
Chapter 7
A Stylised Model for Wealth Distribution

Bertram Düring, Nicos Georgiou, and Enrico Scalas

Abstract The recent book by T. Piketty (Capital in the Twenty-First Century)
promoted the important issue of wealth inequality. In the last twenty years, physi-
cists and mathematicians developed models to derive the wealth distribution using
discrete and continuous stochastic processes (random exchange models) as well as
related Boltzmann-type kinetic equations. In this literature, the usual concept of
equilibrium in economics is either replaced or completed by statistical equilibrium.

In order to illustrate this activity with a concrete example, we present a stylised
random exchange model for the distribution of wealth. We first discuss a fully
discrete version (a Markov chain with finite state space). We then study its discrete-
time continuous-state-space version, and we prove the existence of the equilibrium
distribution. Finally, we discuss the connection of these models with Boltzmann-
like kinetic equations for the marginal distribution of wealth. This paper shows
in practice how it is possible to start from a finitary description and connect it to
continuous models following Boltzmann’s original research programme.

Mathematics Subject Classification (2000) 60J05 � 60J10 � 60J20 � 82B31 � 82B40

7.1 Introduction

The recent book by T. Piketty (2013) shifted the general attention as well as
the attention of economists towards the important issue of wealth inequality. The
question “Why is there wealth inequality?” has attracted the attention of a diverse set
of researchers, including economists, physicists and mathematicians. Particularly,
during the last 20 years, physicists and mathematicians developed models to
theoretically derive the wealth distribution using tools of statistical physics and
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probability theory: discrete and continuous stochastic processes (random exchange
models) as well as related Boltzmann-type kinetic equations. In this framework,
the usual concept of equilibrium in economics is complemented or replaced by
statistical equilibrium (Garibaldi and Scalas 2010).

The original work of Pareto concerned the distribution of income (Pareto 1897).
Pareto observed a skewed distribution with power-law tail. However, he also dealt
with the distribution of wealth, for which he wrote:

La répartition de la richesse peut dépendre de la nature des hommes dont se compose la
societé, de l’organisation de celle-ci, et aussi, en partie, du hasard (les conjonctures de
Lassalle), [. . . ]

The distribution of wealth can depend on the nature of those who make up society, on the
social organization and, also, in part, on chance, (the conjunctures of Lassalle), [. . . ]

More recently, Champernowne (1952), Simon (1955), Wold and Whittle (1957) as
well as Mandelbrot (1961) used random processes to derive distributions for income
and wealth. Starting from the late 1980s and publishing in the sociological literature,
Angle introduced the so-called inequality process, a continuous-space discrete-time
Markov chain for the distribution of wealth based on the surplus theory of social
stratification (Angle 1986). However, the interest of physicists and mathematicians
was triggered by a paper written by Drǎgulescu and Yakovenko (2000) and explicitly
relating random exchange models with statistical physics. Among other things, they
discussed a simple random exchange model already published in Italian by Bennati
(1988). An exact solution of that model was published in Scalas et al. (2006). Lux
wrote an early review of the statistical physics literature up to 2005 (Lux 2005). An
extensive review was written by Chakrabarti and Chakrabarti in 2010. Boltzmann-
like kinetic equations for the marginal distribution of wealth were studied in Cordier
et al. (2005) and several other works; we refer to the review article by Düring et al.
(2009) and the book by Pareschi and Toscani (2014) and the references therein.

We will focus on the essentials of random modelling for wealth distributions,
and we will explicitly show how continuous-space Markov chains can be derived
from discrete-space (actually finite-space) chains. We will then focus on the stability
properties of these chains, and, finally, we will review the mathematical literature on
kinetic equations while studying the kinetic equation related to the Markov chains.
In doing so, we will deal with a stylised model for the time evolution of wealth (a
stock) and not of income (a flow).

Distributional problems in economics can be presented in a rather general form.
Assume one has N economic agents, each one endowed with his/her stock (for
instance, wealth) wi � 0. Let W D PN

iD1 wi be the total wealth of the set of agents.
Consider the random variable Wi, i.e. the stock of agent i. One is interested in the
distribution of the vector .W1; : : : ;WN/ as well as in the marginal distributionW1 if
all agents are on a par (exchangeable). The transformation

Xi D Wi

W
; (7.1)
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normalises the total wealth of the system to be equal to one since

NX

iD1

Xi D 1 (7.2)

and the vector .X1; : : : ;XN/ is a finite random partition of the interval .0; 1/. The Xis
are called spacings of the partition.

The following remarks are useful and justify this simplified modelling of wealth
distribution.

1. If the stock wi represents wealth, it can be negative due to indebtedness. In this
case, one can always shift the wealth to non-negative values by subtracting the
negative wealth with largest absolute value.

2. A mass partition is an infinite sequence s D .s1; s2; : : :/ such that s1 � s2 �
: : : � 0 and

P1
iD1 si � 1.

3. Finite random interval partitions can be mapped into mass partitions, just by
ranking the spacings and adding an infinite sequence of 0s.

The vector X D .X1; : : : ;XN/ lives on the N � 1 dimensional simplex �N�1,
defined by

Definition 7.1 (The simplex �N�1)

�N�1 D
(

x D .x1; : : : ; xN/ W xi � 0 for all i D 1; : : : ;N and
NX

iD1

xi D 1

)

: (7.3)

There are two natural questions that immediately arise from defining such a
model.

1. Which is the distribution of the vector .X1; : : : ;XN/ with Xi given by (7.1) at a
given time?

2. Which is the distribution of the random variable X1, the proportion of the wealth
of a single individual?

One well-studied probabilistic example is to set the vector .W1; : : : ;WN/ of
i.i.d. random variables such that Wi � gamma.˛i; �/. Then W D PN

iD1 Wi �
gamma

�PN
iD1 ˛i; �

�
. In this case the mass function of .X1; : : : ;XN/ is the Dirichlet

distribution, given by

fX.x/ D �.˛1 C � � � C ˛N/

�.˛1/ � � � �.˛N/
x˛1�1

1 � � � x˛N�1
N ; x D .x1; : : : ; xN/ 2 �N�1: (7.4)

We say X � DirN�1.˛1; : : : ; ˛N/ and the parameters ˛1; : : : ; ˛N are assumed
strictly positive as they can be interpreted as the shapes of gamma random variables.
A particular case is when ˛1 D � � � D ˛n D ˛. Then the Dirichlet distribution is
called symmetric. The symmetric Dirichlet distribution with ˛ D 1 is uniform on
the simplex �N�1.
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One can now answer the two questions above using the following proposition
which we present in its simplest form.

Proposition 7.1 Let .W1; : : : ;WN/ be i.i.d. random variables such that Wi �
exp.1/. Then W D PN

iD1 Wi � gamma.N; 1/. Define Xi D Wi=W; then the vector
X D .X1; : : : ;XN/ has the uniform distribution on the simplex �N�1 and one-
dimensional marginals X1 � beta.1;N � 1/, namely,

fX1 .x/ D .1 � x/N�2

B.1;N � 1/
; (7.5)

where, for a; b > 0,

B.a; b/ D �.a/�.b/

�.a C b/
: (7.6)

The proof of this proposition can be found in several textbooks of probability and
statistics including Devroye’s book (2003). Specifically, the part of Proposition 7.1
concerning the uniform distribution is a corollary of Theorem 4.1 in Devroye (2003).
Equation (7.5) is a direct consequence of the aggregation property of the Dirichlet
distribution.

In this chapter, we define three related models that incorporate a stochastic time
evolution for the agent wealth distribution. The models increase in mathematical
complexity in the order they are presented.

The first one is a discrete-time discrete-space (DD) Markov chain with a Pólya
limiting invariant distribution. We keep the dynamics as simple as possible so in
fact the invariant distribution will be uniform (not a generic Pólya distribution), but
the ideas and techniques are the same for more complicated versions. The Markov
chain of the DD model is then generalised to a discrete-time continuous-space (DC)
Markov chain. The extension is natural in the sense that the dynamics, irreducibility
and the invariant distribution of the DC model can be viewed as limiting case of the
DD model. In the process, we effectively prove that Monte Carlo algorithms will
approximate the DC model well. Finally, we present a continuous-continuous-space
(CC) model for which the temporal evolution of the (random) wealth of a single
individual is governed by a Boltzmann-type equation.

7.2 Random Dynamics on the Simplex

In order to define our simple models, we first introduce two types of moves on the
simplex.

Definition 7.2 (Coagulation) By coagulation, we denote the aggregation of the
stocks of two or more agents into a single stock. This can happen in mergers,
acquisitions and so on.
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Definition 7.3 (Fragmentation) By fragmentation, we denote the division of the
stock of one agent into two or more stocks. This can happen in inheritance, default
and so on.

7.2.1 Discrete-Time Continuous-Space Model:
Coagulation-Fragmentation Dynamics

Before introducing the DD model, let us define the main object of our study: The
DC model.

At each event time, the state of the process X 2 �N�1 changes according to a
composition of one coagulation and one fragmentation step.

To be precise, let X D x be the current value of the random variable X. For any
ordered pair of indices i; j, 1 � i; j � N, chosen uniformly at random, define the
coagulation application coagij.x/ W �N�1 ! �N�2 by creating a new agent with
stock x D xi C xj while the proportion of wealth for all others remain unchanged.
Next enforce a random fragmentation application frag.x/ W �N�2 ! �N�1 that
takes x defined above and splits it into two parts as follows. Given u 2 .0; 1/ drawn
from the uniform distribution UŒ0; 1�, set xi D ux and xj D .1 � u/x.

The sequence of coagulation and fragmentation operators defines a time-
homogeneous Markov chain on the simplex �N�1. Let x.t/ D .x1.t/; : : : ; xi.t/; : : : ;

xj.t/; : : : ; xN.t// be the state of the chain at time t with i and j denoting the selected
indices. Then the state at time t C 1 is

x.t C 1/ D .x1.t/; : : : ; xi.t C 1/ D u.xi.t/ C xj.t//; : : : ; xj.t C 1/

D .1 � u/.xi.t/ C xj.t//; : : : ; xN.t//:

The Markov kernel for this process is however degenerate because each step only
affects a Lebesgue measure 0 of the simplex. To avoid this technical complication
for the moment, we define the same dynamics on the discrete simplex, and we then
analyse the DC model.

7.2.2 Discrete-Time Discrete-Space Model

Let N denote the number of categories (individuals) into which n objects (coins or
tokens) are classified (Garibaldi and Scalas 2010). In the frequency or statistical
description of this system, a state is a list n D .n1; : : : ; nN/ with

PN
iD1 ni D n

which gives the number of objects belonging to each category. In this framework,
a coagulation move is defined by picking up a pair of ordered integers i; j at
random without replacement from 1 � : : : � N and creating a new category with
ni C nj objects. A fragmentation move takes this category and splits it into two new
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categories relabeled i and j where n0
i is a uniform random integer between 0 and

.ni C nj � 1/ _ 0 and n0
j D ni C nj � n0

i. The state of the process at time t 2 N0 is
denoted by X.t/, and its state space is the scaled integer simplex

S.n/
N�1 Dn�N�1\Z

N D
(

n D .n1; n2; : : : ; nN/ W 0 � ni � n;

NX

iD1

ni D n; ni 2 N0

)

:

Remark 7.1 Note that we have seemingly introduced a slight asymmetry; the agent
picked first runs the risk of ending up with 0 fortune. The dynamics are overall
not asymmetric, however, since we select i before j with the same probability as
selecting j before i. The reason for introducing the model in this way is to simplify
the presentation and error estimate in the proof of the weak convergence of the finite
dimensional marginals from the DD to the DC model.

Formally, with coagulation, we move from the state space S.n/
N�1 to S

.n/
N�2, and then

again with fragmentation, we come back to S.n/
N�1. While it is interesting to actually

study all stages of the procedure, we are only interested in the aggregated wealth,
and therefore we can bypass the intermediate state space by defining the process
only on S.n/

N�1; it is straightforward to write down the transition probabilities for X.t/

PfX.t C 1/ D n0jX.t/ D ng

D
X

i;jWi¤j

(
1

N

1

N � 1

 
11fni C nj � 1; n0

j � 1g
ni C nj

C 11fni C nj D 0g
!

� ıniCnj;n0

iCn0

j

Y

k¤i;j

ın0

k ;nk

9
=

;
: (7.7)

The notation is shorthand and implies that we are adding over all ordered pairs
.i; j/; i ¤ j where the first coordinate indicates the index i that was selected first.

The chain is time-homogeneous as the transition (7.7) is independent of the time
parameter t. It is also aperiodic since with positive probability, during each time
step, the chain may coagulate and then fragment to the same state. To see this,
consider any vector .X1; : : : ;XN/ D .x1; : : : ; xN/ on the simplex. It must have at
least one non-zero entry, say x1 > 0. Select index i D 1 first (with probability
N�1), and then select any other index j. After that, fragment at precisely x1; xj
(with probability 1=.x1 C xj/ > 0). Finally, the chain is irreducible, since from
any point X D .x1; : : : ; xN/, the chain can move with positive probability to any of
the neighbouring ..x1; : : : ; xN/ ˙ .ei � ej// \ S.n/

N�1, i.e. to any point in the simplex
that is `1-distance 2 away from the current state. Therefore, we can conclude that
the chain fX.t/gt2N0 has a unique equilibrium distribution � which we identify in
the next proposition.
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Proposition 7.2 The invariant distribution of this Markov chain X.t/ is the uniform
distribution on n�N�1 \ Z

N.

Proof Define

Ai;j.n0/ D
�

n W n
coag � fragi;j�! n0

�

to be the set of all simplex elements n that map to n0 via a coagulation-fragmentation
procedure in the i; j indices (i selected before j). This set is empty only when n0

j D 0

while n0
i � 1, but otherwise it contains at least one vector. Assuming that Ai;j.n0/ is

not empty, we have that its cardinality is

card.Ai;j.n0// D .n0
i C n0

j/ _ 1: (7.8)

Using this notation, we may rewrite the transition probability in (7.7) as

PfX.t C 1/ D n0jX.t/ D ng

D
X

i;jWi¤j

8
<

:

1

N

1

N � 1

 
11fni C nj � 1; n0

j � 1g
ni C nj

C11fniCnj D 0g
!

ıniCnj;n0

iCn0

j

Y

k¤i;j

ın0

k ;nk

9
=

;

D
X

i;jWi¤j

8
<

:

1

N

1

N � 1

 
11fn0

i C n0
j � 1; n0

j � 1g
n0
i C n0

j

C11fn0
iCn0

j D 0g
!

ıniCnj;n0

iCn0

j

Y

k¤i;j

ın0

k ;nk

9
=

;

from the ıniCnj;n0

iCn0

j
factor,

D
X

i;jWi¤j

8
<

:

1

N

1

N � 1

 
1

.n0
i C n0

j/ _ 1

!

ıniCnj;n0

iCn0

j

Y

k¤i;j

ın0

k ;nk
11
˚
n 2 Ai;j.n0/

�
9
=

;

D
X

i;jWi¤j

8
<

:

1

N

1

N � 1

 
1

card.Ai;j.n0//

!

ıniCnj;n0

iCn0

j

Y

k¤i;j

ın0

k ;nk
11
˚
n 2 Ai;j.n0/

�
9
=

;

D
X

i;jWi¤j

(
1

N

1

N � 1

 
1

card.Ai;j.n0//

!

11
˚
n 2 Ai;j.n0/

�
)

(7.9)

since the ı product is equivalent to the last indicator.
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Now fix a n0 and add up all the transition probabilities in (7.9) over n. We get

X

n

X

i;jWi¤j

(
1

N

1

N � 1

 
1

card.Ai;j.n0//

!

11fn 2 Ai;j.n0/g
)

D
X

i;jWi¤j

(
1

N

1

N � 1

 
1

card.Ai;j.n0//

!
X

n

11fn 2 Ai;j.n0/g
)

D
X

i;jWi¤j

(
1

N

1

N � 1

 
1

card.Ai;j.n0//

!

card.Ai;j.n0//
)

D 1:

Therefore, the transition matrix is doubly stochastic, and in particular the invariant
distribution must be uniform.

7.2.3 Convergence of the Finite Markov Chain as the Overall
Wealth Increases

Reaching a similar conclusion in the case of the DC model is slightly more
complicated. The difficulty is related to the fact that time is changing in discrete
steps and the chain cannot explore the whole available state space because real
numbers cannot be put in 1-to-1 correspondence with integers. How can we be
sure that the Markov chain with continuous state space can explore its state space
uniformly? We begin our analysis by studying the convergence of the finite state-
space Markov chain to the continuous-state-space Markov chain.

Let X.n/ be the DD Markov chain for wealth, when the wealth of the system is
n, and let X.1/ be the chain for the DC model introduced in Sect. 7.2.1. We scale
the state space of each process X.n/ so that it is a subset of �N�1 by defining a new,
coupled process

Y.n/ D n�1X.n/:

The state space for the process Y.n/ is the simplex

�N�1.n/ D f.q1; : : : ; qd/ W 0 � qi � 1; q1 C : : : C qd D 1; nqi 2 N0g � �N�1:

It can be considered as partition of �N�1 with mesh n�1, i.e. inversely proportional
to the total wealth.

In this section we first prove weak convergence of the one-dimensional marginals

Y.n/
k

n!1H) X.1/
k ; for all k 2 N
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and then prove the existence of a unique invariant distribution for X.1/ (the DC
model) that we identify as the uniform distribution on �N�1.

Let �
.n/
0 the initial distribution of Y.n/

0 and �
.1/
0 the initial distribution of X1

0 .

Proposition 7.3 Assume the weak convergence �
.n/
0 H) �

.1/
0 as n ! 1. Then

for each k 2 N, we have weak convergence of the one-dimensional marginals

Y.n/
k H) X.1/

k as n ! 1:

Proof We first show this for k D 1 and then show it in general with an inductive
argument. Let f be a bounded continuous function on �N�1.n/. Let U be a uniform
random variable on Œ0; 1�, and define the bounded and continuous Fi;j W �N�1 ! R

by

Fi;j.x1; : : : ; xd/ D E
U.f .x1; : : : ;U.xiCxj/; xiC1; : : : ; .1�U/.xiCxj/; xjC1; : : : ; xd//:

Pick an " > 0. By compactness, we can find a ı D ı."/ > 0 such that whenever
kx � yk1 < ı we have that

sup
fi;jg

jFij.x/ � Fij.y/j C jf .x/ � f .y/j < ":

From this relation, choose n large enough so that the discrete simplex �N�1.n/ is
fine enough, namely, two neighbouring points x.n/; y.n/ satisfy kx.n/ � y.n/k1 < ı. In
particular, this implies that n > 2ı�1.

The function Fi;j evaluated on the partition points is

Fi;j.x
.n//D

Z 1

0

f .x.n/
1 ; : : : ; u.x.n/

i C x.n/
j /; : : : ; .1 � u/.x.n/

i C x.n/
j /; : : : ; xd/ du

D

8
ˆ̂
<

ˆ̂
:

f .x.n//; x.n/
i C x.n/

j D 0

1

x
.n/
i Cx

.n/
j

Z x
.n/
i Cx

.n/
j

0

f .x.n/
1 ; : : : ; s; : : : ; x.n/

i Cx.n/
j � s; : : : ; xd/ ds; otherwise.

Focus on the integral of the second branch for a moment. We discretise the integral
on �N�1.n/ with s-values 0; 1=n; : : : ; x.n/

i C x.n/
j � 1=n. Then

ˇ
ˇ
ˇ

Z .kC1/=n

k=n
f .x.n/

1 ; : : : ; s; : : : ; x.n/
i C x.n/

j � s; : : : ; xd/ ds

� n�1f .x.n/
1 ; : : : ; k=n; : : : ; x.n/

i C x.n/
j � k=n; : : : ; xd/

ˇ
ˇ
ˇ < "=n:
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Therefore, the overall error,

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
Fi;j.x

.n// �
n.x

.n/
i Cx

.n/
j /�1

X

kD0

f .x.n/
1 ; : : : ; k=n; : : : ; x.n/

i C x.n/
j � k=n; : : : ; xd/

n.x.n/
i C x.n/

j /

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

< ":

(7.10)
Now we turn to prove the weak convergence:

E.f .Y.n/
1 // D

X

x2�N�1.n/

f .x/PfY.n/
1 D xg

D
X

x2�N�1.n/

X

y2�N�1.n/

f .x/PfY.n/
1 D xjY.n/

0 D yg�.n/
0 .y/

D
X

y2�N�1.n/

�
.n/
0 .y/

X

x2�N�1.n/

f .x/PfX.n/
1 D xjX.n/

0 D yg

D
X

y2�N�1.n/

�
.n/
0 .y/

X

i;jW;i¤j

X

xiCxjDyiCyj
xkDyk

f .x/PfY.n/
1 D xjY.n/

0 D yg

D 1

N.N � 1/

X

y2�N�1.n/

�
.n/
0 .y/

X

i;jWi¤j

X

xiCxjDyiCyj
xkDyk

f .x1; : : : xi; : : : ; xj; : : : ; xd/

�
�11fyi C yj � n�1; xj � n�1g

n.yi C yj/
C 11fyi C yj D 0g

�

D 1

N.N � 1/

X

y2�N�1.n/

�
.n/
0 .y/

�
X

i;jWi¤j

( n.yiCyj/�1X

kD0

f .y1; : : : ; n�1k; : : : ; yi C yj � n�1k; : : : ; yd/
1

n.yi C yj/

C f .y1; : : : ; 0; : : : ; 0; : : : ; yd/11fyi C yj D 0g
)

D 1

N.N � 1/

X

y2�N�1.n/

�
.n/
0 .y/

�
X

i;jWi¤j

Fi;j.y/11fyi C yj > 0g C O."/ C Fi;j.y/11fyi C yj D 0g

D 1

N.N � 1/

X

y2�N�1.n/

�
.n/
0 .y/

X

i;jWi¤j

Fi;j.y/ C O."/

D 1

N.N � 1/

X

i;jWi¤j

E
�

.n/
0 .Fi;j/ C O."/:
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Now let n ! 1 and recall that Fi;j is bounded and continuous to conclude that

� C" � lim
n!1

E.f .Y.n/
1 // � 1

N.N � 1/

X

i;jWi¤j

E
�

.1/
0 .Fi;j/ � lim

n!1E.f .Y.n/
1 //

� 1

N.N � 1/

X

i;jWi¤j

E
�

.1/
0 .Fi;j/ � C":

where C is a constant independent of n that comes from the error term. Let " ! 0 to
conclude the limit exists and observe that the definition of Fi;j and the disintegration
theorem imply that

lim
n!1E.f .Y.n/

1 // D 1

N.N � 1/

X

i;jWi¤j

E
�

.1/
0 .Fi;j/ D E.f .X.1/

1 //:

Therefore, we have now shown that the �
.n/
1 H) �

.1/
1 if �

.n/
0 H) �

.1/
0 . An

inductive construction and the Markov property are enough to guarantee that all
one-dimensional marginals converge.

7.2.4 Irreducibility, Uniqueness of the Invariant Measure
and Stability

We can now proceed to study of irreducibility, of the uniqueness of the invariant
measure and of the stability for the continuous-space Markov chain.

We begin with a proposition that will simplify the mathematical technicalities
associated with general state-space discrete-time Markov chains.

Proposition 7.4 (Duality of coagulation and fragmentation) Let X.t/ denote the
coagulation-fragmentation Markov chain defined in Sect. 7.2.1. If X.t/ � UŒ�N�1�

then X.t C 1/ � UŒ�N�1�, as well.

Proof See Bertoin (2006) chapter 2, corollary 2.1, page 77.
This proposition means that the uniform distribution on the simplex �N�1 is an
invariant distribution for the coagulation-fragmentation chain.

What we prove in the sequel is that this is the unique invariant measure and the
transition kernels converge to it in the total variation norm. With this goal in mind,
we begin with some definitions.

Definition 7.4 (Phi-irreducibility) Let .S;B.S/; �/ be a measured Polish space.
A discrete-time Markov chain X on S is �-irreducible if and only if for any Borel
set A, the following implication holds:

�.A/ > 0 H) L.u;A/ > 0; for all u 2 S:
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Above, we used notation

L.u;A/ D PufXn 2 A for some ng D PfXn 2 A for some njX0 D ug:

This replaces the notion of irreducibility for discrete Markov chains and means that
the chain is visiting any set of positive measure with positive probability.

The existence of a Foster-Lyapunov function V defined as

Definition 7.5 (Foster-Lyapunov function) For a petite set C, we can find a
function V � 0 and a � > 0 so that for all x 2 S

Z

P.x; dy/V.y/ � V.x/ � 1 C �11C.x/; (7.11)

implies convergence of the kernel P of �-irreducible, aperiodic chain to a unique
equilibrium measure 	

sup
A2B.S/

jPn.x;A/ � 	.A/j ! 0; as n ! 1: (7.12)

(see Meyn and Tweedie 1993) for all x for which V.x/ < 1. If we define 
C to
be the number of steps it takes the chain to return to the set C, the existence of a
Foster-Lyapunov function (and therefore convergence to a unique equilibrium) is
equivalent to 
C having finite expectation, i.e.

sup
x2C

Ex.
C/ < MC

which in turn is implied when 
C has geometric tails. This is in fact what we prove
in the following.

In our case, � will be the Lebesgue measure, and the role of the petite set C will
be played by any set with positive Lebesgue measure. This useful simplification
of the mathematical technicalities is an artefact of the compact state space (�N�1)
and the fact that the uniform distribution on the simplex is invariant for the chain
(Proposition 7.4).

Proposition 7.5 Let t 2 N. The discrete chain X D fXngn2N as defined in Sect. 7.2.1
is �-irreducible, where � 	 �N�1 is the Lebesgue measure on the simplex.
At this point it is useful to explain the idea of the proof of Proposition 7.5 when we
have deterministic dynamics. We do this in the (easy to visualise) case N D 3, while
the proof is done generally, with Markov dynamics. For any pair u; v 2 �ı

2 , there
is a deterministic way to move from u D .xu; yu; zu/ to v D .xv; yv; zv/ in precisely
two steps. The same happens in higher dimensions; on �ı

N�1, we can move from
any starting point to any target point using deterministic coagulation-fragmentation
dynamics in precisely N � 1 steps.

Since the dynamics is symmetric with respect to the coordinates, we may assume
without loss of generality that zu � 2=3 and therefore there exists an entry in v, say
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Fig. 7.1 Schematic of a possible coagulation-fragmentation route from u to v in two steps. Starting
from point u 2 �2, fix zu. Then on the line xCy D 1�zu, pick the point .xv; 1�zu �xv; zu/. From
there, fix xv and choose .yv; zv/ on the line 1 � xv D yv C zv . The shaded region are all points v

that can be reached with this procedure from u, first by fixing zu and then by fixing xv . Points in
the white region can be reached from u first by fixing zu and then yv

xv , such that m1 D xv

1 � zu
� 1: Furthermore, m2 D xv

1 � yv

� 1: Then consider the

mapping

u D.xu; yu; zu/ 7! .m1.xu C yu/; .1 � m1/.xu C yu/; zu/

7! .m1.xu C yu/;m2Œ.1 � m1/.xu C yu/Czu�; .1 � m2/Œ.1 � m1/.xu C yu/Czu�/

D .m1.1 � zu/;m2Œ.1 � m1/.1 � zu/ C zu�; .1 � m2/Œ.1 � m1/.1 � zu/ C zu�/

D .xv; yv; zv/ D v: (7.13)

This idea captures the proof of the Lebesgue irreducibility (see also Fig. 7.1).

Proof (Proof of Proposition 7.5) First observe that excluding one coordinate (say
x1) from the coagulation process in �N�1, we are merely restricting the dynamics to
.1 � x1/�N�2. This observation is what allows us to proceed by way of induction.

Base case N D 3. We choose the base case N D 3 for purposes of clarity, in a
way that can be immediately generalised to higher dimensions. We are working on
.�2;B.�2/; �2 	 � ˝ �/.

Let A be a Borel set and assume �2.A/ D ˛ > 0. We will show that starting
from any x, the probability of hitting A in just two steps with the coagulation-
fragmentation dynamics described above is strictly positive.

For any ı > 0 and point u, let ı�2.u/ denote the scaled simplex with length side
ı
p

2 and barycentre u.
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Since A has positive Lebesgue measure, for any " > 0, we can find an open set
GA;" 
 A so that �2.GA;" n A/ < ". Fix an " > 0 and construct GA;". Enumerate all
rationals in GA;" and find ı D ı.A; "/ > 0 so that

A �
[

q2GA;"

.ı�2.q//; and �2

� [

q2GA;"

.ı�2.q//
�

� ˛ C 2":

Without loss of generality, we may assume that ı�2.q/ \ A ¤ ¿ for all q in the
union; otherwise we remove the extraneous simplexes from the union. Since the
union is countable, there must be a barycentre q0 such that

ˇ WD �2.ı�2.q0/ \ A/ > 0:

Let u be an arbitrary starting point of the process. Without loss of generality, and
by possibly decreasing our initial choice of ı, assume

1. zu � 2=3,
2. u can be deterministically mapped at any point v 2 ı�2.q0/ \A by first fixing zu

and then xv , as in calculation (7.13).

We denote the three corners ı�2.q0/ by a D .xa; ya; za/; b D .xa � ı; ya C
ı; za/ and c D .xa � ı; ya; za C ı/. Then,

0 < ˇ D
Z

A\ı�2.q0/

d�2 D
Z Z

A\ı�2.q0/

d�1 d�1

D
Z

d�1

�
11fxa � ı < x < xag

Z

d�111fA \ �2.q0/ \ fz C y D 1 � xgg
�

D
Z

d�1

�
11fxa � ı < x < xag

Z

d�111f.x; y; z/2A \ �2.q0/ Wy C z D 1�xg
�
:

Thus, for a positive �1 measure of x 2 .xa � ı; xa/, we can find positive �1 measure
of the intersection between the set A and the line zC y D 1 � x. Thus, we restrict to
the measurable set F D fx 2 Œxa � ı; xa� W �x > n�1g where

�x D �1fA \ ı�2.q0/ \ fy C z D 1 � xgg:

Integer n is chosen large enough so that �1.F/ > 0. We have established the
existence of a set C so that

C D f.x; y; z/ W x 2 F; .x; y; z/ 2 A \ ı�2.q0/g; �2.C/ > 0:

This is enough to finally complete the proof of the base case. Recall the starting
point u D .xu; yu; zu/ of the Markov chain. Define the projection set

FC;u D f.x; y; z/ W z D zu; 9.x0; y0; z0/ 2 C s.t. y C zu D y0 C z0 D 1 � x0; x D x0g;
which has positive measure as �1.F/ D �1.FC;u/.
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With strictly positive probability, we select to coagulate the first and second
coordinate. Then with strictly positive probability, we fragment into the set FC;u.
This is because the coagulation-fragmentation process of two coordinates picks a
uniformly distributed point on the line xC y D 1 � zu by virtue of construction. The
uniform distribution is a scalar multiple of the Lebesgue measure, thus guaranteeing
that the probability of selecting such a point is strictly positive. Then, given the
chain’s current position, with strictly positive probability, we coagulate the last
two coordinates. For the same reason as before, with strictly positive probability,
we terminate in the set C � A since for any fixed x 2 F, the fragmentation has
probability no less than 1=n to pick up a point .x; y0; z0/ 2 C.

To conclude, in just two steps, we have a positive probability of hitting A from
any starting point u.

Induction case: Now consider simplex ıN�1, when N � 4, and assume that the
proposition is true for all k < N. Let A � �N�1 be a Borel set of positive �N�1

measure. As for the base case, we can find a simplex ı�N�1.q0/ such that �N�1.A\
ı�N�1.q0// > 0 and with the same Fubini-Tonelli argument conclude that there
exist a positive integer n and a positive �1-measure set F of x values so that

�N�2.A \ ı�N�1.q/ \ fx D x0 2 Fg/ > n�1:

Without loss of generality, assume that from the starting point u, we can coagulate
and fragment two coordinates, say u1 and u2, so that �1fx 2 F; x < u1 C u2g > 0.
Then, for the Markov chain, this implies

PufX1 � e1 2 Fg > 0: (7.14)

Let

B D fX2;X3; : : : ;XN�1 does not coagulate the first coordinateg:

Again,

PufBjX1 � e1 2 Fg D PufBg > 0: (7.15)

Then it is immediate to compute

L.u;A/ D PufX` 2 A for some `g � PufXN�1 2 Ag
� PufXN�1 2 A;X1 � e1 2 F;Bg
� PufXN�1 2 AjB;X1 � e1 2 FgPufBjX1 � e1 2 FgPufX1 � e1 2 Fg > 0:

Strict positivity of the last two factors follows from (7.14) and (7.15), while
PufXN�1 2 AjB;X1 � e1 2 Fg equals the probability that the N � 2 dimensional
fragmentation-coagulation process starting from a random point u0 with xu0 2 F
hits the set A\ı�N�1.q/\fx D x0g in N�2 steps. By the induction hypothesis, this
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probability is strictly positive (given the starting point). By restricting the set F so
that its measure remains positive, we may further assume that these probabilities are
uniformly bounded away from 0, independently of the starting point. This concludes
the proof.

Proposition 7.6 (Existence of a Foster-Lyapunov function) The return times 
A
to any set A 2 B.�2/ of positive measure have at most geometric tails, under Px0 .
As a consequence, the Foster-Lyapunov function exists.

Proof (Proof of Proposition 7.6) Let A be a positive Lebesgue measure set. By
repeating the construction in the proof of Proposition 7.5 to all coordinates, we can
find ˛i > 0; ni > 0; 1 � i � N; ı > 0 and a rational barycentre q0 and a sequence of
measurable sets

A 
 A1 
 A2 
 : : : 
 AN

of positive measure, �N�1.AN/ D � > 0 and a collection of one-dimensional
measurable sets F1; : : : ;FN with the following properties:

1. �N�2fA \ ı�2.q0/ \ fx1 D x�
1 2 F1gg D �.x�

1 / > n�1
1 ; �1.F1/ � ˛1,

A1 D fA \ ı�2.q0/; x1 2 F1g
2. �N�2fAk�1 \ ı�2.q0/ \ fxk D x�

k 2 Fkgg D �.x�
k / > n�1

k ; �1.Fk/ � ˛k,
Ak D fAk�1 \ ı�2.q0/; xk 2 Fkg; k � 2:

The basic property of AN is that it is accessible with positive probability (that
depends on A), uniformly bounded from below from any point u0 2 �N�1. Let a D
minfa1; : : : ; aN ; 1g and n0 D maxfn1; : : : ; nNg. We bound above the probability that
we do not hit AN in the firstN�1 steps, i.e. Pu0f
AN > N�1g. Suppose we hit inN�1

steps or less. Then there is at least one sequence of N�1 coagulation-fragmentation
steps for which, if we follow it, we land in AN . We select the appropriate pair of
indices at each step with probability 1=N.N � 1/, and, given this, we fragment at an
appropriate point with probability at least a. Therefore

inf
x2�N�1

Pxf
AN � N � 1g �
�

2a

N.N � 1/

�N�1

D �A > 0:

Pick a starting point u0 2 A. Then Pu0 .
A > M/ � Pu0 .
AN > M/. We will show
that the larger tail is bounded above geometrically by an expression independent of
u0. We compute

Pxf
AN > .N � 1/Mg D PxfX1 … AN ; : : : ;X.N�1/M … ANg

�
 

sup
u2�N�1nAN

PufX1 … AN ; : : : ;XN�1 … ANg
!M
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�
 

sup
u2�N�1nAN

Puf
AN > N � 1g
!M

� .1 � �A/M:

Finally, since for any 1 � k � N � 1 we have f
AN > .N � 1/.M C 1/g � f
AN >

.N � 1/M C kg � f
AN > .N � 1/Mg, we conclude that 
AN has geometric tails.
We assemble these propositions in the following theorem.

Theorem 7.1 Let X.t/ denote the coagulation-fragmentation Markov chain defined
in Sect. 7.2.1 and initial distribution �0 on �N�1. Let �t denote the distribution of
X.t/ at time t 2 N0. Then the uniform distribution on �N�1 is the unique invariant
distribution that can be found as the weak limit of the sequence �t.

Proof From Proposition 7.4 we have that UŒ�N�1� is an invariant distribution for
the process. Since the chain is �-irreducible as shown in Proposition 7.5, uniqueness
of the equilibrium follows from the existence of a Foster-Lyapunov function, proven
in Proposition 7.6.

7.2.5 Kinetic Equation as Limit of the Agent System

Kinetic equations for the one-agent distribution function with a bilinear interaction
term can be derived using mathematical techniques from the kinetic theory of
rarefied gases (Cercignani 1988; Cercignani et al. 1994). In this section we discuss
how in a time-continuous setting, where the stock (or wealth) of each agent is a
continuous variable w 2 I D Œ0; 1/, the exchange mechanism discussed above
constitutes a special case of a kinetic model for wealth distribution, proposed by
Cordier, Pareschi and Toscani in 2005. In this setting the microscopic dynamics
leads to a homogeneous Boltzmann-type equation for the distribution function of
wealth f D f .w; t/. One can study the moment evolution of the Boltzmann equation
to obtain insight into the tail behaviour of the cumulative wealth distribution. We
also discuss the grazing collision limit which yields a macroscopic Fokker-Planck-
type equation.

Cordier, Pareschi and Toscani (2005) propose a kinetic model for wealth distri-
bution where wealth is exchanged between individuals through pairwise (binary)
interactions: when two individuals with pre-interaction wealth v and w meet, then
their post-trade wealths v� and w� are given by

v� D .1 � �/v C �w C Q�v; w� D .1 � �/w C �v C �w: (7.16)

Herein, � 2 .0; 1/ is a constant, the so-called propensity to invest. The quantities
Q� and � are independent random variables with the same distribution (usually
with mean zero and finite variance 2). They model randomness in the outcome
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of the interaction in a diffusive fashion. Note that to ensure that post-interaction
wealths remain in the interval I D Œ0; 1/, additional assumptions need to be
made. The discrete exchange dynamics considered in the previous sections find their
continuous kinetic analogue when setting � D Q� 	 0 in (7.16).

With a fixed number N of agents, the interaction (7.16) induces a discrete-
time Markov process on R

NC with N-particle joint probability distribution
PN.w1;w2; : : : ;wN ; 
/. One can write a kinetic equation for the one-marginal
distribution function

P1.w; 
/ D
Z

PN.w;w2; : : : ;wN ; 
/ dw2 � � � dwN ;

using only one- and two-particle distribution functions (Cercignani 1988; Cercig-
nani et al. 1994),

P1.w; 
 C 1/ � P1.w; 
/ D
*

1

N

"Z

P2.wi;wj; 
/
	
ı0.w � ..1 � �/wi C �wj C Q�wi//

C ı0.w � ..1 � �/wj C �wi C �wj//


dwi dwj � 2P1.w; 
/

#+

:

Here, h�i denotes the mean operation with respect to the random variables �; Q�. This
process can be continued to give a hierarchy of equations of so-called BBGKY type
(Cercignani 1988; Cercignani et al. 1994), describing the dynamics of the system
of a large number of interacting agents. A standard approximation is to neglect
correlations between the wealth of agents and assume the factorisation

P2.wi;wj; 
/ D P1.wi; 
/P1.wj:
/:

Standard methods of kinetic theory (Cercignani 1988; Cercignani et al. 1994) can be
used to show that, scaling time as t D 2
=N and taking the thermodynamical limit
N ! 1, one obtains that the time evolution of the one-agent distribution function
is governed by a homogeneous Boltzmann-type equation of the form

@

@t
f .w; t/ D

1

2

* Z

f .wi; t/f .wj; t/
	
ı0.w � ..1 � �/wi C �wj C Q�wi//

C ı0.w � ..1 � �/wj C �wi C �wj//


dwi dwj

+

� f .w; t/: (7.17)

Recalling the results from Düring et al. (2008) and Matthes and Toscani (2008),
we have the following proposition.



7 A Stylised Model for Wealth Distribution 153

Proposition 7.7 The distribution f .w; t/ tends to a steady-state distribution f1.w/

with an exponential tail.

Proof The results in Düring et al. (2008) and Matthes and Toscani (2008) imply
that f .w; t/ tends to a steady-state distribution f1.w/ which depends on the initial
distribution only through the conserved mean wealth M D R1

0
w f .w; t/ dw > 0.

As detailed in Düring et al. (2008) and Matthes and Toscani (2008), the long-
time behaviour of the s-th moment

R1
0

ws f .w; t/ dw is characterised by the function
S .s/ D .1��/s C�s �1 which is negative for all s > 1; hence all s-th moments for
s > 1 are bounded, and the tail of the steady-state distribution is exponential. ut

In general, such equations like (7.17) are rather difficult to treat, and it is usual
in kinetic theory to study certain asymptotic limits. In a suitable scaling limit, a
partial differential equation of Fokker-Planck type can be derived for the distribution
of wealth. Similar diffusion equations are also obtained in Slanina and Lavička
(2003) as a mean-field limit of the Sznajd model (Sznajd-Weron and Sznajd 2000).
Mathematically, the model is related to works in the kinetic theory of granular gases
(Cercignani et al. 1994).

To this end, we study by formal asymptotics the so-called continuous trading
limit (� ! 0 while keeping 2

� =� D � fixed).
Let us introduce some notation. First, consider test functions � 2 C 2;ı.Œ0; 1//

for some ı > 0. We use the usual Hölder norms

k�kı D
X

j˛j�2

kD˛�kC C
X

˛D2

ŒD˛��C 0;ı ;

where Œh�C 0;ı D supv¤w jh.v/ � h.w/j=jv � wjı: Denoting by M0.A/, A � R; the
space of probability measures on A, we define by

Mp.A/ D
�

‚ 2 M0

ˇ
ˇ
ˇ
ˇ

Z

A
j�jpd‚.�/ < 1; p � 0

�

the space of measures with finite pth moment. In the following all our probability
densities belong to M2Cı , and we assume that the density ‚ is obtained from a
random variable Y with zero mean and unit variance. We then obtain

Z

I
j�jp‚.�/ d� D EŒj�Yjp� D p

�EŒjYjp�; (7.18)

where EŒjYjp� is finite. The weak form of (7.17) is given by

d

dt

Z

I
f .w; t/�.w/ dw D

Z

I
Q.f ; f /.w/�.w/ dw (7.19)
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where
Z

I
Q.f ; f /.w/�.w/ dw

D 1

2

D Z

I 2

	
�.w�/ C �.v�/ � �.w/ � �.v/



f .v/f .w/ dv dw

E
:

Here, h�i denotes the mean operation with respect to the random variables �; Q�. To
study the situation for large times, i.e. close to the steady state, we introduce for
� � 1 the transformation Qt D �t; g.w; Qt/ D f .w; t/: This implies f .w; 0/ D g.w; 0/,
and the evolution of the scaled density g.w; Qt/ follows (we immediately drop the tilde
in the following)

d

dt

Z

I
g.w; t/�.w/ dw D 1

�

Z

I
Q.g; g/.w/�.w/ dw: (7.20)

Due to the interaction rule (7.16), it holds

w� � w D �.v � w/ C �w:

A Taylor expansion of � up to second order around w of the right hand side of (7.20)
leads to

D 1

�

Z

I 2

�0.w/ Œ�.v � w/ C �w� g.w/g.v/ dv dw
E

C
D 1

2�

Z

I 2

�00. Qw/ Œ�.v � w/ C �w�2 g.w/g.v/ dv dw
E

D
D 1

�

Z

I 2

�0.w/ Œ�.v � w/ C �w� g.w/g.v/ dv dw
E

C
D 1

2�

Z

I 2

�00.w/
�
�.v � w/ C �w

�2
g.w/g.v/ dv dw

E
C R.�; �/

D �
Z

I 2

�0.w/.w � v/g.w/g.v/ dv dw

C 1

2�

Z

I 2

�00.w/
�
�2.v � w/2 C ��w2

�
g.w/g.v/ dv dw C R.�; �/;

with Qw D �w� C .1 � �/w for some � 2 Œ0; 1� and

R.�; �/ D
D 1

2�

Z

I 2

.�00. Qw/ � �00.w// Œ�.v � w/ C �w�2 g.w/g.v/ dv dw
E
:

Now we consider the limit �; � ! 0 while keeping � D 2
� =� fixed. It can be seen

that the remainder term R.�; �/ vanishes in this limit (see Cordier et al. (2005) for
details). In the same limit, the term on the right-hand side of (7.20) converges to
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�
Z

I 2

�0.w/.w � v/g.w/g.v/ dv dw C 1

2

Z

I 2

�00.w/�w2g.w/g.v/ dv dw

D �
Z

I
�0.w/.w � m/g.w/ dw C �

2

Z

I
�00.w/w2g.w/ dw;

with m D R
I vg.v/ dv being the mean wealth (the mass is set to one for simplicity;

otherwise it would appear as well here). After integration by parts, we obtain the
right-hand side of (the weak form of) the Fokker-Planck equation

@

@t
g.w; t/ D @

@w

�
.w � m/g.w; t/

�
C �

2

@2

@w2

�
w2g.w; t/

�
; (7.21)

subject to no-flux boundary conditions (which result from the integration by parts).
The same equation has also been obtained by considering the mean-field limit in a
trading model described by stochastic differential equations (Bouchaud and Mezard
2000).

7.3 Remembering Jun-ichi Inoue

One of us (Enrico Scalas) was expecting to meet Jun-ichi Inoue at the 2015
AMMCS-CAIMS Congress in Waterloo, Ontario, Canada. Together with Bertram
Düring (also co-author of this paper), we organised a special session entitled
Wealth distribution and statistical equilibrium in economics (see: http://www.
ammcs-caims2015.wlu.\discretionary-ca/special-sessions/wdsee/). Even if Enrico
never collaborated with Jun-ichi on the specific problem discussed in this paper, they
co-authored two research papers, one on the nonstationary behaviour of financial
markets (Livan et al. 2012) and another one on durations and the distribution of
first passage times in the FOREX market (Sazuka et al. 2009). The former was
the outcome of a visit of Jun-ichi to the Basque Center for Applied Mathematics
in Bilbao from 3 October 2011 to 7 October 2011. Enrico, Jun-ichi and Giacomo
Livan met several times in front of blackboards and computers, and the main idea of
the paper (nonstationarity of financial data) was suggested by Jun-ichi. The latter is
the result of a collaboration with Naoya Sazuka who, among other things, provided
the data from Sony Bank FOREX transactions. This paper is connected to Enrico’s
activity on modelling high-frequency financial data with continuous-time random
walks. A third review paper was published on the role of the inspection paradox
in finance (Inoue et al. 2010). Before leaving for Canada, Enrico received the sad
news of Jun-ichi’s death. He had the time to change his presentation in Waterloo to
include a short commemoration of Jun-ichi. With Jun-ichi, Enrico lost not only a
collaborator, but a friend with an inquisitive mind.
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