
Capturing Performance Requirements
of Real-Time Systems Using
UML/MARTE Profile

Disha Khakhar and Ashalatha Nayak

Abstract Performance is a critical parameter for successful development of
real-time systems since their correctness is based not only on logical behavior, but
also on timeliness of output. Traditional software development methods use ‘fix it
later’ approach where focus is on correctness of the software and performance
considerations are made in the later phases of software development. If performance
problems are discovered at this point, software is modified to fix performance issues.
This technique does not work well for time critical systems. In order to address this
problem, Model Driven Software Performance Engineering (MDSPE) approach is
used to include performance analysis in the early stage of software development life
cycle. Performance parameters are associated with UML model elements using
UML profile for MARTE, to capture software requirement in the design phase.
Annotated UML model is transformed to various performance model in order to
perform analysis. By evaluating the performance model, it is possible to obtain
various performance output parameters using simulation and analytical techniques.
These parameters will help in evaluating alternative design for the same system.
Currently, there are no approaches that investigate the issue of annotation of existing
UML diagrams with MARTE profile. The proposed research focuses on capturing
performance requirements by annotation of UML models using UML profile for
MARTE.

Keywords UML MARTE profile � Real-time system � UML sequence diagram
Software performance engineering � Performance parameters

D. Khakhar (&) � A. Nayak
Department of Computer Science and Engineering, Manipal Institute of Technology,
Manipal University, Manipal 576104, India
e-mail: disha.p.khakhar@gmail.com

A. Nayak
e-mail: asha.nayak@manipal.edu

© Springer Nature Singapore Pte Ltd. 2018
M. Pant et al. (eds.), Soft Computing: Theories and Applications,
Advances in Intelligent Systems and Computing 583,
https://doi.org/10.1007/978-981-10-5687-1_62

703



1 Introduction

Usually, performance of software is tested later in the development phase.
Unsatisfactory outcomes may lead to changes in implementation or in the worst
case, and may require changes in the architecture design itself. Therefore, analyzing
software performance requirement is important for evaluating various design
alternatives. This can be achieved by integrating performance analysis in the early
phase of software development life cycle. Unified Modeling Language (UML) is
the most common way to model software requirements. OMG has standardized
UML profile for Modeling and Analysis of Real-Time and Embedded systems
(MARTE) in 2008 [1]. The UML profile for MARTE provides a standard for
annotating UML model with performance parameters. UML/MARTE model acts as
a basis for development of performance model. Performance estimation is done by
evaluating software performance based on its performance model. This process
involves building the performance model for performance critical scenarios fol-
lowed by its evaluation using analytical and simulation techniques.

In the approach by Street et al. [2], performance modeling and analysis tech-
niques were used for the design of object-oriented software system. It highlights the
lessons learned while implementing this approach using UML profile for
Schedulability, Performance and Time (SPT) along with Colored Petri Nets (CPN).
An important lesson learnt was that performance analysis technique should be
known prior to modeling so that only required tags are filled in the performance
model.

In the approach by Traore et al. [3], Model Driven Software Performance
Engineering (MDSPE) approach is presented where performance analysis is inte-
grated with functional analysis. This paper focuses on Performance Annotation step
to encapsulate performance characteristics into the software design model using
UML profile for SPT.

The approach by Middleton et al. [4] describes their experience of using UML
profile for MARTE to model systems with stochastic behavior using PapyrusUML
editor. Demanthieu et al. [5], have highlighted how key features of MARTE profile
can be used to model behavior of real-time systems. A case study related to
real-time and embedded systems was developed using MARTE adopted specifi-
cation. Depending on the system to be modeled (whether it is distributed), one may
deal with physical or logical time. MARTE has an advantage over SPT by intro-
ducing stereotypes for time observation with explicit reference to clocks, which are
useful in design of these systems.

In the approach by Akshay KC et al. [6], a case study of ATM system is taken up
and UML sequence diagrams are annotated with MARTE profile to capture
properties of sequential and simultaneous transactions. Data race was detected by
permutation algorithm to find valid scenarios of messages retrieved from the
combined fragment.

704 D. Khakhar and A. Nayak



UML sequence diagram can model behavior of a system but they cannot be
evaluated due to lack of formal semantics. Therefore, after the annotation of UML
models with MARTE profile, UML model should be transformed to performance
model for estimation of performance parameters followed by evaluation of alter-
native design based on performance. Currently, there are no approaches that
investigate the issue of annotation of existing UML diagrams with MARTE profile.
As a result, there is no systematic procedure followed for the annotation of UML
diagrams, and all the existing papers directly work on transformed UML MARTE
diagrams for analysis. However, during design stage, UML diagrams are adopted as
de facto standard which can later be transformed for annotation purpose to capture
performance requirements. Our main motivation is to capture the software perfor-
mance requirements of a real-time system, in the early phase of software devel-
opment life cycle, by modeling the performance requirements using UML profile
for MARTE. This paper describes the use of MARTE stereotypes by taking up a
case study of a time critical system.

The paper is structured as follows. Section 2 introduces the UML profile for
MARTE along with description and usage of its stereotypes required to capture
performance requirements. A case study of time critical systems is presented in
Sect. 3 along with its UML modeling using sequence diagram. Section 4 describes
the method involved in the transformation process of UML diagrams to
UML/MARTE diagrams using the case study presented in Sect. 3, followed by
conclusion of the research in Sect. 5.

2 Background

This section introduces the main concept of capturing performance requirement in
UML model using UML profile for MARTE along with description and usage of its
stereotypes.

2.1 Introduction to UML Profile for MARTE

The UML profile for MARTE adds capabilities to UML for model-driven devel-
opment of Real-Time and Embedded Systems (RTES). MARTE defines the
foundations for model-based description of real-time and embedded systems
characterized by timing constraints, concurrency, etc. These core concepts are then
refined for the purpose of modeling and analysis. Modeling part provides the
support for specification of real-time and embedded characteristics to system
design. Analysis part provides facilities to annotate the model with information
required to perform specific analysis.

Capturing Performance Requirements of Real-Time Systems … 705



2.2 Profile Architecture of MARTE

The profile is structured around two main concerns, one to model the features of
RTES and the other to annotate model so as to support analysis of system prop-
erties. These concepts provide generic description of real-time and embedded
characteristics generalized under MARTE foundation. Diagrammatic representation
of basic MARTE architecture is shown in Fig. 1.

Each package consists of various sub-packages which addresses specific con-
cerns like timing, resource allocation etc.

MARTE Foundation Model—It is a shared package which addresses common
concerns while describing use of concurrent resources and time. It consists of
following sub-packages:

• Non-Functional Properties Modeling—Application properties are grouped
into two categories: functional properties, which are concerned with what the
system does at run-time; and Non-Functional Properties (NFPs), which describe
how well the system performs its functions. NFPs provide information about
various properties such as throughput, overhead, delays, memory usage, etc.
This package provides mechanism for specification of NFPs in UML/MARTE
model.

• Time Modeling—Real-time systems are associated with timing constraints.
This package provides framework for representing time and time-related con-
cepts of real-time system in UML/MARTE model.

Fig. 1 Basic architecture of MARTE profile

706 D. Khakhar and A. Nayak



• General Resource Modeling—It specifies how to describe resource model at
system level. It includes features which are required for dealing with modeling
of both software (operating system, etc.) and hardware (memory unit, com-
munication channel, etc.).

MARTE Design Model—It defines the MARTE concepts for model-based
design of RTES. It consists of following sub-packages:

• High-Level Application Modeling—It provides high-level modeling concepts
to deal with real-time and embedded features modeling.

• Software Resource Modeling (SRM)—There are two approaches to the design
of RTES applications: sequential based design approach and multitask based
design approach. Applications designed with multitasking approach have
specific execution mechanism on platforms requiring specific execution support.
This support provides a set of resources and services for real-time features of an
application. It is possible to describe the structure of such support by using
modeling artifacts specified by SRM.

Real-Time and Embedded Analysis—It is focused on model-based analysis. It
does not define new analysis technologies, but additional information for annotation
of models for analysis. It consists of following sub-packages:

• Generic Quantitative Analysis Modeling—The generic analysis domain
includes specialized domains in which the analysis is based on the software
behavior, such as performance, availability, etc. Quantitative analysis (i.e.
analysis of non-functional properties (NFPs)) techniques determine the values of
‘output NFPs’ based on data provided as ‘input NFPs’.

• Performance Analysis Modeling—It describes the analysis of temporal
properties of soft real-time systems, including web-based services, multimedia,
networked services, etc. for which performance measures are statistical such as
mean throughput or delay.

MARTE Annexes—Annexes contain useful information about various value
specification languages provided by MARTE profile. Value specification language
deals with specification of parameters, expressions, relationship between different
variables in textual form.

2.3 MARTE Stereotypes

The UML profile for MARTE defines a set of stereotypes which allows us to map
model elements to characteristics of real-time system. Stereotypes are associated
with attributes that gives values for properties which are needed in order to carry
out the analysis. Stereotypes used for the proposed research are summarized in
Table 1.

Capturing Performance Requirements of Real-Time Systems … 707



Table 1 MARTE stereotypes

Stereotype Description Attributes

�PaStep� A step is a unit of a scenario. It is a
basic sequential execution step on a
host processor

execTime—time for execution
(response time minus any initial
scheduling delays)

�PaCommStep� A CommStep is an operation which
conveys a message from one locale
to another (e.g.: response from
server to client). The message
conveyance may be executed by a
combination of host middleware
and network services

msgSize—the size of the message
to be transmitted by the step

�RtService� It can specify the real-time features
described by its attributes

concPolicy—concurrency policy
used for the real-time service
(reader/writer)
isAtomic—when true, implies that
the RtService executes as one
indivisible unit, non-interleaved
with other RtServices

�Acquire� It is used to acquire a protected
resource

isBlocking—if true it indicates that
any attempt to acquire the resource
may result in a blocking situation if
it is not available. If false it
indicates the unavailability of the
protected resource will not block
the caller but it will be returned as
part of the service results instead

�Release� It is used to free an acquired
protected resource

nil

�GaWorkload
Event�

It is a stream of events that initiate
system level behavior

pattern—this attribute defines a
pattern of arrival events. It can be
periodic, aperiodic, irregular, etc.

�SWConcurrent
Resource�

This resource defines entities,
which may execute concurrent
instructions while providing an
executing context to a routine

nil

�PaLogical
Resource�

A PaLogicalResource is a resource
that can be acquired and released
explicitly by AcqStep or RelStep. It
may be a single unit resource, as a
mutex or exclusive lock, or have
multiple units, as a buffer pool or
an access token pool

poolSize—the number of units of
the resource

�SharedDataCom
Resource�

It defines specific resource used to
share the same area of memory
among concurrent resources. They
allow concurrent resources to
exchange safely information by
reading and writing the same area
in memory

nil

708 D. Khakhar and A. Nayak



3 Case Study and Its UML Modeling

To illustrate the modeling elements introduced above, a case study named “CPU
Allotment” is presented in this section. First, the requirements are stated through
problem description followed by modeling of the system. System modeling includes:

• Identifying use-case to depict system functionality
• Sequence diagram to understand system behavior for each use-case

3.1 Description of CPU Allotment Case Study

CPU Allotment is a web-based application that allows students to reserve CPU in
advance every time they want to practice in lab. They can register to obtain login
credentials required for reserving CPU, and each student can reserve only one CPU
per slot. This web-based application allows a student to select date and slot cor-
responding to which available CPUs are displayed. The required CPU can be
reserved by selecting and clicking on confirm button.

3.2 Modeling the System Using Use-Case Diagram

The above requirements can be captured by a use-case diagram shown in Fig. 2,
which depicts system functionalities by means of use-cases.

Fig. 2 Use-case diagram for CPU allotment

Capturing Performance Requirements of Real-Time Systems … 709



The use-cases are described in brief below:

• Register—Allows a first time user to obtain login credentials
• Login—Verifies whether a student is allowed to use system functionalities
• Reserve CPU—Allows a student to reserve CPU for selected slot
• Cancel reservation—Allows a user to cancel reservation for a particular slot
• View Availability—System displays available CPUs for selected slot

From the use-cases, Register and Reserve CPU are identified as performance
critical. For Register use-case, whenever a student tries to set his/her UserID the
system should verify that it is unique in real time. When multiple users are trying to
reserve CPU concurrently, the system should allot CPU to only one user. Hence,
these two use-cases involve concurrency and performance criteria for the system to
respond in real time for correct functioning.

3.3 Modeling the System Using Sequence Diagram

It is assumed that application runs concurrently serving the request of users by
creating a new thread for each incoming request. A database which maintains
reservation/user information is shared by concurrently executing threads. Multiple
read operations are allowed while only one thread can write to the database at a
time. A thread cannot write while some other thread is reading from the database.
Therefore, before writing, each thread has to acquire the lock and release it after
writing. Sequence diagram depicting system behavior is shown Figs. 3 and 4.

A. Register

Register use-case allows a user to set Login credentials for the website. The system
should verify, in real time that the userID provided is unique. If a user with same
userID already exists, then it should prompt the user to change it. Once uniqueness
is verified, entry corresponding to the new user should be added to the database.
The sequence of messages involved for executing Register use-case scenario is
shown as Sequence Diagram in Fig. 3.

B. Reserve CPU

Reserve CPU use-case allows a user to select a CPU to be reserved for a specific
date and slot. When multiple users are trying to reserve the same CPU, the system
should make sure that only one of them is successful. This is done by restricting
write operation by multiple threads to database. Only one thread is allowed to write
at a time while other threads will wait in a queue for gaining access to database. The
sequence of messages involved for executing Reserve CPU use-case scenario is
shown as sequence diagram in Fig. 4.

710 D. Khakhar and A. Nayak



4 Methodology

Using UML diagrams as input, performance requirement of the system is captured
by annotating UML model with MARTE profile. The process of adding stereotype
labels to UML model for expressing performance (or similar quantitative) concepts
is called as annotation. This process involves following steps:

1. Identifying performance critical scenarios of the system.
2. Selecting the stereotypes required to map UML model elements to character-

istics of the system.
3. Defining values for stereotype attributes (tagged values) which represents

quantitative properties of the system.
4. Associating stereotype labels, along with tagged values to elements of UML

model.

The output of this step is annotated UML/MARTE model depicting system
behavior and its real-time characteristics. Since UML lacks formal semantics, it is
not possible to apply mathematical techniques directly to evaluate performance.
Therefore, a transformation to performance model is required for analysis.

This section explains how each step of methodology is implemented for the case
study described in Sect. 3. We begin with describing how stereotypes are applied to
UML models to obtain annotated UML/MARTE Sequence Diagram.

Fig. 3 Sequence diagram for Register

Capturing Performance Requirements of Real-Time Systems … 711



Referring to Table 1, the User interface is labeled as «SwConcurrent
Resource» since concurrent users interact with the application through it. Lock is
annotated with «PaLogicalResource» with pool size as 1 because only one thread
can acquire it at a time. Processing step annotated with «PaStep» indicates that this
step is performance critical with ‘execTime’ attribute denoting time required for
execution of this step. Function call to services which require response in real time
are annotated with «RtService» stereotype. «RtService» is associated with the type
of operation (read or write) being performed by using ‘concPolicy’ attribute. If the
required operation is writing, then it is to be performed atomically specified by
‘isAtomic’ attribute. Response from server to client is annotated with «PaComm
Step» because it is sent via a communication channel between them. Database is
associated with «sharedDataCommResource» stereotype since it is shared among
multiple concurrently executing threads. Annotated sequence diagram with MARTE
profile for use-cases Reserve CPU and Register is shown in Figs. 5 and 6.

Fig. 4 Sequence diagram for Reserve CPU

712 D. Khakhar and A. Nayak



Fig. 5 Annotated sequence diagram for Reserve CPU use-case

Fig. 6 Annotated sequence diagram for Register use-case

Capturing Performance Requirements of Real-Time Systems … 713



5 Conclusion

In order to demonstrate the transformation of UML diagrams to capture perfor-
mance requirements, a case study of time critical system has been stated.
Performance critical scenarios identified in the given case study are modeled using
UML. Use-case diagrams depicting system functionalities and sequence diagrams
depicting system behavior are designed. Capturing performance requirement in the
design phase has increasingly become critical for real-time applications. MARTE
profile allows construction of models that may be used to make quantitative pre-
dictions regarding real-time and embedded characteristics of systems, by allowing
annotation of UML diagrams, to capture performance requirements. Therefore, it is
important to understand the procedure involved in annotation of UML diagrams.
This paper addresses the concern of annotating UML diagrams with MARTE
profile by providing detailed explanation involving the type and usage of MARTE
stereotypes. Since UML models cannot be analyzed mathematically, future work
will include transforming annotated sequence diagrams to performance models for
performance estimation and evaluation.

References

1. OMG.: The UML profile for Modeling and Analysis of Real Time and Embedded System
(MARTE). Available: http://www.omgmarte.org/

2. Street, J.A., Pettit, R.G.: Lessons learned applying performance modeling and analysis
techniques. In: Ninth IEEE International Symposium on Object and Component-Oriented
Real-Time Distributed Computing (ISORC’06), pp. 7 (2006)

3. Traore, I., Woungang, I., Ahmed, A., Obaidat, M.S.: Software Performance Modeling using the
UML: a Case Study, J. Networks, 7(1), 4–20 (2012)

4. Middleton, S.E., Servin, A., Zlatev, Z., Nasser, B., Papay, J., Boniface, M.: Experiences using
the UML profile for MARTE to stochastically model post-production interactive applications.
In: eChallenges e-2010 Conference, pp. 1–8 (2010)

5. Demathieu, S., Thomas, F., AndrÃ c, C., GÃ crard, S., Terrier, F.: First experiments using the
UML profile for MARTE. In: 1th IEEE International Symposium on Object and
Component-Oriented Real-Time Distributed Computing (ISORC), pp. 50–57 (2008)

6. Akshay, K.C., Nayak, A., Muniyal, B.: Modeling data races using UML/MARTE profile. In:
International Conference on Advances in Computing, Communications and Informatics
(ICACCI 2014), pp. 238–244 (2014)

714 D. Khakhar and A. Nayak

http://www.omgmarte.org/

	62 Capturing Performance Requirements of Real-Time Systems Using UML/MARTE Profile
	Abstract
	1 Introduction
	2 Background
	2.1 Introduction to UML Profile for MARTE
	2.2 Profile Architecture of MARTE
	2.3 MARTE Stereotypes

	3 Case Study and Its UML Modeling
	3.1 Description of CPU Allotment Case Study
	3.2 Modeling the System Using Use-Case Diagram
	3.3 Modeling the System Using Sequence Diagram

	4 Methodology
	5 Conclusion
	References


