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Abstract
Hot water springs or hydrothermal springs are places where warm or hot water 
comes out of earth surfaces regularly or for a significant period, in a year. These 
ecosystems present an epitome of extreme environments and are extensively dis-
tributed all over the globe. Geographically, these ecosystems encompass unique 
physical and chemical characteristics. Interestingly, 16S rRNA gene analysis in 
combination with next-generation sequencing has provided in-depth knowledge 
about phylogeny and the metabolic potential of a particular environment, includ-
ing the hot springs. Every hot spring is unique and dynamic in its characteristics 
compare to the other. Investigation of metagenome from diverse ecological habi-
tats, using high-throughput sequencing or library construction, has led to the 
discovery of a number of novel biocatalysts. Metagenomic studies in recent 
years have achieved two major goals: first it has resulted in deep understanding 
about structural and functional dynamics of microbial communities, and sec-
ondly, it has led to the discovery of diverse novel bioactive molecules. This book 
chapter will shed light into the role of metagenome gene cloning in revealing the 
true and comprehensive diversity and the metabolic potential of microbes in hot 
spring ecosystems.
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9.1  Introduction

The approximate number of prokaryotic cells in biosphere may exceed ~4–6 × 1030 
(Whitman et al. 1998). The major fractions of prokaryotic organisms yet remain 
unexplored, and thus it presents an exciting challenge for scientific community to 
explore the genetic and metabolic diversity from various ecosystems. Investigation 
and analysis of 16S rRNA genes from diverse ecological habitats have demonstrated 
the presence of novel sequences with unique origin (Felske et  al. 1999). It was 
established in a number of studies that 90–95% bacteria remain uncultured (Amann 
et al. 1995; Hugenholtz et al. 1998a; Hugenholtz 2002). The term metagenomics 
was coined by Jo Handelsman (Handelsman et  al. 1998) and refers to genomic 
analysis of environmental DNA. Hot water springs or hydrothermal springs are the 
places where warm or hot groundwater comes out of earth surface regularly or for a 
significant period, in a year. These ecosystems present an epitome of extreme envi-
ronment and are extensively distributed all over the world and are quite distinct with 
respect to their physicochemical characteristics (Hugenholtz et  al. 1998b; 
Marteinsson et al. 2001).

These ecosystems hold variety of microflora with vast gene pool which can be 
explored for biotechnological applications. Metagenomic studies thus offer major 
facade for microbiologists, to connect phylogeny with ecological functions (Sharma 
et al. 2005).

Microbial community structure in hot spring is strongly dependent on the gradi-
ents of temperature, ecological interactions, chemistry of the underlying rocks, pH, 
oxidation-reduction potential or concentrations of various dissolved sulphides and 
inorganic carbons (Fouke et al. 2000; Dick and Shock 2013). Microorganisms pos-
sess propensity to append and aggregate to surfaces, when they come under the 
vicinity of water that results in formation of intricate networks (Gerbersdorf and 
Wieprecht 2015). Hot spring ecosystem holds enormous microbial diversity capable 
of surviving and blossom under array of environmental conditions (Wang et  al. 
2013; Chan et al. 2015). However, the range of mesophilic or thermophilic diversity 
in these ecosystems, as discussed above, is strongly dependent upon the temperature 
(Hobel et al. 2005). Construction and functional screening of metagenomic library 
from such ecosystems have already provided access to untapped wealth of active 
molecules (Simon et al. 2009; Xie et al. 2011; Tirawongsaroj et al. 2008; Steele 
et al. 2009; Jimenez et al. 2012a, b). Altogether, in recent years, culture-independent 
studies have achieved two major goals: firstly, it has enabled researchers in better 
understanding of structure and functioning of the microbes, and secondly, it has 
resulted in identification of novel active biomolecules (Neelakanta and Sultana 
2013).
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9.2  Microbial Diversity in Hot Springs

The major hot spring in the hot springs are found in Canada, New Zealand, United 
States, Chile, Japan, India and Malaysia (Song et al. 2010). India is referred to be 
one of the most tectonically active areas in the world, and according to geological 
surveys, it harbours ~340 hot water springs, which are classified into six geothermal 
provinces (Bisht et al. 2011). Here, in this book chapter, insights would be provided 
into the latest study being carried out to investigate microbial diversity and the met-
abolic potential of hot spring ecosystems. Starting with Indian subcontinents, a hot 
spring analysed in West Bengal predominantly demonstrated the presence of 
Proteobacteria and Cyanobacteria (Ghosh et al. 2003). 16S rRNA investigation of 
two hot springs, Tulsi Shyam and Lasundra of Gujarat state, in India, employing 
tag-encoded FLX amplicon pyrosequencing (bTEFAP) and shotgun sequencing 
approach, respectively, revealed variation in distribution of microbial diversity in 
these two hot springs, whereas Tulsi Shyam hot spring predominantly revealed the 
presence of Firmicutes (65.38%), Proteobacteria (21.21%) and an unclassified bac-
terial population ~10.69% (Ghelani et  al. 2015). High-throughput sequencing of 
community DNA from Lasundra hot spring using an Ion Torrent PGM platform 
revealed predominantly Bacillus (86.7%), Geobacillus (2.4%) and Paenibacillus 
(1.0%) (Mangrola et al. 2015). Hot springs of Tibetan Plateau investigated employ-
ing Cluster and SIMPER divulges that temperature can greatly affect all over distri-
bution of microbial diversity. Analysis of microbial distribution pattern using 
non-metric multidimensional scaling (NMDS) and principal coordinates analysis 
(PCoA) at species-level OTUs depicted a total of 42 bacterial phyla. Temperature 
range of 66–75  °C supported Aquificae, Archaea and GAL35 (a novel bacterial 
lineage), whose abundance exhibited a positive correlation with increasing tempera-
ture. In sharp contrast to this, Deinococcus-Thermus, Cyanobacteria and Chloroflexi 
showed its predominance in the temperature range 22–60 °C and were negatively 
associated with the temperature (Wang et  al. 2013). Investigation of microbial 
diversity from Yellowstone National Park (YNP), United States, revealed varied 
composition of thermophilic microorganisms. Analysis of 16S rRNA genes from 
metagenome sample derived from 19 positions of 11 geothermal springs of YNP 
showed foremost presence of Metallosphaera and Sulfolobus. The bacterial genus 
Hydrogenobaculum showed its marked presence, followed by Acidimicrobium, 
Acidovorax, Acidicaldus, Methylacidiphilum, Meiothermus, Geothermobacterium 
and Sulfobacillus. Interestingly, four novel lineages that represented Sulfolobus, 
Sulfolobales, Sulfobacillus and Acidicaldus revealed maximum similarity to 
Sulfolobus sp. T1 (96.6%), Sulfolobus islandicus (88%), Sulfobacillus acidophilus 
(98%) and Acidicaldus organivorans (97.6%), respectively (Kozubal et al. 2012). 
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Interestingly, several hot springs characterized from YNP portrayed the dominant 
existence of photosynthetic microorganisms. A specific example is the mushroom 
spring, where four members of the bacterial community, Cyanobacteria, Chloroflexi, 
Chlorobi and Acidobacteria, showed their predominant occurrence in a photo-
trophic mat community (Liu et al. 2011). Furthermore, 16S rRNA and RFLP analy-
sis of metagenome sample derived from three hot springs of Indonesia showed 
presence of Proteobacteria, Bacillus and Flavobacterium; interestingly, all these 
bacterial groups are not usually related with the thermophilic lineages (Baker et al. 
2001). The site near volcanic eruption offers opportunity to explore, understand and 
compare the structural and functional dynamics of extremophilic archaea. Analysis 
of microbial communities from two such extreme sites (Mutnovsky and Uzon) of 
Kamchatka Peninsula revealed the presence of notable members from various com-
munities. Interestingly, the phylum Thaumarchaeota comprises 57% of the total 
community at Mutnovsky, whereas it constituted 68% of the total community at 
Uzon sample, and members of phylum Euryarchaeota dominated the Mutnovsky by 
34.7%. Among the bacterial lineages, Thermotogae showed its abundant presence 
in Mutnovsky, whereas it was negligible in Uzon. In sharp contrast to this, 
Proteobacteria followed by Enterobacteriaceae, Aquificae and 
Thermodesulfobacteria showed their marked presence at Uzon (Wemheuer et  al. 
2013). Yet in another study, 16S rRNA gene sequencing, in combination with the 
next-generation sequencing of metagenome from the hot spring of Sungai Klah, 
Malaysia, revealed foremost presence of Firmicutes (37.15%) and Proteobacteria 
(19.26%), whereas Aquificae, Verrucomicrobia, Thermotogae and 29 other mem-
bers demonstrated less abundance. Notably, the study reports the presence of sev-
eral phototrophic bacteria like Roseiflexus, Porphyrobacter and Chloroflexus. In 
addition, various pathogenic microbes like Clostridium hiranonis, Brucella suis, 
Legionella pneumophila, Leptospira licerasiae, Leptospira wolffii, Pseudomonas 
fluorescens, Rickettsia montanensis, Rickettsiales, etc. were also observed. 
Nevertheless, several microorganisms involved in carbon, sulphur and nitrogen 
metabolism were also found in this ecosystem (Chan et al. 2015). Microbial phylog-
eny investigation of hot springs from China revealed the presence of distinct mono-
phyletic bacterial groups and several unidentified lineages. The archaea identified 
from this hot spring belong to Euryarchaeota, Crenarchaeota and Korarchaeota 
(Pagaling et al. 2012). The group Crenarchaeota is suggested to play a major role in 
the nitrification process during the nitrogen cycle (Leininger et al. 2006; Reigstad 
et al. 2008). Metagenome investigation of thermal spring from South Africa showed 
dominant presence of genera Stenotrophomonas, Hydrogenophaga, Flectobacillus, 
Rheinheimera, Pseudomonas, Zavarzinella, Aquaspirillum and Limnobacter 
(Tekere et al. 2015).

In another study, community analysis of environmental DNA from three hot 
springs, Tshipise, Mphephu and Sagole of South Africa, demonstrated the dominant 
presence of Bacteroidetes and Proteobacteria in Mphephu. In contrast, 
Proteobacteria and Cyanobacteria showed their prominent occurrence in Tshipise 
and Sagole. Several other phyla recovered revealed their presence <0.20%. (Tekere 
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et al. 2012). Altogether, it was observed that various hot springs investigated for the 
microbial diversity all over the world demonstrated significant level of variations in 
distribution pattern of microbial community. Table  9.1 further reports microbial 
diversity from few more hot springs explored recently.

9.3  Metabolic Potential of Hot Spring Environments

With the advent of next-generation sequencing (NGS), it has become possible to 
determine the metabolic potential of any microbiome. NGS investigation of metage-
nome and metatranscriptome from hot springs provides inventory of microbial com-
munities inhabiting in such habitats.

A classic example is the investigation of hot spring from Shi-Huang-ping from 
Taiwan that showed abundant presence of Hydrogenobaculum as a principle micro-
organism in this hot spring. This study also demonstrated the presence of genes 
related to carbon assimilation, nitrogen fixation and sulphur and hydrogen metabo-
lism (Lin et al. 2015). Investigation of metabolic and functional potential of mush-
room and octopus thermal springs from Yellowstone National Park (YNP), along 
with numerous other hot springs, revealed that almost all microbes principally tran-
scribed genes for chlorophototrophy (Klatt et al. 2011). Furthermore, a comparative 

Table 9.1 Major representative phyla having physiological roles in hot springs

Organism Functions Physiological type References
Chloroflexi (e.g. 
Chloronema)

BChl-c and BChl-a 
biosynthesis, oxidize 
sulphide to 
polysulphides

Chlorophototrophs Bryant et al. (2012), 
Klatt et al. (2011)

Aquificae (e.g. 
Aquificales)

Biological oxidation 
of sulphur compounds

Autotrophs Skirnisdottir et al. 
(2000)

Proteobacteria (e.g. 
Thiobacillus)

Calvin-Benson cycle, 
reductive tricarboxylic 
cycle

Aerobic 
chemoorganotrophs

Chan et al. (2015)

Cyanobacteria (e.g. 
Synechococcus)

Oxygenic 
photosynthesis, 
nitrogen metabolism

Oxygenic phototrophs Steunou et al. (2006), 
Bhaya et al. (2007)

Planctomycetes Reductive acetyl-CoA 
pathway

Oligotrophic aerobic 
chemoorganotroph

Chan et al. (2015)

Euryarchaeota (e.g. 
Methanobacteriales)

Methanogenesis, 
reductive acetyl- CoA 
pathway

– Ward et al. (1998), 
Chan et al. (2015)

Thaumarchaeota 
(e.g. Nitrososphaera)

Oxidation of ammonia 
to nitrite in the 
nitrogen cycle

Chemolithoautotrophs Reigstad et al. (2008)

Crenarchaeota (e.g. 
Desulfurococcales)

Nitrification, carbon 
fixation, sulphur 
respiration

Organotrophs, 
chemolithotrophs

Huber and Stetter 
(2001), Leininger 
et al. (2006)
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study of phototrophic, streamer and archaeal communities from 20 geothermal 
areas of YNP demonstrated variations in the numerous functional categories, like 
cell replication, energy metabolism, nitrogen fixation, cofactor biosynthesis, fatty 
acid biosynthesis, nitrogen metabolism, amino acid biosynthesis, etc. (William 
et al. 2013). Comparative genomics of microbes from alkaline hot springs revealed 
presence of 3-hydroxypropionate autotrophic pathway in bacteria. These microbial 
mats present archetype for studying microbial community ecology in siliceous hot 
springs of YNP. Interestingly, molecular and microscopic analysis of microbial mats 
established the dominant presence of unicellular Synechococcus species and fila-
mentous anoxygenic phototrophs (FAPs). This study further signifies that there is 
cross feeding of metabolites among different organisms (Klatt et  al. 2007). 
Functional analysis of Lasundra hot spring from Gujarat, India, revealed the pres-
ence of several genes that participate in the metabolism of aromatic compounds 
(Mangrola et al. 2015).

Understanding biological processes that involve nitrification and ammonia 
oxidation can enhance our understanding about the biogeochemical nitrogen 
cycling. Initially, these processes were thought to be restricted to few bacterial 
groups of Proteobacteria (Purkhold et  al. 2000). Recent development in the 
molecular biology, however, has depicted that archaea are also efficient in oxida-
tion of ammonia into nitrite (Dodsworth et al. 2011). Interestingly, archaea now 
have been implicated dominant component of the ammonia oxidation in terres-
trial and marine environments. In this context, a study conducted from 22 hot 
springs showed that out of 22 hot spring, only 14 showed positive ammonia 
monooxygenase gene (AMO) from terrestrial hot springs, and most of these 
genes were observed at temperature range of 82–97 °C and pH range of 2.5–7 
(Reigstad et al. 2008). KEGG analysis of enzymes involved in different meta-
bolic pathways from acidic hot spring of Colombian Andean region elucidated 
several genes that encode enzymes responsible for nitrogen and sulphur cycle 
(Jimenez et al. 2012a, b). Several studies correlate geochemistry with the micro-
biological processes (Vick et al. 2010; Swingley et al. 2012).

Microbes have been recognized as major source of bioactive compounds 
(Bottone and Peluso 2003; Volk 2006; Volk and Furkert 2006; Williams 2009). 
Microbial mats from hot spring environment have received much attention, due 
to their vast potential towards synthesis of novel bioactive compounds. In this 
context, investigation of antimicrobial potential of cyanobacterial mats was eval-
uated using direct microscopy, from four hot springs located in the Sultanate of 
Oman. Active components extracted resulted in isolation and identification of 74 
chemical compounds that displayed inhibitory activities against a diverse range 
of bacterial species and a diatom Amphora coffeaeformis. Determination of bac-
terial community composition showed that cyanobacterial species identified has 
shared homology mainly with Chroococcus, Phormidium, Leptolyngbya, 
Spirulina and Lyngbya (Dobretsov et al. 2011). The metabolic potential of micro-
organisms associated with various metabolic pathways is further enlisted in 
Table 9.2.

J. Saini et al.
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Table 9.2 List of metabolic functions performed by microbes dominated in hot springs

Metabolic function Bacteria References
Carbon cycle
Reductive citrate cycle Hydrogenobaculum Lin et al. (2015)
Hydroxypropionate- 
hydroxybutyrate cycle

Sulfolobus Alber et al. (2006)
Metallosphaera Alber et al. (2006)

Reductive citrate cycle 
and dicarboxylate- 
hydroxybutyrate cycle

T. uzoniensis, T. tenax Mardanov et al. (2011), 
Siebers et al. (2011)

Calvin cycle Acidithiobacillus You et al. (2011)
Thiomonas Duquesne et al. (2008)

Nitrogen cycle
Fixation of nitrogen A. ferrooxidans Lin et al. (2015)
Transformation of 
nitroalkane compounds 
(R-NO2) to nitrite

Hydrogenobaculum, A. 
ferrooxidans, Thiomonas

Lin et al. (2015)

Assimilatory nitrate 
reduction

Sphingomonas sp., Candidatus, 
Koribacter versatilis, 
Acidobacterium capsulatum, 
Pseudochlorella sp., Thalassiosira 
pseudonana, Chthoniobacter flavus

Jimenez et al. (2012a, b)

Sulphur metabolism
Transformation of 
trithionate into sulphite 
with sulphite reductase

Vulcanisaeta archaea, 
Thermoproteus tenax, Caldivirga 
maquilingensis

Lin et al. (2015)

Conversion of 
thiosulphate into sulphate

Thiomonas Lin et al. (2015)

Conversion of 
tetrathionate or trithionate 
into thiosulphate

Hydrogenobaculum, S. tokodaii, 
Metallosphaera

Auernik and Kelly (2008), 
Lin et al. (2015)

Sulphur oxidation Phaeodactylum tricornutum Jimenez et al. (2012a, b)
Sulphate reduction Pyrobaculum spp. Caldivirga spp. William et al. (2010)

Thermodesulfovibrio yellowstonii Henry et al. (1994)
Thermodesulfovibrio aggregans Sekiguchi et al. (2008)
Desulfomicrobium thermophilum Thevenieau et al. (2007)
Desulfotomaculum carboxydivorans Parshina et al. (2005)
Desulfotomaculum kuznetsovii Visser et al. (2013)
Thermodesulfatator indicus Moussard et al. (2004)
Thermodesulfobacterium commune Zeikus et al. (1983)
Thermodesulfobium narugense Mori et al. (2003)
Archaeoglobus veneficus Huber et al. (1997)
Caldivirga maquilingensis Itoh et al. (1999)

Reduction of sulphur to 
hydrogen sulphide

Hippea maritima Miroshnichenko et al. (1999)
Thermococcus gammatolerans Jolivet et al. (2003)
Thermofilum pendens Anderson et al. (2008)
Caldivirga maquilingensis Itoh et al. (1999)
Vulcanisaeta distributa Itoh et al. (2002)
Vulcanisaeta moutnovskia Gumerov et al. (2011)

(continued)
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9.4  Insights into Carbon, Nitrogen and Sulphur Cycle

The investigation of the major elemental cycles can help in predicting diverse 
microbial functions. The following paragraphs provide insights into various 
studies that report the role of metagenomics in understanding such 
processes.

9.5  Carbon Cycle

To date, several carbon assimilation pathways have been identified employing 
metagenomic studies. Reductive citrate cycle in Hydrogenobaculum was reported 
from hot springs of Taiwan (Lin et  al. 2015). Microbial species Sulfolobus and 
Metallosphaera were reported to harbour genes that participate in hydroxypropionate- 
hydroxybutyrate cycle (Alber et  al. 2006; Teufel et  al. 2009). Interestingly, both 
reductive citrate cycle and dicarboxylate-hydroxybutyrate cycle take place in T. 
uzoniensis and T. tenax (Mardanov et al. 2011; Siebers et al. 2011). The presence of 
genes related to Calvin cycle in Acidithiobacillus and Thiomonas indicates that 
these microbes are dynamically involved in carbon metabolism (Duquesne et  al. 
2008; You et al. 2011).

9.6  Nitrogen Cycle

Nitrogen metabolism can provide insights about the biotransformation of various 
nitrogenous compounds. The processes like nitrogen fixation are well studied in A. 
ferrooxidans. Biological transformation of nitroalkane compounds to nitrite has 
been notably found in Hydrogenobaculum, A. ferrooxidans and Thiomonas (Lin 
et al. 2015). Major genes involved in nitrogen cycle include narG, narH, narI, norB, 
norE, norC, nifD, nifK, nirB, nirA and nirS encoding different enzymes. Importantly, 
microorganisms involved in the nitrogen metabolism belong to Proteobacteria, 
Acidobacteria, Firmicutes, Nitrospira, Spartobacteria, Trebouxiophyceae, 
Coscinodiscophyceae, etc. in acidic hot spring of Colombian Andes (Jimenez et al. 
2012a, b).

Table 9.2 (continued)

Metabolic function Bacteria References
Iron metabolism
Oxidation of iron Metallosphaera yellowstonensis Kozubal et al. (2011)
Reduction of ferric iron 
under anaerobic 
conditions

Sulfolobales str. MK5, Acidicaldus 
str. MK6

Kozubal et al. (2012)

J. Saini et al.
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9.7  Sulphur Metabolism

In addition to carbon and nitrogen metabolism, the presence of sulphur- metabolizing 
enzymes has been identified and mapped in various hot springs. Dominant microor-
ganism involved in sulphur oxidation is Phaeodactylum tricornutum (Jimenez et al. 
2012a, b). Several microbes have revealed the presence of key enzymes involved in 
sulphate as well as sulphur reduction. Other sulphur-related metabolic pathways 
that involve transformation of trithionate into sulphite are reported in Vulcanisaeta, 
Thermoproteus and Caldivirga. Furthermore, Thiomonas has key enzymes for con-
verting thiosulphate into sulphate (Lin et al. 2015).

9.8  Biocatalysts Isolated from Hot Springs

Microorganisms from thermophilic environments are the major source of thermo-
stable enzymes. Taq polymerase, the first enzyme isolated from the thermophilic 
strain Thermus aquaticus, has been an innovation towards the discovery of poly-
merase chain reaction (Chien et al. 1976). Enzymes obtained from these microor-
ganisms have great potential to be used as biocatalysts for biotechnology and 
industrial purposes. With the increasing demand of thermostable enzyme in various 
chemical industries, their recovery from hot springs has increased tremendously. 
Thermostable enzymes have been extensively used in food, pharmaceuticals, cos-
metics, geochemicals and leather, dairy, pulp and paper industries and for brewing 
and baking purposes (Haki and Rakshit 2003).

Various hot springs have been explored to obtain novel thermostable enzymes, 
e.g. investigation of metagenome from Lobios hot spring revealed the presence of 
11 ORFs homologous to lipolytic enzymes. The enzyme showed sequence similar-
ity to β-lactamase irrespective of showing any β-lactamase activity (López-López 
et al. 2015). Several other esterases were isolated from several hot springs all over 
the world (Rhee et al. 2005; Tirawongsaroj et al. 2008; Leis et al. 2015).

PCR-based cloning has also been successfully used in screening the novel 
enzymes directly from the metagenomic samples (Lorenz et  al. 2002). A novel 
cyclomaltodextrinase gene was cloned from environmental DNA that has the ability 
to hydrolyse cyclodextrins and starch (Tang et al. 2006).

A gene encoding lipase enzyme was cloned from metagenome sample of 
Manikaran Sahib (Himachal Pradesh). Sequence analysis of the cloned gene 
revealed its identity with lipase gene of Geobacillus. Biochemical analysis of the 
lipase demonstrated its maximum activity at 60 °C (Sharma et al. 2011). Interestingly, 
the thermostability of the enzyme was further enhanced employing directed evolu-
tion (Sharma et al. 2012). Recently, thermostable protease isolated from Bacillus 
licheniformis of Unnai hot springs has been employed in various industrial settings 
(Dudhagara et al. 2014).

Recent studies from hot springs of Manikaran reported isolation of a Bacillus 
altitudinis IARI-MB-9 and Gulbenkiania mobilis IARI-MB-18 which produces 
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Table 9.3 List of enzymes isolated from hot springs

Enzyme Source

Optimum 
temperature  
(°C)

Optimum 
pH References

Taq Polymerase Yellowstone National 
Park, USA

80 7.8 Chien et al. (1976)

Thermoalkaliphilic 
lipases

Hot springs of Southern 
Sinai

60 10 Deyaa et al. 
(2016)

Lipase Hot springs of 
Manikaran

50 9.0 Sharma et al. 
(2011)

Esterase (Est1) Hot springs in 
Tangkuban Perahu

90 6.0 Rhee et al. (2005)

Patatin-like 
phospholipase (PLP)

Thailand hot spring 70 9.0 Tirawongsaroj 
et al. (2008)

Esterase (Est1) Thailand hot spring 70 9.0 Tirawongsaroj 
et al. (2008)

α-Amylase Omer hot spring, 
Afyonkarahisar in 
Turkey

80 5.0 Ozdemir et al. 
(2015)

α-Amylase Hot spring of Larijan, 
Iran

80 5.0–7.0 Mollania et al. 
(2009)

Amylase Hot spring at 
Purwokerto, Central 
Java Province, 
Indonesia

60 8.0 Amin and 
Zusfahair (2012)

α-Amylase Hot spring sources in 
Yangmingshan National 
Park, Northern Taiwan

70 5.5–6.5 Shaw et al. (1995)

Amylase Wondo Genet hot spring 75–80 5.5 Mamo and 
Gessese (1999)

Lipase Hot springs in Indonesia 50 7.5 Lee et al. (1999)
GH5 cellulase Hot spring in 

Grensdalur, Iceland
70 5 Zarafeta et al. 

(2016)
Cellulase (EBI-244) Great Boiling Spring, 

Gerlach, Nevada
109 – Graham et al. 

(2011)
Cyclomaltodextrinase Bor Khleung hot spring 

in Ratchaburi province, 
Thailand

50–55 6–7 Tang et al. (2006)

Xylanase Hot spring in Yongtai 
(Fuzhou, China)

75 8.2 Liu et al. (2012)

Neopullulanase-like 
enzyme (Env 
Npu193A)

Bor Khleung hot spring 
in Thailand

75 7.0 Tang et al. (2008)

Alkaline Protease Unnai hot spring 50 9.0 Dudhagara et al. 
(2015)

β-d-galactosidase 
(MbgI)

Geothermal springs in 
Northern Himalayan 
Region of India

65 8.0 Gupta et al. (2012)
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thermostable hydrolytic enzymes like CMCase, Xylanase, FPase and Cellobiose 
that display activities at high temperatures (Verma et al. 2015). In addition, various 
metagenomic studies also report isolation of two lipolytic enzymes—phospholipase 
and esterase from hot spring of Thailand (Thevenieau et al. 2007). Metagenome 
investigation of two hot springs from Kamchatka Peninsula resulted in isolation of 
novel genes encoding lipolytic and proteolytic enzymes that displayed maximum 
activities at 85, 90 and 65 °C, respectively (Wemheuer et al. 2013). Table 9.3 further 
enlists various enzymes reported from various hot spring ecosystems.

 Conclusion

The biological diversity of bacteria can help us recognize the way of shaping and 
survival of these microbes in hot springs through various physicochemical con-
ditions and biological interactions. The existence of biotechnological significant 
species in the metagenome suggests the impending applications of the hot spring 
bacteria that evoke the continuing research in this field.
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