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Abstract Biogeography-Based Optimization (BBO) is a nature-inspired
meta-heuristic algorithm, which uses the idea of the migration strategy of ani-
mals or other species for solving complex optimization problems. In BBO, adap-
tation of the intensification and diversification for solving complex optimization
problem is a challenging task. Migration and mutation operators are two imperative
features that largely affect the performance and computational efficiency in BBO,
which maintains both exploration and exploitation of existing approaches. In this
paper, an innovative migration operator has been introduced in BBO, which inherit
the features from a nearest neighbor of the local best individual to be migrated to
the globally best individual of the pool and we name it as “Locally and Globally
Tuned BBO (LGBBO)”. We have carried out an extensive numerical evaluation on
ten benchmark functions to measure the efficiency of the proposed method. The
experimental study confirms that LGBBO is better than canonical and blended
BBO in terms of accuracy and convergence time to locate the global optimal
solution.
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1 Introduction

The knowledge of biogeography can be traced back to the work of the nineteenth
century by naturalists such as Darwin and Wallace [1, 2]. In the early 1960s,
MacArthur and Wilson begin working together on mathematical models of bio-
geography, the work culminating with the classic 1967 work “The Theory of Island
Biogeography” [3]. Their concentration was primarily observant on the distribution
of biological species surrounded by neighboring islands along with the
geo-temporal revolution. They were attracted to mathematical models of bio-
geography to describe speciation (the evolution of new species), the migration of
species (animals, fish, birds, or insects) between islands, and the extinction of
species.

BBO algorithm introduced by Simon in 2008 [4] was motivated by the theory of
island biogeography. The novel idea of original BBO algorithm is based on the
principle of migration strategy of biological genesis for solving complex opti-
mization problem by maintaining a population of candidate solutions. In BBO, the
components’ involvement in arrangements is equal to the species’ movement in
biogeography. Migration model imitate species migration among islands, which
provides a recombination way for candidate solutions to interact with each other so
that the properties of the population can be improved by keeping the best solutions
from previous generation. In BBO, a global optimum solution is one with low
Habitat Suitability Index (HSI) that can share their features with poor habitat. This
can be achieved only by migrating Suitability Index Variables (SIVs) from emi-
grating habitats to immigrating habitats. The original BBO is based on linear
migration model [4], and the way to perk up algorithms’ performance, several other
popular novel migration models are introduced. Motivated by the migration
mechanisms of ecosystems and its mathematical model, various extensions to BBO
are proposed for achieving information sharing by species migration.

In this paper, we propose a novel technique for migration for enhancing the
performance of BBO. The migration operator combines the features from a locally
best nearest neighborhood of the individual to be migrated with globally best
individual of the pool. Thereby, the LGBBO mimic the species distribution under
local best and global best optimum solution, and thus achieves a much better
balance between exploration (global search) and exploitation (local search). In
Sect. 2, the overviews of BBO and its improvements have been summarized. In
Sect. 3 the LGBBO technique has been discussed. The numerical benchmarks are
working to test the proposed migration operators and the results are compared with
previous work in Sect. 4. In Sect. 5, the conclusions and future research directions
are discussed.
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2 Review of Biogeography-based Optimization

In BBO, algorithm initializes with population of candidate solutions that are called
habitats. Habitats with a high HSI can support many species, whereas low HSI
habitats support only a few species. Low HSI habitats can improve their HSI by
accepting new features from more attractive habitats in the adaptation process. BBO
migration is a probabilistic operator that adjusts each habitat Hi by taking SIVs
from a higher HSI habitat. In [4], Simon proposed a migration model which is
expressed in Eq. (1). Each habitat has its own probabilistic operators based on HSI
as emigration rate ðlÞ and immigration rate ðkÞ to define the migration rate for next
generation. The migration rates are directly related to the number of species in a
habitat. Thus the migration process increases the diversity of the habitat and con-
tributes the likelihood of which information to be shared between the species. The
emigration and immigration rates can be calculated in Eq. (2) as follows when there
are k species in the habitat:

HiðSIVÞ  HjðSIVÞ ð1Þ

lk ¼
Ek
Smax

and kk ¼ Ið1� lkÞ; ð2Þ

where E is the maximum emigration rate, I is the maximum immigration rate, and
Smax is the largest achievable number of species that the habitat can support. We
have shown the emigration and immigration rates in Fig. 1 as straight-line model of
species large quantity in a single habitat gives us a general description of the
process of emigration and immigration [5]. If there are no species on the island,
then the emigration rate is zero. The equilibrium number of species is S0, at which
point the emigration and immigration rates are equal.

emigration rate

immigration rate

R
at

e
E

S1 S0 S2 

Smax number of Species

Fig. 1 Illustration of two
candidate solutions: S1 is a
relatively poor solution, while
S2 is a relatively good
solution
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S1 in Fig. 1 represents a low HSI solution, while S2 represents a high HSI
solution. Thus, the immigration rate k1 for S1 will be higher than the immigration
rate k2 for S2. Similarly, the emigration rate l1 for S1 will be lower than the
emigration rate l2 for S2. After migration procedure, the mutation operator is used
to enhance the diversity of the population to get better solutions. In BBO, mutation
is also a probabilistic operator which is used for modifying one or more randomly
selected SIV of a solution based on its priori probability of existence Pi. It changes
a habitat’s SIV randomly based on mutation rate mi in Eq. (3) that is calculated
using solution probability:

mi ¼ Mmax 1� Pi

Pmax

� �
; ð3Þ

where mi and Mmax are the user-defined parameters of mutation rate and the
maximum mutation rate, and Pmax is the maximum probability of species count.

2.1 Canonical BBO

Simon [4] uses linear migration model in BBO, which means that k and l are the
linear functions of solution fitness and are normalized to the range [0, 1]. The
pseudocode of canonical BBO is given below.

2.2 Variants of BBO

It is evident from the literature study on BBO that the improvements are based on a
modification of migration process only. Guo et al. [6] investigated the migration
model by stochastic approaches and exposed the relationship between migration
rates and algorithm’s performance. Ma et al. [7] and Ma and Simon in [8] proposed
a variation of migration model of BBO by using Markov theory. After central BBO,
Ergezer et al. [9] proposed oppositional BBO (OBBO) by employing
opposition-based learning (OBL). The migration operation of OBBO can be
expressed in Eq. (4) as

638 P.K. Giri et al.



Algorithm 1: Pseudocode of BBO
Initialize: E = 1, I = 1, Mmax = 1, Population size, Maximum iteration;
while Termination criteria is not satisfied do

Compute HSI for each habitat and sort them in according order;
for each habitat (solution) do

Calculate λi, μi, mi and pi;
for each SIV do

Generate a random number rand ∈ [0, 1];
if rand < λi then

Select Hi(SIV ) through roulette wheel with probability ∝ λi;
if Hi(SIV ) selected then

Select a habitat Hj(SIV ) randomly ∝ μj ;
if Hj(SIV ) selected then

Hi(SIV ) ← Hj(SIV )
end

end
if rand < mi then

Replace any SIV s in Hi(SIV ) for mutation;
end

end
end

end
end

OHiðSIVÞ  MinþMax� HiðSIVÞ: ð4Þ

In [4], the original BBO employs a linear migration model, after that, in addition
to the linear migration model, Ma et al. [7] explored the performance of six
migration models which are inspired by the science of biogeography generalizing
the equilibrium species count of biogeography theory and showed that the sinu-
soidal migration model outperforms other models. In [10], Ma et al. proposed a
blended migration operator (BMO) shown in Eq. (5), which is inspired from [7]:

HiðSIVÞ  aHiðSIVÞþ ð1� aÞHiðSIVÞ; ð5Þ

where a 2 ½0; 1� is a random or deterministic value. In [10], Ma and Simon extend
the work of [8] to propose a uniform blended migration operator (UBMO) and
nonuniform blended migration operator (NUBMO). They investigate the setting of a
in an experimental work to test the results and conclude that a proper value of a, say
a ¼ 0:5, performs better than a large or a small value of a, say a ¼ 0:0 and 0.8,
respectively. Feng et al. in [11] proposed the Heuristic Migration Operator (HMO) as
shown in Eq. (6), where the parameter b 2 ½0; 1� and Fð:Þ is a fitness function:

HiðSIVÞ  HiðSIVÞþ bðHjðSIVÞ � HiðSIVÞÞ;FðHjÞ�FðHiÞ: ð6Þ

A Novel Locally and Globally Tuned … 639



Gong et al. [12] have proposed popular hybrid alpha-heuristic approach called
DE/BBO algorithm in order to balance the exploration of DE and the exploitation of
BBO effectively. Siarry and Ahmed-Nacer in [13] proposed a hybridize BBO with
different kinds of evolutionary algorithms such as Ant Colony Optimization
(ACO) and Artificial Immune Algorithm (AIA) in two different ways. Simon
proposed that the canonical approach of BBO has some weakness on its exploration
[4]. In total immigration-based BBO, kk, is used to decide whether a whole solution
should immigrate. If a solution is selected to be immigrated, all the composing
features will involve in immigration. Xiong et al. [14, 15] proposed a polyphyletic
migration operator; here the current candidate will learn from another solution to
extract best features. The migration operation can be expressed in Eq. (7) as fol-
lows. When immigration satisfied then,

HiðSIVÞ ¼ HjðSIVÞþ kðHjðSIVÞ � HiðSIVÞÞ; if migration satisfied
HjðSIVÞ; Otherwise

�
: ð7Þ

Simon et al. [16] have proposed an idea of the multi-parent migration operator
came from the multi-operators in GA and DE. Orthogonal migration operator was
introduced in [17] by employing an orthogonal crossover rule. In standard BBO, if a
solution is not selected to be immigrating, migration operator does not run. Thus, Li
et al. [18] proposed a new variant of BBO known as Perturb Biogeography-Based
Optimization (PBBO) that is used to select a neighborhood solution to update the
current one. Based on the previous researches, we are inspired to propose novel and
effective migration operator to find the global best feasible optimal solution by using
the nearest best solution. Zheng et al. [19] proposed a new variation of BBO, named
eco-geography-based optimization (EBO), which regards the population of islands
as an ecological system with a local topology.

3 Proposed Work

Recall that BBO is natured inspired algorithm and motivated by the geographical
distribution of organisms which involves the study of the migration of biological
species between habitats. From subsection 2.2 it is evident that researchers con-
tributed various migration models of BBO with significant results in performance.
However, they have their own merits and demerits. To avoid some of the pitfalls of
the existing BBO, the proposed LGBBO adapted a novel migration operation which
is strongly inspired by the learning mechanisms of school children. The idea is
centered on the learning mechanism of a weaker class student for adapting
knowledge from stronger students. In nature, it is very often noticed that a weaker
student is directly influenced by a student who is better in local context rather than
global context. In other words, a weak individual try to adapt best features from the
best individual from their nearest neighbor instead of adapting features from best
individual of the pool (i.e., global best). However, moving with this strategy a
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habitat may trap in local optima; therefore, in this approach the combined effort of
local best habitat from a predefined size of neighborhood and a global best is
explored to uncover the global optimal solution. The model is presented in Eq. (8):

HiðSIVÞ  aNNðHiðSIVÞÞþ ð1� aÞHjðSIVÞ; ð8Þ

where the parameter a is named as immaturity index, to represent the island
immaturity of the geographical system (population), which is inversely proportional
to the invasion resistance of the system. The nearest neighbor of habitat
NNðHiðSIVÞÞ can be defined in Eq. (9) as

NNðHiðSIVÞÞ  Hði� r?1:i�rÞðSIVÞ; ð9Þ

where r is the radius of neighborhood. Since the HSIs are sorted in manner, the best
nearest neighbor habitat can be found at ði� rÞ. When i� r then the best habitat has
been chosen as the locally best.

Algorithm 2: Proposed Migration Algorithm (LGBBO)
Initialize: E = 1, I = 1, mmax = 1, Population size (Np), Maximum iteration;
Create a random set of habitats (populations) H1, H2, . . . , HNp ;
while Termination criteria is not satisfied do

Compute HSI (fitness);
Compute λ, μ, pmut and mutation rate mi for each habitat α HSI ;
Generate a random number rand ∈ (0, 1);
for each habitat from best to worst according to their HSI values do

Select a habitat Hi(SIV ) probabilistically ∝ λi;
if rand < λi and Hi(SIV ) selected then

Select an Hk(SIV ) as locally best to Hi(SIV ) using NN(Hi(SIV ));
Select an habitat Hj(SIV ) probabilistically ∝ μj ;
if rand < μj and Hj(SIV ) selected then

Generate a constant α ∈ [0, 1];
for each SIVs (solution features) do

Hi(SIV ) ← αNN(Hi(SIV )) + (1 − α)Hj(SIV );
end

end
end

end
Select an SIV (Hi) based on mutation probability proportional to pi;
if rand < mi then

Replace SIV (Hi) with randomly generated SIV ;
end

end
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4 Experimental Works

The focus of this section is to evaluate the efficiency of the nearly developed model.
Hence to accomplish the objectives, this section is divided into three Sects. 4.1, 4.2,
and 4.3.

4.1 Test Functions and Environments

The task of any good global optimization algorithm is to find globally optimal or at
least sub-optimal solutions. The objective functions could be characterized as
continuous, differentiable, unimodal, multimodal, separable, and regular. Table 1
presents the details of the well-established 10 benchmark functions and their fea-
tures that are used to test the performance of the proposed migration model as
LGBBO and the results are compared with other developed models like canonical
BBO and BBBO. The more details about benchmark functions can be found in [4].
The simulation has been done in an Octa Core i7 x64 CPU with 8GB 1600FSB
RAM. We use R programming on LINUX platform for the analysis.

4.2 Parameter Setup

In order to compare the performances of BBO and BBBO with proposed LGBBO, a
series of experiments on benchmark functions are carried out to test the efficiency.
For initializing the LGBBO, the maximum species count, the maximum migration

Table 1 Benchmark functions and their features

Function Range/domain Optimum
solution

Features

f01: Sphere ½�100; 100�30 0 U, S, R, C, D C: Continuous

f02: Schaffer2 ½�100; 100�30 0 U, S, IR, DC, ND DC: Discontinuous

f03: Powell’s ½�4; 5�30 0 U, NS, R, C, D U: Unimodal

f04: Levy’s ½�100; 100�30 0 U, NS, R, C, D M: Multimodal

f05: Schwefel’s ½�100; 100�30 0 M, S, IR, C, D D: Differentiable

f06: De Jung ½�65:5; 65:5�30 0 M, NS, R, C, D ND: Nondifferentiable

f07: Rosenbrock ½�30; 30�30 0 U, NS, R, C, D R: Regular

f08: Rastrigin’s ½�5:12; 5:12�30 0 M, S, R, C, D IR: Irregular

f09: Ackley’s ½�32; 32�30 0 M, NS, R, C, D S: Separable

f10: Griewank’s ½�600; 600�30 0 M, NS, R, C, D NS: Non-separable
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rates, the maximum mutation rate, and an elitism parameter are defined. 100 habi-
tats and 250 maximum iterations with initial mutation probability of 0.1 have been
considered. An a value of 0.15, 0.25, 0.35, and 0.5 has been tested for the BBBO
and LGBBO. For the LGBBO a fraction of 0.1, 0.15, and 0.2 habitats (i.e.,
100 * 0.1 = 10 habitats) has been chosen as the neighbors.

4.3 Results and Analysis

Table 2 presents the simulation result obtained by BBO, BBBO ða ¼ 0:25Þ, and
LGBBO ðnndist ¼ 0:1; a ¼ 0:25Þ for the 10 benchmark functions over 50 inde-
pendent runs. The table shows the comparative result of best (min), mean, and
standard deviation (Std.) values over the iterations.

Figure 2 provides a graphical view of the comparison of BBO, BBBO, and
LGBBO. In Fig. 2, the cost over generation has been plotted for the benchmark
functions over 50 independent runs. The plot has been built using generation-wise
boxplot for three types of BBO. The comparative results of these functions indicate
that LGBBO performs significantly better than other BBOs. The experimental
results illustrate that LGBBO has the superior searching ability to other methods
both on convergence speed and accuracy.

Table 2 Simulation statistics obtained by BBO, BBBO ða ¼ 0:25Þ, and LGBBO ðnndist ¼
0:1; a ¼ 0:25Þ on 10 bench mark functions over 50 independent run

Matric Function BBO BBBO LGBBO Function BBO BBBO LGBBO

Mean f01 1.09E-06 3.02E-10 3.30E-13 f06 6.72E-07 3.21E-11 2.14E-13

Std. 8.52E-07 3.32E-10 5.14E-13 5.21E-07 3.43E-11 5.88E-13

Min 2.39E-07 1.72E-11 1.20E-15 6.68E-08 4.10E-14 1.19E-17

Mean f02 1.25E-06 8.54E-11 9.46E-15 f07 1.43E-06 1.72E-11 2.35E-13

Std. 1.54E-06 1.28E-10 1.10E-14 1.44E-06 3.42E-11 6.16E-13

Min 9.87E-08 1.89E-13 5.65E-16 2.04E-07 2.53E-15 3.09E-16

Mean f03 9.19E-07 6.34E-11 3.44E-13 f08 8.16E-07 1.44E-11 3.47E-13

Std. 9.44E-07 1.29E-10 6.63E-13 7.65E-07 2.19E-11 9.90E-13

Min 2.68E-08 1.44E-12 3.97E-17 7.71E-08 1.15E-12 2.11E-16

Mean f04 9.13E-07 6.91E-12 2.75E-12 f09 7.05E-07 1.05E-11 5.14E-13

Std. 7.97E-07 8.32E-12 8.32E-12 6.90E-07 1.49E-11 7.17E-13

Min 1.85E-07 1.87E-13 2.73E-16 9.33E-08 1.89E-14 1.65E-15

Mean f05 4.93E-07 1.86E-11 5.51E-13 f10 1.51E-06 4.34E-11 2.03E-13

Std. 3.64E-07 1.13E-11 1.28E-12 1.63E-06 6.70E-11 3.18E-13

Min 8.57E-08 2.03E-12 8.57E-17 1.13E-07 1.52E-13 4.98E-16
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Fig. 2 Graphical presentations of the generation-wise cost for the benchmark functions Ackley,
Dejong, Griewank, Levy, Powell, and Raster. The simulation has been carried out for 30-D over
50 independent runs. The box plot indicates generation-wise mean and standard deviation for
BBO, BBBO, and LGBBO
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5 Conclusions and Future Research Directions

In this paper, to eradicate the deficiencies of the canonical BBO algorithm, we
proposed a new BBO by using a new migration method called LGBBO. By using
10 benchmark test functions including unimodal and multimodal functions, we
provide a comparative study of LGBBO with canonical BBO and BBBO. An
experimental result shows that LGBBO algorithm has strong local best and global
best searching ability. It has improved the convergence speed and convergence
precision; therefore, it is very effective to solve complex functions optimization
problems. Our future research direction includes (i) performance evaluation of
LGBBO in domains like financial engineering and big data analysis, (ii) conver-
gence analysis, and (iii) many more specific problems of computational finance.
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