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Abstract The future projected climate parameters obtained from using generalized
circulation models (GCMs) cannot be used directly on regional or basin scale
because of coarse resolution. The dynamic or statistical downscaling procedures are
used to convert global scale output to regional scale condition. The statistical
downscaling because of its less computational skills is preferably used for gener-
ation of future climate and in the present study, minimum temperature of Raipur
was forecasted for three future periods using Canadian Global Climate Model
(CGCM) predictors for A1B and A2 climate forcing conditions. The statistical
downscaling model (SDSM) has been used using k-fold validation technique for
generation of multitemporal series for periods FP-1 (2020–2035), FP-2
(2046–2064), and FP-3 (2081–2100). The specific humidity at 850 hpa (ncep-
s850gl), 500 hpa geopotential height (ncepp500gl), and surface airflow strength
(ncep_fgl) were found to be the most appropriate parameters to generate future
scenarios. The comparison of mean monthly minimum temperature of generated
scenarios with base period confirmed 1.1–11.2% increase of minimum temperature
under A1B climate forcing and 2.88–24.44% in summer months will have adverse
effect on various demands and human health in future and adaptation measures need
to be devised for the region.
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Introduction

The different reports of Intergovernmental Panel on Climate Changes (IPCC 2003,
2007) and other independent researches have confirmed that climate is changing on
global and regional scale which is likely to affect availability and supplies of water
(Milly et al. 2005; Gleick 1987), health, agriculture, and livestock (McCarthy et al.
2001; Ravindran et al. 2000; FAO 2001; Menzel et al. 2006; Sivakumar et al. 2012)
and many more areas of human life. It can be emphasized here that changing
climate has intensified probability of extreme events such as floods (Milly et al.
2002, 2005), droughts (Huntington 2006), etc. The temperature among other cli-
matological parameters is the most important and easily detectable parameter to
show impact of climate change on water availability and demands, agriculture
production, human health, and many more areas of life. The prediction of future
climate, its implication, and adaptation measures are keys to cope up the future
challenges.

This problem of coarse grid data can be solved by downscaling GCMs to local
and basin scale with the help of dynamic or statistical downscaling techniques that
bridge the large-scale atmospheric conditions with local scale climatic data (Wilby
and Wigley 1997; Xu 1999; Fowler et al. 2007; Tisseuil et al. 2010; etc.). The
dynamic downscaling techniques use physically based model run in time slice
mode and limited area (Giorgi and Mearns, 1999) having major drawback of
dynamic downscaling is its complexity and high computation cost (Anandhi et al.
2008) and propagation of systematic bias from GCM to RCM (Salathe 2003).
However, statistical downscaling techniques are reasonably accurate in developing
relationships between GCM predictors and regional/station climatic data (Fowler
et al. 2007), simple, flexible in adjustment and movement to different regions, less
costly, and computationally undemanding in comparison to dynamic downscaling
proved its reliability and compatibility in future projections (Hewitson and Crane
2006; Tripathi and Nanjundiah 2006; Lopes 2008; Ethan et al. 2011). In the present
study, statistical downscaling model (SDSM 5.2) has been used to predict vari-
ability in minimum temperature using Canadian Global Circulation Model (CGCM)
weather predictor data for A1B and A2 SRES scenarios.

Statistical Down Scaling Model (SDSM)

The SDSM is user-friendly software developed under sponsorship of A Consortium
for Application of Climate Impact Assessments (ACACIA), Canadian Climate
Impacts Scenarios (CCIS) Project and Environment Agency of England and Wales.
The SDSM can develop multiple, low-cost scenarios of daily surface weather
variables using seven key functions namely quality control and data transformation,
selection of downscaling predictor variables, model calibration, weather generator,
data analysis, graphical analysis, and scenarios generation for the task of daily
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weather downscaling and forecasting. The quality control function is used to
identify the gross error, gaps, statistics, and outliers in the data which is an
important step prior to calibration. The spatial and temporal variability in
explanatory power of predictors makes selection of appropriate predictors difficult
and screen variable operation in SDSM assists examination of seasonal variation,
intercorrelation in predictors, and their correlations with predictand. The scatter
diagram, correlation, partial correlation, explained variance, etc., can be used to
select suitable predictors to develop statistical relationships.

After selecting the most appropriate predictors, the calibrate model tab is used to
develop multiple linear regression techniques with efficient dual simplex algorithm
(forced entry method) to develop a relationship between predictand and user
specified set of predictors in conditional (in case of precipitation) or unconditional
(in case of temperature, wind speed, etc.) process. The synthetic series for future
periods can be generated using weather generator tab of SDSM software using
developed relationships from calibration and CGCMs obtained predictors set from
future periods. The SDSM links automatically all required predictors in a regression
model developed in calibration process for a user specified period. The data analysis
operation in SDSM model is carried out using summary statistics and frequency
analysis operation. The frequency analysis tab is useful to compare observed and
synthesized series with the help of quantile plot, PDF plot, line plot, and frequency
analysis. The time series analysis tool is used to analyze observed and modeled
series graphically. The scenario generation can be used to generate ensembles of
synthetic daily weather series giving a treatment of percent changes in mean,
occurrence or variance or linear, exponential or logistic trend in any series. The
detail about the application of SDSM can be found in Goodess et al. (2003), Wilby
and Dettinger (2000), Wilby et al. (2001, 2003). The graphical representation of
various steps used in SDSM based downscaling can be seen in Fig. 1.

Study Area and Data Used

The study area for the present study is Raipur city, the capital of Chhattisgarh state
of India. The Raipur is an important city of eastern India and has large-scale
commercial and industrial development since its inception of capital of
Chhattisgarh state in 2000. The river Seonath, an important tributary of river
Mahanadi, passes through the city and is used to supply water for industrial and
domestic demands of district. The map of the study area is presented in Fig 2. The
long-term series of observed daily minimum temperature from 1971 to 2003 of
Raipur city, the capital city lying in upper Mahanadi basin, has been used for
calibration and validation of statistical model. The NCEP reanalyzed predictors
from 1971 to 2003 and SRES A1B and B2 data of Canadian Global Circulation
Model CGCM 3.1/T47 from 2001 to 2100 were used to generate future scenarios.
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Fig. 1 Work flow in SDSM-DC (reproduced from Wilby et al. 2014)

Fig. 2 Location of Raipur in Chhattisgarh state of India
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Methodology

The methodology for application of SDSM for generation of minimum temperature
series for future climatic scenarios consists of verification of predictand and pre-
dictors series, analysis of predictand, predictor relationship, and selection of
appropriate predictors which can explain the temporal and spatial variability of
predictand with reasonable degree of agreement, calibration and validation of model,
generation of future time series using GCM predictors series, computation of
statistics and comparison of statistics of present and future scenarios. In the present
study, correlation coefficient, partial correlation coefficient, and P-value-based
method along with scatter diagram were used. The correlation coefficients between
predictand (precipitation) and predictors (26 NCEP rescaled parameters) were
computed using unconditional approach for annual, monthly, and monsoon season
(Mahmood and Babel 2013, 2014). The correlation coefficients were then arranged
in descending order and top ten predictors were selected for further analysis. The
predictors ranked first in this process can be termed as super predictor (SP) and using
this super predictor, absolute correlation coefficient, absolute partial correlation, and
the P-value were computed for remaining nine predictors with predictand. In order to
avoid multicollinearity, all predictors having P-value more than 0.05 and other
predictors having high individual correlation with super predictor (more than 0.70
for this study) were removed from consideration. The percentage reduction (PR) was
then computed for remaining predictors using following equation (Pallant 2007).

PR ¼ Pr�R
R

; ð1Þ

where Pr and R are the partial and absolute correlation coefficient, respectively. At
the end, a predictor having lowest PR value was considered the second super
predictor. Similar approach was applied to get third, fourth, and other predictors. In
general, one to three predictors are sufficient to model climatic variability (Xu 1999;
Chu et al. 2010). After selecting the appropriate predictors, empirical relations
between predictand and selected predictors were developed considering appropriate
transformation, process (conditional for precipitation and unconditional for other
climatic parameters), k-fold cross validation, and model types (monthly, seasonal or
annual model). The whole series of predictor and selected predictands of base
period is divided in two parts considering k-fold cross validation technique avail-
able in SDSM-DC. In this technique, the whole series can be divided into k equal
size subsamples, where one sample is used for calibration while remaining for
testing or validation (Bedia et al. 2013; Casanueva et al. 2014). If results of cali-
bration and validation were found appropriate, the weather generator in SDSM can
be used to generate future predictor series using predictors obtained from different
GCM scenarios.
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Analysis of Results

In the present study, SDSM 5.2 software has been employed to generate minimum
temperature series for current and future climate forcing. For the present study, 26
NCEP rescaled predictors for the period of 1971–2003 and predictor as minimum
temperature series of Raipur (Chhattisgarh) for the same period were analyzed. The
scatter diagram, correlation coefficient, and partial correlation based percentage
reduction were used to identify an appropriate combination of predictors which can
forecast predictand with acceptable degree of error. The scatter diagram of few
predictors was presented in Fig. 3. The specific humidity at 850 hpa (nceps850gl)
displayed the highest correlation coefficient as 0.649 and was considered as the first
super predictor. The PR values of remaining nine predictors having next highest
correlation were computed and 500 hpa geopotential height (ncepp500gl) and
surface airflow strength (ncep_fgl) were shortlisted as second and third super
predictor for calibration. The threefold cross-validation was used which divided the
whole series of data from 1971 to 2003 into two parts where first two-third parts
were considered for calibration while remaining one-third part for validation.

The coefficient of determination (R2) and standard error for different months
during calibration and validation obtained from analysis are presented in Table 1.
From the analysis, it has been observed that the standard error varies from 1.01 to
3.45 in calibration and 1.20 to 3.60 in validation. The Nash–Sutcliff efficiency of
minimum temperature for calibration and validation was computed as 71.55 and
73.89%, respectively, which may be considered as reasonably acceptable match.
The comparison of observed versus calibrated and validated mean monthly mini-
mum temp of Raipur has been presented in Fig. 4. The finally selected parameters
in calibration were further used to synthetically generate time series of minimum
temperature under CGCM supplied data of A1B and A2 forcing conditions.
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Fig. 3 Scatter diagram for few predictors used in calibration
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CGCM A1B Forcing Condition

The finally selected combination of variables with calibrated parameters was used
to synthetically generate 20 series for three future periods FP-1 (2020–2035), FP-2
(2046–2064) and FP-3 (2081–2100) using gridded predictors obtained from
Canadian general circulation model (CGCM) under climatic forcing condition of
A1B. The statistics including mean monthly minimum temperature, peak below
threshold (PBT: number of days/year below 10 °C minimum temperature), vari-
ance, inter-quantile range, etc., were computed. The mean monthly minimum
temperature and PBT of base period (1971–2003) and all three periods FP-1, FP-2,
and FP-3 can be seen in Fig. 5. From the analysis, it has been observed that mean
monthly minimum temperature may increase by 1.1–11.2% during summer months

Table 1 Coefficient of determination and standard error during calibration and validation

Month Calibration Validation

R2 Std. error R2 Std. error

January 0.0241 3.1167 0.0025 3.1807

February 0.0042 2.9721 0.0014 3.0024

March 0.0183 2.7412 0.0021 2.7810

April 0.0682 2.6013 0.0140 2.7221

May 0.0212 2.5334 0.0020 2.6341

June 0.1180 2.3174 0.0648 2.4051

July 0.0031 1.2724 0.0749 1.3794

August 0.0199 1.1167 0.0302 1.2006

September 0.0146 1.1001 0.0487 1.1999

October 0.1072 2.5883 0.0162 2.8488

November 0.0667 3.4525 0.0190 3.5963

December 0.0462 2.7824 0.0020 2.9153

Mean 0.0426 2.3829 0.0232 2.4888
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Fig. 4 Observed and calibrated/validated mean monthly minimum temperature in SDSM
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(February to May) in all three future predictive periods while decrease by 0.5–
14.2% in remaining months (June to January) under A1B climate forcing condition.
The average number of days/year below 10 °C may increase in November and
January while decrease in all other months.

Generation of Series for A2 Forcing Condition

The weather generator tab of SDSM was used to generate 20 ensembles for three
different periods FP-1 (2020–2035), FP-2 (2046–2064), and FP-3 (2081–2100)
using CGCM gridded data under A2 forcing condition. The generated series for all
the periods was used to compute statistics including mean, maximum, peak below
threshold (10 °C), variance, etc., and compared with the same for the period 1973–
2003. The mean monthly minimum temperature series for different periods with
observed data has been presented in Fig. 6. From the analysis, it has been found
that the mean monthly minimum temperature may increase by 2.88–24.61% in
most of the months except June to October where there may be slight decrease of
minimum temperature. The increased minimum temperature during summer and
winter months may increase user demands and water requirements of crops in rabi
season. The number of cold days below 10 °C may increase significantly in
November and January while decrease slightly in December and February in all
three future periods.
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Conclusion

The changing climate of the world has adverse effect on different facets of life and
there is need to develop adaptation strategy for water resource management, agri-
culture, health, and many more areas of life. The changes in minimum temperature
and extreme events are now clearly visible in different parts of earth. The statistical
downscaling model (SDSM) has been used to generate several future predictive
series for three different periods 2020–2035 (FP-1), 2046–2064 (FP–2), and 2081–
2100 (FP-3). The different goodness of fit criterions including scatter diagram,
correlation coefficient, and percentage reduction confirmed specific humidity at
850 hpa (nceps850gl), 500 hpa geopotential height (ncepp500gl) and surface air-
flow strength (ncep_fgl) were found the most appropriate parameters to generate
future scenarios. The multiple series for each three predictive periods for A1B and
A2 climate forcing conditions were generated and compared statistically with base
series (1971–2003). It may be concluded that mean monthly temperature may
increase significantly during summer months in both A1B and A2 climate sce-
narios. The winter months may observe decrease of minimum temperature in A1B
condition while slight increase under A2 climate condition.
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