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Abstract This study presents a theoretical-experimental scheme to control a
redundant robot manipulator in the presence of unmodeled dynamics and discon-
tinuous friction. The proposed control scheme does not require a priori knowledge
of upper bounds, robot’s parameters, and external disturbance. The advantage of a
feed-forward neural network (FFNN) controller is its robustness and ability to
handle the model uncertainties. The virtual experimental results are carried out for a
three-link planar redundant manipulator to show the effectiveness of the controller.
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1 Introduction

The important role of redundant robot manipulators, in space, undersea, etc., has
promoted the research on these manipulators. Many schemes have been proposed to
design the controller for manipulators with dynamic uncertainties [1]. From the
literature survey, dynamical controller for redundant robots is very limited [2—4]. Li
et al. [5] deigned a robust control scheme in Cartesian space with redundancy

H.P. Singh (X))
Cluster Innovation Centre, University of Delhi, New Delhi, India
e-mail: harendramaths @ gmail.com

S. Kumar
Department of Mathematics, University of Delhi, New Delhi, India
e-mail: surendraiitr8 @gmail.com

P. Kumar
Jaypee Institute of Information Technology, Noida, India
e-mail: praveshtomariitr@gmail.com

A. Mahajan
SVC, University of Delhi, New Delhi, India
e-mail: akimahajan01@gmail.com

© Springer Nature Singapore Pte Ltd. 2018 21
M. Pant et al. (eds.), Soft Computing: Theories and Applications,

Advances in Intelligent Systems and Computing 584,
https://doi.org/10.1007/978-981-10-5699-4_3



22 H.P. Singh et al.

utilization measures. The drawback of this scheme is that the knowledge of the
bounds of parameter vibrations and unmodeled dynamics is required, and there is
no friction and external disturbance in robot dynamics. Zergeroglu et al. [6] and
later on Ozbay et al. [7] have designed a robust controller to perform multiple
subtasks. These control schemes are based on linear-parameterization property. An
adaptive control scheme in operational space for redundant manipulators is pro-
posed in [8]. Maaroof et al. [9] designed a subtask controller for redundant robot
manipulators using self-motion criteria. Soto and Campa [10] proposed a two-loop
control scheme for redundant robots. Madania et al. [11] designed a control scheme
for redundant manipulators constrained by moving obstacles. A terminal sliding
manifold controllers for n-degree-of-freedom (DOF) rigid robotic manipulator is
proposed in [12]. There are many FFNN-based controllers for manipulators
available in the literature [1, 13, 14]. Chien et al. [15] constructed a NN control
algorithm for a nonlinear system such as ball and beam control system. Kumar et al.
[16] proposed a nonlinear tracking controller without any disturbance term in the
model. Singh and Sukavanam [17] developed a trajectory tracking controller for
redundant manipulators with continuous friction. A novel control scheme for online
path tracking and obstacle avoidance is proposed by Jasour and Farrokhi [18].
Shoushtari et al. [19] designed an innovative control algorithm for redundant
robots. A three-degree-of-freedom model is presented to handle kinematic redun-
dancy. This study presents a theoretical-experimental scheme to control a redun-
dant manipulator with unmodeled dynamics and discontinuous fraction. The
proposed control scheme does not require a priori knowledge of upper bounds,
robot’s parameters, and external disturbance. The advantage of a FFNN controller is
its robustness and ability to handle the model uncertainties. The outlay of this study
is as follows. Section 2 provides the kinematics and dynamics model of a robot
manipulator. The error system formulation and controller are given in Sect. 3.
Section 4 illustrates and discusses the experimental results for performance of the
proposed controller. Section 5 provides the final conclusions.

2 Kinematics and Dynamics Model

The manipulator end-effector position and orientation in the Cartesian space

denoted by x = [x1, X2, ...,x,]", is defined as
x=f(q) (1)
where f(¢) € R™ denotes the direct kinematics and ¢ = [qy, ¢a, ..., qn]" represents

the n x 1 (m<n) position vector of an n-link robot manipulator. Differentiating (1)
with respect to time yields
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x=J(q)q 2)

where J(q) = 9f(q)/0q € R"*" denotes the manipulator Jacobian. The general
solution of Eq. (2) is given as

=T (@ + kI~ T7T) Y wiVhi(q) (3)
i=1

where h;(q) is the ith performance criteria, s € N is the maximum number of
self-motion (subtask), and wis are positive weights of the corresponding criteria
subjected to the following constraint.

i=1

where C is a real-valued constant and is used in conjunction with the self-motion

control parameter k [6]. The pseudoinverse J© = JT(JJT)71 of J satisfies the
following conditions.

W=7 Jtut =yt gtn"=st5 W' =u" (5)

(L= JY N, —J ) =L, —J*])  JI,—JJ)=0 6
(L —J ) =L, —J"J) (I, —J*)Jt =0 (6)

The dynamics model for an n-link robot manipulator in joint space has the
following form [1]

M(q)§+N(q,q)+ta=1 (7)
where N(q,q) = Viu(q,9)q+G(q) + F(q)-M(q) € R™",V.(q,q) € R™",G(q) €
R", and F(g) € R" are mass matrix, centripetal-coriolis matrix, gravity effects, and

friction effects, respectively. 7, € R" denotes a bounded external disturbance, and
7 € R" represents the control input exerted on joints.

3 Controller Design Using Neural Network

The tracking error in Cartesian space is defined as
e=Xx—Xx4 (8)

where x; € R™ the desired trajectory. Let us consider the following controller
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T =M " (i — Jg — Kué — Kpe+uo) +k(1, —J T T)(Vh(q) — )] +N  (9)

where M and N are estimated versions of M and N. K, and K, are the positive
definite diagonal gain matrices. For convenience, we write

v=1%;—Jg—Ky (10)
where K = [K,K,] and y = [eé]T. Substituting (9) into (7), we get

G=M"MItv+M Mk, — T J)(Vh(g) — §)) +M"MI* ug + M'AN — Mg,
=J v+ T ug+ MM = DI v+ (MM — 1) uy
+ M M(k(L, — I D) (Vh(g) — §)) + M 'AN — M ',
=T v+J ug + EJ v+ ET T ug+ M M(k(L, — T ) (Vh(g) — §)) + M AN — M1,

(11)

where AN =N —N,E =M~'M —I. From (10), by substituting v into the first
term of (11) and multiplying both sides by J with the properties JJ© =TI and
kI(L, —JTI)(Vhi(q) — ) =0, we get

J§g =3 —Jqg— Ky+uy+JEI v+ JE] Y ug +JE(k(I, — J T J)(Vh(q) — @)
+JIM~'AN — M 'z,
(12)

Now, using (12), ¢ = & — &4, % = J(q)g+J(q)§,é = ¥ — %4, and y = [eé}T, we
get the error dynamics system

y = Ay+B(uo+n) (13)

0 1 0
where A = [—K,, —Kv]’B [1} and

n=JEJ " v+JE] " ug+JE(k(L, —J T J)(Vh(q) — ) +IM AN — IM ',
(14)

Due to the mismatch between M, N, and their estimated version M, N, and
unmodeled dynamics, # in (14) is an uncertain nonlinear function. Let us assume
that the singularities are always avoided and all terms in (14) are assumed to be
bounded [20], then there will always exist a continuous function ¢(-) such that
lInll < ¢(#). Mathematical model of a one-layer neural network in terms of uncertain
bound ¢ has the following form [21]
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o =Z"¢(s)Agp

and the estimate value of ¢ is given as @ = Z"¢(s) where Ap denotes NN
approximation error satisfying ||@(2)|| = [|Z*T¢(s) — ¢|| <&, ¢(7) denotes a basis
vector and Z is the estimate value of the optimal matrix Z*. Let us assume that the
norm of 1 and ¢ satisfies the condition ¢ — ||n|| > &. The term u( represents the
compensator used to stabilize the error dynamics system and enhances the system
robustness against system uncertainties and external disturbance. The compensator
up in neural network is given as

pw
Up = — —————— (15)
plloll +¢
where ¢ = —ye, ¢(0) > 0 and y is a positive constant. The adaptive neural network

law is designed as Z = F||w||¢(s) where @ = BT Py, P is a symmetric matrix with
positive eigenvalues such that

A'"P+PA+0Q=0 (16)
with a positive definite symmetric matrix Q defined as

2
0= 2K 0
0 2K?-2K,

such that K? > K, F is a positive definite design parameter.

4 Experimental Results

To confirm the validity of the controller, experiments are performed on the
three-link planar redundant manipulator. The model terms are given as follows

B1+2pica+pacas +p3cs Py +pica+pacn Bs
M(q) = By +pica+pacas Bo+2p3cs B3 +pscs
Bs B3 +pscs Bs

lel leZ le3

Vm(Q> 6]) = | Vit Vo2 Vs
Vst Vimzz  Vuss
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where

Vi1 = —(p152 +p2812)Gq2 — (P2s12 + p3s12)qs,

Viniz = —(p152 + p2512) (1 + 42) — (p2512 +p3s12)ds,

Viniz = (p2s12 +p3s12)(—q1 + G2 + §3), Va1 = (152 4 pasi2)q1 + p3s3qs,
Vioz = —(p2s12 +p3512)q3, Vs = —p3s3(3q1 + q2 + q3),

Va1 = (P152 +p2s12)d1 — P3s3qa, Vizz = p3s3(q1 +§2), Vmzz = 0,

and B, f,, B3, p1,P2,p3 represent the inertia parameters and defined as

B, =1.1956 kg m?, B, =0.3946 kg m*>, B; =0.0512 kg m
p1 = 04752 kg m?, p, =0.1280 kg m?, p; = 0.1152 kg m?

and ¢; denotes cos(qg;), s; denotes sin(g;), c¢; represents cos(g; +¢g;), and s;; repre-
sents sin(g; + gj). The external disturbance is defined as t; = [4cos2(z) sin(r)

+ cos(2¢)2 sin(t)]T. The masses of the link and corresponding lengths are taken as
3.60, 2.60, 2.00kg and 0.40, 0.36, 0.30m, respectively. For controller design,
estimated values are given as

M = 14M,

Vit = —(P152 +pasiz)do — (Pasiz + P3siz)ds,

Viz = — (P12 + pasi2) (@1 + ¢2) — (Pasiz + P3s12) s,

Vs = (P2s12 +P3s12) (=41 + G2+ @3), Vot = (P152 + Pasi2) 1 + P3s3ds,
Vioz = —(P2si2 + P3s12)d3, Vs = —p3s3 (341 + @2 + ¢3),

Vist = (D152 +P2s12)dn — P3s3dz, Visa = P3s3(d1 + G2), Vizs = 0,
p1=04kgm? p;=0.1kgm? p;=0.1kgm?

Discontinuous friction is given as follows

Jao 0 O | |[q sgn(q1)
F@g=1|0 fo O0]|q|+ |sen(q)
0 0 fi]l4s sgn(qs)

where

far =43, fo=14, fi=04
fn=4 fo=1, f3=02

The desired trajectory of the end-effector and subtask are given as
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~ 10.30+0.2cos (1)
= [O.40+O.1sin (t)} (18)
and

h(g) = 0.5det(JJ") — 0.5((g5 — 0.5¢2) — 0.5(¢2 — qn))*, (19)

respectively. The self-motion parameters k and C in (4) are selected to be 10 and 1,
respectively. For simulation, we select

0 0
10 0 _|2K,K, K,
B = 10 and P—[ K, Kv:|
0 1

where K, = diag (10, 10), K, = diag (4,4). To confirm the validity of the con-
troller, we have the following two cases.

(a) Desired end-effector trajectory is taken as a straight line:

In this case, the end-effector trajectory is taken as x; = [0.30+0.2cos(r) 0.5]".
The experimental results are shown in Figs. 1, 2 and 3.

(b) Desired end-effector trajectory is taken as an elliptical path (18):

In this case, we choose an elliptical trajectory for the end-effector. The experi-
mental results are shown in Figs. 4, 5, and 6.
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Fig. 2 Performance of robot
and end-effector at different
time level

Fig. 3 Performance of robot

and end-effector at different
time level

Fig. 4 Desired end-effector
trajectory
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Fig. 5 Performance of robot 06
and end-effector at different 05
time level
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5 Conclusions

A robust adaptive scheme is designed for redundant manipulators with uncertainties
such as model uncertainties, external disturbances, and discontinuous friction. The
extra degrees of freedom are used to avoid singularity, maintain good manipula-
bility, etc., without affecting the end-effector Cartesian space trajectory. A FFNN is
employed to learn the nonlinear uncertainty bound. The results show that the
NN-based compensator eliminates the effects of system uncertainties and external
disturbance.
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