contraindications

There is no evidence of real contraindications in metabolic syndrome with the

exclusion of the acute conditions where the eventual coronary disease of abnormal

hypertensive response to exercise can be suspected. Cancer disease needs more

attention where some specific conditions have to be considered.

Surgery, chemotherapy, radiotherapy, and selected associated complications

which include lymphedema, cardiotoxicity, chemotherapy-induced peripheral neu-

ropathy, cancer-related fatigue, and general metabolic disturbances can represent

the effective contraindications to physical activity. While it is important to consider

each of these factors in a comprehensive cancer rehabilitation program, it is

relevant to note that cancer survivors are at elevated risk of recurrence, develop-

ment of secondary cancers, cardiovascular disease, and premature death since the

incidence and prevalence of cancer are higher in subjects aged >55 years. There-

fore, the correct clinical approach for the cancer patient should be rooted in

thorough clinical patient evaluation which ultimately will be used to determine

the optimal time to begin a patient-specific exercise/rehabilitation program.

6.6 Exercise in Cancer

The current population of over 13.7 million cancer survivors is likely to rise to

about 18 million by the year 2022, according to the most recent data.

Cancer is currently one of the leading causes of death, just below of cardiovas-

cular disease in Europe, and it is currently the leading cause of death in other social

contexts like the United States under the age of 85 years [41].

In Italy, in 2012, 98.000 deaths due to malignant tumors have been estimated.

Among these, with 33.538 deaths, those affecting the trachea, bronchi, and lungs

are the fourth leading cause of death and the second ever in men. Among the

remaining overall mortality causes that make up the ranking of the top 15, there are

five of malignant tumor locations. In addition to malignant breast cancer (10th

place, 12.137 deaths, 2%), which mainly features the female mortality profile, four

locations are related to the digestive system tumors: colorectal (ninth position,

accounting for 19.202 deaths 3% of the total), pancreas (11th position, 10.722

deaths, 2%), liver and intrahepatic bile ducts (20th, 10.116, 2%), and stomach

(14th, 10.000, 2%).

Concrete epidemiological evidence confirms the inverse relationship between

the volume of exercise performed and the relative risk of cancer [42]. In particular,

this causal connection is strong about colorectal cancer, cancer of the postmeno-

pausal breast, and endometrial cancer. Minor evidence indicates a role of physical

exercise as a protective factor in regard to lung cancer, prostate, ovarian, and

pancreatic [43, 44]. Exercise counteracts the onset of cancer by acting through a

lot of biological mechanisms which have been investigated by several studies [45].
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Physical exercise significantly decreases levels of insulin, glucose, and triglyc-

erides and increases HDL cholesterol levels, together with the fact that it helps to

decrease the excess weight and to maintain it over time. A prospective study in

2012 based on a sample of over 18.000 people showed that type 2 diabetes mellitus

is associated with a higher risk of occurrence of cancer, especially the pancreas.

Diabetes can also increasingly influence the mortality of patients with previous

malignancy, either for a cancer’s recurrence, as in terms of comorbidity; in partic-

ular, this correlation was valid for colorectal cancer. The type 2 diabetes mellitus

plays a role in the mortality of cancer patients. In parallel the PEF intervention can

have an impact in the primary and secondary prevention of cancer disease, espe-

cially among diabetes patients. It enhances the role that interventions such as PEF

can have in the primary and secondary prevention of cancer (Fig. 6.4).

Exercise participates in metabolic syndrome to reduce the biological markers of

inflammation such as TNF-α and IL-6, favoring the rising levels of IL-1ra and

IL-10. The anti-inflammatory effect plays a key role in neoplastic diseases, being

one of the pathogenic mechanisms of these low-grade chronic inflammatory

states [25].

Fig. 6.4 The reduction of abdominal body fat, particularly active and involved in the carcino-

genesis process, which involves exercise, could also have important role; levels of waist circum-

ference over 91 cm in men and 82 cm in women double the risk of colon cancer onset [46]
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It has been also observed that the regular practice of exercise reduces the

bioavailability levels of sex hormones and plays a protective role in hormone-

related tumors such as breast cancer, endometrial cancer, ovarian cancer, prostate,

and testicular [47].

It is known as there is a positive correlation between the increased exposure to

high level of estrogen during own lifetime and an enhanched risk of developing

breast cancer. This is recognized in both pre- and postmenopausal period [48].

The long-term physical activity also improves the cancer patient’s immune

status, by increasing the number and activity of macrophages, NK cells,

LAK-cells, and their related regulatory cytokines [49].

The complete reconditioning of the lifestyle in cancer is a very complicated

program including multidisciplinary competence. Clinical outcomes of cancer

patients are related to the three primary treatment modalities, surgery, radiation,

and drug therapy, each burdened by particular complications. Currently, the most

serious outcomes for patients with cancer include loss of body mass and the

deterioration of the functional status. About 75% of cancer survivors report a severe

fatigue during and after radiotherapy/chemotherapy; loss of lean body mass,

decreased muscle strength, and reduced cardiovascular performance are often

also represented [50, 51].

Evidence in literature justifies intervention in the field of exercise prescription

body in cancer patients both during and after the various types of treatment, not only

to facilitate the recovery process but also to prevent the occurrence of relapses [52].

It has been demonstrated as regular exercise helps cancer patients to recover and

to return to a normal lifestyle with greater independence and functional capacity

[53, 54]. Especially the regimens of unsupervised exercise reduce fatigue and

improve the quality and other social sides of life of these patients after the diagnosis

of cancer [55, 56]. The overall goal of the team of specialists who follow the patient

should be to rehabilitate the patient to a functional level that allows to go back to

work and perform normal recreational activities. More specifically, the general

objectives are multiple (Fig. 6.5):

• Improve the general functional status.

• Prevent the loss of global flexibility.

• Prevent the loss of strength and muscle endurance, by counter-resistance

exercises.

• Counteract the loss of bone mass through exercise of mixed type.

• Counter the loss of lean mass.

• Monitor any signs of increased weakness, lethargy, shortness of breath, dizzi-

ness, claudication, or onset of cramps during exercise conduct.

• The American Cancer Society with the American College of Sports Medicine

(ACSM) released a document containing the following consensus recommen-

dations regarding the physical exercise prescription in cancer patients:

• 150 min per week of moderate to intense aerobic exercise or alternatively 75 min

of vigorous exercise per week
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• Counter-resistance exercises 2–3 times a week, 8–10 compound exercises for at

least 1 set of 10–15 reps per session

The exercise that is preferable therefore is that of mixed type, i.e., consisting of

an aerobic phase and a phase of exercise against resistance, the latter is useful not

only for the recovery of functional status but also to counteract the side effects of

the radiotherapy/pharmacological treatments and to improve the body image that

the patient has of himself [58]. Regarding the types of aerobic exercise, activities

like walking and cycling are recommended as safe and well tolerated given that

involve multiple muscle groups at once; the recommended operating frequency

ranges from 3 to 5 times a week.

6.7 Italian Model of Exercise Prescription

In the large context of various application models by foreign official agencies, the

role of exercise a “supervised” type of way that is mainly conducted “inside the

gyms and fitness centers” has been investigated in the literature.

In Italy, and particularly at the Sports Medicine Center of the University of

Florence, a multidisciplinary application program has been developed and recently

applicable in first line in cancer [4] and now is useful in many other metabolic

chronic diseases. The model is allowed in an “unsupervised” way. This is a specific

and “home-based “exercise program where, after a short period of education

training, the patients are free to continue to practice the exercise at home or outdoor

but without any specific professional supervision. This particular program answers

Fig. 6.5 Recommendation of physical activity in cancer [57]
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to the necessity to reduce the medicalization of the patients, and it has demonstrated

to have a large applicability in our country with good results. The applicability of

the PEF program adopted has been therefore verified in a population of patients

with chronic diseases affected by metabolic syndrome and hypertension isolated as

well as in breast and colon cancer patients. All the patients are evaluated in first line

to investigate the basic cardiovascular performance by treadmill test in order to

establish the amount of the intensity of the aerobic exercise. A 2D echocardio-

graphic exam at rest is also performed in order to exclude any eventual cardiac

disease before to start with the exercise prescription program. The strength and the

flexibility of the upper and lower limbs are evaluated by hand grip test (Fig. 6.6) and

chair test, respectively. The flexibility is evaluated by sit and reach test (Fig. 6.7).

All these passages are determinant to plan the mixed exercise (aerobic and

resistance) to complete and to individualize the program.

6.8 Conclusions

The correct lifestyle including moderate physical activity plays an important role in

the primary and secondary prevention of chronic diseases. The current literature

supports the role of programmed physical activity, but few data are available on the

Fig. 6.6 Hand grip test

Fig. 6.7 Sit and reach test
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effectiveness of physical activity planned and individualized type as

“unsupervised.” This particular aspect has been recently highlighted in the context

of chronic pathologies in stable clinical conditions. Italian model has taken in

advance this approach. Literature supports the efficacy also in neoplastic patholo-

gies in longer life expectancy, as in the case of breast cancer and gastrointestinal

tumors in particular the colon.

The positive effects of exercise in people with chronic diseases have long been

known in the literature, while much less known is the impact that an individualized

prescription of exercise, especially for unsupervised type, has in our specific

context social and health care. Based on our daily experience, the applicability

and the feasibility of large-scale kind of exercise program “unsupervised”

conducted in an almost totally autonomous from patients with these diseases are

possible. Prescribing physical exercise, if carried out by a multidisciplinary team of

professionals dedicated and managed by medical specialists in sports medicine, will

play more and more in the future a role in the prevention of chronic

noncommunicable diseases and their complications, the prevalence of which is

steadily increasing in the light of all the considerations. In particular the type of PEF

“unsupervised,” is feasible and effective and, if inserted into a political and social

context sensitive to this issue, can have decisive role in countering the complica-

tions of multiple comorbidities.
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Chapter 7

Informatics for Nutritional Genetics
and Genomics

Yuan Gao and Jiajia Chen

Abstract While traditional nutrition science is focusing on nourishing population,

modern nutrition is aiming at benefiting individual people. The goal of modern

nutritional research is to promote health, prevent diseases, and improve perfor-

mance. With the development of modern technologies like bioinformatics,

metabolomics, and molecular genetics, this goal is becoming more attainable. In

this chapter, we will discuss the new concepts and technologies especially in

informatics and molecular genetics and genomics, and how they have been

implemented to change the nutrition science and lead to the emergence of new

branches like nutrigenomics, nutrigenetics, and nutritional metabolomics.

Keywords Nutrition science • Nutrigenomics • Nutrigenetics

7.1 Introduction

“Let the food be your medicine, and medicine be your food,” as stated by Hippoc-

rates, the father of modern medicine, describes the importance of nutrition in

human health.

7.1.1 Development of Nutrition Science

Traditionally, nutrition science aims to understand nutrient components in the food

to nourish people. There are interrelations between human genome and nutrient

intake. Different nutrient intake will lead to epigenomic alterations [1], reducing the
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reproducibility of nutritional experiments even within the same individual. On the

other hand, the same nutrient intake may cause different response in different

persons. Because of this complexity, nutrition scientists have to provide a manage-

able system to investigate the mechanisms and requirements from dietitians and

nutritionists to formulate dietary and nutritional programs to reduce or repair

nutrition-associated conditions. This is accomplished by proposing a hypothesis

that health state among populations may be altered by the biochemical system

together with biochemical requirements. This assumption is true to a first approx-

imation; normative descriptions, e.g., DRI values, precisely describe the collective

needs of individuals; DRI and food guides are both useful for health promotion and

disease prevention for individuals. From the public health perspective, this method

is effective and feasible.

Nowadays, nutrition scientists are increasingly focusing on diet-based personal-

ized health improving. During the past decade, the technological development in

omics has expanded the effective public health strategy to a personalized nutrition

[2–8]. The transition may need to expand the traditional framework of nutrition

science, rather than incrementally improving current nutrition science. The rela-

tionship between diet and nutrition is complex: the source of foods is highly

heterogeneous, either from plant, animal or fungi; food conservation and handling

processes vary widely; food consumption and intake are different. So far, the frame-

work in nutrition science mainly focuses on one nutrient at a time, which is reduc-

tionist in nature. For example, single nutrition deficiencies or excesses and single gene

mutations are predictive of clinical conditions in homogeneous cohorts. However,

with the emergence of new technologies, including transcriptomic, proteomic tools, it

is now possible to investigate the intricate interplay of multiple nutrients within an

individual of unique genomic, environmental, and dietary background.

The modern nutritional science framework shift includes three development

phases, which represents the three-step transition from targeted biochemical studies

to personalized nutritional studies. First, the idea of exposome, i.e., the totality of

life-course exposures, is included into the health models [9]. Physiological flow of

biological information processing from gene expression to protein synthesis and

metabolites changes was proposed. Second, predictive health is replaced by novel

nutrition which is geared toward vitality and well-being [10]. Third, individual

complexity, “non-reductionist” models accounting for multifactorial interactions,

was introduced [11].

7.1.2 Metabolic Homeostasis

The central role of biological metabolism is to maintain the metabolic homeostasis

through redundant functions and adaptive mechanisms against environmental chal-

lenges and nutritional, genetic, and commensal microbiota variations (Fig. 7.1).

Each individual has a unique genetic makeup and represents an ongoing nutri-

tional experiment from birth to death. Nutrition is considered a critical factor for
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well-being. Therefore, the cross talk among nutrition, lifestyle, and genomic infor-

mation is important for further understanding, in order to promote health or prevent

metabolic diseases. Nutrition science is being transformed by nutrigenomics, which

incorporates systems biology into the field of nutrition study [12]. It investigates the

effects of diet at transcriptional, translational, and metabolic level [13–15]. -

Moreover, nutrigenomics studies how genetic factors influences response to diet

[16–19]. The aim of nutrigenomics is to combine the entire omics field to define a

“healthy” phenotype.

The human body is inhabited by a trillion microorganisms with millions of

microbial genes. It is of importance to further understand the microbial role in

human health and disease. The past decade has witnessed a sharp increase in

microbiome research. Emerging technologies represented by high-throughput

sequencing have led to novel insights into microbial identity and distribution in

the body [20, 21]. The gut microbes are of particular importance since they locate at

the interface of nutrition and host genome, and have profound influence on the host

metabolism. At the same time, since a large majority of the immune system locates

in the digestive tract and the intestinal mucosa houses a variety of immune cells and

symbiotic bacteria that coexist to provoke immunogenic effects, the purpose of

nutritional immunology is to reveal the synergy of host, nutrient, and microorgan-

isms [22]. Through computational simulation of the gastrointestinal tract, nutri-

tional immunologists can model and evaluate the complex nutrient-microbe-host

immune system and facilitate the understanding of how nutrition influences

immune systems [23–27].

To achieve the progress of nutritional science, it is necessary to link researchers

of all disciplines related to the field, clinicians, dietitians, scientists, food scientists,

Fig. 7.1 Metabolic homeostasis is kept with different challenges
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etc. and also to combine new technologies in omics, physiology, epidemiology,

bioengineering, analytics, biomathematics, etc. Nutritional research also has to be

extended to incorporate quantitative, holistic, and molecular researches in order to

accelerate nutritional interventions. As a new experimental approach, nutritional

metabolomics uses chemical profiling in diet and health analysis. However, both

targeted and nontargeted chemical profiles are not sufficient for translation into

personalized nutrition. It is further facilitated by advances in nutritional

metabolomics to simplify chemical profiling processes to improve personalized

medicine. According to the computational models, future investigators could eval-

uate the prediction performance of the model, make interventional plans, and

provide personal nutritional suggestions.

Although the areas of pharmaceuticals and nutrition have developed indepen-

dently, the two disciplines have been interrelated for long in Asia. Nowadays, the

high relevance of specialized nutrition in disease prevention and treatment has been

recognized, bridging the gap between food and medicine [28]. As a result, medical

nutrition has become a unique cross discipline of food and medicine. The relation-

ship between nutrition and diseases is being recognized more and more specifically.

Later in this chapter we will discuss the brain, immune, as well as metabolic system

health in relation to nutrition. The goal of medical nutrition is to innovate nutrition

therapies and to provide medical solutions to disease-related malnutrition.

In this chapter, we will discuss the importance of different factors (genetic,

nutrition, microbiota) for human health and diseases and how the new technologies

(especially bioinformatics and metabolomics) deeply influenced the nutritional

science development. Lastly, we will discuss how these developments in nutritional

science are related to diseases (like cancer, type 2 diabetes, obesity, etc.), diagno-

ses, and cure.

7.2 Nutrition-Gene Interactions

7.2.1 Nutritional Genomics

The growing incidence of malnutrition and prevalence of chronic diseases associ-

ated with nutrition and lifestyle calls for an in-depth understanding of intricate

interplays between environment and genes. Advances in the study of nutritional

genomics have focused on the prevention and treatment of chronic diseases, e.g.,

cardiovascular disease, cancer, osteoporosis, and diabetes. With the advent of

nutritional genomics, the conversion to “personalized nutrition” seems to be pos-

sible. This emerging field holds great potential to revolutionize nutrition practice,

where dietary suggestions are prescribed based on unique genetic makeup to

prevent or treat chronic disease [29]. It’s predicted that a genetic test will serve as

a routine examination as shifting the generalized therapies to personalized diagno-

sis according to an individual’s genetic susceptibility. Thus, the study of nutritional
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genomics indicates the unprecedented progress in disease management, as well as

some ethical issues.

Nutritional genomics is a general concept that is composed of two research

areas: “nutrigenomics” and “nutrigenetics,” which describe the interaction between

nutrient and genes. Although the two fields are closely related, their purpose and

methodologies are different in understanding the relationship between diet and

genes. Nutrigenetics studies the influence of genetic mutation on individual

responses to a particular diet or dietary components for benefit-risk assessment

and formulates personalized dietary prescriptions. Nutrigenomics evaluates the

effect of nutrients on gene expression and phenotypes [30].

The basic principle of gene environment interaction needs inter-discipline coop-

eration, whereby genomics will refer to other omics, and nutrition research will rely

on a holistic or systems biology methods. Nutrition science now employs more

quantitative and systems-level analytic tools [31]. Transdisciplinary approach is

necessary in translational research to address the individual complexity in an ever-

changing environment. To this end, the field will need to change the current

reductionist approach and make use of latest progresses in related disciplines in

terms of research designs, big data analysis and sharing. Nutrigenomics and

nutrigenetics are obviously linked to fields ranging from nutrition to bioinformatics,

molecular biology, genomics, functional genomics, epigenomics, and proteomics

[32]. We are going to discuss about nutrigenomics and nutrigenetics separately in

more details.

7.2.2 Nutrigenomics Research

Nutrigenomics is the study of how individual gene expression responds to nutri-

tional factors, e.g., nutrients or diets at proteomic, metabolomic, and lipidomic

levels. Molecular classification of humans can be achieved according to nutritional

exposures [33]. Ghormade et al. summarized that the novel field of nutrigenomics

has created, or will be able to create, for nutrition science. For example,

nutrigenomics tools have been used to improve human nutrition and health. Thus,

nutrigenomics study is a combination of different omics study and bioinformatics

analysis. We will discuss about the advancement of metabolomics and big data

analysis more specifically later in this chapter.

7.2.3 Nutrigenetics

Although different individuals have the same genome, there are many common

variations, known as single nucleotide polymorphisms (SNPs) in coding sequences

of nutrient-related genes. It is estimated that the human genome harbors more than

10 million common SNPs [34]. Some common SNPs occur in half of the population
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and are of public health importance. The majority of people are heterozygous with

over 50,000 SNPs in their genes [35]. Traditionally, SNPs studies focused on one

SNP at a time. However, the study of how multiple nucleotide polymorphisms work

together to affect metabolic responses to given nutrients and nutrient need is

challenging, and until very recently, the technical advances make the combination

study possible. Two of the most popular methods in nutrigenetic study are candi-

date gene analysis and whole genome linkage screening.

The candidate gene analysis, which is mainly hypothesis driven, identifies and

studies biologically related genes. Nucleotide polymorphisms of these genes can

alter susceptibility to a disease. Similarly, dietary components prioritize disease risk

associated with a specific genetic variant. Candidate or “susceptibility” genes can

be selected according to one of the following criteria: genes that are activated in

chronic disease and have been previously found to be sensitive to dietary interven-

tion; gene mutation with an important function; genes with a significant hierarchical

role in biological cascades; polymorphisms that are very common in the population

(>10% for public health relevance); and/or related marker genes useful in clinical

trials [36].

In order to reduce the analysis of single nucleotide polymorphisms, HapMaps

can be used to identify specific SNPs patterns such as haplotypes. Haplotypes, also

known as haploid genotypes, are a group of closely linked genetic markers with a

highly imbalanced genetic predisposition on chromosomes. During the last decade,

an international scientific consortium has characterized patterns of SNP linkage in

haplotype blocks [35]. To decrease the number of SNPs needed to be measured, a

few alleles in a haplotype block can represent all the SNPs on that fragment of

DNA. With the help of these “tag SNPs,” SNP analysis becomes more easy and

practical. Genome-wide linkage screening determines polymorphisms in the whole

genome and links them to other variables, e.g., blood glucose or heart rate. This

identifies genes that have a statistically significant relationship with the variable of

interest. In contrast with the candidate gene analysis, this approach is usually

considered as non-hypothesis driven. It has revealed many unexpected associations

between genes and risk factors. For instance, the SNP RS993609 in nonfunctional

FTO gene was reported to be linked with the incidence of obesity [37]. According

to reports, the SNP allele is linked to a higher risk of overweight or obesity than the

T allele in a white European population. The association was mediated by changes

in fat mass and was observed on age 7 and over [38].

7.2.4 Challenges in Nutrigenetics

The field of nutrigenetics is still at the beginning. Most nutrigenetic studies focus on

a single nucleotide polymorphism in one gene, with little regard to complex

interaction among genes, nutrients, and environment [39–42], which is indispens-

able in order to develop personalized nutritional prescription. Thus, although the
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data access in haplotype databases and biological databases is costly and hard to

establish, it is still necessary for nutrigenetic research.

There are still a lot of improvements to be made in the field of nutrigenetics:

standard protocols have to be established, since the meta-analysis of studies is

difficult, and it’s difficult to draw a conclusion; prospective genotyping has to be

used whenever possible to facilitate the association detection, since research design

is usually retrospective and therefore lacks sufficient capacity to find nutrient-gene

interactions. In any study, publication bias is unavoidable, which tends to report

positive associations more often than negative associations. This also occurs in

nutrigenetic studies and creats an illusion of the significance of many nutrient-gene

associations.

7.2.5 Nutritional Influences on Epigenetics

With the development of nutritional genomics, considerable progress has been

made to reveal genetic susceptibilities in complex chronic diseases [43]. However,

a large majority of phenotypic differences cannot be explained by genetics, thus

referring the researchers to environmental factors. At epigenetic level, nutrients

alter gene expression and therefore change phenotypes [44]. Epigenetics is a

recently emerging molecular mechanism in which nutrients affect gene transcrip-

tion [45]. Epigenetic markers are heritable and modifiable, mediating gene expres-

sion without changing the nucleotide sequence [45].

DNA methylation and histone modifications are classical epigenetic mecha-

nisms that change localized DNA compaction to regulate gene transcription

[45]. DNA methylation biochemically modifies cytosine in DNA with a methyl

group and inhibits gene expression [45]. Histone modification includes a wide

range of posttranslational modifications, e.g., acetylation, phosphorylation,

biotinylation, and ubiquitination. These modifications could modulate the compac-

tion of the DNA around the core histones and act as binding sites for transcriptional

factors [45]. Histone modifications either activate or repress gene expression

depending on the modification type and the location at the histone tail [45]. A

wide range of synergistic effects are observed between the levels of epigenetic

markers to identify accessible genes for transcriptional regulation [46].

Nutrition can change epigenome in several ways [45]. First, nutrients serve

either as methyl donors or coenzymes for DNA or histone methylation [47]. For

example, B vitamin family, e.g., folic acid, B2, B6, and B12, serves as coenzymes

and amino acids, e.g., methionine and serine that donate methyl groups [48]. Sec-

ond, nutrients and dietary ingredients directly mediate the activities of enzymes that

catalyze DNA methylation and histone modifications [45].
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7.2.6 Ethical Considerations

Several ethical issues have to be addressed before personalized nutrition can be

routinely practiced. First of all, it is necessary to consider the cost-effectiveness,

social acceptance, and affordability of genetic testing or personalized food prod-

ucts. It is doubted the expensive personalized products only benefit the well-

educated and rich people. In addition, it remains unclear whether people are willing

to understand the principle of genetic testing, let alone to undergo these testings. An

investigation was carried out by Cogent Research on 1000 Americans, and 62% of

the surveyed people said they have no knowledge of “nutrigenomics.” However,

respondents are interested in specific products generated by nutrigenomics, such as

in-depth well-being evaluation, vitamins, fortified foods, and organic foods. More

efforts are needed to know whether individuals are willing to accept such tests, and

also more scientific popularization is needed to increase the public awareness of

personalized nutrition regimens.

Whether the personalized nutrition is effective enough to provide a solution to

diet related diseases is still under debate [49]. It is proposed that traditional risk

factors should be used at first place to screen the population [50]. There are also

discussions on the social, economic, and environmental factors of chronic diseases,

shifting the focus from dietary supply to food manufacturing as being more

effective in disease intervention [49].

7.2.7 Conclusion

Advances in the knowledge of nutrient-gene interactions portend a possible revo-

lution in preventative health care. However, there are still some difficulties in the

application of nutritional genomics in nutrient-related diseases in the near future,

either technically or theoretically. In addition to the need for properly designed

intervention research, more attention should be paid to ethical issues, e.g., the

public’s awareness and acceptance, as well as the economic viability of genetic

testing.

7.3 Nutrition in Diseases

Chronic diseases generally arise from genetic makeup and environmental factor

interactions. It is a result of long-term interaction and multiple factors. Dietary

components are important factors that could influence human physiological path-

ways directly; thus nutrients have substantial effect on human health. With the

development of new technologies including transcriptomics, proteomics, and

metabolomics, biologically active nutrients are increasingly recognized. Their
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chemopreventive effects are systematically analyzed. Nutrigenomics knowledge

about genetic susceptibility, physiological well-being, and risk factors is acceler-

ating the development of improved diagnostic strategies as well as personal ther-

apeutic procedures against diseases caused by nutrition.

The latest nutrigenomics research and the molecular basis underlying the ben-

eficial effects of bioactive food components on some diseases are still at its

accumulating stage. Here in this part of the book, we are focusing on nutritional

studies on the scale of population and public nutrient advices for some common

human diseases (including cancer, atherosclerosis, Alzheimer’s diseases, and type

2 diabetes).

7.3.1 Cancer

Cancer is a heterogeneous group of diseases characterized by abnormal cell prolif-

eration which is invasive. It is the second biggest cause of death worldwide and

mostly affects elderly subjects. Prolonged exposure to carcinogens increased cell

susceptibility [55, 56], and immune senescence [57] is considered as the leading

cause of tumorigenesis in the late phase of life. A number of dietary suggestions

have been proposed to fight cancer risks, although the evidence to support them is

uncertain [58, 59]. The main dietary factors that increase cancer risk are obesity and

alcohol consumption. Low fruit and vegetable consumption and high intake of red

meat are significantly relevant with increased risk of cancer [60, 61]. However,

according to another study in 2014, fruits and vegetables have nothing to do with

cancer [62]. Coffee contributes to the reduced risk of hepatocarcinoma

[63]. Processed meat and red meat to a lesser degree increase the risk of esophagus

cancer, gastric cancer, and colorectal cancer, which can be explained by the

induction of carcinogens in meats at high temperatures [64, 65]. Generally, for

public health, cancer is related to too much consumption of processed and red meat,

saturated fatty acids, and refined sugar instead of vegetables, fruit, whole grains,

and fish [58, 59].

7.3.2 Atherosclerosis

Cardiovascular disease (CVD) accounts for significant morbidity and mortality in

the Western and developed countries. Atherosclerosis is the major cause of heart

attack and stroke. Atherosclerosis is a subtype of arteriosclerosis characterized by

arterial wall thickening due to accumulated leukocytes and intimal cells that form

atherosclerosis plaques [66]. This multifactorial disease is caused by multiple

environmental and genetic factors. Currently, nutrition consultation involves

population-based prescriptions which fail to reduce the risk of cardiovascular

diseases.
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The association between dietary fat and atherosclerosis is under debate. While

some of the government bodies like the USDA, the American Heart Association,

and the National Cholesterol Education Program recommend a diet of 60% carbo-

hydrates from total calories intake, Walter Willett encourages consumption of

lipids, particularly mono- and polyunsaturated fatty acids [67]. However, these

different views come to an agreement on trans-fat consumption.

The effect of oxidized or per oxidized oil (rancid oil) in the diet remains unclear.

Experimental animals fed with rancid fats develop atherosclerosis. Rats fed

DHA-containing oils experienced significant damage to the antioxidant systems

and accumulated a large amount of phospholipid hydroperoxide in blood, livers,

and kidneys [68]. Rabbits fed atherogenic diets with all kinds of oils were most

susceptible to LDL oxidation via polyunsaturated oils [69]. In a case on heated

soybean oil-fed rabbits, “severe atherosclerosis and liver damage were induced

[70].” However, it also suggested that the culprits are not cholesterol but oxidized

cholesterols from fried foods and smoking.

It is hard to estimate the actual edible oil rancidity because it tasted terrible, and

people avoid eating even a small amount of them [71]. Highly unsaturated omega-3

rich oils such as fish oil are sold in the form of tablets. This makes no obvious smell

of rancid fat oxidation. In order to prevent the oxidation of unsaturated fats, it is

recommended to store them under low temperature in the absence of oxygen [72].

7.3.3 Alzheimer’s Diseases

Alzheimer’s disease (AD) is a common neurodegenerative disease in Europe and

the United States. The aging of the population is becoming a serious social problem.

The symptoms of disease include progressive degeneration in memory and intelli-

gence, poor language and behavioral skills, and disorientation. Characteristic neu-

ropathology features are senile plaques, neurofibrillary tangles, and amyloid

angiopathy. The exact molecular mechanism in AD development remains unclear

and may involve a variety of risk factors. People on a healthy, Japanese, or

Mediterranean diet are at lower risk of developing AD [73]. The Mediterranean

diet can improve outcomes of AD [74]. Those who eat high saturated fats and

simple carbohydrates (mono- and di-saccharide) are at a higher risk [75]. The

beneficial cardiovascular effect of the Mediterranean diet has been proposed as a

mechanism of action [76].

Sometimes it is difficult to determine the effect of diet components because there

are differences between population and randomized controlled trials [73]. Limited

evidence suggests that mild moderate drinking, especially red wine, contributes to a

reduced AD risk [77]. Caffeine also has a protective effect [78]. Another research

proved that foods rich in flavonoids, e.g., cocoa, tea, and red wine, could reduce the

risk of AD [79].

Vitamins and minerals are also recommended by a large number of studies,

including vitamin A [80, 81], C [82, 83], E [82], selenium [84], and zinc

152 Y. Gao and J. Chen



[85, 86]. Vitamin B complexes [87] exhibit no obvious relation to cognitive decline

[88]. Omega-3 fatty acid and DHA supplements have no benefits to people with AD

[89, 90].

Although beneficial in animals, curcumin has not shown benefit in people

[91]. Ginkgo has inconsistent positive effect on cognitive damage [92].The effect

of cannabinoids in relieving the AD symptoms is not concrete [93], although some

research looks promising [94].

7.3.4 Type 2 Diabetes

Type 2 diabetes mellitus is a complex metabolic disease. It’s estimated by the

International Diabetes Federation that there are 371 million T2DM cases world-

wide. T2DM and its complications have created personal and social burdens.

Preventive approaches, which include nutritional and lifestyle suggestions origi-

nated from scientific research, should work corporately with the proactive, medical

approach for the prevention and treatment.

T2DM is a multifactorial disease with variable morbidity, severity, and out-

comes in adolescents, adults, and the aged. Genetic (susceptibility), epigenetic, and

environmental factors (nutrition and lifestyle) lead to T2DM. The current research

on T2DM usually focuses on one of the risk factors in isolation instead of multilevel

systematic studies. Here we are going to introduce some of the genetic and

environmental factors (nutrition and exercise) that are related to the prevention

and amelioration of type 2 diabetes.

Proper diet and physical training are the basis of diabetic treatment [95] and

more exercise yields better outcome [96]. Aerobic exercise as well as resistance

training reduces HbA1c and enhances insulin sensitivity [96]. Cultural education

should be given to people with type 2 diabetes as the first line to control the

glycemic levels for half a year first [100]. A diabetic diet that controls weight is

necessary, although the content of the diet is still under debate [97]. A low glycemic

index diet or low carbohydrate diet was reported to facilitate glycemic control

[98, 99]. If changes in lifestyle in mild diabetics do not increase blood sugars within

6 weeks, the drug should be administered [95]. A vegetarian diet is usually

associated with a reduction in the risk of diabetes [101], but moderate amounts of

animal products will also do no harm on human metabolism [102]. There are also

implications that cinnamon increases blood glucose level in T2DM patients,

although this is not completely for certain [103].
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7.4 Databases for Nutritional Genetics and Genomics

The ever-growing big data generated by obesity and nutrition studies can be utilized

for public health purposes. Such data can be analyzed by quasi-experimental

methods to evaluate effectiveness and obtain interesting observations. Quasi-

experimental methods are intermediate forms between ordinary causal inference

and randomized control trials [104] in estimation of causal impacts. In this book, we

refer “big data” to the massive and complex data sets (structured and unstructured)

that grow rapidly overtime. Big data are gathered by both the public and private

sectors and need a distributed framework for efficient data query and storage. Big

data analytics broadly refer to the combination of machine learning and other

computational and statistic tools for massive data processing and mining. Admin-

istrative microlevel data collected by regulatory authorities and commercial com-

panies can be used to measure the effectiveness of pharmacological and surgical

interventions. In particular, some private companies have emerged that are special-

ized in building data linkages. As is the case with Optum, companies retrieve claims

data from insurance companies meanwhile provide linked clinical data from the

corresponding EHR. Were it not for the data linkages, researchers wouldn’t answer
questions with a single data source. Clinical data provide complementary informa-

tion that claims data do not provide, e.g., height and weight of the patient.

Moreover, the recent initiatives to integrate genomic data with EHR further enable

decision support and precision medicine. One of the stumbling blocks in the big

data leverage is the data source, in particular the cost of purchasing the data from

commercial companies. Cooperation between academy and industry is indispens-

able to the big data exploitation [105, 106].

To date, big data analyses have primarily focused on multivariate statistical

methods. The algorithms and toolkits for such purpose include boosting, random

forests, component analysis, decision trees, and linear regression models

[105]. While randomized controlled trials are considered to be the gold standards

with highest credibility, some novel designs are also able to provide evidence that

may lie on a spectrum between pure association and definitive causality. Big data

also brings about the chance to measure the degree of causality using techniques,

e.g., high-dimensional propensity score approaches to generate evidence of causal-

ity [107]. It is also possible to use instrumental variable methods, most used in

health policy studies, to extract appropriate instruments from “big data.” Recent

methodology advancements have maximized the potential of “big data.”

7.5 Systems Biology for Nutritional Genomics

The concept of integration in biology has been a recurrent theme in biological

science since the days of Norbert Weiner [108]. In contrast with traditional reduc-

tionism, systems biology is studying the metabolism of the organism in a holistic
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point of view. The essential factor for realizing it is the high-throughput technol-

ogies to study an animal’s genome, proteome, and metabolome and bioinformatics.

These technologies constitute the foundation of modern systems biology to help

understand of the complex biological interactions. Modern bioinformatics methods

are able to predict functional outcomes, and construct interaction networks com-

plement the high-throughput technologies in data translation. With the “omics”

technology combined with bioinformatics modeling and analysis, simultaneous

observation of the complex inter-tissue adaptations to physiological status and

nutrition can now be discerned. A link between absorptive epithelium and micro-

organisms can be studied by integrated methods. Recent publications highlight the

importance of the integrative methods in fine-tuning nutrition management of

population.

As has been shown, there are two important functions for the application of

systems biology. The main goal to apply systems biology is to integrate information

at various levels (e.g., gene to mRNA, mRNA to protein, protein to organ, organ to

system, multiple systems to whole animal) as a means to arrive at a holistic view of

how an organism functions [109]. The combination of computer-based analysis and

experimental work with model organisms has shown the applicability of high-

throughput technologies (e.g., gene chips, deep sequencing, proteomics,

metabolomics) to discern functional biological networks [110]. Information gath-

ering and integration are far better than continuing with the traditional reductionist

approach as has been indicated by ample evidence [111]. Another purpose of this

process is to reveal important molecules that participate in the individual adapta-

tions to nutrition.

Although there has been steady growth during the last 10 years and that is likely

to continue, application of systems concepts and tools in nutritional science is still

not widely accepted [112]. Part of the reason might be the lack of proper training or

exposure of graduate students and postdoctoral trainees to the discipline. In the

post-genomics era, we hope that with the development of the whole field and the

continuing emphasizing of the holistic thinking from principal investigators to the

students to embrace the systems concept, it will promote the wider application of

the concept in nutritional sciences.

7.5.1 The Technologies

The potential of genomic and proteomic research as cornerstones of systems

biology has been recognized [113]. The development of instrumentation [114] is

instrumental for the systems biology field. These new technologies helped to

accumulate high-throughput data.

“Omics” technologies could gather transcriptomic, proteomic, and metabolomic

data together, following the physiological flow of biological information processing

and synthesis and metabolites changes (Fig. 7.2).
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Other “omics” technology in systems biology includes the fluxomics, proteo-

mics, and metabolomics [115]. Technologies are also developed for high-

throughput detection of other cellular components, for example, lipidomics [116],

which identifies and classifies the repertoire of intracellular lipids and associated

interaction partners, and glycomics [117] which aims to identify carbohydrates and

glycans.

These techniques are still in its fast-developing stage, which means they are

relatively new and there is still no golden standard for the technical replication and

proper statistical approaches including use of multiple testing correction or fold

change. More in-depth discussions of technical and statistical aspects related to

omics studies are referred to previous publications [118–120]. Technical principles

and applications of transcriptomics, proteomics, and metabolomics are introduced

below, and the omics workflow and data integration are going to be discussed more

in detail.

7.5.2 Transcriptomics

The transcriptome is the total transcribed RNA within a cell. When considering

mRNA, the transcriptome reflects the genes that are actively transcribed at any

given moment and represents a snapshot of the cellular gene expression. In systems

biology, the high-throughput technologies, microarray and RNA sequencing

(RNA-seq), are used for providing the measurement of almost the whole

transcriptome. Combining with appropriate computational tools, for example,

Fig. 7.2 Physiological flow of biological information processing and synthesis from gene expres-

sion to protein synthesis and metabolites changes
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metabolic and cell signaling databases, transcriptome data can be used to analyze

changes across all possible cellular pathways. The recent introduction of next

generation sequencing technology has revolutionized transcriptomics by allowing

RNA analysis through cDNA sequencing at a massive scale [121]. Compared with

microarrays, NGS technology has several advantages, including enlargement of the

limited dynamic range of detection. The RNA-seq studies provide transcriptomic

information quantitatively and qualitatively, improving the knowledge of transcrip-

tional events such as alternative splicing and gene fusion. Furthermore, this new

technique is also able to provide useful information on the noncoding RNA and

epigenetics.

7.5.3 Proteomics

Proteomics provides the repertoire of proteins in a cell at a given time. Compared to

the genome, the proteome is more dynamic, because of post-transcriptional mod-

ifications can occur very quickly and frequently. For example, phosphorylation and

dephosphorylation in response to a hormone can occur within several minutes, as

has been shown for insulin in adipose tissue [122]. Moreover, mRNA alternative

splicing and a wide range of post-translational modifications, like acetylation,

ubiquitination, methylation, etc. increase proteome complexity greatly. In the past

10 years, the field has grown rapidly due to major progress in instrumentation [123].

The core technique for modern proteomics is mass spectrometry [124], in which

the chemical compounds to be analyzed are ionized and the charged ions are

analyzed according to their mass to charge ratio. PAGE are used for sample

preparation and separation of complex protein mixtures prior to MS. In addition,

chromatography, e.g., HPLC, could be used to complement or even substitute

gel-based separation to further implement automation in the technique.

The raw data generated by MS contain information of the peptide masses.

Identification of the proteins is performed by comparison against a protein database.

Reliable quantification of the identified protein is also possible with several

MS-based quantification methods [123]. However, proteomic advances such as

QconCAT [125] and PSAQ have made it possible to measure the absolute abun-

dance of proteins.

7.5.4 Metabolomics

Metabolomics refers to the global profiling of metabolites and uses high-resolution

analysis together with statistical tools to provide the repertoire of metabolites

[126]. Compared to proteomics, which could detect the protein and its posttransla-

tional modification information, the small molecules detectable by metabolomics

are rich in variety, ranging from peptides, amino acids, nucleic acids to
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carbohydrates, organic acids, and inorganic species. Metabolomics offers a plat-

form for the comparative analysis of metabolites between specific nutritional

treatments that determine the dynamic reactions during cellular process.

Metabolome analysis may be performed on various biological fluids and tissue

types and may rely on different platforms; the two main technologies are NMR and

MS. As one of the most common spectroscopic techniques, NMR identifies and

quantifies multiple metabolites in the micromolar range. Mass spectrometry is

finding increasing application in high-throughput metabolomics, often used

together with other analytic tools such as gas, liquid, capillary electrophoresis, or

ultra-performance liquid chromatography techniques. MS-based metabolomics is

able to quantify multiple metabolites (i.e., end products of cellular processes) at the

same time. The high sensitivity and wide coverage have made MS the technique of

choice in many metabolomic experiments.

7.5.5 The Omics Workflow

Recent development bioinformatics tools along with the ever increasing Omics data

have provided unprecedented opportunities to unveil the underlying biological

mechanism in a complex system. Genome-scale metabolic reconstructions have

been assembled in order to represent all known metabolic pathways of an organism

[127]. Metabolic networks have already been reconstructed for multiple model

organisms ranging from unicellular to multicellular. Developing automated tools

and implementing mathematical models, known as the “bottom-up” approach, aim

at thoroughly crafting detailed models that can be simulated under different phys-

iological conditions [128].

A novel technique, the constraint-based reconstruction and analysis (COBRA)

[129], has been proposed recently that can model system at genome level. COBRA

outperforms other modeling approaches because it makes clear distinguish between

biologically feasible and unfeasible network states. COBRA relies on network

stoichiometry and thus avoids the need to determine kinetic rate constants and

parameters that are experimentally difficult to measure. The bottom-up approach

integrates all organism-specific information at genome level to model the molecular

interactions within the living organism, and it uses the methodology built on

constraint-based modeling [129].

In our view, the most suitable approach to discoveries in nutritional sciences is

the top-down strategy, which originates from well-designed experimental data, and

information at various levels is used to reconstruct the metabolic or physiologic

response [128]. The use of omics data obtained via the standard top-down meth-

odologies previously described is ideally suited for this approach. The technologies

used during data gathering (i.e., transcriptome, proteome, and metabolome) have a

holistic connotation; hence, it is considered a “potentially complete” approach. This

approach, however, is not free of limitations [130], but it is able to provide a more

precise map of the metabolic pathways. As such, it provides insight into the
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metabolism, signaling, and mobility of cells and/or tissues under specific environ-

ments and physiological phases.

7.5.6 Data Integration

Currently, the costs of omics analyses or the computational power required by the

statistical analysis of the data set are no longer a major hurdle. However, if the data

are not well processed and analyzed, the existence of massive data sets will not

necessarily ensure useful information in a given system. When trying to integrate

multiple levels of complexity (i.e., results from different omics analysis within the

same study), three types of analyses usually could be made: (1) one omics data set

(e.g., transcriptomics) is used to fill the gaps in the other omics data set (e.g.,

proteomics) when two approaches are used simultaneously; (2) different omics

levels can be used to cross-validate the others; and (3) different omics data sets can

be used to build mathematical correlations. The latter is more interesting from a

systems approach. For example, when integrating the transcriptome with the

proteome, investigators could focus on those cases where the expected correlations

between the two are absent, revealing hidden regulatory information lacking from

the original knowledge base of the system [131], and provide a brief overview of

the proposed approaches to jointly analyze transcriptomic and proteomic data.

Certainly, access to user friendly software, such as INGENUITY pathway analysis

(http://www.ingenuity.com/products/ipa; accessed) and Strand NGS (http://www.

strand-ngs.com/; accessed) that have built-in capabilities for data integration, will

continue to be essential in those efforts.

Most of the statistical integrative approaches above only provided numerical

results, ignoring their biological significance and graphical representation. Only

when these molecular interactions are illustrated graphically can we obtain novel

insights into their function and form new hypotheses. Therefore, visualization

allows the user to have an all-encompassing view of the effects of the condition

or conditions studied and extract conclusions that would not otherwise be evident.

An additional benefit is that the process involved in summarizing data and gener-

ating graphical outputs often becomes an analysis in itself, thus yielding novel

results [132].

Although valid to provide new information in cross talk between tissues, the use

of information of only two or three tissues merely scratches the surface of the large

interactive networks of information among the >200 types of cells composing the

organism. The application of network analysis using transcriptomic data, although

based on real data, can be considered an in silico method because the direct cross

talk is not actually measured (i.e., signaling molecules and their direct effects are

not measured). Despite the limitations described above, the use of large omics data

to study cross talk is another example of the new discoveries that can be made using

a systems biology approach.
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7.5.7 Nutrition, Systemic Metabolism, and Epigenetics

Epigenetics is stable and heritable phenotypes that are not caused by alterations in

DNA sequence. Besides the genetic, proteomic, metabolomics regulation, it pro-

vides another layer of regulation mechanism for nutrient on systematic metabolism

regulation. In many cases, epigenetic processes outperform genetic processes in

manifesting phenotypes across several generations. Transgenerational epigenetic

inheritance refers to the transmission of specific epigenetic marks across genera-

tions via the germ line [51]. Methylation of cytosine in the DNA and modifications

of histone proteins constitute important mechanisms regulating the epigenetic

inheritance [52]. These epigenetic marks affect the gene transcription, and therefore

the cellular phenotype is passed on during mitosis. In this way, the daughter cells

inherit the epigenetic marks from the parent cell. Maternal nutrition can induce

epigenetic alterations of fetal DNA via methylation, which causes permanent

alterations in the phenotype of the offspring [53]. It is becoming increasingly

apparent that the environment in utero in which a fetus develops may have long-

term effects on subsequent health and performance. These novel nutritional strat-

egies are being studied to better exploit the full genetic value of modern livestock

breeds. The goal is to “program” the offspring in utero, by managing maternal diets,

to fully express their potential after birth. This involves complex epigenetic mech-

anisms in which the whole genome, or parts of it, is modulated by the environment.

Nutritional epigenetics is relatively a new subject; there is much work to be done

and there is great potential to produce public health implications. It is of particular

importance to identify the tissue- and time-specific nutritional exposures. A grow-

ing body of evidence supports the view that maternal nutrition is key to epigenetic

programming of offspring [54], but other phases in the lifecycle need further

examination. Genome-wide association studies technology that identified original

gene-diet interactions are now being applied to nutritional epigenetics, embarking

into the arena of epigenome-wide association studies which will support these

endeavors.

A growing body of evidence supports the view that maternal nutrition is crucial

for epigenetic programming of offspring [54], but other time periods of life cycles,

particularly the need for disease, are investigated. Should be exposed before the

disease develops, suggesting the importance of lifelong dietary patterns, or may

have effective therapeutic effects on the diagnosis of the following diseases?

Another question is whether nutrition and aging regulate epigenetic patterns in

programming or that the effects of nature are more random.
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7.6 Future Perspectives

Food, drinks, air are the substances we absorb and metabolize. Nutrition therefore

represents most powerful lifetime environment that affects our health. Modern

nutrition science focuses on promoting health, preventing diseases, improving

performance, and evaluating risk/benefit ratio. Personalized nutrition enables food

to adapt to individual needs. Food products that are designed to the needs or

preferences of a particular consumer group are often based on rule of thumb instead

of molecular nutrition. Nutrigenomics and nutrigenetics establish the framework

for understanding genomic and genetic contributions to personalized dietary pref-

erences and needs and may develop into novel approaches to define health and

nutritional status. With the development of molecular and high-throughput meta-

bolic techniques in combination with the advancement of bioinformatics, systems

study of metabolism could be realized. More and more health-related information is

gathered to direct the lifestyle and diet on a public as well as a personal level.

It is a trend that nutritional science is complementing the role of medical science

and promoting health of human being. It is believed with the development of

economy and the whole society, nutrition science will get more attention from the

public and deeply change the human society in the near future.
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Chapter 8

Interactions Between Genetics, Lifestyle,

and Environmental Factors for Healthcare

Yuxin Lin, Jiajia Chen, and Bairong Shen

Abstract The occurrence and progression of diseases are strongly associated with

a combination of genetic, lifestyle, and environmental factors. Understanding the

interplay between genetic and nongenetic components provides deep insights into

disease pathogenesis and promotes personalized strategies for people healthcare.

Recently, the paradigm of systems medicine, which integrates biomedical data and

knowledge at multidimensional levels, is considered to be an optimal way for

disease management and clinical decision-making in the era of precision medicine.

In this chapter, epigenetic-mediated genetics-lifestyle-environment interactions

within specific diseases and different ethnic groups are systematically discussed,

and data sources, computational models, and translational platforms for systems

medicine research are sequentially presented. Moreover, feasible suggestions on

precision healthcare and healthy longevity are kindly proposed based on the

comprehensive review of current studies.

Keywords Genetics-lifestyle-environment interaction • Epigenetics • Systems

medicine • Precision healthcare • Healthy longevity
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8.1 Introduction

The determinants of health are expected to be understood all the time. Disease is an

increasingly serious problem that affects human life. Cancers, cardiovascular

problems and neurodevelopmental disorders are still the leading cause of death

worldwide. Meanwhile scientists noticed that the incidence of these diseases in

different countries or ethnic groups tends to differ enormously. For instance, the

coronary disease was common in the United States, but it did not always occur in

the traditional Crete and Japan [1]. Hepatocellular carcinoma is a fatal malignant

tumor, and it was well studied particularly in Asian population [2].

Due to the complexity and heterogeneity during disease progression, consider-

able efforts have been made to investigate the differences of disease pathogenesis.

For example, Tang et al. analyzed the heterogeneity of cancer samples using five

computational algorithms and the result from prostate cancer study showed that the

expression signature at the gene level was more heterogeneous than that at the

pathway level [3]. Since Parkinson’s disease (PD) is heterogeneous with different

genetics, pathology, and clinical phenotypes, Ma et al. focused on the identification

of PD subtypes and further evaluated the correlation between these subtypes and the

polymorphisms in genes. Experimental samples were obtained from PD patients,

and four subtypes were finally determined by cluster analyses. However, few

associations were found between the identified subtypes and the polymorphisms

in LRRK2 and GBA genes [4].

Accumulating evidence indicated that the development of diseases is strongly

related to genetic variants. For example, Jiang et al. performed the systematic

analysis on genome-wide association study datasets and found that the

top-associated single nucleotide polymorphisms (SNPs) in prostate cancer were

located at transcription factor binding sites and enriched in cis-expression quanti-

tative trait loci [5]. As one of the structural genetic variations, the copy number

variation (CNV) is also important in modulating the pathogenesis of human dis-

eases [6]. However, studies showed that the rates of many diseases rapidly changed

over time and the incidence of chronic disease among migrants with different

cultural backgrounds seemed to be inconsistent [7]. All the results demonstrated

that the occurrence of diseases not only arose from genetic differences among

populations but also was attributed to nongenetic factors, such as the lifestyle and

environmental effects.

In fact, a great number of studies were carried out to explore the functional

influences of extraneous elements on disease evolution. They pointed out that

understanding the interplay between genetics, lifestyle, and environmental factors

may provide personalized strategies for disease diagnosis and treatment, especially

in the era of precision medicine. On one hand, Mediterranean diet habit,

nonsmoking status, appropriate alcohol consumption, and regular physical activity

are essential for human longevity. On the other hand, clean air and water, less

radiation, and moderate sunshine may help people keep away from diseases. The

healthy lifestyle and environment promote the maintenance of the function of cells
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and organisms, thereby modulating life span in an efficient way. Recent epigenetic

studies also proved that both genetics and lifestyle could affect the epigenetic

modifications, which are of sensitivity to the aging process [8]. Exploring the

biological mechanisms among gene-lifestyle-environment interactions, therefore,

may help explain the underlying reason of disease initiation and eventually increase

the chance toward precision healthcare and healthy longevity.

8.2 Epigenetic-Mediated Genetics-Lifestyle-Environment

Interactions

8.2.1 Epigenetics

Epigenetics is a branch of genetics that investigates stably heritable phenotypes

deriving from changes in the chromosome with no alterations in DNA sequence

[9]. It focuses on the heritable change in a chromosome that affects gene expression

without modifying the genome. The proposed concept indicated that environmental

factors could also influence gene behaviors. Some specific epigenetic processes are

known as DNA methylation reprogramming, maternal effects, gene silencing,

genomic imprinting, X chromosome inactivation, RNA editing, etc.

Recent studies showed that epigenetic changes induced by internal or external

environments played pivotal roles in cell division and contributed to the stable

maintenance of the phenotype [10]. This further guided the discovery of the

etiological characteristics in complex diseases [10]. In most cases, epigenetic traits

were as important as genetic factors and mediated the disease development func-

tionally. For example, He et al. reviewed that the epigenetic modification was

functional in keloid formation besides the genetic predisposition. They analyzed

epigenetic mechanisms such as histone modification, DNA methylation, and non-

coding RNA regulation and found that epigenetic markers may provide novel

insights into keloid scarring [11]. As a kind of fatal tumor in the world, cutaneous

malignant melanoma (CMM) was caused by both genetic and epigenetic aberra-

tions. For instance, genetic changes such as the loss of tumor suppressor gene

CDKN2A and oncogenic activation of MAPK pathway were closely related to

CMM evolution. However, the effect of epigenetic factors also led to the abnormal

expression of CMM-associated genes by transcriptional silencing [12].

8.2.2 Genetics-Lifestyle-Environment Interplay

The effects on cellular or physiological phenotypic traits can originate from life-

style and environmental factors. As shown in Fig. 8.1, genetics, lifestyle, and the

environment may interact with each other due to the role of epigenetic modification.
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Such point of view emphasizes the functional importance of environmental ele-

ments on disease development and provides deeper strategies for personalized

healthcare.

It is reported that about a quarter of the variation related to human longevity

dependents on genetic factors. Most of them are genes associated with basic

metabolism. Researches on genes that correlated with nutrient-sensing signaling

pathways also demonstrated that the genetic metabolism of nutrients is helpful in

promoting cell/organism maintenance, which is good for body health [8]. Although

genetic background is essential for people longevity, epigenetic studies indicated

that the lifestyle such as proper diets was often a key factor influencing the quality

of aging [8]. The lessons from centenarians showed that the lifestyle affected

human development and diversity at all the stages. Govindaraju et al. [13] com-

pared the potential differences of genetic and epigenetic factors between group of

normal life span and of centenarians. Based on an integrated approach called

genotype-epigenetic-phenotype map, they found that most of the genetic and

nongenetic factors seemed to be the same in these two groups, but people with

longevity may be mediated by genomic stability, homeostatic mechanisms, as well

as polymorphisms in specific genes. From the perspective of oxidative stress

response, centenarians tended to have conservative stress response mechanisms,

which plausibly resulted from the active interaction of genetic factors and lifestyle

effects such as healthy nutrition and moderate physical exercise. The finding

suggested that the combination of genetics and lifestyle could shift the internal

Fig. 8.1 The diagram of genetics-lifestyle-environment interaction. Besides genetic factors, the

lifestyle and environment can affect people health through epigenetic modification
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and external stress levels by activating the defense mechanisms in the body, thereby

inhibiting disease development and promoting a healthy life [14].

The interplay between genetics and environment exists during almost all the

transcription and translation process [15]. It governs cell epigenome and determines

gene expression product. Evidence indicated that only one third of cancer devel-

opment could be solely attributable to heritability and more than 70% were

connected with environmental factors [16]. The deregulation of genome-

epigenome interaction influenced gene expression and chromatin states, which

could lead to disease evolution [16]. Since a number of environmental factors

have been reported to activate the epigenetic transgenerational inheritance of

disease [17], Skinner et al. [18] designed the experiment which investigated the

effect of environment factors on genetic mutations. They paid attention to CNVs in

different generations following exposure and found that such CNVs significantly

increased in the sperm of the third generation compared with the first one. After

analyzing the differential DNA methylation sites and CNVs at the genome-wide

level, they concluded that environmental factors may eventually induce genetic

mutations by promoting epigenetic inheritance. The transgenerational phenotypes

were induced due to the interaction between genetic and epigenetic effects [18]. It is

notable that the biochemical activity within genetics-epigenetics interplay is quite

complex. Considering the sensory systems in humans, the environmental quality

could be sensed and encoded by neurons and by cells in sensory codes like

canonical and molecular perception. Finally, a series of regulatory responses, e.g.,

transcription factor activation and hormone release, were started in the organism

based on metabolism adjustment, part of which have been convinced to be essential

for subsequent modulation of health and disease [19].

8.3 Disease Studies

8.3.1 Cardiovascular Diseases

Cardiovascular diseases are a class of chronic diseases with high morbidity and

mortality around the world. Identifying high risk factors associated with these

diseases may help understand the pathogenesis and further promote the personal-

ized intervention. According to the report of the World Health Organization,

unhealthy lifestyles such as smoking, irregular diet, and sedentary behavior are

the kernels that lead to cardiac disease development [20].

Metsios et al. [21] reviewed the effects of passive smoking on cardiovascular

disease development in children based on a collection of 42 papers. They found that

passive smoking could deteriorate the cardiovascular status of children by

disturbing the high-density lipoprotein level as well as vascular function. In the

Lyon Diet Heart Study [22], patients with coronary heart disease were randomly

divided into two groups and, respectively, followed by a few years of an alpha-
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linolenic acid-rich Mediterranean diet and usual post-infarct prudent diet. The

result showed that the risk of heart disease was reduced in the group with Mediter-

ranean diet, which indicated the efficiency of Mediterranean diet in the secondary

prevention of coronary diseases. Moreover, Antonogeorgos et al. [23] used the

structural equation modeling and found that the Mediterranean diet may mediate

the negative influence of depression and anxiety on the risk of cardiovascular

diseases. Since sedentary activity is highly connected with cardiovascular disease

risk, Carter et al. [24] hypothesized that sedentary activities could lead to impaired

arterial health by interfering the function of key hemodynamic, inflammatory, and

metabolic processes in the body, thereby contributing to the development of

cardiovascular diseases. Evidence in rural Americans [25] also presented that the

decrease of sedentary behavior by 30 min or more per day may reduce cardiovas-

cular disease risk factors.

It is well documented that the development of cardiovascular diseases is closely

related to genetic variants. For example, Willer et al. [26] identified that variants in

lipid metabolism-related loci, e.g., ABCA1, APOB, PCSK9, CETP, etc., could

influence plasma lipid concentrations and increase the risk of coronary artery

disease. Such finding introduced the genetic predisposition and revealed why

some individuals were more sensitive to cardiovascular diseases. Another crucial

factor comes from epigenetic effects. For instance, chromatin remodeling and

histone modifying factors may control the development of cardiovascular diseases

through regulating the expression of several key genes [27]. Since the complexity

during cardiovascular disease evolution, Kelishadi et al. [28] systematically sum-

marized the genetic, lifestyle, and environmental aspects of cardiovascular dis-

eases. They emphasized that genetic variants, dietary habits, physical activities,

passive smoking, air pollution, and global climate change were all associated with

the origin of cardiovascular diseases [28]. Besides independent genetic and epige-

netic disorders, understanding the deregulation of gene-environment interactions is

not only powerful to explore the pathogenic mechanism of cardiovascular diseases

but also beneficial to providing preventive and therapeutic interventions at the

right time.

8.3.2 Nervous System Diseases

Interactions between genetic, lifestyle, and environmental factors are crucial con-

tributors to the development of nervous system diseases such as multiple sclerosis

(MS), autism spectrum disorder (ASD), and Parkinson’s disease (PD). Here the

nongenetic factors interact with genetic markers and are able to influence the

function of pathogenetic pathways. For example, MS is a demyelinating disease.

The damage of insulating covers of nerve cells in the brain and spinal cord

interferes with the communicating ability of the nervous system and results in a

series of physical and mental symptoms [29, 30]. Evidence showed that smoking

could interplay with genes within the human leukocyte antigen (HLA) complex,
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which are of significance for MS genetic risks [31]. Compared with low-risk

individuals, those exposed double risk factors, e.g., smoking and genetic variants

(HLA-DRB1*15 carriage and HLA-A*02 absence), tended to have high incidence

of MS [32]. Besides, the level of vitamin D was involved in MS-associated genetic

variant and played functional roles in MS development. For instance, the polymor-

phism near CYP27B1, which is a known metabolism enzyme gene of vitamin D, is

linked to MS pathology [33], and genetically changed 25-hydroxyvitamin D level

was strongly implicated in MS risk [34]. Since most of the nongenetic factors can

be modified by adjusting the current lifestyle as well as environment, prevention

strategies are necessary to be taken especially for people with high MS risks [31].

ASD is a kind of pervasive neurodevelopmental disease. It is characterized by

difficulties in social interaction, communication, and repetitive behaviors. A num-

ber of factors are reported to be associated with ASD pathogenesis, including

genetic, epigenetic, and environmental components. Considering the genetic vari-

ants, CNVs and mutations in single genes are important fuses in ASD development

[35, 36]. The dysregulation of Wnt signaling, MAPK signaling, p53 signaling, and

cell cycle pathway also gained the attention to ASD pathology [37, 38]. However,

only 30% of ASD cases are solely subject to genetic architecture. Epigenetic

influences, long noncoding RNA modulation, and environmental exposure also

played roles in the pathogenesis of ASD [39]. For example, the promoter regions

of ASD-related genes SHANK3 and OXTR seemed to have hypermethylation

patterns, which supported the hypothesis that altered DNA methylation was asso-

ciated with ASD etiology [40, 41]. Kubota et al. [42] summarized that environ-

mental factors, e.g., endocrine disrupting chemicals and mental stress, can induce

the change of epigenetic status and interrupt gene expression, which are often the

causes of ASD development. Importantly, such epigenetic changes tended to be

hereditable and may alter the behavior phenotypes in subsequent generations [42].

Similar to MS and ASD, gene-lifestyle-environment interactions are also effec-

tive to unravel the mystery of PD [43]. For example, Chuang et al. [44] corrobo-

rated the interplay between coffee consumption and ADORA2A and CYP1A2

polymorphisms in PD. According to the genome-wide gene-environment study

[45], glutamate receptor gene GRIN2A also held the potential to interact with

coffee and could be recognized as the modifier gene of PD. Moreover, a recent

case-control study suggested that the risk of PD development was implicated in the

combination of air pollution and proinflammatory cytokine gene IL1B variation

[46], which indicated the functional impact of public environment on nervous

system health.

8.3.3 Cancers

Gene-lifestyle or gene-environment interactions were strongly implicated in cancer

development. As one of the typical cancers associated with smoking habits, the

incidence of lung cancer is still on the rise these years. Previous genetic researches
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indicated that the rs16969968 polymorphism in CHRNA5 was a high risk of lung

cancer occurrence [47]. Since the subunits of CHRNA5 were able to encode the

nicotine–acetylcholine receptors (nAChRs), this gene was well studied in smoking-

related lung cancer development [48]. Xu et al. [49] performed meta-analyses on

17,962 lung cancer cases and 77,216 control groups. The result convinced that

rs16969968 polymorphism was highly connected with the risk of lung cancer,

especially in smokers. A feasible explanation is that the nicotine, which is a key

component in tobacco, can induce tumor invasion and inhibit apoptosis under the

mediation of nAChRs [50]. Another meta-analysis conducted by Chen et al. [51]

pointed out that quitting smoking could decrease the genetic risk of lung cancer,

either for smokers with high or low CHRNA5 risk genotypes. Liu et al. [52]

analyzed the genomic heterogeneity of multiple synchronous lung cancer and

compared the mutation spectra in tumors of smokers and nonsmokers. They

found that smokers, predominantly, had C > A substitutions, whereas C > T

mutations were more frequent in tumors of nonsmoking patients [52].

Regulating food properly is of benefit to cancer prevention. For example,

Giovannucci et al. [53] evaluated the influence of folate intake on colon cancer

incidence. They found that the risk of colon cancer was markedly lower in indi-

viduals with folate intake for more than 15 years [53]. Although the effect was

observed after a long-term diet trial, such finding was still meaningful as it showed

the importance of staying a healthy lifestyle. In order to provide better strategies for

colon cancer prevention, Derry et al. [54] investigated the gene-lifestyle interac-

tions during colon carcinogenesis and identified several molecular targets of life-

style modifications. The eating of red meat, alcohol consumption, smoking,

physical activity, and circadian clock would regulate colon cancer development

through targeting genes associated with some of epigenetic mechanisms, oncogene

alteration, hormone signaling, proliferation, apoptosis, cell cycle, and

metastasis [54].

Talukdar et al. [55] studied the epigenetic, genetic, and environmental risks in

esophageal squamous cell carcinoma (ESCC). They focused on the interaction

between habit-related factors and polymorphism of GSTM1/GSTT1, which

would result in promoter hypermethylation of tumor suppressor genes. Tobacco

chewers tended to have higher methylation frequencies in p16, DAPK, GSTP1, and

BRCA1 compared with those non-chewers. After conditional logistic regression

and multifactor dimensionality reduction analysis, tobacco chewing, smoking, and

GSTT1 null variants were screened as key risk factors for promoter

hypermethylated ESCC, and the combination of tobacco chewing, smoking, betel

quid chewing, and GSTT1 null could be used to predict ESCC with promoter

hypermethylation. Important risk factors as well as predictive models for ESCC

without promoter hypermethylation were also successfully identified [55]. This

study revealed the potential interplay between tobacco intake and polymorphisms

of carcinogen metabolism genes in ESCC and highlighted the functional signifi-

cance of epigenetic and environmental factors on cancer genetics.
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8.3.4 Others

Asthma is an inflammatory disease with variable and recurring symptoms such as

coughing, chest tightness, episodes of wheezing, and shortness of breath. The

number of asthma-caused death was over 489,000 in 2013 [56] and most of them

occurred in the developing countries. Recently, plenty of genetic studies were

carried out to seek genetic risks associated with asthma evolution. Though a

number of sensitive genes as well as SNPs were identified by genome-wide

association studies, the heritability of asthma was still hard to explain. It is

reasonable that environmental factors were functional actors in asthma develop-

ment under the guidance of epigenetic regulation. Lee et al. [57] reviewed that

smoking, allergens, air pollution, and infectious agents are possible inducements for

the occurrence of asthma. Two simple interactions, i.e., CD14-endotoxin and

HLA-allergens, were reported to be involved in asthma pathogenesis [57].

Diabetes is a group of metabolic diseases in which the sugar level in blood is

higher than the normal range over a prolonged period. It has two subtypes, i.e., type

1 and type 2 diabetes. The collision between genetic and environmental compo-

nents seems to be the leading cause regardless of diabetes type. The rapid changes

in people lifestyle induced the increase of diabetes incidence, and obesity is

recognized as one of the direct modifiers of diabetes risk according to the study

by Tuomi et al. [58]. Interactions between genetic variant and diet structure were

mechanisms underlying diabetes risks. For example, the variant in TCF7L2

rs7903146 and in GIPR rs10423928, respectively, communicated with dietary

fiber and dietary carbohydrate and fat intake, which contributed to the initiation

of type 2 diabetes [59]. From the angle of lifestyle behaviors, discontinuing the

habit of smoking and drinking, eating fresh fruits and vegetables, and taking regular

physical exercise could be positive to the health status of diabetic patients [60].

In addition, there are still a large range of diseases developed due to the

abnormality within gene-lifestyle-environment interactions, such as chronic

obstructive pulmonary disease [61], nasal polyposis disease [62], inflammatory

bowel disease [63], and systemic rheumatic disease [64]. Considering space limi-

tations, please refer to the citations for further information.

8.4 Populations, Regions, and Health

8.4.1 Chinese Subjects

China is one of the developing countries in the world. The diet structures and living

habits among Chinese population have distinct ethnic and regional characteristics.

Shi et al. [65] assessed the correlation between food habits, lifestyle factors, and

mortality risk among Chinese people aged 80 and above based on Cox and Laplace

regression analyses. They found that daily intake of fruits and vegetables could

8 Interactions Between Genetics, Lifestyle, and Environmental Factors for. . . 175



decrease the mortality risk. However, such association was inversed when vegeta-

bles were salt preserved [65]. The habit of eating sauerkraut and other salt-

preserved foods is popular in the northeast of China. Thus people in specific regions

should improve the diet architecture, especially for those with digestive system

diseases.

Since inhabitants in Zhongxiang, one of the cities in Hubei province, China, are

commonly longevous, Lv et al. [66] explored the effects of lifestyle/environmental

factors on people health there. As illustrated in Fig. 8.2, the quality of air, drinking

water, and food (rice) in Zhongxiang is quite suitable for people living. The clean

air, weakly alkaline water, and positive elements in rice kept inhabitants away from

diseases and constituted the environmental basis of longevity.

Bethany et al. [67] also investigated the relationship between human rights

environments and healthy longevity in Chinese elders. They conducted the survey

based on a dataset of more than 18,800 Chinese mainland adults with the age of

65 and older. More comprehensively, human rights environments here included

food, housing, social security, education, healthcare, and air quality. Combined

with the context of population aging, the result demonstrated that better environ-

ments in human rights had significant positive effects on healthy longevity at

different stages of people life. The underlying mechanisms referred to pathways

that linked early life conditions to later health and survival, which indicated the

long-term influence of human rights on people health [67].

Fig. 8.2 Environmental effects on health and longevity of Chinese population in Zhongxiang,

Hubei, China. The high quality of air, drinking water, and rice is of benefit to people living there

176 Y. Lin et al.



8.4.2 Japanese Subjects

Japan is a famous island nation in the east of Asia. Kitagawa et al. [68] compared

the differences in lifestyle between smokers and nonsmokers living there. They

found that people with smoking abilities were linked with unhealthy diet habits,

including lower consumption of vegetables, fruits, and beans but higher intake of

salt, salty food, and alcohol. Such differences in lifestyle-lifestyle interactions

influenced the risks of smoking and contributed to the pathogenesis of tobacco-

related diseases. The incidence of certain diseases in Japan is also associated with

Japanese living habits. For example, a dietary pattern with frequently consumed

vegetables, seaweeds, fruits, and soybean products was defined as “healthy diet” in

the study by Morimoto et al. [69]. The diet habit, together with regular exercise and

nonsmoking, was relevant to a lower diabetes risk among the Japanese. Matsuki

et al. [70] examined the effect of lifestyle factors on the risk of gastroesophageal

reflux disease in the Japanese population. The finding indicated that the egg intake,

sleep shortage, and excessive psychological stress were significantly connected

with nonerosive reflux disease. For males, current smoking increased the risk of

both erosive esophagitis and nonerosive reflux disease, and drinking too much was

extremely harmful to gastroesophageal health [70]. Similarly, such lifestyle factors,

e.g., the food architecture, sleep quality, tobacco and alcohol consumption, and

physical exercise, also had considerable impacts on the mortality of cardiovascular

diseases among Japanese people [71].

Apart from lifestyle effects, genetic mutations are often crucial risks during

disease evolution in the Japanese population. Nishigaki et al. [72] overviewed the

mitochondrial haplogroups correlated with lifestyle-related diseases and health

among the Japanese. Functional mitochondrial genome polymorphisms of mito-

chondrial haplogroups played important roles in lifestyle-related diseases, includ-

ing metabolic syndrome, atherothrombotic cerebral infarction, myocardial

infarction, and type 2 diabetes. Moreover, mitochondrial haplogroups D4b2b,

D4a, and D5 were associated with the longevity phenotype of Japanese

subjects [72].

8.4.3 Italian Subjects

Italy is located in the center of the Mediterranean Sea. Over the years, the mode of

Mediterranean diet has been considered as the healthy eating [73]. Prinelli et al.

[74] performed a 20-year follow-up study on Italian population; the result showed

that the Mediterranean diet was a healthy lifestyle behavior which could reduce the

risk of all-cause mortality. Moreover, this reduction was more significant when the

interaction among the Mediterranean diet, nonsmoking, and regular physical activ-

ity was functionally activated [74]. The similar conclusion was drawn by Menotti

et al. [75], who studied the linkage between lifestyle habits and mortality based on
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the 40-year follow-up in the rural areas of Italy. They pointed out that middle-aged

men with unhealthy eating habits, smoking, and sedentary activities at work had

high risks of cardiovascular diseases and cancers, which would increase the inci-

dence of death.

Res et al. [76] focused on the relationship between lifestyle and male longevity

in Sardinia of Italy, in which the longevity across various municipalities tended to

be heterogeneous. According to ecological spatial model analyses, three significant

factors, i.e., the average daily distance required to the workplace, physical activi-

ties, and pastoralism, were found to be associated with the relatively higher level of

longevity [76]. This study suggested the effects of occupational activities on

population health, and, furthermore, geographic features of the region inhabitants

lived in were also important for extreme longevity.

8.4.4 Others

It is widely acknowledged that people in the world have different genetic back-

grounds and various lifestyle or environmental habits with respect to population

and regional characteristics. Some of these genetic or nongenetic factors are of

benefit to body health but some may have side effects. In addition to Chinese,

Japanese, and Italian subjects, studies on Korean [77], American [78], and

Australian populations [79] convinced the potential influence of genetics-lifestyle-

environment interactions on people health management, which would contribute to

the development and universalization of population-based healthcare in the forth-

coming future. For more details, please refer to references cited in this section.

8.5 Systems Medicine and Healthy Longevity

8.5.1 Paradigm of Systems Medicine

The occurrence and progression of diseases are caused by a combination of genetic,

lifestyle, and environmental factors. Traditional reductionism-based viewpoints

isolated the interaction among different biological molecules and simplified the

nongenetic influences on disease pathogenesis. Systems medicine, which is rooted

in the theory of systems biology, is a novel paradigm for people healthcare. It views

biological activities as an organic network and analyzes disease evolution based on

holistic, global, and integrative approaches. Systems medicine aims at providing

deep insights into disease etiopathogenesis and pathogenesis and developing per-

sonalized methods for disease diagnosis and treatment [80].

One of the most important resources for systems medicine is sufficient data for

bioinformatics analyses. As described in Fig. 8.3, besides genetic, epigenetic, and
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omics data, nongenetic data originated from people lifestyle and living environment

are crucial for monitoring and predicting the status of health. Based on the collected

data sources, functional modules/networks can be mined using computational

approaches such as mathematical simulation, machine learning, and network anal-

ysis. Here the identified structures reveal biological activities within disease evo-

lution at two levels: first, key players (termed as the node in a network) associated

with disease development, e.g., dysfunctional genes, proteins, and noncoding

Fig. 8.3 Paradigm of systems medicine. Systems medicine integrates different data sources and

identifies functional modules or networks associated with disease evolution based on systems

biology approaches. Understanding the interactions between genetics, lifestyle, and environmental

factors provides deep insights into disease pathogenesis and is helpful for the early diagnosis and

treatment of human diseases
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RNAs, and second but more important, interactions among different functional

players (termed as the edge in a network), e.g., protein-protein interaction,

microRNA-mRNA regulation, and gene-environment interplay. Since the complex

and dynamic nature of disease development, network-based methods are able to

capture the change of state from health to disease and are helpful for the discovery

of early-warning signals for specific diseases [81, 82].

Systems medicine is beneficial to disease management and healthcare. On one

hand, iterative systems approaches investigated the underlying mechanisms of

human diseases and identified cross-level biomarkers for disease diagnosis and

prognosis [83]. On the other hand, modification of possible impact factors, e.g.,

periodic physical examination for people with high genetic risks, developing

healthy lifestyle, and keeping away from environmental pollution, are meaningful

for disease prevention and personalized treatment.

Certainly, the growth of systems medicine depends on the international network

of systems biology, and the gap in healthcare between developed and developing

countries is expected to be reduced through interdisciplinary education and practice

[83]. The translation and application of systems medicine in clinical decision

provide great opportunities for people health management, which cater to the

goal of precision medicine and healthy longevity.

8.5.2 Data Sources, Models, and Platforms

Data sources used in systems medicine can be partitioned into three categories [84]:

omics data at genomic, transcriptomic, proteomic, molecular, pathway, and cellular

levels; clinical data such as imaging, specific/unspecific diseases, and examina-

tions; and personal data recording demographic, behavioral, lifestyle, and environ-

mental information. In the era of biomedical informatics, vast amounts of data

provide the foundation for systems medicine studies.

As summarized in Table 8.1, a large number of publicly available data sources

can be utilized for systems medicine analysis. For example, the Gene expression

Omnibus is a functional genomics data repository which provides gene expression

datasets from high-throughput and genomic hybridization experiments [85]. The

Cancer Genome Atlas project generated a multidimensional map of crucial geno-

mic changes in more than 30 types of human cancer, which offered valuable

information for cancer diagnosis, prognosis, and treatment [86]. The Kyoto Ency-

clopedia of Genes and Genomes is a comprehensive knowledge base for gene

functional annotation. Interactions and reactions among biological molecules are

abstracted as modules or networks, which are beneficial to the systems-level studies

on pathogenic mechanisms [87]. The protein interaction network analysis platform

integrated protein-protein interaction data from six public databases and mined

functional interactome modules for biomedical analysis [88]. The latest version of

starBase provides experimentally validated microRNA-ceRNA, microRNA-

180 Y. Lin et al.



Table 8.1 Publicly available data sources used in systems medicine

Category Title Description Citation

Omics

data

GEO Gene Expression Omnibus: a functional genomics

data repository

[85]

URL: http://www.ncbi.nlm.nih.gov/geo/.

TCGA The Cancer Genome Atlas: a knowledge base for

pan-cancer studies

[86]

URL: http://cancergenome.nih.gov/.

ENCODE Encyclopedia of DNA elements: a comprehensive

database of genome-wide functional elements

[94]

URL: http://genome.ucsc.edu/ENCODE/.

KEGG The Kyoto encyclopedia of genes and genomes: a

knowledge base for functional interpretation of

genomic information

[87]

URL: http://www.genome.jp/kegg/.

IPA Ingenuity pathway analysis: a knowledge base and

bioinformatics tool for pathway analysis

[95]

URL: http://www.ingenuity.com/.

PINA The protein interaction network analysis: an integra-

tive database and web platform for protein interaction

data storage and analysis

[88]

URL: http://cbg.garvan.unsw.edu.au/pina/.

starBase A comprehensive database and web server for

RNA-RNA and protein-RNA interaction network

identification

[89]

URL: http://starbase.sysu.edu.cn/.

LINCS The library of integrated cellular signatures: plans to

provide gene expression profiles for various com-

pounds and genes (shRNA + cDNA) in different cell

types

N/A

URL: http://www.lincscloud.org/.

Clinical

data

BCMCdb A database in which the molecular and clinical data

of breast cancer are integrated

[96]

URL: N/A

ACTuDB A database and tool for integrated analysis of array

comparative genomic hybridization and clinical data

for tumors

[90]

URL: http://bioinfo.curie.fr/actudb/.

CFdbase Cystic fibrosis database: a specific database for pro-

viding integrated clinical data in cystic fibrosis

[91]

URL: N/A (upon request)

NSNT The Neoplasms of the Sinonasal Tract: a database

where the clinical data and images of neoplasms of

the sinonasal tract are collected

[97]

URL: http://www.nsntsoftware.com.

CRFCdb A database system where the clinical data of chronic

heart failure patients are recorded

[92]

URL: N/A

(continued)
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ncRNA, and protein-RNA interaction data, which are useful for the exploration of

regulatory and competing roles among RNAs [89].

In addition to omics data sources, clinical and personal data are of particular

interest. Several published databases include clinical information associated with

specific diseases such as cancers, cystic fibrosis, and chronic heart failure [90–

92]. Neveu et al. [93] created a database called Exposome-Explorer, in which

biological markers of exposure to dietary and environmental factors were carefully

recorded from peer-reviewed literatures. It is the first database that provides

fundamental information not only on biomarkers themselves but also on their

concentrations in different human biospecimens, which will help in the understand-

ing of the etiology of chronic diseases at the systems level [93].

Epigenetic data are also valuable resources for systems medicine analysis. As

listed in Table 8.2, some published epigenetic databases provided information and

knowledge of epigenetic modifiers or factors, which promoted the understanding of

disease pathogenic mechanisms. For example, to accelerate the pace of drug

discovery and drug repurposing, Qi et al. [101] constructed a human epigenetic

drug database, in which epigenetic drug datasets such as drugs, targets, complexes,

and diseases from biological experiments and literature reports were manually

integrated. EpiFactors [102] is a manually curated database aiming at providing

comprehensive information associated with epigenetic regulators as well as their

complexes and targets. The expression levels of collected genes across different

samples were carefully recorded. Besides, several epigenetic databases were useful

for cancer systems medicine studies. For instance, the database of epigenetic

modifiers (dbEM) [103] contains genomic information of epigenetic modifiers/

proteins as candidate cancer targets, which is practical for the epigenetic protein-

based cancer therapeutics. PEpiD [104] and EpiGeNet [105], respectively, are

functional databases for exploring the pathogenesis during cancer evolution.

Table 8.1 (continued)

Category Title Description Citation

Personal

data

Exposome-

explorer

A manually curated database on biological markers

of exposure to environmental risk factors

[93]

URL: http://exposome-explorer.iarc.fr.

DEER A database for interpreting the connection between

chemical environmental factors and drug responses

[98]

URL: http://bsb.kiz.ac.cn:90/DEER/.

CTBG-Edb A database of gene-environment interactions for

cardiovascular disease, type 2 diabetes, and blood

lipid traits

[99]

URL: N/A

miREnvironment A biomedical database for studies on microRNAs,

environmental factors, and diseases

[100]

URL: http://cmbi.bjmu.edu.cn/miren.

Abbreviation: N/A not available
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Among them, PEpiD is beneficial to the understanding of epigenetic mechanisms of

gene regulation in prostate cancer, whereas EpiGeNet records interactions between

genetic and epigenetic events related to colorectal cancer, which is a comprehen-

sive tool for colorectal oncogenesis studies.

The modeling methods currently implemented in systems medicine are mainly

dependent on machine learning, mathematical simulation, and network analysis.

Most of these methods are designed to identify potential biomarkers or disease-

associated molecules for precision medicine. For example, Zhang et al. [108]

published a novel network-based model for microRNA biomarker screening. In

contrast to the synergistic regulatory mechanism, statistical evidence showed that

biomarker microRNAs tended to regulate genes independently. Translational appli-

cations to complex diseases such as prostate cancer [108, 109], colorectal cancer

[110], clear cell renal cell carcinoma [111], gastric cancer [112], and sepsis [113]

convinced the predictive power. Moreover, the model was sequentially improved

by integrating gene functional characteristics as well as disease prior knowledge

into network topological structures, and studies on microRNA biomarker discovery

for pediatric acute myeloid leukemia [114], acute coronary syndrome [115], and

autism spectrum disorder [38] demonstrated its clinical value.

Table 8.2 Epigenetic databases for systems medicine studies

Title Description Citation

HEDD The human epigenetic drug database: a comprehensive database where

integrates epigenetic drug datasets from experiments as well as litera-

ture reports

[101]

URL: http://hedds.org/.

EpiFactors Database of epigenetic factors: a database contains data related to

epigenetic regulators, their complexes, and products

[102]

URL: http://epifactors.autosome.ru.

dbEM Database of epigenetic modifiers: a database where contains the geno-

mic information of epigenetic modifiers/proteins as candidate cancer

targets

[103]

URL: http://crdd.osdd.net/raghava/dbem.

PEpiD The prostate epigenetic database: a database which contains the func-

tional information for understanding epigenetic mechanisms of gene

regulation in prostate cancer

[104]

URL: http://wukong.tongji.edu.cn/pepid.

EpiGeNet A graph database where stores interaction data between genetic and

epigenetic events of colorectal oncogenesis

[105]

URL: https://github.com/ibalaur/EpiGeNet.git.

DaVIE Database for the visualization and integration of epigenetics data: a

comprehensive database and bioinformatics tool for epigenetic data

visualization and integration

[106]

URL: http://echelon.cmmt.ubc.ca/dbaccess/.

EpimiR A comprehensive database contains mutual regulation between

microRNAs and epigenetic modifications

[107]

URL: http://bioinfo.hrbmu.edu.cn/EpimiR/.

8 Interactions Between Genetics, Lifestyle, and Environmental Factors for. . . 183

http://hedds.org
http://epifactors.autosome.ru
http://crdd.osdd.net/raghava/dbem
http://wukong.tongji.edu.cn/pepid
https://github.com/ibalaur/EpiGeNet.git
http://echelon.cmmt.ubc.ca/dbaccess
http://bioinfo.hrbmu.edu.cn/EpimiR


Due to the limitation of single molecules in reflecting the complex changes in

biological systems, module or network biomarkers are thereby proposed. For

example, Cun and Fr€ohlich [116] developed an R package called netClass, which

integrated the network information and gene/microRNA expression data for bio-

marker signature discovery. The package contained a recently proposed network

smoothed t-statistics support vector machine method and achieved the higher

signature stability on the overall prediction performance. Wen et al. [117] devel-

oped the bioinformatics tool MCentridFS for identifying module biomarkers from

high-throughput data with multi-phenotypes based on differential protein-protein

network analysis and clustering. Cui et al. [118] performed integrative analyses on

RNA-seq data and discovered several key long intergenic noncoding RNA modules

for prostate cancer diagnosis. Shao et al. [119] constructed a dysregulated compet-

ing endogenous RNA (ceRNA) network, in which elements such as coding genes,

long noncoding RNAs, and pseudogenes were interacted and affected the carcino-

genesis of lung adenocarcinoma. They found that gain and loss ceRNAs as topo-

logical key nodes played important roles in cancer progression, and the identified

ceRNA module biomarkers were well applied to lung cancer diagnosis. Besides,

Chen et al. [120] considered that the evolution of diseases is a dynamical process,

during which interactions among biological elements were altered at different time

points. The traditional network biomarkers focus only on the static nature of

networks, which is not powerful for monitoring disease progression on the temporal

scale. Hence the concept of dynamical network biomarkers was defined. It is rooted

in complex network and nonlinear dynamical theory, which provides the chance for

evaluating the reactions among molecules at different disease stages in a three-

dimensional image.

There are also several well-conducted platforms that can be used for systems

medicine studies. For instance, Cesario et al. [121] introduced the San Raffaele

Systems Medicine Platform, which is of great significance for understanding and

managing noncommunicable diseases. It presented a basis for targeted clinical trials

and promoted disease prevention as well as patient healthcare. Oresic et al. [122]

proposed a conceptual computational framework in which bioinformatics tools

were integrated for enabling a systems medicine approach to the diagnosis of

Alzheimer’s disease. Gomez-Cabrero et al. [123] described the main features and

strategies of Synergy-COPD project. The project, which applied computer-aided

systems medicine approaches to investigate the pathogenesis and heterogeneity of

chronic obstructive pulmonary disease (COPD), aimed at enhancing COPD man-

agement and providing personalized decisions for patient healthcare. Doel et al.

[124] established a platform called GIFT-Cloud to collect data for medical imaging

studies. The platform builds a bridge for imaging data transferring from the clinic to

research institutions and supports the secure sharing and collaboration of data

between multiple healthcare and research centers [124].

At present, data sources, models, and platforms for systems medicine investiga-

tion are many and varied. However, most of them, especially of modeling

approaches, are limited to integrate omics data with additional genetic information.
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The effects of nongenetic components, e.g., lifestyle, intestinal flora, and living

environment, are needed to be considered for systematic analysis.

8.5.3 Precision Healthcare and Longevity

The basis of longevity is health, including physical health and psychological health.

Indubitably, effective healthcare is still an essential strategy for disease diagnosis,

treatment, and prevention. It can be concluded that sustained and lifelong health of

people is the key driver for the application of systems medicine in the era of

precision medicine [125].

Nowadays, big data provides advantageous opportunities for clinical decision-

making. However, one of the pivotal problems is how to transform the huge data

into useful knowledge and finally, contribute to patient care. It is affirmatory that a

great number of efforts have been dedicated to explore the pathogenesis during

disease evolution and many remarkable decisions have been made for personalized

healthcare. Besides the success and achievement in scientific researches, the imple-

mentation of precision healthcare is highly dependent on the translation from basic

studies to clinical practice, which should be guided by a clear organizational

infrastructure and proper financial framework [125].

Another important issue is the public awareness of health. Since most of the risk

factors can be monitored and prevented before the outbreak, people with high

disease risks require regular health examinations. As shown in Fig. 8.4, genetic

vulnerabilities to inherited diseases can be screened through genetic counseling and

Fig. 8.4 Feasible suggestions on people healthcare from the perspective of genetics, lifestyle, and

environment. Genetic counseling and screening are necessary for people with high disease risks.

Healthy lifestyle and clean living environment support the goal of longevity. Understanding and

balancing genetics-lifestyle-environment interactions are essential for systems health
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testing. Meanwhile, the discovery of disease-specific biomarkers promotes the

progression of targeted therapy. It is widely recognized that the initiation of

diseases is rarely attributed to genetic variants alone. Nongenetic factors such as

lifestyle and environment are able to regulate body homeostasis based on epigenetic

modifications. A number of evidences indicated that interactions between genetics,

lifestyle, and environmental factors played functional roles in disease development.

Therefore the improvement of people lifestyle and surrounding environment, e.g.,

eating more fresh fruits and vegetables, taking physical exercise regularly, keeping

away from smoking and radiation, smelling clean air, drinking weakly alkaline

water, etc., will be propitious to decrease the likelihood of disease, and in the long

term, it favors the goal of systems health and longevity.

8.6 Conclusions

The development of diseases is always the consequence of the dysfunction of both

genetic and nongenetic factors. Based on the guidance of epigenetic regulation,

interactions between genetics, lifestyle, and environmental components play func-

tional roles in disease evolution and are of great meaning for people healthcare in

theory and reality. Currently, a substantial number of efforts are devoted to promote

personalized strategies for disease management. Systems medicine approaches

which integrate biomedical data and knowledge at multidimensional levels support

the idealization of precision healthcare. The public, importantly, should raise the

awareness of health and develop healthy living habits. On the other hand, the

continuous sharing and translation of information from basic researches to clinical

practice are considered to be an optimal way for the construction of systems health

in the era of precision medicine.
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Chapter 9

Cohort Research in “Omics” and Preventive

Medicine

Yi Shen, Sheng Zhang, Jie Zhou, and Jiajia Chen

Abstract Cohort studies are observational studies in which the investigator deter-

mines the exposure status of subjects and then follows them for subsequent out-

comes. The incidence of outcomes is observed in the exposed group and compared

with that in a nonexposed group. Recently, new epidemiologic strategies have

encouraged cohort research information exchange and cooperation to improve the

cognition of disease etiology, such as case-cohort design and nested case-control

study, which is available for “omics” data. Meanwhile, large-scale cohort studies

using a prospective multiple design and long follow-ups have explored some of the

challenges in preventive medicine. Cohort study can bridge the gap between the

micro and macro research.

This chapter is divided into three parts:

1. Basic knowledge of cohort study, which included the definition of cohort study

and different types of cohort study, how to design the cohort study, data analysis

for the cohort study, sources of bias in cohort studies, tools and software for

cohort studies, and strengths and limitations of cohort study

2. Cohort study for “omics” data analysis, which introduced three related method-

ologically distinct study designs, case-cohort design for genomic cohort study,

nested case-control design for transcriptomics cohort data, and population-based

design for integrative “omics” cohort

3. Perspectives on cohort study including data-driven medicine and cohort

research, cohort research for healthcare medicine, and cohort research for

preventive medicine
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9.1 Introduction

All epidemiological investigations utilize standard epidemiological measures to

describe the relationship between risk factors and health outcomes. More sophisti-

cated designs may compare measures of disease occurrence or quantify the

exposure-health outcome relationship. Identification of appropriate epidemiologi-

cal research is dependent upon the study design used to investigate the exposure-

health outcome relationship. Longitudinal cohort studies are regarded as the most

useful method to detect exposure-health outcome underlying multifaceted human

diseases, in particular for noncommunicable diseases. In a cohort study design, the

study population is identified as those who are prone to developing a certain

disease. The incidence of outcomes is observed in the case group and contrasted

with that from a nonexposed group. New epidemiologic strategies have encouraged

exchange and cooperation of information to improve the cognition of disease

etiology, which is of great significance in “omics” data and preventive medicine.

Recent advances in various “omics” technologies have provided a broad range of

tools which could identify genetic alterations underlying common abnormalities.

Special designs conceived for genetic epidemiology include the case-cohort and the

nested case-control analyses within prospective cohort studies, both of which are

logistically more efficient than full cohort studies. Information on gene function,

genome composition, signaling pathways, and regulatory networks combined with

such flexible and cost-effective design will create novel opportunities to explore the

relationship between gene and disease.

Cohort studies also have a superior scientific value for fully understanding the

etiology of a wide range of chronic diseases affecting population health, as well as

preventive management of risk factors. However, the cohort study, especially the

large-scaled population-based cohort study, requires that the overall human, mate-

rial, and financial resources are usually large, so that the innovative and prospective

cohort study should consider giving special attention and support to ensure conti-

nuity and systematic of the preventive medicine.

9.2 Basic Knowledge of Cohort Study

9.2.1 Definition of Cohort Study

A cohort simply refers to a group of people who share characteristics and are

followed up for a period. The defining characteristic of cohort is that subjects

must be tracked forward from exposure to outcome. Cohort design represents a

most common observational analysis. Because the events of interest transpire after

the study has begun, cohort study is sometimes called prospective study. In med-

icine, the development of disease is often associated with other parameters

observed at baseline, known as exposure variable or risk factor [1]. Cohort study
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often involves following-up large numbers of individuals over a certain period to

observe the effect of exposure variables, which tend to be more time-consuming

and expensive than other epidemiologic design, such as case-control or cross-

sectional study. Consequently, cohort studies are often conducted to test for a

possible relationship by a case-control study firstly (Fig. 9.1).

9.2.2 Types of Cohort Study

There are three types of cohort designs for different research purposes, e.g.,

prospective cohort, retrospective cohort, and ambidirectional cohort (Fig. 9.2).

9.2.2.1 Prospective Cohort

Prospective cohort design defines a population and predictor variables prior to any

outcomes and then follows the population in real time to assess incidence rates of

outcomes [2, 3].

The advantage of this design is the ability to define the incidence and causes of a

condition, measure a variety of variables including exposure, confounding factors,

and predictor variables, in order to minimize bias [2, 4]. The investigator can

directly obtain information on exposure as well as potential confounders by

questioning or examining the participants per se.

The weakness of a prospective study is the typically long follow-up time, large

sample size, high cost, and low efficiency. For instance, to obtain 100 cases in a

condition with an incidence of 1 per 100,000 per year, a million participants would

need to be followed up for 10 years [5]. The risk is that either the researcher or the

participant may not survive to the end of the investigation.

Fig. 9.1 Features of a cohort study
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9.2.2.2 Retrospective Cohort

In the retrospective cohort studies, the data will be collected after the exposure, and

outcomes of interest have already happened. In other words, the historical experi-

ence of the participants must be reconstructed from available records or from

interviews and questionnaires [2].

The retrospective design is more inexpensive and quick than prospective coun-

terparts, because all relevant events have already happened at initial onset of study.

Thus, it is efficient to investigate diseases with long latent periods to accrue

sufficient endpoints [6].

However, retrospective cohort usually evaluates exposures that occurred many

years previously, so it depends on the ready availability of pre-existing records with

adequate detail about relevant exposures. Since these data typically have been

documented for purposes other than investigation itself, information for study

subjects may be incomplete and unreliable. Moreover, it also suffers from risks

such as selection bias and uncertain exposure levels [2, 7].

9.2.2.3 Ambidirectional Cohort

The ambidirectional cohort is a combination of retrospective and prospective

designs in which exposure is defined from past objective records, while outcome

is continuously measured afterwards [3, 7, 8].

This type of design is to combine prospective cohort with retrospective cohort

together, which contains both advantages, thus compensating the respective draw-

backs to some extent. It is suitable for exposures with short and long effects, such as

exposure to a chemical that might increase the risk of birth defects within a few

years of exposure and then increase cancer risk decades later [7, 9, 10].

Fig. 9.2 Classification of cohort designs
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9.3 Design of the Cohort Study

9.3.1 Selection of the Cohort Study

Sample selection is critical to the cohort design, which considers various scientific

and feasible aspects, e.g., the frequency of the exposures under investigation, the

accuracy of exposure, and the nature of the research questions of interest [8]. The

key objective of cohort design is to compare the outcomes of the case group vs. the

control group. Therefore, the group must be selected and defined carefully. Partic-

ipants must meet the criteria and be available during the study length, unless the

outcome is death. The sample size must be large enough to make sure that a

meaningful conclusion can be drawn [3, 7].

9.3.1.1 General Population

For common exposures, cigarette consumption or obesity, a sufficiently large

number of exposed individuals can often be sampled from the general population,

and the residual individuals will be regarded as the unexposed group. When the

general population is used as a comparison group, however, the members may not

be directly comparable to those of the study group. Even if the population from

which the expected rates are taken is chosen to be as generally similar as possible to

that from which the exposed cohort derived, including basic demographic and

geographic characteristics, any observed differences may well be different with

respect to the effects of confounding that cannot be controlled.

9.3.1.2 Special Exposure Population

For rare exposures, e.g., special occupations or environmental factors, it is more

efficient to choose study subjects specifically because they have undergone some

unusual exposure or experience of interest. Special exposure groups might include

those with rare exposures or outcomes (e.g., myocarditis following smallpox

vaccination [11]) or outcomes related with certain genetic mutations (e.g., Turner

syndrome [12]). Selecting a special exposure population has clear advantages in

terms of reduced sample size, accurate ascertainment of exposure, high levels of

exposure, and ease of follow to determine outcomes of interest, and their results can

then be used in conjunction with those from other researches to estimate the role of

some risk factors in the etiology of the same disease in the general population.

In some situations, a special exposure cohort also allows evaluation of a rare

outcome which would otherwise need an exceedingly large sample size for valid

results.
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9.3.1.3 Internal Comparisons

The internal comparison is the experience of those cohort members classified as

having a particular exposure compared with that of members of the same cohort

who are either unexposed or exposed to a different degree. This approach can be

utilized to a single, general population whose members are distinguished into

exposed and unexposed groups. When several risk factors are being considered

simultaneously, the unexposed group can be defined as those with none of the risk

factors under evaluation.

9.3.1.4 External Comparisons

The external comparison is available for cohorts that involve use of a special

exposure group, such as individuals in an occupational setting or a particular

environment. The external comparison group should be chosen to be similar to

the exposed group in terms of gender, geography, ethnic (racial) composition, and

any other measured factors (other than the exposure under investigation) that may

be related to the disease; thus, if there is no exposure-disease association, the

disease rates in the populations being compared will be essentially the same.

9.3.1.5 Multiple Comparison Groups

Multiple comparison groups may be employed when no single group is similar

enough to the exposed cohort to ensure a valid comparison of outcome. In such

circumstances, the study results will likely be more convincing if a similar associ-

ation is observed for a number of different comparison groups.

9.3.1.6 Other Considerations

Validity of the results of a cohort study requires complete and accurate exposure

and outcome data on all participants; thus, cohort studies are often conducted

among groups specifically chosen for their ability to facilitate the collection of

relevant information. Different groups of interest have been targeted for cohort

studies, including members of medical professions, such as doctors or nurses,

military veterans, and residents of well-defined communities. Each of these groups

offers logistic advantage to the investigator, ranging from the availability of

annually updated addresses to a mechanism for periodic follow-up and to the

provision of complete medical and employment records. Since the groups were

not selected because of unusually high levels of specific exposures, these

populations are most usefully studied when the exposures of interest are common

or the groups are large.
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9.3.2 Data Collection

In cohort study, exposure status may be ascertained from different sources, such as

medical or employment records, interviews or questionnaires, and physical exam-

ination of the participants. Outcome information may also be ascertained either

from existing records, including death certificates and medical records, or directly

from study participants through questionnaires and physical examinations.

When designing a cohort study, the investigators must carefully consider how

they will obtain accurate and complete information that will allow them to classify

cohort members according to their exposure to the factor(s) under investigation and

to the outcomes of interest. Therefore, track forward or trace back to gather the

accurate and complete data is vital to a cohort. For instance, a cohort study to assess

assisted reproductive technologies (ART) should start tracking forward the fre-

quency of multiple births of ART-exposed pregnant women and a control group

with natural conception upon pregnancy. Alternatively, existing medical records

could be used to trace back to classify women with or without ART exposure, who

could then be tracked forward from the records to evaluate the birth outcomes.

Although the exposure precedes the data collection, the design still goes from

exposure to outcome [9].

For the ambidirectional design, the investigator might also start to follow-up

these women of multiple births for ovarian cancer development in the future [8].

9.3.3 Exposure Information

Exposure factor in the cohort is an adverse or beneficial factor that affects human

health which should be defined clearly and unambiguously at the outset. The

exposure needs to be quantified by degree, rather than the simple “yes or no.” For

instance, the maximum exposure could be ten cigarettes per day or more [9]. The

main purpose of an exposure assessment is to acquire sensitive, precise, and

biologically significant exposures in a cost-effective manner. To obtain adequate

information on exposure, however, a number of sources of data may be used

together in a given cohort study.

9.3.3.1 Existing Records

At times, existing records kept by hospitals, employers, etc. contain sufficient data

to classify individuals according to exposure status, and in some studies, this is the

only source of such data. Information of existing records is usually available for a

high proportion of the cohort and is relatively inexpensive to obtain. In addition,

since the data were recorded prior to any knowledge of an individual’s development
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of the outcome under study, the exposure information is likely to be relatively

objective and unbiased.

9.3.3.2 Interviews and Questionnaires

Interviews and questionnaires completed by study subjects (or by proxy respon-

dents who know the subject well) are, therefore, often necessary for collecting

information on the details of exposure and on potential confounding factors that

often can only be provided by the individuals themselves, for example, food

consumption patterns, smoking, exercise, and other lifestyle factors. A potential

for bias always exists in such data, however, since they rely on the participants’
ability to recall details of their history accurately. In addition to estimation of

exposure, questionnaires also collect other relevant information on the exposure.

It is therefore especially important in studies that it can use objective sources for the

ascertainment of exposure and confounders to ensure that information is obtained in

a comparable and unbiased manner for all participants.

9.3.3.3 Direct Physical Examination and Testing

A direct physical examination and/or laboratory test can provide adequate infor-

mation for some exposures or characteristics of interest, such as blood pressure or

serum cholesterol levels. These data can provide an objective and unbiased means

of classifying study subjects with respect to exposure, provided that they are

obtained in a comparable manner for all participants.

9.3.3.4 Direct Environmental Measurement

Direct measurement of environment such as the air or water in a particular location

may be required typically for individuals who do not know their specific levels of

exposure to pollutants or industrial chemicals. Direct measurement may be possible

for the evaluation of current or future exposures, but it may be problematic in

situations where the exposure of interest occurred before initiation of the study. In

such circumstances, current levels of the exposure are likely to be lower than

previous levels, for example, due to the institution of safeguards in the work

environment.

In many cohort studies, a single classification of exposure is made for each

individual at the beginning of the study. Frequently, however, it is possible for

exposure status to change in exposure level for the factors of interest occur during

the course of long-term follow-up. Obviously, birth asphyxia occurs only once. In

other circumstances, however, the exposure under study may be subject to variation

over time. For example, a cigarette smoker may quit, or in an occupational cohort

study, employees may change jobs, and therefore, their level of exposure to an
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occupational hazard may change. Diagnostic methods used for the disease under

study may also vary over time. Changes that diminish exposure tend to underesti-

mate the true strength of the exposure-outcome association. Consequently, many

cohort studies are designed to allow for periodic reconduct of the members to

capture new information. Analyses can then take into account the total length of

exposure, any changes in exposure status, and the reasons for these changes.

9.3.4 Outcome Data

The goal of cohort is to obtain comprehensive, comparable, and unbiased data on

the subsequent health experience of every study subject. The sources of outcome

data for a cohort will depend on the specific resources available and the particular

disease under evaluation. The approach used to obtain outcome information may

range from routine surveillance of obituaries and death certificates to periodic

questionnaires and health examinations of members of the cohort. Combinations

of the various sources of outcome data may be necessary to obtain complete follow-

up information.

For fatal endpoints, outcome information for all members of a cohort may be

obtained solely from death certificates. While these are readily available, the

reliability of the information depends on the specific outcome of interest. Death

certificates are completely acceptable when total mortality is the endpoint of

interest, since the occurrence of death can be established with virtual certainty.

For cause-specific mortality, however, death certificate information is less reliable,

since the cause of death recorded is subject to interpretation. The adequacy of death

certificates for determination of cause-specific mortality depends on the particular

disease under investigation and the setting in which death occurred. Criteria for the

postmortem diagnosis of some conditions, such as coronary heart disease, are less

straightforward than for others, such as cancer. There is a potential for bias in

collecting or interpreting study data from death records, especially when the records

are vague or incomplete and when the abstractor is also aware of a participant’s
exposure status. Therefore, investigators often seek additional confirmatory infor-

mation from autopsies, physician and hospital records, or next of kin. Whatever the

procedures for identifying the outcomes of interest, validity of the study depends on

the procedures being applied equally to all exposed and nonexposed individuals.

For nonfatal endpoints, outcome data can be obtained from physician’s records,
hospital discharge logs, population-based disease registries, or prepaid health plans.

Investigator can also obtain data directly from the participants, a procedure that

offers similar advantages and disadvantages to collecting exposure information. To

lessen the possibility of bias due to a subject’s awareness of the hypothesis under

investigation, information from hospital records or pathology reports are often

obtained to confirm the diagnosis reported on questionnaires. The adequacy of

self-reported diagnoses depends on the particular disease of interest.
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For certain diseases accurate and reliable outcome information can only be

obtained from periodic medical examinations of members of the cohort. While

this approach is more expensive and time-consuming than other sources of outcome

data, it allows investigators to collect objective information using standardized

diagnostic procedures for all subjects. A medical history can also be collected at the

time of physical examination; if so, the individual performing the examination

should remain unaware of the participant’s exposure status.

9.3.5 Approaches to Follow-Up

Cohort studies usually last for a long follow-up period until an outcome occurred

[3]. In any cohort study, whether retrospective or prospective, all participants are

traced from the time of exposure to see if they contract the disease. Consequently,

collecting follow-up data presents challenge, in terms of time, fiscal resources, and

ingenuity.

The required length of follow-up, or the interval that elapses between definition

of exposure status and ascertainment of outcome, depends on the length of the

latency period for the outcome(s) of interest. Outcomes such as acute infections

have a latency period of just days to weeks between exposure and diagnosis, while

congenital malformations and spontaneous abortions may require only a few

months to a year of observation. In contrast, chronic diseases like cancer and

coronary heart diseases have very long latency periods and require decades of

follow-up. In general, the longer the observation period required, the more difficult

it is to follow-up, because people are more likely to change jobs, change their

address, or lose touch with the study organization. There are, however, a variety of

resources available that, if used creatively, can greatly diminish the number of

individuals whose follow-up information is incomplete. In a case of women who

had undergone repeated chest fluoroscopy in the course of treatment for tubercu-

losis, the sources of outcome data on breast cancer included the outpatient records

of the sanitarium from which subjects had been identified, the Massachusetts

Department of Vital Statistics, town residents’ lists, telephone directories, relatives
and friends of the women, records of state tuberculosis agencies, divorce records,

town election boards, motor vehicle bureau records, tax records, military records,

employment records, and contacts with physicians and other individuals mentioned

in the subjects’medical records. These procedures resulted in the location of 93.6%

of the 1764 study subjects. The remaining small percentage of women who were

lost to follow-up were divided equally between the exposed and unexposed groups,

offering reassuring evidence that the study results were unlikely to be biased

because of losses to follow-up.
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9.4 Data Analysis for the Cohort Study

The descriptive analysis of data from a cohort study is to calculate the incidence

rates of an outcome in the cohort under investigation. These rates can be compared

for those exposed and unexposed, as well as for those exposed to various levels of

the factor or to a combination of factors. The specific calculations of disease

incidence in a given study will depend on whether the denominator includes

numbers of individuals or person-time units of observation. Using these rates,

both relative and absolute measures of association can be estimated and tested.

The groups must also be compared to ensure the similarity of baseline differences

which associate with risk of developing the outcomes under study.

9.4.1 Measures of Outcome Frequency

Estimation of outcome measures in cohort studies of long duration requires use of

special statistical techniques for analysis of time to “failure,” that is, the time to

occurrence of the disease outcome of interest. Several different indexes relating the

exposure to outcome are calculated to analyze the results of a cohort study, as

specified in the following sections. To aid in the understanding of measures of

association, data from a cohort study can be conceptualized in the form of a two-by-

two table as shown below (Table 9.1).

9.4.2 Relative Risk

The relative risk (RR) is defined as the disease rate among exposed people

(expressed as I1) divided by the disease rate of unexposed group (I0). Referring to

the prototype 2�2 table above, the formula for calculating the relative risk is:

RR ¼ I1
I0

¼ a=n1
c=n0

RR ¼ 1.0 means that the incidence rates of disease are the same in the exposed

and unexposed groups; therefore, the exposure and the outcome are not relevant. RR

Table 9.1 Presentation of

data from a cohort study in a

two-by-two table
Exposure

Disease

Total+ �
+ a b a + b(n1)

� c d c + d(n0)

Total a + c(m1) b + d(m2) a + b + c + d(n)
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>1.0 indicates that exposure increases the incidence of disease, whereas RR <1.0

implies that exposure decreases the risk of disease [3].

The confidence interval (CI) that surrounds an estimate of RR can be calculated

by taking antilogarithms of the corresponding values for the interval for lnRR,
which can be done in one step by using the general formula:

95%CI ¼ RRð Þe �1:96
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1
aþ1

bþ1
cþ1

d

p� �

9.4.3 Attributable Risk

The attributable risk (AR) is termed the risk difference between the incidence rates

in the exposed and unexposed cohorts and can be calculated as follows. So it

provides information on the absolute effect of the exposure or the excess risk of

disease in the exposed as against the exposed [3]. The AR is calculated as follows:

AR ¼ I1 � I0 ¼ I0 RR� 1ð Þ

9.4.4 Population Attributable Risk

The population attributable risk (PAR) can be used to estimate the excess incidence

rate that is due to the exposure in the entire cohort. It relies on the prevalence of the

risk factor in the [3]. The PAR is calculated as the incidence rate of disease in the

total group (It) minus the rate in the unexposed groups (I0).

PAR ¼ It � I0

9.4.5 Attributable Risk Percent

The attributable risk rate percent (AR%) is the risk difference expressed as a

percentage of the total risk experienced by the exposed group [3]. It is defined as:

AR% ¼ I1 � I0
I1

� 100% ¼ RR� 1

RR
� 100%

The population attributable risk percent (PAR%) is analogous to AR% among

exposed individuals and estimates the proportion of disease in the study population

204 Y. Shen et al.



due to the exposure and thus decreases with decreased exposure rate. PAR% is

calculated by dividing PAR by It. Alternatively, this measure can be calculated by

multiplying AR by the exposure proportion in the population (Pe).

PAR% ¼ It � I0
It

¼ Pe RR� 1ð Þ
Pe RR� 1ð Þ þ 1

� 100%

It is important to remember that RR and AR provide distinct types of estimation.

The RR is to quantify the strength of exposure-disease association. It helps to judge

whether the association is valid and causal. In contrast, the AR is to evaluate the

possible public health impact of the presumed cause. The magnitude of RR alone

does not predict the magnitude of AR.

9.5 Sources of Bias in Cohort Studies

As with any epidemiologic investigation, the associations derived from a cohort

study may not accurately reflect reality due to biases occurring in the course of

study design, data collection, data analysis, etc. Several key sources for bias must

be addressed in the results dissemination, which included selection bias, informa-

tion bias, and existing loss (Table 9.2). Selection bias and loss to follow-up are of

particular relevance to the cohort design and thus need to be further discussed [13].

9.5.1 Selection Bias

Selection bias results from biases in the identifying and/or enrolling the study

population, which may be generated at several steps in the selection and mainte-

nance process of cohort, as shown in Fig. 9.3 [8]. Selection bias mainly stems from

determination of the exposure status according to the outcome or from the identi-

fication of the healthy/disease participants based on outcome [3]. Selection into the

population is not a problem for cohort studies if the entire population is included as

study participants. But selection bias may occur if there is incomplete participation

or if participants have been lost to follow-up, when either situation is related to both

Table 9.2 Bias to be addressed in cohort study assessment [3]

Type of bias Solution

Sample selection Clear definition of research population and sample size

Information curation Treat and analyze test group and control group in parallel

Minimize bias from investigator

Other Prevent sample loss

Prolong the duration of investigation
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exposure and health outcome. To prevent selection bias in a cohort study, investi-

gators should be kept unaware of (“blinded” from) cohort members’ outcome

status.

In addition, selection of participants should not be influenced by prior knowl-

edge or suspicion of health outcome in a cohort study. Therefore, participants who

are lost to follow-up or refuse to participate in the study should be evaluated in

terms of their potential exposure and health outcome information [7].

9.5.2 Attrition Bias

Attrition bias, loss of subjects to follow-up, is a serious concern in cohort studies

requiring special consideration when evaluating the results from cohort studies.

When a cohort is conducted for a long time, it is possible that there may be sample

loss during the period of follow-up. When the lost sample during follow-up exhibits

different exposure status or outcome from those who remain in the investigation,

bias is likely to occur. The withdrawals of participants can severely interfere with

the results and thus must be addressed adequately. Since it is extremely difficult to

know the factors related to such losses, the best method to address this source of

bias is to keep losses to an absolute minimum [3].

9.5.3 Effects of Nonparticipation

In virtually every cohort study, only a part of individuals are eligible to participate

actually into the study. Differences between the disease and control could arise

from low participation rates other than disease itself, because participants may

differ from those who do not participate in various characteristics such as age,

gender, race, economic status, education level, etc. [3], for example, participants

may be healthier than those who decline to participate. Nonparticipation thus

affects the generalizability of results, that is, the ability to extrapolate the findings

to other populations.

Fig. 9.3 Steps in the selection and maintenance of subjects in the cohort study
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9.5.4 Information Bias

Information bias is also referred to as observation bias that arises from systematic

errors in data collection, participants’ exposure or health outcome measurement or

classification. Any observational study is unlikely to categorize all individuals

correctly; thus, misclassification (of exposure or outcome) is a concern in every

cohort study. Its effect on study results will depend on whether the misclassification

was independent of the other study axis (outcome or exposure). Misclassification

can be divided into non-differential and differential.

9.5.4.1 Non-differential Misclassification

Misclassification that is non-differential is either random misassignment of expo-

sure status that occurs regardless of disease status or random misassignment of

disease status that occurs regardless of exposure status. Such misclassification may

be present because of the many difficulties inherent in the measurement of vari-

ables. As a result, misclassification generally reduces an estimate of an exposure-

disease association or causes an actual health hazard to not be recognized.

9.5.4.2 Differential Misclassification

Differential misclassification, in which misassignment of exposure is related to

disease status or misassignment of disease status is related to exposure, can lead to

the perception of a stronger or a weaker association than what actually exists. In

cohort studies, differential misclassification is commonly prevented by keeping the

investigators “blind” to exposure status during collection of outcome information,

thereby randomly distributing any errors in collection of information among both

exposed and nonexposed groups [3].

9.5.5 Confounding Bias

Confounding, a central issue in performing and interpreting epidemiological stud-

ies, occurs when a separate factor (or factors) underlies the observed exposure-

outcome correlation under study, leading to bias. To be a confounder, the factor

must be associated with both the independent variable and the outcome in the

unexposed group [3]. Thus, a confounder is both predictive of the health outcome

with or without exposure in the population. In this case, one can attribute the

observed exposure-outcome correlation to the confounder.

Confounding bias is an objective problem that results from the structure of

reality, which in turn could overrate or underrate the true exposure-outcome
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correlation and can even divert the direction of the observation. The direction of the

effect of the confounding factor on the estimate of the observed association will

depend on the nature of the interrelationships among the exposure, confounding

factor, and disease.

Confounding can be controlled either during the design or statistical analysis of

the data. During the design phase, to avoid confounding bias, the population can be

restricted to homogeneous population. For example, a study population may be

restricted to include only males if gender is a predictor of the outcome and also

associated with exposure of interest and would therefore be considered a potential

confounder. Matching is another approach to deal with confounding in the study

design of a cohort study. Alternatively, statistical approaches, e.g., stratification and

multivariate adjustment, find application in analysis of confounding variables [14].

9.6 Tools and Software for Cohort Studies

Data analysis and summarization of a cohort study can be challenging due to the

large sample sizes and high data throughput inherent to cohort design [14]. Statistics

provides essential tools to evaluate scientific evidence derived from properly

designed studies. Standard statistical software can analyze data from cohort studies,

e.g., Stata, SAS, or R. Programs for specific genetic analyses have also been

developed and are publicly available, e.g., routines for detecting compound het-

erozygote alleles in genome-wide association studies [14] or for analyzing multiple

traits and multiple environments for whole-genome prediction (WGP) model [15].

9.7 Strengths and Limitations of Cohort Study

The strengths and limitations of a cohort study must be considered when using this

design to interpret a particular research phenomenon.

9.7.1 Strengths of Cohort Study

1. Cohort study is less bias-prone because it records exposure status before the

disease occurs [15].

2. By comparing the incidence rate of disease between the exposed and the

nonexposed group, relative risks can be measured in order to evaluate etiological

relationships [15].

3. Cohort study usually gives a clear temporal sequence between putative cause

and outcome: the exposed and unexposed are free of the outcome at the

outset [15].
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4. Cohort studies can assess the multiple outcomes from a single exposure. It is also

able to study rare exposures.

9.7.2 Limitations of Cohort Study

1. Cohort studies are inefficient for the evaluation of rare diseases, because a large

sample size should be required to be recruited if the incidence of outcome is low

unless there are distinct populations exposed to a risk factor for which the

attributable risk percent is high [16]. Sometimes a suitable comparison group

couldn’t identify and recruit in such cohorts.

2. Cohort studies require prolonged follow-up, especially if the outcomes are

observed long after the exposure. During the long period, the exposure status

of included subjects may change. The results could be biased because of

differential losses to follow-up between those exposed and unexposed [16].

3. Confounding should be taken into account when designing a long-term cohort

study. However, many unmeasured or unknown confounding factors cannot be

considered comprehensively, so the final results may still be effected to residual

confounding [16].

9.8 Conclusions on Cohort Study

Cohort study has many appealing features that can be utilized in cohort design. A

well-designed and well-performed cohort study should provide a reliable and

accurate estimate of the exposure-outcome association. Given large sample size

and complete follow-ups, valid and interpretable data can be obtained from pro-

spective cohort studies.

9.9 Cohort Study with Omics Data Analysis

9.9.1 Introduction

The high-throughput sequencing and quantitative technologies have allowed to

monitor the differential expression of various biological molecules under different

physiological conditions on a genomic scale and to enhance the understanding of

molecular metabolism [17–19]. Meanwhile, recent advances in genomic technolo-

gies have provided useful tools that help identify genetic alterations underlying

common abnormalities. Information on various levels ranging from single mole-

cules to pathways and networks have facilitated the functional evaluation and
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accurate quantification of gene-gene, gene-environment, and gene-disease

association.

Longitudinal cohort studies are regarded as the most rigorous method for

detecting gene-gene and gene-environment relationships underlying multifaceted

human diseases, in particular for noncommunicable diseases. In genetic epidemi-

ology, the exposure group consists of individuals with specific genotypic or phe-

notypic trait, while non-exposure group is without such trait. The participants are

then followed to an endpoint when a desired disease occurred, so as to determine

the risk of contracting such disease or biomarkers for predicting disease develop-

ment. Such study is designed in the population as a whole, rather than within the

individuals under medical attention. Case-cohort and nested case-control represent

two related but methodologically different case designs that are commonly used for

molecular epidemiology within prospective cohort studies since they are logisti-

cally more efficient than full cohort analyses.

9.9.2 Cohort Study with Genomic Data Analysis

Genetic tools are widely used by genomic epidemiology to measure the impact of

genetic alterations on public health. Numerous analytical methods have been used

to identify the genetic variation underlying complex phenotypes [20]. DNA

sequence variation can be identified through association studies in family-based

cohort [21, 22] and population-based cohort [23, 24].

Recently, case-cohort design has been employed to study genetic susceptibility

with regard to human disease phenotypes. The case-cohort design was first devel-

oped by Miettinen [25] as the “case-base” design and then improved by Prentice. It

is a cost-effective two-step sampling strategy that finds wide application in mea-

suring the relationship between costly exposures and time-to-event outcomes. In

this approach, a sub-cohort sampled of total baseline cohort is selected once the

study begins and is followed thereafter, and all cases or a random sample of all

cases is validated through the length of the study [26]. The ratio of exposed to

unexposed individuals in the reference group is the same within the whole cohort at

baseline. As an alternative, the follow-up data for the sub-cohort may be treated as

representative of the person-time experience of the total cohort, so it can be

analyzed to quantify the association rate between biomarker and disease. Two

settings have to be considered for the initial case-cohort study conducted within a

cohort. First, when a new cohort study begins with a prior plan for conducting case-

cohort analyses in the future. The second is a retrospective case-cohort study

conducted within an existing cohort after a period of follow-up.

The main advantage of this design is that the randomly selected sub-cohort

group can serve as reference group for different case groups selected from the

cohort. In addition, censoring distribution of such design is dependent on covariates

measured for the sample, without the need of follow-up or covariate information on

subjects not included in the case-cohort sample.
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The weakness of case-cohort design is the poor statistical power compared with

a traditional case-control study and the few analytical capabilities, so it requires

more statistical expertise [27].

The case-cohort design is regarded as cost-effectiveness with high relative

efficiency and flexibilities for evaluating genetic susceptibility with time-to-event

data especially when the event is rare [28]. This design merely measures expensive

exposures of subjects who underwent the cases of interest and a random subgroup

of the cohort. Non-genetic risk data were recorded for the entire cohort, whereas

genotype data were obtained only for the subgroup. If outcome-dependent samples

are properly selected, they would allow for unbiased assessment of associations

between gene and phenotype as well as population genetic analysis, e.g., allele and

haplotype frequencies and Hardy-Weinberg proportions [28].

The case-cohort design dose not fix the time scale, thus making the statistical

analyses more flexible and ensure the most relevant time scales to be used in the

biomarker analyses. A large number of statistical approaches have been proposed

that utilize the case-cohort to estimate hazard ratio parameters for SNP effect

analysis. These methods can generally be divided as follows: (i) weighted likeli-

hood or weighted estimating equation methods, (ii) pseudo-likelihood methods, and

(iii) nonparametric maximum likelihood estimation methods [28].

A discovery case-cohort genome-wide association study (GWAS) is performed

to identify genetic factors involved in aromatase inhibitor (AI)-related fractures in

the MA.27 breast cancer. The case-cohort design was chosen so that future GWAS
on different phenotypes would be economical by reusing a randomly chosen

sub-cohort from the main clinical trial. In conclusion, this case-cohort GWAS
identified SNPs that were related to the risk of bone fracture in postmenopausal

breast cancer patients under AI treatment for 5 years. The observed SNPs may

contribute to the novel mechanisms of fracture risk in AI-treated postmenopausal

women [29].

9.9.3 Cohort Study with Transcriptomics Data

Transcriptomics, also known as expression profiling, refers to the global analysis of

whole set of transcripts of a genome of cells. It quantitatively measures the dynamic

expression of messenger RNAs and their differential expression level under various
conditions.

The unique time scale of the chronic disease in humans makes it dependent on an

observational research, such as cancer. The prospective design is undoubtedly the

best design to integrate the time aspect of tumor genesis and changing exposures. In

practice, however, researchers usually choose a nested case-control design within

the prospective functional genomic cohorts, comparing the repair capacity of

cancer cases and controls, in order to reduce the analysis cost as well as the batch

effects in the laboratory. The main advantage of a nested case-control design is that

it matches the controls to cases on during the follow-up. This sampling procedure is
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referred to as risk set sampling. The feature of control selection addresses major

problems of the original cohort.

This type of design outperforms its counterpart by solving the logistical issues

characteristic of biomarker analysis. The Norwegian Women and Cancer

(NOWAC) postgenome cohort study is one of the largest population-based prospec-

tive cancer study designed for transcriptomics due to the presence of buffered RNA.

Individuals diagnosed with invasive breast cancer were identified through access to

the Cancer Registry of Norway. After removing outliers, the final cohort includes

441 case-control pairs. It stratified patients according to their cancer genotypes,

which outperforms traditional case-control studies by identifying biomarkers of

little or borderline significance. The postgenome NOWAC cohort plans to integrate

gene expression profiles both from blood and tumor mass to the prospective design.

A shortage of prospective study is the altered case-control status, i.e., controls

became cases over time, reducing the differences in gene expression levels within a

case-control pair. It provides a promising tool to profile blood-derived gene expres-

sion levels in breast cancer diagnosis with adjustment for confounding factors

related to different exposures [30, 31].

9.9.4 Cohort Study with Integrative Omics Data Analysis

Recent development in omic technologies has accelerated the generation of omic

data, ranging from whole-genome sequence to transcriptomic, methylomic, prote-

omic, and metabolomic data [20]. Analysis on one omic data alone ignores the

complex cross talk among multiple regulatory levels. Only if the genetic, genomic,

and proteomic data are considered as a whole can the complete picture of biological

system be obtained. The purpose of data integration is to identify key risk factors

and their associations in order to predict disease outcomes. Approaches have been

developed recently that integrate heterogeneous “omics” datasets in microbial

systems, and the results have proved that the multi-“omics” approach combined

with cohort study is a useful tool to unravel the dynamics regulation of biological

systems [32].

The population-based study enrolling large number of samples can explore the

complex interactions between variation in DNA, gene, methylation, metabolites,

and proteins and thus may acquire a much comprehensive knowledge of the

mechanism or causal risk-disease relationships.

It is imperative to bridge the gap between the large amounts of data and ability in

data interpretation. It’s recognized that genetic variants alone are far from sufficient

to explain the development of chronic disease [33]. Environmental and behavioral

factors, in combination with a genetic predisposition, have contributed to the ever-

increasing chronic disease and might be the key to reversing this trend [34]. Gene-

environment interaction means that a subject is exposed to genetic and environ-

mental factor simultaneously to result in a disease outcome. The outcome will not

occur in the absence of either of these factors.
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The most widely used method for investigating the gene-environment interac-

tion of complex disease is prospective cohort studies, which is a longitudinal

resource to provide the population-based sample for large-scale genomic studies,

depending on the exposure rate and the frequency of the putative risk genotype. In a

population-based cohort, the wealth of epidemiological, clinic-pathological, eco-

nomical, and biological information can be recorded to acquire a comprehensive

understanding of disease, so as to help health specialists in the management and

treatment of patients with this disease.

It’s increasingly popular to introduce post-genomic fields, e.g., transcriptomics,

proteomics, and metabolomics, into large-scale population studies, e.g., biobank

[35], or the retrospective analysis of samples from banks of completed studies, e.g.,

INTERSALT, INTERMAP, and EPIC. The Human Genome Epidemiology Net-

work (HuGENet) was established in 1998 to systematically integrate epidemiologic

data on human genes. HuGENet provides an updated data base on human genome

epidemiology, collecting data ranging from genetic mutations, gene-disease rela-

tionships, gene-gene and gene-environment associations, and assessment of genetic

tests.

The CARTaGENE (CaG) study is a population-based biobank and the largest

ongoing prospective health study of residents in Quebec, Canada. The target

population of CaG is 40–70 years old who are at highest risk of contracting chronic

diseases, accounting for 56% of the Quebec population. A total of 20,007 partici-

pants were enrolled from and followed up for 14 months based on linkage to

governmental health administrative databases and direct reassessment. Detailed

health and socio-demographic data, physiological parameters, and biological sam-

ples (blood, serum, and urine) were recorded. Participants are randomly selected

rather than for a given disease to reduce the bias in phenotype observation. In

addition to DNA and protein tests, the biological samples in CaG can also be used

for gene expression analyses, providing opportunities for systems biologists to

identify genetic factors associated with disease [36].

9.10 Perspectives on Cohort Research

9.10.1 Data-Driven Medicine and Cohort Research

Recent years have witnessed remarkable advances in electronic health data, such as

extensive use of electronic medical records (EMR) to record patient conditions,

diagnosis, images, genomics, proteomics, treatments, outcomes, claims, financial

records, clinical guidelines and best practices, etc. Healthcare needs new technol-

ogy and data to cover the entire spectrum, such as data-driven analytics and

multiple cohorts in which participants have high levels of disease activity at

baseline.

9 Cohort Research in “Omics” and Preventive Medicine 213



Data driven analytics involves machine learning from data observed during

healthcare delivery. Implementation of precision algorithms and development of

prescriptive prediction models for disease targets among different patient cohorts

could aid in the discovery of new knowledge from biomedical, and healthcare big

data generated in the hospital setting can also facilitate personalized prediction due

to the unique feature of patients [37–39].

One emerging research area is personalized predictive models according to

patient similarity, with the aim to identify patients with similar characteristics to

an index patient and get clues from the similar EMR for personalized decision

making. Building a patient network in which nodes indicate patients and edges

represent similarity could support such decision making. The network illustrating

the treatments and disease condition evolutions of the similar patients provides

improved healthcare scenarios for the current patient. The patient similarity also

helps accurate patient stratification, which is further used to improve the predictive

model. Patient similarity analytics have already been used in medical tasks such as

patient stratification, diagnosis, and prognosis and risk evaluation [40–45].

To make the most of patient similarity analytics, a big data methodology is

called for where all the attributes are taken into account, considering every putative

confounding factors. This is challenging in two ways. On one hand, the number of

attributes is large, and it’s difficult to define the similarity metric in such high

dimensional space. On the other hand, the concept of similarity is context-

dependent. Local Supervised Metric Learning (LSML) is a supervised metric

learning approach for patient similarity evaluation [46–48]. The principle of

LSML is to maximize the local separability of the data vectors from different

classes.

9.10.2 Cohort Research for Healthcare Medicine

It’s a rule of thumb to produce the gold standard of healthcare evidence by the

randomized controlled trial (RCT). However, the patients who are included in RCTs
are not representative of real-world patient populations, mainly because these trials

have to comply with restrictions in terms of participant age and comorbidities. Most

of RCTs are too small or too brief to evaluate the rare and chronic disorders.

Different from clinical trials, observational cohort studies typically do not

exclude real-world patients who are often not feasible to study in a clinical trial.

Cohort deign is used to investigate the fate of disease, the ability of a diagnostic

technique in predicting prognosis, and long-term rare adverse effects of treatments,

which complement the clinical trial by evaluating the effectiveness of clinical

treatment. A well-designed population-based cohort study has several strengths

[49] in evaluating the adoption of new interventions: (1) it provides insight into care

delivery in routine practice to all patients; (2) it includes elderly with comorbidity

[50, 51]; (3) it provides information to guide future study; (4) it provides evidence

of effectiveness of new therapies in the general population; (5) it provides large
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samples to study rare diseases for which RCTs are vulnerable [52, 53]; (6) it

provides insight into short- and long-term toxicity in routine practice [54]; and

(7) it answered questions that are not addressed in an RCT.

This effectiveness study provides a real-world perspective on the management of

healthcare practice [55]. When the results of RCTs are used in cohort practice,

increased information on risk of treatment might be expected. For example [49],

increased cardiovascular disease and diabetes were observed in prostate cancer

patients under androgen deprivation therapy [56], the risks of cardiac disease for

breast cancer patients who received radiotherapy [54], and long-term toxicities after

treatment for testicular cancer [57].

In real world, a treatment is considered to be beneficial if it allows patients to

survive longer with better prognosis. However, only a small fraction of new

therapies evaluated by RCTs have met the criteria.

The increasing worldwide availability of real-world evidence shared and ana-

lyzed large amounts of data offer many advantages over RCTs. Population-based
cohort studies can bridge the gaps in healthcare based on compelling evidence from

RCTs and explore the risks and harms of overtreatment by quantifying under-

utilization of adjuvant therapy[58, 59]. Certainly, one of the characteristics of the

large cohort study is the continuous follow-up survey of years or years.

Moreover [49], population-based studies of healthcare performance can inform

policy to improve access to care [61]. Oncology practice and policy have been

influenced by population-based studies showing that patient outcome is influenced

by the interval between surgery and adjuvant chemotherapy for colorectal [60] and

breast cancer [62, 63], hospital and surgeon volume of cancer surgery [64, 65], and

the extent of lymph node harvest in colorectal cancer [66, 67].

9.10.3 Cohort Research for Preventive Medicine

Epidemiological findings not only confirm dementia as a major challenge for the

coming years but also contribute in defining risk factors, predicting, and may be

preventing this disease. Cohort design is one of the most analytical epidemiologic

methods, which can provide stronger evidence of disease than other designs. The

whole aim of cohort is to try and identify attributable factors which may be causes

of the disease and which, if removed or modified within the total population, would

prevent the disease occurring. This can be useful in helping to decide which

exposures it is worth trying to prevent.

Measuring the impact of preventive medicine can be a complex and challenging

task. A straightforward example such as immunizations against infectious diseases

can be considered. It is possible to identify a population at risk, provide the vaccine,

and measure the incidence of the disease. A safe vaccine and a reduction in the

disease would be good indicators of a positive and successful impact having been

made. Therefore, prospective cohort studies are strongly recommended to evaluate

the effectiveness of vaccines in preventing development of disease. Population at
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high risk of influenza, including the elderly (age above 65), toddlers, and persons at

arbitrary age with certain complications, are more susceptible to hospitalization,

death, and other comorbidities. Therefore, an increasing body of evidence from

different well-defined cohorts supports a role for specific antibody in protection

against influenza, which may have implications for potential vaccine development.

Examples include a cohort of subjects aged 2–49 years to evaluate safety of

quadrivalent live attenuated influenza vaccine [68] and a cohort of women and

their infants to estimate the effectiveness of maternal influenza vaccination against

influenza during and after pregnancy [69].

Another challenge of preventive medicine is chronic noncommunicable disease.

There has been a significant increase in life expectancy and economic growth in the

last decade. Chronic noncommunicable diseases, e.g., cardiovascular disease, type

2 diabetes, and cancer, account for the majority of disease burden in the developed

countries. The progression of these diseases involves a complex cross talk of risk

factors, both genetical and environmental. This has resulted in a transition of

preventive medicine [70].

Gene-environmental cohort studies are designed to discover risk factors that

otherwise would not have been identified by traditional epidemiological

approaches, which fail to make precise predictions on single level factors alone.

Setting up multiple cohort studies is helpful to determine the disease burden and to

measure the exposure-outcome relationship.

Multiple design is designed using two or more separately defined cohorts for

comparison, which is similar to a multicenter type of study but is focused on similar

cohorts with similar exposures or different exposure levels from different places.

The multiple cohort design can be the only method available to studying rare

exposures. The analytic procedure of multiple design bares some similarity with

meta-analyses. The cohorts can yield varying rates of findings at different combi-

nations of risk factors.

Unfortunately, when analyzing data from different platforms, it is likely that the

design constructs vary largely among investigators. Confounding variables can be

overemphasized, making it hard to determine the real predictors of outcome [7].

Recent advances in computer technology have accelerated corporations and data

exchange between databases, including cancer registries and hospital records.

Modern integrated networking platform at the national level and large medical

network system have revolutionized the traditional individual follow-up mode into

more convenient and rapid follow-up survey, which is more systematic and group-

oriented, significantly lowering dropout rate, such as European countries using

population-based cancer registration system for follow-up, the United Kingdom

research using death registration and tumor registration and joint hospital records

and individual submission of information, and Swedish life gene research using a

national linkage registration system. Population-based cohort studies can provide

complementary information for management of preventive medicine and to provide

evidence for outcome improvement at the general population level [71].

However, the findings are not clinically significant for the development of

precise, personalized, preventive medicine. All disciplines in the field of preventive
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medicine should be integrated to design systematic approaches for effective disease

prevention. Large-scale validation studies of those preliminary studies, using a

prospective multiple design and long follow-ups, clinical data, together with data

linkage of healthcare resource use, will ultimately yield evidence for the develop-

ment of preventive medicine in the future [72].
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