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Abstract This study presents a theoretical–experimental scheme to control a
redundant robot manipulator in the presence of unmodeled dynamics and discon-
tinuous friction. The proposed control scheme does not require a priori knowledge
of upper bounds, robot’s parameters, and external disturbance. The advantage of a
feed-forward neural network (FFNN) controller is its robustness and ability to
handle the model uncertainties. The virtual experimental results are carried out for a
three-link planar redundant manipulator to show the effectiveness of the controller.
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1 Introduction

The important role of redundant robot manipulators, in space, undersea, etc., has
promoted the research on these manipulators. Many schemes have been proposed to
design the controller for manipulators with dynamic uncertainties [1]. From the
literature survey, dynamical controller for redundant robots is very limited [2–4]. Li
et al. [5] deigned a robust control scheme in Cartesian space with redundancy
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utilization measures. The drawback of this scheme is that the knowledge of the
bounds of parameter vibrations and unmodeled dynamics is required, and there is
no friction and external disturbance in robot dynamics. Zergeroglu et al. [6] and
later on Ozbay et al. [7] have designed a robust controller to perform multiple
subtasks. These control schemes are based on linear-parameterization property. An
adaptive control scheme in operational space for redundant manipulators is pro-
posed in [8]. Maaroof et al. [9] designed a subtask controller for redundant robot
manipulators using self-motion criteria. Soto and Campa [10] proposed a two-loop
control scheme for redundant robots. Madania et al. [11] designed a control scheme
for redundant manipulators constrained by moving obstacles. A terminal sliding
manifold controllers for n-degree-of-freedom (DOF) rigid robotic manipulator is
proposed in [12]. There are many FFNN-based controllers for manipulators
available in the literature [1, 13, 14]. Chien et al. [15] constructed a NN control
algorithm for a nonlinear system such as ball and beam control system. Kumar et al.
[16] proposed a nonlinear tracking controller without any disturbance term in the
model. Singh and Sukavanam [17] developed a trajectory tracking controller for
redundant manipulators with continuous friction. A novel control scheme for online
path tracking and obstacle avoidance is proposed by Jasour and Farrokhi [18].
Shoushtari et al. [19] designed an innovative control algorithm for redundant
robots. A three-degree-of-freedom model is presented to handle kinematic redun-
dancy. This study presents a theoretical–experimental scheme to control a redun-
dant manipulator with unmodeled dynamics and discontinuous fraction. The
proposed control scheme does not require a priori knowledge of upper bounds,
robot’s parameters, and external disturbance. The advantage of a FFNN controller is
its robustness and ability to handle the model uncertainties. The outlay of this study
is as follows. Section 2 provides the kinematics and dynamics model of a robot
manipulator. The error system formulation and controller are given in Sect. 3.
Section 4 illustrates and discusses the experimental results for performance of the
proposed controller. Section 5 provides the final conclusions.

2 Kinematics and Dynamics Model

The manipulator end-effector position and orientation in the Cartesian space
denoted by x ¼ ½x1; x2; . . .; xm�T; is defined as

x ¼ f ðqÞ ð1Þ

where f ðqÞ 2 Rm denotes the direct kinematics and q ¼ ½q1; q2; . . .; qn�T represents
the n� 1 ðm\nÞ position vector of an n-link robot manipulator. Differentiating (1)
with respect to time yields
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_x ¼ JðqÞ _q ð2Þ

where JðqÞ ¼ @f ðqÞ=@q 2 Rm�n denotes the manipulator Jacobian. The general
solution of Eq. (2) is given as

_q ¼ J þ ðqÞ _xþ kðIn � J þ JÞ
X
i¼1

wirhiðqÞ ð3Þ

where hiðqÞ is the ith performance criteria, s 2 N is the maximum number of
self-motion (subtask), and w0

is are positive weights of the corresponding criteria
subjected to the following constraint.

Xs

i¼1

wi ¼ C ð4Þ

where C is a real-valued constant and is used in conjunction with the self-motion
control parameter k [6]. The pseudoinverse J þ ¼ JTðJJTÞ�1 of J satisfies the
following conditions.

JJTJ ¼ J J þ JJ þ ¼ J þ ðJ þ JÞT ¼ J þ J ðJJ þ ÞT ¼ JJ þ ð5Þ

ðIn � J þ JÞðIn � J þ JÞ ¼ ðIn � J þ JÞ JðIn � J þ JÞ ¼ 0
ðIn � J þ JÞT ¼ ðIn � J þ JÞ ðIn � J þ JÞJ þ ¼ 0

ð6Þ

The dynamics model for an n-link robot manipulator in joint space has the
following form [1]

MðqÞ€qþNðq; _qÞþ sd ¼ s ð7Þ

where Nðq; _qÞ ¼ Vmðq; _qÞ _qþGðqÞþFð _qÞ:MðqÞ 2 Rn�n;Vmðq; _qÞ 2 Rn�n;GðqÞ 2
Rn; and Fð _qÞ 2 Rn are mass matrix, centripetal-coriolis matrix, gravity effects, and
friction effects, respectively. sd 2 Rn denotes a bounded external disturbance, and
s 2 Rn represents the control input exerted on joints.

3 Controller Design Using Neural Network

The tracking error in Cartesian space is defined as

e ¼ x� xd ð8Þ

where xd 2 Rm the desired trajectory. Let us consider the following controller
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s ¼ M̂½J þ ð€xd � _J _q� Kv _e� Kpeþ u0Þþ kðIn � J þ JÞðrhðqÞ � _qÞ�þ N̂ ð9Þ

where M̂ and N̂ are estimated versions of M and N. Kv and Kp are the positive
definite diagonal gain matrices. For convenience, we write

v ¼ €xd � _J _q� Ky ð10Þ

where K ¼ ½KpKv� and y ¼ ½e _e�T. Substituting (9) into (7), we get

€q ¼ M�1M̂J þ vþM�1M̂ðkðIn � J þ JÞðrhðqÞ � _qÞÞþM�1M̂J þ u0 þM�1DN �M�1sd

¼ J þ vþ J þ u0 þðM�1M̂ � IÞJ þ vþðM�1M̂ � IÞJ þ u0
þM�1M̂ðkðIn � J þ JÞðrhðqÞ � _qÞÞþM�1DN �M�1sd

¼ J þ vþ J þ u0 þEJ þ vþEJ þ u0 þM�1M̂ðkðIn � J þ JÞðrhðqÞ � _qÞÞþM�1DN �M�1sd

ð11Þ

where DN ¼ N̂ � N;E ¼ M�1M̂ � I: From (10), by substituting v into the first
term of (11) and multiplying both sides by J with the properties JJ þ ¼ I and
kJðIn � J þ JÞðrhðqÞ � _qÞ ¼ 0, we get

J€q ¼ €xd � _J _q� Kyþ u0 þ JEJ þ vþ JEJ þ u0 þ JEðkðIn � J þ JÞðrhðqÞ � _qÞÞ
þ JM�1DN � JM�1sd

ð12Þ

Now, using (12), _e ¼ _x� _xd;€x ¼ _JðqÞ _qþ JðqÞ€q;€e ¼ €x� €xd , and y ¼ ½e_e�T, we
get the error dynamics system

_y ¼ AyþBðu0 þ gÞ ð13Þ

where A ¼ 0 I
�Kp �Kv

� �
;B ¼ 0

I

� �
and

g ¼ JEJ þ vþ JEJ þ u0 þ JEðkðIn � J þ JÞðrhðqÞ � _qÞÞþ JM�1DN � JM�1sd
ð14Þ

Due to the mismatch between M, N, and their estimated version M̂, N̂, and
unmodeled dynamics, g in (14) is an uncertain nonlinear function. Let us assume
that the singularities are always avoided and all terms in (14) are assumed to be
bounded [20], then there will always exist a continuous function uð�Þ such that
gk k\uðtÞ:Mathematical model of a one-layer neural network in terms of uncertain

bound u has the following form [21]
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u ¼ Z�T/ðsÞDu

and the estimate value of u is given as u ¼ ẐT/ðsÞ where Du denotes NN
approximation error satisfying uðtÞk k ¼ Z�T/ðsÞ � uk k\n;/ðtÞ denotes a basis
vector and Ẑ is the estimate value of the optimal matrix Z�. Let us assume that the
norm of g and u satisfies the condition u� gk k[ n: The term u0 represents the
compensator used to stabilize the error dynamics system and enhances the system
robustness against system uncertainties and external disturbance. The compensator
u0 in neural network is given as

u0 ¼ � q̂x
q̂ xk kþ e

ð15Þ

where _e ¼ �ce; eð0Þ[ 0 and c is a positive constant. The adaptive neural network

law is designed as _̂Z ¼ F xk k/ðsÞ where x ¼ BTPy;P is a symmetric matrix with
positive eigenvalues such that

ATPþPAþQ ¼ 0 ð16Þ

with a positive definite symmetric matrix Q defined as

Q ¼ 2K2
p 0

0 2K2
v � 2Kp

� �
ð17Þ

such that K2
v [Kp;F is a positive definite design parameter.

4 Experimental Results

To confirm the validity of the controller, experiments are performed on the
three-link planar redundant manipulator. The model terms are given as follows

MðqÞ ¼
b1 þ 2p1c2 þ p2c23 þ p3c3 b2 þ p1c2 þ p2c23 b3

b2 þ p1c2 þ p2c23 b2 þ 2p3c3 b3 þ p3c3
b3 b3 þ p3c3 b3

2
4

3
5

Vmðq; _qÞ ¼
Vm11 Vm12 Vm13

Vm21 Vm22 Vm23

Vm31 Vm32 Vm33

2
4

3
5
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where

Vm11 ¼ �ðp1s2 þ p2s12Þ _q2 � ðp2s12 þ p3s12Þ _q3;
Vm12 ¼ �ðp1s2 þ p2s12Þð _q1 þ _q2Þ � ðp2s12 þ p3s12Þ _q3;
Vm13 ¼ ðp2s12 þ p3s12Þð� _q1 þ _q2 þ _q3Þ;Vm21 ¼ ðp1s2 þ p2s12Þ _q1 þ p3s3 _q3;

Vm22 ¼ �ðp2s12 þ p3s12Þ _q3;Vm23 ¼ �p3s3ð3 _q1 þ _q2 þ _q3Þ;
Vm31 ¼ ðp1s2 þ p2s12Þ _q1 � p3s3 _q2;Vm32 ¼ p3s3ð _q1 þ _q2Þ;Vm33 ¼ 0;

and b1; b2; b3; p1; p2; p3 represent the inertia parameters and defined as

b1 ¼ 1:1956 kg m2; b2 ¼ 0:3946 kg m2; b3 ¼ 0:0512 kg m2

p1 ¼ 0:4752 kg m2; p2 ¼ 0:1280 kg m2; p3 ¼ 0:1152 kg m2

and ci denotes cosðqiÞ, si denotes sinðqiÞ, cij represents cosðqi þ qjÞ, and sij repre-
sents sinðqi þ qjÞ. The external disturbance is defined as sd ¼ ½ 4 cos 2ðtÞ sinðtÞ
þ cosð2tÞ2 sinðtÞ�T. The masses of the link and corresponding lengths are taken as
3:60, 2:60, 2:00 kg and 0:40, 0:36, 0:30m, respectively. For controller design,
estimated values are given as

M̂ ¼ 14M;

V̂m11 ¼ �ðp̂1s2 þ p̂2s12Þ _q2 � ðp̂2s12 þ p̂3s12Þ _q3;
V̂m12 ¼ �ðp̂1s2 þ p̂2s12Þð _q1 þ _q2Þ � ðp̂2s12 þ p̂3s12Þ _q3;
V̂m13 ¼ ðp̂2s12 þ p̂3s12Þð� _q1 þ _q2 þ _q3Þ; V̂m21 ¼ ðp̂1s2 þ p̂2s12Þ _q1 þ p̂3s3 _q3;

V̂m22 ¼ �ðp̂2s12 þ p̂3s12Þ _q3; V̂m23 ¼ �p̂3s3ð3 _q1 þ _q2 þ _q3Þ;
V̂m31 ¼ ðp̂1s2 þ p̂2s12Þ _q1 � p̂3s3 _q2; V̂m32 ¼ p̂3s3ð _q1 þ _q2Þ; V̂m33 ¼ 0;

p̂1 ¼ 0:4 kg m2; p̂2 ¼ 0:1 kg m2; p̂3 ¼ 0:1 kg:m2

Discontinuous friction is given as follows

Fð _qÞ ¼
fd1 0 0
0 fd2 0
0 0 fd3

2
4

3
5 _q1

_q2
_q3

2
4

3
5þ

sgnð _q1Þ
sgnð _q2Þ
sgnð _q3Þ

2
4

3
5

where

fd1 ¼ 4:3; fd2 ¼ 1:4; fd3 ¼ 0:4

f̂d1 ¼ 4; f̂d2 ¼ 1; f̂d3 ¼ 0:2

The desired trajectory of the end-effector and subtask are given as
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xd ¼ 0:30þ 0:2 cos ðtÞ
0:40þ 0:1 sin ðtÞ

� �
ð18Þ

and

hðqÞ ¼ 0:5 detðJJTÞ � 0:5ððq3 � 0:5q2Þ � 0:5ðq2 � q1ÞÞ2; ð19Þ

respectively. The self-motion parameters k and C in (4) are selected to be 10 and 1,
respectively. For simulation, we select

B ¼
0 0
0 0
1 0
0 1

2
664

3
775 and P ¼ 2KpKv Kp

Kp Kv

� �

where Kp ¼ diag ð10; 10Þ;Kv ¼ diag ð4; 4Þ: To confirm the validity of the con-
troller, we have the following two cases.

(a) Desired end-effector trajectory is taken as a straight line:

In this case, the end-effector trajectory is taken as xd ¼ 0:30þ 0:2 cosðtÞ 0:5½ �T.
The experimental results are shown in Figs. 1, 2 and 3.

(b) Desired end-effector trajectory is taken as an elliptical path (18):

In this case, we choose an elliptical trajectory for the end-effector. The experi-
mental results are shown in Figs. 4, 5, and 6.

Fig. 1 Desired end-effector
trajectory
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Fig. 2 Performance of robot
and end-effector at different
time level

Fig. 3 Performance of robot
and end-effector at different
time level

Fig. 4 Desired end-effector
trajectory
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5 Conclusions

A robust adaptive scheme is designed for redundant manipulators with uncertainties
such as model uncertainties, external disturbances, and discontinuous friction. The
extra degrees of freedom are used to avoid singularity, maintain good manipula-
bility, etc., without affecting the end-effector Cartesian space trajectory. A FFNN is
employed to learn the nonlinear uncertainty bound. The results show that the
NN-based compensator eliminates the effects of system uncertainties and external
disturbance.
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Fig. 5 Performance of robot
and end-effector at different
time level

Fig. 6 Performance of robot
and end-effector at different
time level
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