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Abstract Impact of climate change on the temperature and precipitation charac-
teristics of Weyib River basin in Ethiopia has been investigated using CanESM2
model for the RCP2.6, RCP4.5, and RCP8.5 scenarios. The statistical downscaling
model calibrated and validated using the observed daily data of 12 meteorological
stations was used to generate the future scenario. The change in mean annual
maximum temperature from the base period has indicated an increment of 0.16,
0.14, and 0.15 °C for RCP2.6, 0.12, 0.19, and 0.21 °C for RCP4.5, and 0.12, 0.22
and 0.32 °C for RCP8.5 for the 2020s, 2050s, and 2080s, respectively. Mean
annual minimum temperature has shown an increment of 0.30, 0.43, and 0.39 °C
for RCP2.6, 0.31, 0.48, and 0.57 °C for RCP4.5, and 0.34, 0.66 and 1.04 °C for
RCP8.5 for the 2020s, 2050s and 2080s, respectively. For the percentage change in
mean annual precipitation from the base period, the increment has been 8.68, 12.93,
and 11.34% for RCP2.6, 9.54, 14.36, and 16.94% for RCP4.5, and 14.70, 19.14,
and 28.69% for RCP8.5 for the 2020s, 2050s, and 2080s, respectively. There was a
significantly (at 5% significant level) increasing trend of both temperatures and
precipitation in all the three RCPs for future until the year 2100. The increment of
rainfall in the study area was comparatively higher in the dry season 20.68% in the
2020s, 33.65% in 2050s, and 53.74% in 2080s for RCP8.5 which might have
positive impact on pastoral region of the study area and it might affect the highland
areas negatively since this season is expressly main crop harvesting period.
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Introduction

It is observed that there is a substantial scale gap between what Global Circulation
Models (GCMs) supply the predictors and what the hydrological models require
climatic inputs to simulate hydrological processes. This scale discrepancy sources
to a sizeable trouble for the valuation of climate change effect through hydrological
models. Hence, significant awareness should be drawn to the development of
downscaling methodologies so as to obtain local scale climate variables (mainly
precipitation and temperatures) from coarse resolution ESMs. There are two prime
methodologies accessible for the downscaling of large-scale resolution ESMs
output to the finer (local) scale resolution (Wilby and Dawson 2007) namely
dynamical (a higher resolution regional climate model is enforced to use ESMs
output) and statistical (forms empirical relationships between large-scale atmo-
spheric ESM variables, the predictors and local (finer or catchment) scale climate
variables, the predictands) downscaling methodologies.

The projected mean annual temperature in Ethiopia are found to be in the ranges
0.9–1.1, 1.7–2.1, and 2.7–3.4 °C by 2030, 2050, and 2080 time slices, respectively
(Ethiopian National Meteorological Agency 2007). The projected mean annual
maximum and minimum temperature shows rising trend in southeastern part of
Ethiopia (Shawul et al. 2016). The increment of large-scale mean surface temper-
ature by the end of the twenty-first century are found to be in the ranges 2.6–4.8 °C
(RCP8.5), 1.1–2.6 °C (RCP4.5), and 0.3–1.7 °C (RCP2.6) (IPCC 2013). In gen-
eral, temperatures revealed an increasing trend (Kruger and Shongwe 2004; New
et al. 2006; Unganai 1996) which tends to glacier to melt, sea level to rise, and
alteration in circulation pattern which influence precipitation, water availability, and
extremes of floods and droughts; just to name a few. There has been observed
substantial variability in rainfall (rise about 20% and also declined by about 20%) in
the globe (Bates et al. 2008). Larger spatial variation of precipitation (from a drop
of about 25–50% to rise to 25–50%) has been reported in East Africa (Faramarzi
et al. 2013). Increase in rainfall has been observed (Shongwe et al. 2009) in the
tropics. Rainfall variability is more in the African continent and resulted in variation
in water availability. For instance, a decline in water availability (streamflow) (Beck
and Bernauer 2011) by 2050s has been reported. Nevertheless, the rise of water
availability (Graham et al. 2011) has also been stated. As we have seen in various
literatures that there is an argument on the amount of decreasing or increasing of
water availability on the globe.

The present unpredictable climate is a striking plenteous threat to Ethiopia by
mainly disturbing water resources and agricultural sectors. Recent flooding inci-
dences, as well as the widespread drought in Ethiopia, could remain placed as
visible indications for these influences (Ethiopian National Meteorological Agency
2007). The Weyib River basin is used for several purposes (i.e., various water
resources schemes involved to the flow of the river) but rises in temperature and
change in rainfall magnitude and pattern affect the basin negatively. Therefore, in
this study, statistical downscaling methodology using multiple linear regression
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(MLR) based statistical downscaling model (SDSM) has been used to downscale
daily temperatures (maximum and minimum) and precipitation data for 12 arbitrary
meteorological stations found inside study area of Weyib River basin using
CMIP5-CanESM2 for the RCP8.5, RCP4.5, and RCP2.6 scenarios. These future
downscaled temperatures and precipitation data can be used as an input for
hydrological models to simulate future, various surfaces, and subsurface hydro-
logical processes. The analysis of future maximum and minimum temperature and
precipitation was carried out on an annual, seasonal, and monthly basis for three
(the 2020s; represents 2011–2040 time series data, 2050s; represents 2041–2070
time series data and 2080s; represents 2071–2100 time series data) time slices in
future periods.

Materials and Methods

Study Area (Weyib River Basin)

The Weyib River basin (Fig. 1) has an area of 4215.93 km2 and is situated between
6.50 and 7.50°N latitude and 39.50–41.00°E longitude. The altitude variation
ranges around 4389 m (a.m.s.l.) at the highest point to 898 m at the confluence
point. Mean annual maximum and minimum temperature of the study area are
22.30 and 7.60 °C, respectively. The average rainfall in the study area ranges
749.34–1368.90 mm (mean of 1037.40 mm) per annum. The Eutric Vertisol and
Dystric Cambisol are the two main soil types, and agriculture is a leading land use
type. Roughly, 70.54% of the basin area covered with 0–15% land slope. Mean
annual total water availability (in the simulation period 1984–2004) has to be
553.46 mm.

Earth System Model (ESM) and RCP Scenarios

In this study, a bias-corrected CMIP5-ESMs climate model for the RCP8.5 (very high
emission scenario), RCP4.5 (an intermediate emission scenario), and RCP2.6 (very
low emission scenario) scenarios has been used. The historical and future predictor
variables have been downloaded through official website (http://ccds-dscc.ec.gc.ca/?
page=pred-canesm2) of Canadian Centre for ClimateModelling and Analysis (http://
ccds-dscc.ec.gc.ca/?page=pred-canesm2CCCMA). These predictors are assigned in
zip file format and have five files inside (CanESM2_historical_1961-2005,
CanESM2_rcp26_2006-2100, CanESM2_rcp45_2006-2100, CanESM2_rcp85_
2006-2100 and NCEP-NCAR_1961-2005) the predictors prepared, this technique
was used as an input in SDSM.
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Types of Data Used

Daily weather data and ESM data were utilized for this study. The daily weather
data (daily precipitation, Tmax, Tmin, mean wind speed, relative humidity and
sunshine hours) for 12 weather stations (detailed in Table 1) were collected from
National Meteorological Service Agency of Ethiopia (NMSA). The source of ESM
data is the official website of Canadian Centre for Climate Modelling and Analysis
mentioned above in ‘earth system model (ESM) and RCP Scenarios’ section. The
mean monthly rainfall (mm) and temperature (°C) characteristics of Weyib River
basin are depicted in Fig. 2.

Fig. 1 Study area: location map, reach, basin, and selected weather stations of the Weyib River
basin
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Downscaling Methods

There are two prime methodologies accessible for the downscaling of large-scale
spatial ESMs output to the local scale spatial resolution (Wilby and Dawson 2007)
namely dynamical (a higher resolution regional climate model is enforced to use
ESMs output) and statistical downscaling methodologies. The statistical down-
scaling method establishes empirical relationships between large-scale ESM out-
puts, the predictors, and local scale climatic variables (for instance, Tmax, Tmin,
and precipitation), the predictands with the help of some transfer function as shown
in the following relation.

Table 1 Details of the 12 meteorological stations and their data records

S. No. Station
name

Data
recording
periods

Latitude
(°N)

Longitude
(°E)

Altitude
(m)

Total annual
mean
precipitation
(mm)

Mean
annual
max.
temp
(°C)

Mean
annual
min.
temp
(°C)

1 Robe 1984–2011 7.133 40.000 2464 804.14 21.79 8.00

2 Goba 1998–2007 7.017 40.000 2613 980.03 20.13 6.52

3 Dinsho 1981–2007 7.100 39.783 3072 1368.90 17.43 3.43

4 Agarfa 1988–1997 7.267 39.817 2465 762.36 22.38 8.13

5 Sinnana 1982–2008 7.067 40.217 2364 894.35 21.39 8.02

6 Adaba 1980–2010 7.000 39.383 2415 823.65 23.87 5.10

7 Homa 1988–2010 7.133 39.933 2505 846.58 21.75 7.33

8 Ali 1988–2005 7.017 40.350 2460 1264.17 20.47 6.68

9 Gassera 1980–2010 7.367 40.183 2337 1181.12 20.67 6.95

10 Goro 1981–2005 7.000 40.467 1806 887.14 26.77 7.89

11 Ginnir 1980–2012 7.133 40.700 1929 1030.04 23.82 13.20

12 Hunte 1980–2011 7.100 39.417 2413 749.34 23.71 6.73
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Fig. 2 Mean (12 stations) monthly rainfall and temperature characteristics of Weyib River basin
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Y ¼ f Xð Þ; ð1Þ

where Y is local Tmax, Tmin, and precipitation that were being downscaled,
X stands for a set of large-scale potential predictor variables (for instance, mean sea
level pressure, geopotential heights and specific humidity at the surface and
850 hpa), and f represents a stochastic function that relates the predictands and
predictors.

The “f” function is determined empirically from historical observations by
training and validating the model. Thus, the achievement of the statistical down-
scaling method was based on the relationship used and choice of potential predictor
variables, whose performance can be verified through estimation of various sta-
tistical indices (for instance, R2, RMSE, and NSE). It is roughly divided into three
classes (weather typing, weather generators, and regression-based downscaling).
Regression analysis is very powerful for forecasting (Ghosh and Mujumdar 2008);
it is divided into two categories namely simple regression and multiple regressions.
The statistical downscaling method has its own merits and demerits. Key demerits
of statistical downscaling contain the assumption that observed relations between
large-scale predictors and local predictands will continue in a changing climate.
Similarly, some merits of statistical downscaling contain: it is easy to apply, has the
possibility to downscale from many ESMs and different emission scenarios, and
downscales comparatively fast and inexpensive. Therefore, in this study, the
independent variables are more than one, so MLR using SDSM has been used to
downscale daily temperatures and precipitation data from Ensembles of ESM for
the future RCP scenarios.

Statistical Downscaling Model (SDSM)

The SDSM can perform a combination of the stochastic weather generator and
regression-based on the family of the transfer function (Liu et al. 2011). It performs
the spatial downscaling through daily predictor–predictand relationships using
MLR and creates predictands that represent the local weather condition.
Regression-based in the family of transfer function method is the well-known
technique of downscaling (Ghosh and Mujumdar 2008) that depends on the direct,
measurable link between predictand and predictors through some form of regres-
sion. SDSM version 4.2.9 a decision support tool (Wilby and Dawson 2007) has
been used for this study to downscale daily future Tmax, Tmin, and precipitation.
This model was downloaded from the website http://co-public.lboro.ac.uk/cocwd/
SDSM/. There are seven major steps to be followed in developing the best per-
forming MLR equation for the downscaling processes in this version of SDSM.
Detailed discussions of the steps are given in (Wilby et al. 2002; Wilby and
Dawson 2007).
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The choice of appropriate downscaling potential predictor variables has been
done with the help of the screen variables option of the SDSM using correlation
analysis, partial correlation analysis, and scatter plot. Screening the potential pre-
dictors has been done through choosing seven or eight predictors at a time and their
explained variance has been analyzed, thereby choosing those predictors which
have greater explained variance and drop the rest. Then partial correlation analysis
has been done for nominated predictors to see the level of association with each
other; these statistics identify the extent of the descriptive power of the predictor to
describe the predictand. Therefore, the predictors used for downscaling should be
reliably generated by ESMs, freely accessible from ESM outputs archive and
strongly linked with the local climate variables of concern (Tmax, Tmin, and
precipitation in this case).

The calibration process in SDSM constructs downscaling model based on MLR
equations, with given daily station wise weather data (predictand) and potential
predictors. The model calibration operation has been run for station wise precipi-
tation, Tmax and Tmin along with a set of possible predictor variables, and com-
putes the parameters of MLR equations through an optimization algorithm (Dual
simplex has used in this case). SDSM’s weather generator enables to produce
ensembles of synthetic current daily weather data based on inputs of the measured
time series data and the MLR parameters generated during the calibration
step. Finally, station wise Tmax, Tmin, and precipitation scenario have been gen-
erated until the year 2100 using CMIP5-CanESM2 model outputs (potential pre-
dictor variables for the future period) for the RCP8.5, RCP4.5, and RCP2.6
emission scenarios. Twenty ensembles of synthetic daily Tmax, Tmin and pre-
cipitation time series data were generated for the period from 2006 to 2100 for all
stations and the mean of these 20 ensembles was used as final daily Tmax, Tmin,
and precipitation data for the stated period. Moreover, then the future Tmax, Tmin,
and precipitation scenarios have been established by dividing the later date series
into three (the 2020s, 2050s, and 2080s) time slices for the 12 averaged arbitrary
spatial weather stations.

Precipitation and Temperatures Scenario Statistics

Percentage and absolute change have been used to calculate three-time slices of
30 years precipitation and temperatures, respectively.

A percentage change has been used for precipitation;

D2020s ¼ V2020s� Vbaseð Þ � 100
Vbase

ð2Þ

D2050s ¼ V2050s� Vbaseð Þ � 100
Vbase

ð3Þ
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D2080s ¼ V2080s� Vbaseð Þ � 100
Vbase

: ð4Þ

Absolute difference has been used for temperatures,

D2020s ¼ V2020s� Vbase ð5Þ

D2050s ¼ V2050s� Vbase ð6Þ

D2080s ¼ V2080s� Vbase; ð7Þ

where, Vbase is the mean of 20 ensembles of Tmax, Tmin and precipitation for the
base period for each ESM-RCP and each station. V2020s, V2050s, and V2080s are
the average of 20 ensembles of Tmax, Tmin, and precipitation for the period of
2011–2040, 2041–2070, and 2071–2100, respectively, for each ESM-RCP exper-
iment and each station.

Mann–Kendall Trend Test

A nonparametric rank-based procedure has frequently been used to evaluate if there
is a rise or decline trend in the time series of meteorological and hydrological data
(Hamed 2008; Karpouzos et al. 2010). The Mann–Kendall test was applied in this
study to see the existing trends (rise or decline) of Tmax, Tmin, and precipitation
for the RCP8.5, RCP4.5, and RCP2.6 scenarios in future periods.

SDSM Performance Evaluation

In order to evaluate the SDSM performance relative to the observed Tmax, Tmin,
and precipitation data, the following three statistical model performance evaluation
measures, in addition to graphical technique, were used during the calibration and
validation periods.

Coefficient of Determination (R2)

It was given by (Krause and Boyle 2005) as shown in Eq. 8

R2 ¼
P

Xi� Xav½ � Yi� Yav½ �ð Þ2P
Xi� Xavð Þ2P Yi� Yavð Þ2 ; ð8Þ
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where, Xi is measured value, Xav is average measured value, Yi is simulated value,
and Yav is average simulated value.

Nash–Sutcliffe Coefficient (E)

It was given by (Nash and Sutcliff 1970) as shown in Eq. 9

E ¼ 1�
Pn

i¼1 Xobs;i � Xmodel
� �2Pn

i¼1 Xobs;i � Xobs
� �2 ; ð9Þ

where Xobs is observed values and Xmodel is modeled values at time/place i.

Root Mean Square Error (RMSE)

It was given by (Singh et al. 2004) as shown in Eq. 10

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 Xobs;i � Xmodel;i
� �2

n

s
; ð10Þ

where Xobs is observed values, Xmodel is modeled values at time/place i, and n is
number of observation.

Results and Discussion

Selected Potential Predictor Variables

The lists of selected common potential predictor variables in the entire basin that
gave better correlation results at p < 0.05 for CanESM2 are listed in Table 2.

Results revealed that different atmospheric variables affect different local vari-
ables. For instance, precipitation is more sensitive to mean sea level pressure,
specific humidity (at surface and 850 hPa), zonal velocity (at 500 and 850 hPa),
and geopotential heights (at 500 hPa). Mean sea level pressure, geopotential heights
(at 500 and 850 hPa), average temperature (at 2 m height), specific humidity (at
near surface and 850 hPa), and wind direction (at 850 hPa) affect both the maxi-
mum and minimum temperature under the CanESM2-historical model.
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Table 2 List of selected potential predictor variables that provided better correlation results at
p < 0.05 from CanESM2-historical model for study area of Weyib River basin

Predictand Predictor full name Notations Parti.cor.
(r-value)

p-value

Precipitation Mean sea level pressure ceshmslpgl.dat 0.050 0.020

Specific humidity at
850 hPa

ceshs850gl.dat 0.090 0.000

Surface specific humidity ceshshumgl.dat 0.077 0.002

500 hPa zonal velocity ceshp5_ugl.dat −0.094 0.000

850 hPa zonal velocity ceshp8_ugl.dat −0.119 0.000

500 hPa geopotential
height

ceshp500gl.dat 0.056 0.016

Maximum
temperature

Mean sea level pressure ceshmslpgl.dat 0.148 0.000

500 hPa geopotential
height

ceshp500gl.dat 0.134 0.000

Specific humidity at
850 hPa

ceshs850gl.dat −0.268 0.000

Mean temperature at 2 m ceshtempgl.dat −0.235 0.000

850 hPa wind direction ceshp8thgl.dat 0.110 0.000

850 hPa geopotential
height

ceshp850gl.dat −0.200 0.000

Surface specific humidity ceshshumgl.dat −0.274 0.000

Minimum
temperature

Mean sea level pressure ceshmslpgl.dat −0.308 0.000

500 hPa geopotential
height

ceshp500gl.dat 0.222 0.000

Surface specific humidity ceshshumgl.dat 0.146 0.000

Mean temperature at 2 m ceshtempgl.dat 0.323 0.000

Specific humidity at
850 hPa

ceshs850gl.dat −0.116 0.000

850 hPa geopotential
height

ceshp850gl.dat −0.103 0.000

850 hPa wind direction ceshp8thgl.dat 0.078 0.000

850 hPa zonal velocity ceshp8_ugl.dat −0.116 0.000

Note The partial correlation coefficient (r) shows the explanatory power that is specific to each
predictor. All are significant at p � 0.05. hpa is a unit of pressure, 1 hPa = 1 mbar =
100 Pa = 0.1 kPa
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Calibration and Validation of SDSM for Both Temperatures
and Precipitation

For downscaling of maximum temperature and minimum temperature, and pre-
cipitation MLR, using SDSM, was used to calibrate and validate the model. The
entire length of the observed data was available from 1981 to 2005. This data was
divided into two parts for calibration and validation. Data from 1981 to 1993 was
used for the calibration whereas data from 1994 to 2005 was used for the validation
of the model.

Calibration and validation results for 12 averaged spatial stations maximum
temperature downscaling model are shown in (Fig. 3a, b). The coefficients of
determination (R2), RMSE and NSE values were 0.95, 0.44, and 0.79, respectively,
for calibration period whereas R2, RMSE and NSE values of 0.94, 0.46, and 0.82,
respectively, for validation period. For minimum temperature (Fig. 3c, d), the R2,
RMSE, and NSE values were 0.92, 0.58, and 0.86, respectively, for calibration
period whereas R2, RMSE, and NSE values were 0.93, 0.58, and 0.88 for validation
period. Calibration and validation results for 12 averaged spatial stations precipi-
tation downscaling model are shown in (Fig. 3e, f). The R2, RMSE, and NSE
values were 0.83, 0.98, and 0.78, respectively, for calibration period whereas R2,
RMSE, and NSE values of 0.86, 0.79, and 0.84, respectively for validation period.

Fig. 3 a Calibration result of SDSM for maximum temperature from average of 3 ESMs (1981–
1993) (upper left), b same as (a) but for validation period (1994–2005) (upper right), c calibration
result of SDSM for minimum temperature (middle left), d same as (c) but for validation period
(middle right), e calibration result of SDSM for precipitation (bottom left), f same as (e) but for
validation period (bottom right)
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From these results, we can argue that the model is well performed for the maximum
and minimum temperature, and precipitation downscaling for both calibration and
validation period.

Scenarios Developed for Future Temperatures
and Precipitation

Maximum Temperature Scenarios

The projected mean seasonal maximum temperature shows a decreasing trend in the
dry season in all the three future time slices for RCP2.6, RCP4.5, and RCP8.5
scenarios except for RCP2.6 scenario which is an increasing trend in the dry season
of the 2020s. However, it has shown an increasing trend for both an intermediate
and wet seasons in all the three future time slices for RCP2.6, RCP4.5, and RCP8.5
scenarios except for RCP2.6 scenario which is a decreasing trend in a wet season of
the 2020s. The absolute changes of maximum temperature from the base period for
three scenarios in future time slice for each season are presented in Table 3.

The projected mean monthly maximum temperature has a larger magnitude of
increment on the month of June 2080s which was 0.58, 0.80, and 1.37 °C for
RCP2.6, RCP4.5, and RCP8.5 scenarios, respectively. On the other hand, the larger
decrement on December 2080s 0.75, 0.38 °C, and on December 2050s 0.32 °C
occurred for RCP8.5, RCP4.5, and RCP2.6 scenarios, respectively (Figs. 4, 5 and
6). The absolute change in mean maximum temperature was observed to be sizable
due to a substantial increase and decrease of maximum temperature on different
months. For instance, in the months of January, February, November, and
December, the decrement of the maximum temperature was observed and an
increment on the rest of the months was observed.

Generally, the change in average monthly maximum temperature might range
between −0.25 °C on December and +0.48 °C on June for the coming 2020s
(2011–2040); −0.50 °C on December and +0.91 °C on June for 2050s (2041–
2070) and −0.75 °C on December and +1.37 °C on June for 2080s (2071–2100) for
the RCP8.5 scenario. The change in average monthly maximum temperature for
RCP4.5 scenario varies between −0.25 °C on December and +0.47 °C June for the
coming 2020s; −0.33 °C on December and +0.70 °C on June for 2050s and
−0.38 °C on December and +1.37 °C on June for 2080s. For RCP2.6, ranges
−0.12 °C on August and +0.42 °C on December for 2020s; −0.32 °C on December
and +0.58 °C on June for 2050s and −0.28 on December and +0.55 °C on June for
2080s.

For each time slice, the change in mean annual maximum temperature has
indicated a slight increment from the base period, 0.16, 0.14, and 0.15 °C
for 2020s, 2050s, and 2080s, respectively, for RCP2.6 scenario, 0.12, 0.19, and
0.21 °C for 2020s, 2050s, and 2080s, respectively, for RCP4.5 scenario, and 0.12,
0.22, and 0.33 °C for 2020s, 2050s, and 2080s, respectively, for RCP8.5 scenario.
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The variability of maximum temperature is higher for RCP8.5 than RCP4.5 and
RCP2.6, and the linear trend line for three scenarios has indicated a significantly (at
5% significant level) increasing trend of average annual maximum temperature until
the end of the century (Table 6 and Fig. 7). Comparatively, RCP8.5 (very high
emission scenario) prevails higher change in maximum temperature trend at the end
of the century than the RCP4.5 (an intermediate emission scenario) and RCP2.6
(very low emission scenario).
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Fig. 4 Change in average monthly and seasonal maximum temperature in the future from the base
period for CanESM2-RCP2.6 scenario
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Fig. 5 Change in average monthly and seasonal maximum temperature in the future from the base
period for CanESM2-RCP4.5 scenario
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Minimum Temperature Scenarios

The projected mean seasonal minimum temperature shows an increasing trend in all
the seasons (Dry, intermediate, and wet) in all the three future time horizons for all
the RCP (RCP2.6, RCP4.5, and RCP8.5) scenarios. The changes of minimum
temperature from the base period for the three scenarios in future time slice for each
season are presented in Table 4. The projected mean monthly minimum tempera-
ture has a larger magnitude of increment on the month of October 2080s which was
2.13, 1.24, and 0.95 °C for RCP8.5, RCP4.5, and RCP2.6 scenarios, respectively,
at the end of the century. On the other hand, the larger decrement on February
2080s 0.51, 0.48, and 0.36 °C occurred for RCP8.5, RCP4.5, and RCP2.6 sce-
narios, respectively, at the end of the century (Figs. 8, 9 and 10). The absolute
change from the base period in mean minimum temperature was observed to be
significant due to a substantial increase and decrease of minimum temperature on
different months. For instance, in the months of February, September, and
December, the decrement of the minimum temperature was observed and an
increment on the rest of the months was observed. In both extreme conditions (rise
or decline), the change in minimum temperature was higher in the 2080s.

Commonly, the change in average monthly minimum temperature might range
between −0.30 °C on February and +0.87 °C on October for the coming 2020s;
−0.41 °C on February and +1.38 °C on October for 2050s and −0.51 °C on
February and +2.13 °C on October for 2080s for the RCP8.5 scenario. For RCP4.5
scenario, it varies between −0.32 °C on February and +0.69 °C October for the
coming 2020s; −0.42 °C on February and +1.12 °C on October for 2050s and
−0.48 °C on February and +1.24 °C on October for 2080s. For RCP2.6 scenario,
ranges become −0.30 °C on February and +0.74 °C on October for the 2020s;
−0.31 °C on February and +0.94 °C on October for 2050s and −0.36 °C on
February and +0.95 °C on October for 2080s.

For each time slice, the change in mean annual minimum temperature has
indicated a slight increment from the base period, 0.30, 0.43, and 0.39 °C for
2020s, 2050s, and 2080s, respectively, for RCP2.6 scenario, 0.31, 0.48, and
0.57 °C for 2020s, 2050s, and 2080s, respectively, for RCP4.5 scenario and 0.34,
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0.66, and 1.04 °C for 2020s, 2050s, and 2080s, respectively, for RCP8.5 scenario.
The variability of minimum temperature is higher for RCP8.5 than RCP4.5 and
RCP2.6, and the linear trend line for three scenarios has indicated a significantly (at
5% significant level) increasing trend of average annual minimum temperature until
the end of the century (Table 6 and Fig. 11). Comparatively, RCP8.5 prevails
higher change in minimum temperature trend at the end of the century than the
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Fig. 8 Change in average monthly and seasonal minimum temperature in the future from the base
period for CanESM2-RCP2.6 scenario
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Fig. 9 Change in average monthly and seasonal minimum temperature in the future from the base
period for CanESM2-RCP4.5 scenario
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RCP4.5 and RCP2.6 scenarios. The future scenarios have shown slightly increasing
trend on both maximum and minimum temperature.

The results of average temperature for this study come to an agreement, with the
slight variation of RCP8.5 scenario, with the study reported (IPCC 2013) and the
results revealed the rise in global average surface temperature by the end of
the twenty-first century to be in the ranges 2.6–4.7, 1–2.5, and 0.3–1.6 °C for
the RCP8.5, RCP4.5, and RCP2.6 scenarios, respectively. The projected mean
annual temperature in Ethiopia was found to be in the ranges 0.9–1.1, 1.7–2.1, and
2.7–3.4 °C by 2030, 2050, and 2080 time slices, respectively (Ethiopian National
Meteorological Agency 2007). The projected mean annual maximum and minimum
temperature show rising trend in southeastern part of Ethiopia (Shawul et al. 2016).
The mean annual temperature of this study comes to an agreement with all the
literature given above regarding direction (pattern), but with slight variation
regarding magnitude (amount). This slight variation of mean annual temperature
increment might arise due to the types of GCM/ESM and emission scenario used, a
method of downscaling, and spatial variation of temperature.

Precipitation Scenarios

The projected mean seasonal precipitation scenarios have indicated an increase of
precipitation in all the seasons (Dry, intermediate, and wet) in all the three future
time slices for RCP2.6, RCP4.5, and RCP8.5 scenarios except for an intermediate
period of the 2020s (a decreasing trend) for RCP2.6 and RCP4.5 scenarios. The
percentage changes of precipitation from the base period for the three scenarios in
future time horizon for each season are presented in Table 5.

The projected mean monthly precipitation has a larger magnitude of increment
on the month of October 2080s 81.02, 54.66, and 42.77% for RCP8.5, RCP4.5, and
RCP2.6 scenarios, respectively, at the end of the century. Conversely, the larger
decrement on February 2020s 8.20 ‘(RCP8.5)’, 10.25% ‘(RCP4.5)’, and 10.90%
‘(RCP2.6)’ was observed (Figs. 12, 13 and 14). The percentage change from the
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base period in mean monthly precipitation was observed to be significant due to a
substantial rise and decline of precipitation on different months. For instance, in the
months of February, September, and December, the decrement of precipitation was
observed and an increment in the rest of the months was shown.

Characteristically, the percentage change in average monthly precipitation might
range between −8.20% on February and +42.59% on October for the coming
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Fig. 12 Percentage change in average monthly and seasonal precipitation in the future from the
base period for CanESM2-RCP2.6 scenario
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Fig. 13 Percentage change in average monthly and seasonal precipitation in the future from the
base period for CanESM2-RCP4.5 scenario
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2020s; −6.50% on February and +55.61% on October for 2050s and +1.58% on
August and +81.02% on October for 2080s for the RCP8.5 scenario. For RCP4.5
scenario, the range tends to be between −10.35% on February and +34.53% on
October for the coming 2020s; −9.36% on February and +49.90 on October for
2050s and −7.42% on February and +54.66% on October for 2080s. For RCP2.6
scenario, percentage change in average monthly precipitation ranges between
−10.80% on February and +35.41% on October for 2020s; −8.59% on February
and +42.55% on October for 2050s and −9.37% on February and +42.77% on
October for 2080s.

For each time slice, the percentage change in mean annual precipitation has
indicated a considerable increment from the base period, 8.68, 12.93, and 11.34%
for 2020s, 2050s, and 2080s, respectively, for RCP2.6 scenario, 9.54, 14.36, and
16.94% for 2020s, 2050s, and 2080s, respectively for RCP4.5 scenario and 14.70,
19.14, and 28.69% for 2020s, 2050s, and 2080s, respectively, for RCP8.5 scenario.
The variability of precipitation is higher for RCP8.5 than RCP4.5 and RCP2.6, and
the linear trend line for three scenarios has indicated a significantly (at 5% sig-
nificant level) increasing trend of average annual total precipitation until the end of
the century (Table 6 and Fig. 15). Comparatively, RCP8.5 prevails higher change
in precipitation trend at the end of the century than the RCP4.5 and RCP2.6
scenarios.

Figure 15 indicated the pattern of future total mean annual precipitation with a
range of 1124.00–1540.16 mm in the year 2028 and 2099, respectively, for RCP8.5
scenario, 1065.43–1359.59 mm in the year 2018 and 2064, respectively, for
RCP4.5 scenario and 1100.74–1300.24 mm in the year 2096 and 2050, respec-
tively, for RCP2.6 scenario. It has shown the substantial variability of total mean
annual precipitation from year to year throughout simulation period. There has been
observed substantial variability in rainfall (rises about 20% and also declined by
about 20%) in the globe (Bates et al. 2008). Larger spatial variation of precipitation
(from a reduction of 25–50% to an increase of 25–50%) has been reported in East
Africa (Faramarzi et al. 2013). Increase in rainfall has been observed

Table 6 Mann–Kendall trend test for future average annual both temperatures and precipitation
under three RCP scenarios

scenarios Kendall’s tau p-value Alpha Sen’s slope Trend

Tmax for rcp2.6 0.492 <0.0001 0.05 0.117 Significantly increasing

Tmax for rcp4.5 0.521 <0.0001 0.05 0.117 Significantly increasing

Tmax for rcp8.5 0.634 <0.0001 0.05 0.211 Significantly increasing

Tmin for rcp2.6 0.196 <0.0001 0.05 0.106 Significantly increasing

Tmin for rcp4.5 0.256 <0.0001 0.05 0.109 Significantly increasing

Tmin for rcp8.5 0.435 <0.0001 0.05 0.118 Significantly increasing

pcp for rcp2.6 0.186 0.0003 0.05 0.378 Significantly increasing

pcp for rcp4.5 0.193 0.0005 0.05 0.546 Significantly increasing

pcp for rcp8.5 0.201 0.0009 0.05 0.607 Significantly increasing
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(Shongwe et al. 2009) in the tropics, which is also the case in this study. Generally,
increment of rainfall in this study is comparatively higher in the dry season 20.68%
in the 2020s, 33.65% in 2050s, and 53.74% in 2080s for RCP8.5 scenario which
might have positive impact on pastoral region of the study area and it might affect
the highland areas negatively since this season is expressly main crop harvesting
period.

Mann–Kendall Trend Test of Future Temperatures
and Precipitation

Based on the standardized test statistic, it is possible to infer that Mann–Kendall test
has revealed a statistically significant trend in the study area for both future pre-
cipitation and temperatures at the 5% significant level. The maximum and minimum
temperature and precipitation for RCP2.6, 4.5 and 8.5 scenarios have revealed a
significantly (at 5% significant level) increasing trend for future until the year 2100
as shown in Table 6.

Summary and Conclusion

This study tried to downscale daily temperatures and precipitation data from the
CMIP5-CanESM2 output for the RCP8.5, RCP4.5, and RCP2.6 emission scenarios
for future periods until year 21000 in the study area of Weyib River basin.
The SDSM was used to generate future possible local Tmax, Tmin, and precipi-
tation in the study area and it has a good ability to replicate the baseline Tmax,
Tmin, and precipitation for the baseline period.

For each time slice, the change in mean annual maximum temperature has
indicated a slight increment from the base period, 0.16, 0.14, and 0.15 °C for
2020s, 2050s, and 2080s, respectively, for RCP2.6 scenario, 0.12, 0.19, and
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Fig. 15 Future pattern of average annual total precipitation
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0.21 °C for 2020s, 2050s, and 2080s, respectively, for RCP4.5 scenario, and 0.12,
0.22, and 0.33 °C for 2020s, 2050s, and 2080s, respectively, for RCP8.5 scenario.
For mean annual minimum temperature, the increment from the base period has
been found to be 0.30, 0.43, and 0.39 °C for 2020s, 2050s, and 2080s, respectively,
for RCP2.6 scenario 0.31, 0.48, and 0.57 °C for 2020s, 2050s, and 2080s,
respectively, for RCP4.5 scenario and 0.34, 0.66, and 1.04 °C for 2020s, 2050s,
and 2080s, respectively, for RCP8.5 scenario. The percentage change in mean
annual precipitation has indicated a considerable increment from the base period
8.68, 12.93, and 11.34% for 2020s, 2050s, and 2080s, respectively, for RCP2.6
scenario, 9.54, 14.36, and 16.94% for 2020s, 2050s, and 2080s, respectively, for
RCP4.5 scenario and 14.70, 19.14, and 28.69% for 2020s, 2050s, and 2080s
respectively for RCP8.5 scenario.

The variability of both temperatures (maximum and minimum) and precipitation
is higher for RCP8.5 than RCP4.5 and RCP2.6, and the linear trend line for all the
three scenarios has indicated a significantly (at 5% significant level) increasing
trend of both temperatures and precipitation for future until the year 2100.
Comparatively, RCP8.5 prevails higher change in both temperatures and precipi-
tation trend at the end of the century than the RCP4.5 and RCP2.6 scenarios. The
increment of rainfall in the study area is comparatively higher in the dry season
20.68% in the 2020s, 33.65% in 2050s, and 53.74% in 2080s for RCP8.5 which
might have positive impact on pastoral region of the study area and it might affect
the highland areas negatively since this season is specifically main crop harvesting
period.
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