
689© Springer Nature Singapore Pte Ltd. 2017
B. Mandal et al. (eds.), A Century of Plant Virology in India,  
https://doi.org/10.1007/978-981-10-5672-7_28

V. Prasad (*) • S. Srivastava 
Molecular Plant Virology Lab, Department of Botany, Lucknow University,  
Lucknow 226007, Uttar Pradesh, India
e-mail: vivprasad@outlook.com

28Phytoproteins and Induced Antiviral 
Defence in Susceptible Plants: 
The Indian Context

Vivek Prasad and Shalini Srivastava

Abstract
Amongst the many approaches being tried out to contain plant viruses, induced 
systemic resistance (ISR) is one that finds its basis in the induction of antiviral 
resistance in susceptible plants against viruses by application of sap from certain 
non-host plants. Phytoprotein based antiviral researches in India started with the 
first study published in 1952. Progress on such research in India has been focused 
on screening plants for potential antiviral activity and/or induction of resistance, 
purification of the active principles and their characterization, and insights into 
possible mechanisms of action. However, not much success has been achieved at 
the field level. Resistance induced by plant proteins has been found to be either 
local or systemic, and in a majority of cases, is reversed by actinomycin D, sug-
gesting host transcriptional involvement. The major plants harbouring such pro-
teins are Clerodendrum inerme, C. aculeatum, Boerhaavia diffusa, Bougainvillea 
spectabilis, B. xbuttiana, and Celosia cristata. Most proteins inducing resistance 
fall in the molecular mass range of 25–35 kDa, are heat tolerant, and basic gly-
coproteins. A few possess ribosome-inactivating properties and share amino 
acid  sequence homologies with other known ribosome-inactivating proteins. 
Systemic resistance inducing proteins have been shown to induce the production 
of a virus inhibitory agent (VIA) in the susceptible plant. The VIAs are also pro-
teins, in the range of 30–65 kDa, and are tolerant to conditions that would degrade 
normal cellular proteins. One such VIA has exhibited homologies to a lectin. A 
few studies have suggested that at least some of the resistance inducing proteins 
suppress virus replication.
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28.1	 �Introduction

Plant virus control through the use of endogenous virus inhibitory plant proteins 
holds a lot of promise, as it comes without the involvement of microbial infection 
or chemical toxicity (Verma et al. 1998; Prasad et al. 2012; Srivastava and Prasad 
2014). Plant extracts exhibiting antiviral activity have been known since long, 
and this topic opened up with the observation that the virus causing a mosaic 
disease on pokeweed (Phytolacca sp.) could be transmitted through sap inocula-
tion to pokeweed but not to tobacco (Allard 1918). Experimental evidence for the 
same came in 1925 when the transmission of tobacco mosaic virus (TMV) onto 
healthy tobacco was inhibited following inoculation of TMV mixed with 
Phytolacca sap (Duggar and Armstrong 1925). The studies logically moved 
towards characterization of these inhibitors, and the virus inhibitor in Phytolacca 
esculenta was identified (Kassanis and Kleczkowski 1948). Studies on the mode 
of action of these inhibitors were a more challenging area and the importance of 
the host species in determining the action of the virus inhibitors became apparent 
(Gendron and Kassanis 1954; Grasso 1977). The virus inhibitors were then clas-
sified either as inhibitors of virus infection in vitro/in vivo, or as inhibitors of 
virus replication (Gianinazzi 1982). Another milestone was achieved with the 
demonstration of inhibition of polypeptide synthesis in vitro by the purified anti-
viral protein from P. americana (PAP) (Obrig et al. 1973; Owens et al. 1973). 
Thus PAP became the centre of all initial path breaking researches on plant virus 
inhibitors.

As of now, all well characterized inhibitors of virus infection from higher plants 
are able to cleave the N-glycosidic bond of the adenine residue in the highly con-
served sequence (5′AGUACGAGAGGA3′) located on the α-sarcin/ricin loop of 
both eukaryotic (28S) and prokaryotic (23S) rRNAs, and thereby inhibit protein 
synthesis on ribosomes. They depurinate eukaryotic ribosomes and are hence clas-
sified as ribosome-inactivating proteins (RIPs) with rRNA N-glycosidase activity 
(Endo et  al. 1987; Endo and Tsurugi 1988), or more appropriately with 
polynucleotide:adenosine glycosidase activity since a few RIPs can also deadenyl-
ate substrates such as tRNA, mRNA, viral RNA, poly A as well as DNA (Olivieri 
et al. 1996; Barbieri et al. 1997). RIPs are widespread in the plant kingdom (Barbieri 
et al. 1993, 2006; Stirpe 2004, 2013; Stirpe and Lappi 2014; Schrot et al. 2015) and 
were initially discovered as proteins present in different plant tissues that could 
inhibit viruses (Nielson and Boston 2001; Girbés et al. 2004; Di and Tumer 2015). 
Their antiviral activity was routinely ascertained by co-inoculating the inhibitor 
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with a plant virus and determining the reduction in lesion number on the test host 
(Barakat and Stevens 1981; Stevens et al. 1981). This review will focus on inhibi-
tors of plant viruses and inducers of systemic antiviral resistance in susceptible 
plants, with special emphasis on researches carried out in India in the last few 
decades.

28.2	 �Early Reports and Screening for Virus Inhibitors

Given the potential that these inhibitors carried in the realm of plant virus control 
methods, reports on the presence of antiviral substances in higher plants soon sur-
faced in India as well. In early screenings, the plant tissue was homogenized in 
water or buffer and the extract was either co-inoculated with the virus or applied 
shortly before or after virus challenge. One of the earliest reports was on inactiva-
tion of Cucumis virus 2C by plant extracts (Vasudeva and Nariani 1952). A very 
narrow host range of the virus prompted the investigators to study the effect of leaf 
extracts of a few solanaceous plants, such as Nicotiana glutinosa, N. tabacum and 
Datura stramonium, to name a few, on the infectivity of the virus on bottlegourd 
(Lagenaria leucantha). Leaf extracts of D. stramonium, Capsicum annuum and 
Lycopersicon esculentum markedly inhibited this virus (Vasudeva and Nariani 
1952). Initial studies made no attempt towards characterization of these inhibitors 
but instead, focussed on screening of plants carrying inhibitory principles in their 
various parts, viz., roots, flowers, fruits and bark, but mostly leaves. In a few cases 
the physico-chemical attributes of the inhibitors were included, studied through 
effects on the antiviral activity, of factors like temperature, pH, dilution, chemicals, 
organic solvents, enzymes, aging in vitro, precipitation by ammonium sulfate and 
dialysis. The results were a pointer towards the proteinaceous or non-proteinaceous 
nature of the inhibitors.

Thus, inhibitors reported from several higher plants soon stood partially (Paliwal 
and Nariani 1965a, b; Verma et al. 1969; Roychoudhury and Basu 1983; Verma and 
Baranwal 1983; Verma et al. 1984; Baranwal and Verma 1997), or completely char-
acterized. The latter are dealt with separately in this review. Though reported mostly 
from angiosperms, culture filtrates of fungi, Trichothecium roseum and Aspergillus 
niger (Rao and Raychaudhuri 1965; Sharma and Raychaudhuri 1965), and some 
pteridophytes and gymnosperms, were also found to contain antiviral substances 
(Pandey and Bhargava 1980, 1983; Rao and Shukla 1985). Plant extracts inhibiting 
a number of animal viruses are known as well (Vijayan et al. 2004; Bhanuprakash 
et al. 2007, 2008; Bag et al. 2012; Nutan et al. 2013) along with several instances of 
antibacterial and antifungal activity (Guleria and Kumar 2006; Sundaram et  al. 
2011; Yadav et al. 2011).

In the early studies, inhibition of plant viruses by extracts from higher plants, 
including several medicinal plants such as Cinchona ledgeriana, Emblica officina-
lis, Chrysobalanus icaco, Terminalia chebula and Ocimum sanctum, was demon-
strated against a number of mechanically transmitted viruses. While an exhaustive 
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list of plants and the viruses inhibited has been variously incorporated in earlier 
reviews (Verma 1982; Narayanasamy 1990; Verma and Prasad 1992; Verma et al. 
1995; Verma and Baranwal 2011), a chronological list of antiviral research in India 
has been included here as Table 28.1. Plant extracts were reported to inhibit viruses 
like TMV, potato virus X (PVX), Radish mosaic virus, Chilli mosaic virus, 
Sunnhemp mosaic virus, Watermelon mosaic virus, Pea top necrosis virus, etc. (Rao 
and Raychaudhuri 1965; Raychaudhuri and Prasad 1965; Raychaudhuri and Chadha 
1965; Paliwal and Nariani 1965a, b; Bhargava and Singh 1965; Singh 1969, 1972; 
Verma et al. 1969; Dhaliwal and Dhaliwal 1971; Gupta and Raychaudhuri 1971; Lal 
et al. 1973; Roy et al. 1979).

Virus inhibitory activity was soon reported in seed, root and floral extracts of 
flowering plants (Khurana and Bhargava 1970; Sharma and Chohan 1973; Verma 
et al. 1975; Murty and Nagarajan 1980; Rao et al. 1985). Though virus inhibitors 
were rarely reported in monocotyledons, an inhibitor of TMV infectivity was 
detected in wheat seed extract that caused a reduction in local lesions on N. glutin-
osa (Verma and Verma 1965). Seed extracts of Argemone mexicana, Datura fastu-
osa, Raphanus sativus and Rhynchosia asnaris were inhibitory to PRSV and PapMV 
on Carica papaya (Khurana and Bhargava 1970), while in a related study, the seed 
extracts of Syzygium cumini, Callistemon citrinus and Mangifera indica were found 
to inhibit Cucumis virus I on its local lesion host Chenopodium amaranticolor 
(Sharma and Chohan 1973). Unripe Lawsonia alba and germinating seeds of 
Phaseolus radiatus (black gram) showed a strong anti-TMV activity on N. glutinosa 
(Verma et  al. 1975; Murty and Nagarajan 1980). Flower extracts of Azadirachta 
indica, Euphorbia milii and Vinca rosea were effective at inhibiting PVX lesions on 
C. amaranticolor, whereas only A. indica extract prevented systemic PVX infection 
on L. esculentum (Rao et al. 1985). Inhibitors of PVX and watermelon mosaic virus 
infectivity were also identified in bark extracts of Ficus elastica, Prunus persica and 
some other plant species (Singh and Singh 1973, 1975; Tewari 1976). Later, inhibi-
tion of turnip mosaic virus (TuMV), peanut green mosaic virus, tobacco ringspot 
virus, urdbean leaf crinkle virus, bean common mosaic virus, bottle gourd mosaic 
virus and rice tungro virus by various other plant extracts was also reported (Bose 
et al. 1983; Chowdhury and Saha 1985; Pandey and Mohan 1986; Saigopal et al. 
1986; Srinivasulu and Jeyarajan 1986; Darekar and Sawant 1989). Pumpkin mosaic 
and Pumpkin yellow vein mosaic could be inhibited by extracts from several medic-
inal plants as well as their derivatives, such as neem oil and neem seed kernel extract 
(Louis and Balakrishnan 1996; Jayashree et  al. 1999). Upon screening of leaf 
extracts from several plants, only the extract from Psidium guajava was found to 
inhibit transmission of Brassica isolate of Turnip mosaic potyvirus (TuMV-B) on 
Brassica juncea var. rugosa. Complete inhibition of transmission of TuMV-B and 
Chilli mosaic virus was recorded when these viruses were mixed with an equal 
volume of the guava leaf extract (Mandal and Singh 2001). Such screenings for 
inhibitors continued, and occasionally the focus shifted towards use of inhibitors for 
plant virus control in glass houses and open fields, where the pathogen stress was 
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Table 28.1  A chronology of plant antiviral research in India

Year Source planta Test host Virusb

Aspect 
studiedc Reference

1952 Capsicum annuum, 
Datura stramonium, 
Lycopersicon 
esculentum

Lagenaria 
leucantha

Cucumis 
virus 2C

AV-A Vasudeva and 
Nariani (1952)AV-B

1965 Cedrus deodara (cone/
fruit)

Chenopodium 
amaranticolor

ChMV AV-A Raychaudhuri and 
Chadha (1965)

1965 Portulaca grandiflora Cucurbita pepo WMV AV-A Bhargava and 
Singh (1965)AV-C

1965 Triticum aestivum 
(seed)

Nicotiana 
glutinosa

TMV AV-A Verma and Verma 
(1965)

1969 Cinchona ledgeriana 
(stem bark extract), 
Chrysobalanus icaco 
(leaf extract), Emblica 
officinalis, Terminalia 
chebula (fruit pericarp 
extract)

– PVX AV-A Verma et al. 
(1969)AV-B

1970 Achyranthes aspera, 
Aloe barbadensis, 
Argemone mexicana, 
Capsicum frutescens, 
Carica papaya, Carum 
copticum (leaf), 
Argemone mexicana, 
Datura fastuosa, 
Raphanus sativus, 
Rhynchosia asnaris 
(seed)

Carica papaya PapMV, 
PRSV

AV-A Khurana and 
Bhargava (1970)AV-C

1971 Acacia arabica C. amaranticolor PVY AV-B Gupta and 
Raychaudhuri 
(1971)

1971 Ailanthus altissima, 
Allium cepa, Allium 
sativum

Phaseolus 
vulgaris

TMV AV-A Dhaliwal and 
Dhaliwal (1971)

1972 Acacia arabica, 
Callistemon 
lanceolatus, Syzygium 
cumini

C. amaranticolor PVY AV-M Gupta and 
Raychaudhuri 
(1972)

1972 Calotropis procera, 
Carica papaya, Ficus 
benghalensis, Thevetia 
neriifolia

C. amaranticolor, 
N. glutinosa

TMV AV-A Khurana and 
Singh (1972)

1973 Datura metel, 
Phaseolus vulgaris, 
Solanum melongena

N. glutinosa, C. 
amaranticolor, 
Nicotiana 
tabacum cv. 
NP-31, N. 
tabacum cv. 
Xanthi

TMV AV-A Lal et al. (1973)

(continued)
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Table 28.1  (continued)

Year Source planta Test host Virusb

Aspect 
studiedc Reference

1973 Callistemon citrinus, 
Mangifera indica, 
Syzygium cumini (leaf 
and seed)

C. amaranticolor Cucumis 
virus 1

AV-A Sharma and 
Chohan (1973)

1974 Jatropha gossypifolia, 
Jatropha pandurifolia, 
Jatropha podogarica 
(latex)

N. glutinosa, C. 
amaranticolor, 
N. tabacum cv. 
NP-31, N. 
tabacum cv. 
Xanthi

Cucumis 
virus-2C, 
TMV

AV-A Lal and Verma 
(1974)

1975 Lawsonia alba (seed) N. glutinosa TMV AV-B Verma et al. 
(1975)AV-M

1975 Madhuca butyraceae, 
Calophyllum 
tomentosum, Aegle 
marmelos (flavonoids, 
coumarins, 
marmelosin, etc.)

C. tetragonoloba SSMV AV-A Chandra et al. 
(1975)

1975 Solanum melongena N. glutinosa, N. 
tabacum

TMV, 
TRSV

AV-A Verma and 
Mukerjee (1975)

1976 Dahlia N. glutinosa TMV AV-A Srivastava et al. 
(1976)

1976 Ficus benghalensis, 
Ficus elastica, Grewia 
asiatica, Syzygium 
cumini, Tamarindus 
indica (bark)

C. pepo WMV AV-A Tewari (1976)

1979 Boerhaavia diffusa 
(root)

C. amaranticolor, 
Datura metel,  
N. glutinosa, N. 
tabacum, 
Crotalaria juncea, 
Vigna sinensis, 
Spinacea 
oleracea, 
Gomphrena 
globosa

TMV, 
SRV, 
GMV, 
TRSV

AV-A Verma and 
Awasthi (1979)AV-B

1979 Boerhaavia diffusa 
(root)

N. glutinosa TMV AV-B Verma et al. 
(1979a)

1979 Boerhaavia diffusa, 
Cuscuta reflexa, 
Datura metel, Solanum 
melongena

N. tabacum cv. 
NP-31

TMV, 
TRSV

AV-C Verma et al. 
(1979b)

(continued)
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Table 28.1  (continued)

Year Source planta Test host Virusb

Aspect 
studiedc Reference

1979 Clerodendrum inerme, 
Gynandropsis 
pentaphylla, Lawsonia 
alba, Nicotiana spp. 
Solanum 
xanthocarpum, 
Tamarindus indica

N. tabacum TMV AV-A Patel and Patel 
(1979)

1979 Datura metel, 
Eucalyptus 
lanceolatus, Euphorbia 
hirta, Solanum 
melongena, Cuscuta 
reflexa, Boerhaavia 
diffusa, Cannabis 
sativa

C. tetragonoloba, 
C. juncea, G. 
globosa, N. 
glutinosa, C. 
amaranticolor

SRV, 
GMV, 
TRSV, 
TMV

AV-A Verma et al. 
(1979c)

1979 Mirabilis jalapa Solanum 
tuberosum

PLRV AV-C Verma and Kumar 
(1979)

1980 Mirabilis jalapa Cucumis sativus CMV, 
CGMMV

AV-C Verma and Kumar 
(1980)

1980 Boerhaavia diffusa 
(root)

– – AV-M Verma and 
Awasthi (1980)

1980 Arachis hypogaea, 
Cajanus cajan, Cicer 
arietinum, Cyamopsis 
tetragonoloba, 
Dolichos biflorus, 
Phaseolus aureus, 
Phaseolus radiata, 
Vigna catjang 
(germinating pulse and 
oilseed)

N. glutinosa TMV AV-A Murty and 
Nagarajan (1980)

1981 Cuscuta reflexa N. glutinosa TMV AV-A Awasthi (1981)
AV-B

1982 Datura metel C. tetragonoloba, 
C. amaranticolor, 
Vigna sinensis, C. 
juncea, G. 
globosa

SRV, 
GMV

AV-A Mukerjee et al. 
(1981)AV-M

1983 Bougainvillea 
spectabilis

Cucumic melo, C. 
juncea, 
Lycopersicon 
esculentum

CGMMV, 
SRV, 
TMV, 
TmYMV, 
PhySMV

AV-C Verma and 
Dwivedi (1983)

(continued)
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Table 28.1  (continued)

Year Source planta Test host Virusb

Aspect 
studiedc Reference

1983 Chenopodium 
ambrosoides

C. amaranticolor, 
N. glutinosa, C. 
tetragonoloba, 
Datura metel, 
Datura 
stramonium, V. 
sinensis

TMV, 
SRV

AV-A Verma and 
Baranwal (1983)AV-B

1984 Ampelopteris prolifera 
(fern leaf)

N. glutinosa, C. 
amaranticolor, 
N. tabacum cv. 
NP-31, N. 
tabacum var. 
white burley

TMV, 
CMV

AV-A Pandey and 
Bhargava (1984)AV-B

1984 Boerhaavia diffusa 
(root)

N. tabacum cv. 
NP-31, L. 
esculentum, C. 
melo, C. juncea, 
G. globosa

TMV, 
CMV, 
SRV, 
CGMMV, 
GMV

AV-C Awasthi et al. 
(1984)

1984 Bougainvillea 
spectabilis

– – AV-M Verma and 
Dwivedi (1984)

1984 Clerodendrum 
aculeatum, 
Clerodendrum 
fragrans, 
Clerodendrum inerme, 
Clerodendrum 
indicum, 
Clerodendrum 
macrosiphon, 
Clerodendrum 
phlomoides, 
Clerodendrum 
splendens, 
Clerodendrum 
viscosum

C. amaranticolor, 
N. glutinosa, C. 
tetragonoloba, N. 
tabacum Ky-58

TMV, 
SRV, 
TmYMV, 
GMV,

AV-A Verma et al. 
(1984)AV-B

AV-M

1984 Solanum torvum C. amaranticolor, 
N. glutinosa, C. 
tetragonoloba

TMV, 
SRV

AV-A Roychoudhury 
(1984)

1985 Aerva sanguinolenta C. tetragonoloba, 
D. stramonium

SRV, 
TMV

AV-A Verma and 
Srivastava (1985)AV-M

1985 Argemone mexicana, 
Azadirachta indica, 
Euphorbia milii, 
Jasminum sambac, 
Lantana indica, 
Nerium indicum, Vinca 
rosea (Flower)

C. amaranticolor, 
L. esculentum

PVX AV-A Rao et al. (1985)
AV-C
AV-M

(continued)
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Year Source planta Test host Virusb

Aspect 
studiedc Reference

1985 Clerodendrum 
aculeatum, Aerva 
sanguinolenta, 
Boerhaavia diffusa 
(root)

Vigna radiata, 
Vigna mungo

Yellow 
mosaic 
disease 
virus

AV-C Verma et al. 
(1985b)

1985 Capsicum annuum, 
Solanum melongena, 
Lantana camara, 
Datura metel, 
Corchorus capsularis, 
Ipomoea glaberrima, 
Curcuma longa, Allium 
sativum, Azadirachta 
indica, Zingiber 
officinale, Callistemon 
lanceolatus (leaf, bulb, 
fruit and rhizome)

V. mungo ULCV AV-A Chowdhury and 
Saha (1985)AV-C

1985 Pseuderanthemum 
atropurpureum tricolor

– – AV-B Verma and Khan 
(1985)AV-M

1986 Clerodendrum 
aculeatum

N. tabacum cv. 
Samsun NN

TMV AV-M Prasad (1986)

1986 Mirabilis jalapa, 
Cocos nucifera, 
Sorghum vulgare

Oryza sativa RTV AV-A Srinivasulu and 
Jeyarajan (1986)AV-C

1986 Peltophorum 
ferrugenium (leaf), 
Pithecolobium dulce 
(twig)

Tobacco TMV AV-A Murty and 
Nagarajan (1986)AV-C

1986 Phyllanthus fraternus 
(leaf and root)

C. amaranticolor, 
Phaseolus 
vulgaris, V. 
sinensis

TMV, 
PGMV, 
TRSV

AV-A Saigopal et al. 
(1986)

1986 Acacia arabica, 
Callistemon 
lanceolatus, Syzygium 
cumini

C. amaranticolor, 
C. album

TuMV AV-A Pandey and 
Mohan (1986)

1987 Clerodendrum 
aculeatum

C. tetragonoloba SRV AV-M Verma and Prasad 
1987

1988 Azadirachta indica C. amaranticolor Spinach 
mosaic 
virus

AV-A Zaidi et al. (1988)

1988 Clerodendrum 
aculeatum, 
Clerodendrum 
fragrans

C. tetragonoloba SRV AV-M Prasad (1988)

Table 28.1  (continued)

(continued)
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Table 28.1  (continued)

Year Source planta Test host Virusb

Aspect 
studiedc Reference

1988 Boerhaavia diffusa, 
Clerodendrum 
fragrans

C. tetragonoloba SRV AV-M Verma and Prasad 
(1988)

1990 Pseuderanthemum 
bicolor

– – AV-M Khan and Verma 
(1990)

1992 Celosia cristata D. stramonium, 
D. metel, 
Capsicum 
pendulum, C. 
tetragonoloba, N. 
glutinosa, N. 
rustica, V. 
sinensis, N. 
tabacum cv, 
Samsun NN,

SRV, 
TMV, 
PVX

AV-A Baranwal and 
Verma (1992)

1993 Amaranthus tricolor, 
Aralia balfourii, 
Bougainvillea glabra, 
Celosia cristata, 
Chenopodium 
ambrosoides

C. tetragonoloba SRV AV-A Baranwal and 
Verma (1993)

1995 Clerodendrum inerme N. tabacum cv, 
Samsun NN

TMV AV-B Prasad et al. 
(1995)

1995 Clerodendrum 
aculeatum

C. juncea SRV AC-C Verma and Varsha 
(1995a)

1996 Basella alba, 
Gomphrena globosa 
(root) Glycyrrhiza 
glabra, Phyllanthus 
fraternus, Plumbago 
rosea (tuber), 
Thespesia populnea

C. pepo PMV* AV-A Louis and 
Balakrishnan 
(1996)

AV-C

1996 Clerodendrum inerme – – AV-B Olivieri et al. 
(1996)

1997 Clerodendrum 
aculeatum

L. esculentum TLCV AV-C Baranwal and 
Ahmad (1997)

1997 Celosia cristata C. tetragonoloba, 
N. glutinosa

SRV, 
TMV

AV-B Baranwal and 
Verma (1997)

1997 Clerodendrum 
aculeatum

N. tabacum cv. 
Samsun NN

TMV AV-B Verma et al. 
(1996)AV-M

1997 Clerodendrum 
aculeatum

– – AV-B Kumar et al. 
(1997)

1998 Bougainvillea 
spectabilis (root)

Vigna 
unguiculata

TSWV AV-A Balasaraswathi 
et al. (1998)AV-B

(continued)

V. Prasad and S. Srivastava



699

Year Source planta Test host Virusb

Aspect 
studiedc Reference

1999 Boerhaavia diffusa, 
Bougainvillea 
spectabilis, Croton 
bonplandianum, 
Prosopis chilensis, 
Azadirachta indica

C. pepo PYVMV AV-A Jayashree et al. 
(1999)AV-C

1999 Cocos nucifera, 
Sorghum vulgare, 
Prosopis chilensis, 
Croton parsiflorus, 
Euphorbia thyifolia

V. radiata TSWV AV-C Manickam and 
Rajappan (1999)

1999 Bougainvillea 
spectabilis, 
Catharanthus roseus, 
Cocos nucifera, 
Mirabilis jalapa, 
Prosopis chilensis, 
Sorghum vulgare, Vitex 
negundo

Abelmoschus 
esculentus

OYVMV AV-A Pun et al. (1999)
AV-C

1999 Mirabilis jalapa Solanum 
melongena

CMV AV-C Bharathi (1999)

1999 Azadirachta indica, 
Clerodendrum 
infortunatum, Ocimum 
sanctum, Vitex 
negundo

D. stramonium Brinjal 
mosaic 
virus

AV-C Surendran et al. 
(1999)

2000 Celosia cristata N. tabacum 
Samsun NN,

TMV, 
SRV, 
ICRSV

AV-A Balasubrahmanyam 
et al. (2000)AV-B

2000 Chenopodium album N. glutinosa, C. 
tetragonoloba

TMV, 
SRV

AV-A Dutt et al. (2000)
AV-B

2001 Psidium guajava Brassica juncea TuMV AV-C Mandal and Singh 
(2001)

2001 Clerodendrum 
aculeatum

C. tetragonoloba SRV AV-M Prasad et al. 
(2001)

2001 Clerodendrum inerme N. tabacum cv. 
White burley, C. 
amaranticolor

CMV, 
PVY, 
ToMV

AV-B Praveen et al. 
(2001)

2001 Bougainvillea 
xbuttiana

N. glutinosa, N. 
tabacum cv. 
Samsun nn, N. 
tabacum cv. 
NP-31

TMV AV-A Narwal et al. 
(2001b)AV-C

AV-M

2002 Celosia cristata In vitro BMV, 
PMV

AV-B Baranwal et al. 
(2002)

2003 Boerhaavia diffusa 
(root)

Cucumis melo CGMMV AV-C Awasthi and 
Kumar (2003)

Table 28.1  (continued)
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Table 28.1  (continued)

Year Source planta Test host Virusb

Aspect 
studiedc Reference

2003 Piper longum, 
Prosopis juliflora, 
Zingiber officinale

Vigna mungo ULCV AV-A Thirumalaisamy 
et al. (2003)

2004 Boerhaavia diffusa 
(root)

Vigna radiata Yellow 
vein 
mosaic 
virus

AV-C Singh et al. (2004)

2004 Celosia cristata N. tabacum cv. 
Samsun NN, C. 
tetragonoloba

TMV, 
SRV

AV-M Gholizadeh et al. 
(2004)

2004 Harpullia cupanioides, 
Mirabilis jalapa

L. esculentum TSWV AV-C Devi et al. (2004)

2005 Azadirachta indica 
(oil)

C. annuum, L. 
esculentum, N. 
glutinosa

TMV, 
ToMV

AV-A Madhusudhan 
et al. (2005)AV-C

2005 Bougainvillea 
spectabilis

– – AV-B Rajesh et al. 
(2005)

2005 Bougainvillea 
xbuttiana

N. glutinosa, C. 
tetragonoloba

TMV, 
SRV

AV-B Bhatia and Lodha 
(2005)

2005 Celosia cristata N. glutinosa TMV AV-B Gholizadeh et al. 
(2005)

2006 Harpullia cupanioides 
(seed), Azadirachta 
indica (oil)

Finger millet Mottle 
streak 
virus

AV-C Saveetha et al. 
(2006)

2003 Harpullia cupanioides 
(seed)

Oryza sativa….. TSWV, 
RTV, 
CABMV

AV-A Bharathimatha 
et al. (2003)

2006 Amaranthus tricolor C. tetragonoloba SRV AV-B Roy et al. (2006)
2006 Celosia cristata N. glutinosa, C. 

tetragonoloba
TMV, 
SRV

AV-B Begam et al. 
(2006)

2007 Azadirachta indica, 
Boerhaavia diffusa, 
Bougainvillea 
spectabilis, 
Clerodendrum inerme, 
M. jalapa, Psidium 
guajava, Thuja 
occidentalis

Vigna sinensis BCMV-
BICM

AV-C Prasad et al. 
(2007)

2007 Ocimum sanctum, 
Psidium guajava, 
Thuja occidentalis, 
Tridax procumbens

N. glutinosa TMV, 
ToMV

AV-A Deepthi et al. 
(2007)

2008 Bougainvillea 
xbuttiana

C. tetragonoloba SRV AV-B Choudhary et al. 
(2008)

2009 Azadirachta indica, 
Clerodendrum 
aculeatum, Terminalia 
arjuna

Cucumis sativus CMV AV-C Pardeep and  
Awasthi (2009)

(continued)
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Year Source planta Test host Virusb

Aspect 
studiedc Reference

2009 Boerhaavia diffusa 
(root)

A. esculentus OYVMV AV-C Singh et al. (2009)

2009 Boerhaavia diffusa 
(root), Clerodendrum 
aculeatum

Carica papaya PRSV AV-C Awasthi and Singh 
(2009)

2009 Bougainvillea 
spectabilis

Momordica 
charantia

BGYMV AV-C Rajinimala et al. 
(2009)AV-M

2009 Bougainvillea 
spectabilis, Prosopis 
chilinesis

Vigna sinensis, 
Helianthus 
annuus

SFNV AV-C Lavanya et al. 
(2009)AV-M

2009 Bougainvillea 
spectabilis, Mirabilis 
jalapa

Vigna mungo ULCV AV-C Karthikeyan et al. 
(2009)

2009 Clerodendrum 
aculeatum

C. papaya, 
Chenopodium 
quinoa

PRSV AV-C Srivastava et al. 
(2009)

2010 Bacopa monerii, 
Boerhaavia diffusa, 
Catharanthus roseus, 
Calotropis procera, 
Ocimum sanctum, 
Withania somnifera, 
Rauwolfia serpentina

Pisum sativum PeMV AV-C Tiwari et al. 
(2010)

2010 Mirabilis jalapa, 
Datura metel, 
Azadirachta indica 
(oil)

V. mungo MYMV AV-C Venkatesan et al. 
(2010)

2011 Azadirachta indica, 
Bougainvillea 
spectabilis, 
Phyllanthus, Pongamia 
glabra

N. glutinosa TMV AV-A Madhusudhan 
et al. (2011)Capsicum 

anuum, L. 
esculentum

ToMV AV-C

2011 Azadirachta, 
Clerodendrum, 
Parthenium

L. esculentum TLCV AV-C Srivastav et al. 
(2011)

2011 Boerhaavia diffusa 
(root), Clerodendrum 
aculeatum

C. papaya PRSV AV-C Singh et al. 
(2011a)

2011 Boerhaavia diffusa 
(root), Clerodendrum 
aculeatum, 
Azadirachta indica

V. radiata, V. 
mungo

MYMV AV-C Singh et al. 
(2011b)

2013 Boerhaavia diffusa 
(root)

C. amaranticolor, 
D. stramonium, 
N. glutinosa, C. 
tetragonoloba, V. 
sinensis

TMV, 
SRV, 
CGMMV, 
GMV

AV-A Awasthi et al. 
(2013)AV-M

Table 28.1  (continued)

(continued)
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undeniably higher. Extracts from Psidium guajava, Leucas aspera, O. sanctum, 
Tridax procumbens, Phyllanthus niruri, Thuja occidentalis, Azadirachta indica, 
Pongamia glabra and Bougainvillea spectabilis were effective in controlling TMV 
and Tomato mosaic virus (ToMV) on bell pepper and tomato plants (Deepthi et al. 
2007; Madhusudhan et al. 2011). Spraying of leaf extracts from A. indica, P. glabra 
and B. spectabilis on N. glutinosa 1  h prior to inoculation, inhibited TMV and 
ToMV by 53–62%, while reduction in virus concentration, as determined by ELISA, 
was noted in bell pepper/TMV and tomato/ToMV combinations. Treatment of seeds 
of bell pepper and tomato with these extracts enhanced seedling vigour and seed 
germination (Madhusudan et  al. 2011). Inhibition of safflower mosaic virus and 
sunflower mosaic virus by plant extracts from M. jalapa, B. spectabilis and Prosopis 
chilensis was also noted (Devi et al. 2004; Kulkarni and Byadagi 2004; Lavanya 
et al. 2009).

Year Source planta Test host Virusb

Aspect 
studiedc Reference

2013 Chlorophytum 
nepalense (root)

Solanum 
tuberosum

PVX AV-C Acharya (2013)

2014 Clerodendrum inerme C. tetragonoloba SRV AV-M Prasad et al. 
(2014)

2015 Azadirachta, Psidium, 
Chrysanthemum

A. esculentus OYVMV AV-C Kumar et al. 
(2015)

2015 Boerhaavia diffusa 
(root)

N. tabacum cv. 
Xanthi

TMV AV-B Srivastava et al. 
(2015b)AV-C

AV-M
2015 Clerodendrum 

aculeatum
N. tabacum cv. 
Samsun NN

TMV AV-M Srivastava et al. 
(2015a)

aAntiviral activity associated with leaf tissue, unless specified otherwise in the table
bBCMV-BlCM Bean common mosaic potyvirus strain blackeye cowpea mosaic, BGYMV 
Bittergourd yellow mosaic virus, BMV Brome mosaic virus, CABMV Cowpea aphid borne mosaic 
virus, CGMMV Cucumber green mottle mosaic virus, ChMV Chilli mosaic virus, CMV Cucumber 
mosaic virus, GMV Gomphrena mosaic virus, ICRSV Indian citrus ringspot virus, MYMV 
Mungbean yellow mosaic virus, OYVMV Okra yellow vein mosaic virus, PapMV Papaya mild 
mosaic virus, PeMV Pea mosaic virus, PGMV Peanut green mosaic virus, PhySMV Physalis shoe-
string mosaic virus, PLRV Potato leaf roll virus, PMV Pokeweed mosaic virus, PMV* Pumpkin 
mosaic virus, PRSV Papaya ringspot virus, PVX Potato virus X, PVY Potato virus Y, PYVMV 
Pumpkin yellow vein mosaic virus, RaMV Radish mosaic virus, RTV Rice tungro virus, SFNV 
Sunflower necrosis virus, SSMV Southern sunnhemp mosaic virus, SRV Sunnhemp rosette virus, 
TLCV Tomato leaf curl virus, TmYMV Tomato yellow mosaic/mottle virus, ToMV Tomato mosaic 
virus, TMV Tobacco mosaic virus, TRSV Tobacco ringspot virus, TSWV Tomato spotted wilt virus, 
TuMV Turnip mosaic virus, ULCV Urdbean leaf crinkle virus, WMV Watermelon mosaic virus
cAV-A Antiviral-activity, AV-B Antiviral-biochemical/molecular characterization, AV-C Antiviral-
virus control, AV-M Antiviral-mode of action

Table 28.1  (continued)
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28.3	 �Inducers of Systemic Antiviral Resistance in Plants

It soon became apparent that a few of these inhibitors could also function as induc-
ers of systemic antiviral resistance. Application of pepper extract at some distance 
from the point of virus inoculation inhibited lesion formation on cowpea and 
Chenopodium was a first in the demonstration of systemic resistance inducing abil-
ity associated with virus inhibitory sap (McKeen 1956), a finding that was later 
substantiated (Apablaza and Bernier 1972). In India, extract from Solanum melon-
gena was seen to prevent infection of TMV and mosaic disease of sunnhemp and 
Gomphrena on treated as well as non-treated leaves of the test hosts (Verma and 
Mukerjee 1975). Thus, a new era of research opened up at the Lucknow University, 
following the demonstration of induction of resistance in plants against viruses by 
pre-inoculation treatment with plant extracts from several non-host plants. In all 
such cases, the extracts or purified proteins were applied onto the lower leaves of a 
test host, 6–24 h prior to virus challenge on the lower (treated) as well as upper (un-
treated) leaves of the host plants. Induced resistance was routinely assayed on a test 
host which gave a hypersensitive response to virus infection. A decrease in the num-
ber of local lesions in the untreated leaves was taken as a measure of systemic 
induced resistance, a host-mediated response that could be reversed by simultane-
ous application of actinomycin D. In hosts that allowed the virus to spread systemi-
cally, a decrease in symptom severity or delay in symptom production post-inoculation 
was generally noted. The resistance inducing proteins were purified by using a 
series of column chromatography matrices, which included ion-exchange, 
hydrophobic-interaction, reverse-phase and molecular sieving, with an occasional 
use of adsorption chromatography on Hydroxyapatite matrix (Fig. 28.1). Almost all 
the antiviral resistance inducing proteins were highly stable to thermal denaturation 
and proteolytic degradation. Some also inhibited protein synthesis, and, hence, at a 
functional level, were RIPs. Barring very few exceptions, none of the vast majority 
of RIPs were reported to induce systemic resistance. A few resistance inducers 
(both systemic and localized inducers) that have been well characterized at the 
physico-chemical as well as the molecular level are described below and compared 
in Table 28.2.

28.4	 �Plant Species as Antiviral Sources

28.4.1	 �Clerodendrum inerme

Leaf extracts from Clerodendrum inerme (renamed as Volkameria inermis, family 
Lamiaceae) could inhibit inhibit TMV, SRV and TmYMV on C. amaranticolor by 
nearly 70–75% and TMV infection on C. amaranticolor, D. stramonium, D. metel, 
N. glutinosa and N. tabacum var. Ky-58 by almost 100%. A complete inhibition of 
SRV was noted on C. tetragonoloba when the time interval between application of 
the leaf extract and virus challenge was 24 h. The inhibitor could induce systemic 
resistance and was reported to be heat stable and non-dialyzable in nature (Verma 
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et al. 1984). Following these preliminary findings, two antiviral resistance inducing 
proteins, CIP-29 and CIP-34, were recovered from C. inerme leaves (Prasad et al. 
1995). These proteins were basic glycoproteins with molecular masses of 29 and 
34 kDa, respectively. Stability of both proteins was evident due to their resistance to 
digestion with proteinase K and exposure to temperatures up to 80 °C. No serologi-
cal relatedness to RIPs like dianthin, momordin and saporin could be demonstrated 
(Prasad et  al. 1995). Of the two, CIP-29, a monomeric protein, possessed better 
resistance inducing ability and a concentration as low as 16 μgmL−1 effectively 
induced systemic antiviral resistance (Prasad et  al. 1995). Subsequently, CIP-34 
was shown to have inhibitory effect at extremely high concentrations and comprised 
a mixture of proteins, with low levels of RIP activity (Olivieri et al. 1996). CIP-29 
inhibited protein synthesis by various cell lines, with BeWo and NB100 being the 
most sensitive, though at concentrations higher than those required for inhibition of 
in vitro protein synthesis in a rabbit reticulocyte lysate system. CIP-29 was classi-
fied as a polynucleotide:adenosine glycosidase since it released adenine not only 

LEAF/ROOT TISSUE HOMOGENATE
Precipitation of proteins with ammonium sulphate

ANION-EXCHANGE CHROMATOGRAPHY 
DEAE-CELLULOSE

CATION-EXCHANGE CHROMATOGRAPHY 
SP-SEPHAROSE/CM-SEPHAROSE

HYDROPHOBIC INTERACTION CHROMATOGRAPHY  
PHENYL SEPHAROSE

ADSORPTION CHROMATOGRAPHY 
HYDROXYAPATITE

MOLECULAR SIEVING   (SUPEROSE-6/SUPEROSE12/ SUPERDEX-75/SEPHADEX G-75)

DESALTING
SEPHADEX G-25

REVERSE PHASE
HPLCCAP-34 BDP-30 CIP-29

CIP-34
Crip-31
BBP-24 
BBP-28
CAP-I
CAP-II
AAP-27

CCP-25
CCP-27

BAP1

Fig. 28.1  Purification scheme for antiviral proteins from Clerodendrum aculeatum (CAP-34), 
Boerhaavia diffusa (BDP-30), C. inerme (CIP-29, CIP-34, Crip-31), Bougainvillea xbuttiana 
(BBP-24, BBP-28), Chenopodium amaranticolor (CAP-I, CAP-II), Amaranthus tricolor (AAP-
27), Celosia cristata (CCP-25, CCP-27) and Bougainvillea spectabilis (BAP1)
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from rRNA but also from tRNA, poly(A) as well as DNA, with the effects being 
catalytic (Olivieri et al. 1996). Leaves of C. inerme were reported to contain another 
systemic resistance inducing protein of 31  kDa, named Crip-31. This too was a 
basic antiviral protein with no effect on its resistance inducing ability following its 
incubation with proteinase K (Praveen et al. 2001).

28.4.2	 �Clerodendrum aculeatum

Leaf extract from Clerodendrum aculeatum was found to offer complete protection 
against TMV on D. stramonium, D. metel and N. glutinosa, and against SRV on C. 
tetragonoloba. However, its inhibitory effect against viruses like TMV, SRV, 
TmYMV and GMV on C. amaranticolor was less obvious, varying between 43 and 
50%. A heat-stable and resistance inducing nature was also indicated through these 

Table 28.2  Comparative characteristics of purified antiviral proteins

Proteins
Source plant/
tissue

Mr 
(kDa) pI

Resistance 
to protease Glycoprotein

Systemic 
resistance 
induction RIPa

CIP-29 Clerodendrum 
inerme/leaf

29 Basic Yes Yes Yes Yes

CIP-34 Clerodendrum 
inerme/leaf

34 Basic Yes Yes Yes ND

Crip-31 Clerodendrum 
inerme/leaf

31 Basic Yes No Yes ND

CAP 34 Clerodendrum 
aculeatum/leaf

34 Basic Yes Yes Yes Yes

BDP 30 Boerhaavia 
diffusa/root

30 Basic Yes Yes Yes Yes

BAP1 Bougainvillea 
spectabilis/leaf

28 Basic ND ND Yes Yes

BBP-24 Bougainvillea 
xbuttiana/leaf

24 Basic ND Yes Yes Yes

BBP-28 Bougainvillea 
xbuttiana/leaf

28 Basic ND Yes Yes Yes

CCP-25 Celosia cristata/
leaf

25 Basic Yes Yes No Yes

CCP-27 Celosia cristata/
leaf

27 Basic Yes Yes No Yes

CAP-I Chenopodium 
album/leaf

24 Basic ND No Yes Yes

CAP-II Chenopodium 
album/leaf

24 Basic ND No Yes Yes

AAP-27 Amaranthus 
tricolor/leaf

27 Basic ND Yes ND Yes

aRibosome-inactivating protein (RIP) nature confirmed through N-glycosidase activity/inhibition 
of in vitro protein synthesis/sequence homology
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preliminary studies on the inhibitory principal contained in the extract (Verma et al. 
1984). The systemic antiviral resistance inducer present in the C. aculeatum leaf 
extract was later purified as a 34 kDa basic glycoprotein, CA-SRI (CAP-34), pos-
sessing a pI of pH 8.65. In early works it was referred to as CA-SRI, however later 
the purified protein was renamed as CAP-34 on the basis of host from which derived 
and molecular weight. A concentration of 64 μgml−1 of the purified inducer afforded 
complete protection against TMV infection on N. tabacum Samsun NN plants. An 
overnight incubation of CAP-34 with proteinase K, pronase and trypsin failed to 
abolish its antiviral resistance inducing activity (Verma et al. 1996). Digestion of 
CAP-34 with endoproteinase arg-C yielded biologically active fragments of 14, 16, 
20, and 28  kDa each. The full length cDNA (1218  bp) with an ORF of 906  bp 
encoding a 33.9 kDa protein was cloned and sequenced (Kumar et al. 1997). Its N 
terminus, with highly hydrophobic residues, comprised the secretory signal. The 
deduced amino acid sequence showed 11–54% homology with other antiviral/
ribosome-inactivating proteins, such as PAP, MAP, dianthin, trichosanthin, luffin A 
chain, abrin A chain, ricin A chain and α-momorcharin, exhibiting a maximum with 
PAP. However, there was no hybridization seen between CAP-34 gene and Mirabilis 
genomic DNA despite there being 21% homology between MAP and the deduced 
amino acid sequence of CAP-34. The CAP-34 gene also did not hybridize with the 
genomic DNA extracted from Bougainvillea, indicating absence of significant 
homology. In vitro protein synthesis was completely inhibited by CAP-34 as well as 
the recombinant protein in a rabbit reticulocyte lysate system, while it was less effi-
ciently inhibited in a wheat germ lysate system (Kumar et al. 1997). In a separate 
study, CAP-34 was also produced in consistent amounts in the micropropagated 
plants of C. aculeatum (Srivastava et al. 2004).

28.4.3	 �Boerhaavia diffusa

Boerhaavia diffusa, family Nyctaginaceae, is a perennial herbaceous plant with 
immense medicinal value (Sreeja and Sreeja 2009). Aqueous root extract of B. dif-
fusa could induce systemic resistance and inhibit several viruses on different hosts 
when applied 24 h prior to virus inoculation (Verma and Awasthi 1979). The extract 
could check the infectivity of TMV, SRV, GMV and TRSV on C. amaranticolor by 
almost 70–95%. Virus infectivity dipped by almost 85–100% for tubular viruses 
like TMV and SRV on their several hosts as compared to 55–73% for spherical 
viruses like GMV and TRSV on their respective hosts (Verma and Awasthi 1979). 
The inducer was also present in the plantlets established in vitro from the callus 
cultures of B. diffusa (Gupta et al. 2004), and transfer of resistance in the explants 
regenerated from tobacco plants treated with B. diffusa root extract was also dem-
onstrated (Lohani et al. 2007). An attempt at characterization of the inducer was 
made in an early study which pointed to its heat-stable glycoprotein nature (Verma 
and Awasthi 1979; Verma et al. 1979a, b, c). Following its purification to homogene-
ity, the resistance inducing protein, BDP-30, was shown to be a 30 kDa basic glyco-
protein, with pI equal to or greater than pH 9.0. BDP-30 showed thermal stability 
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upto 80  °C and its antiviral activity remained unaltered even after an overnight 
incubation with proteinase K, a non-specific protease. Failure to locate TMV coat 
protein as well as TMV RNA in induced resistant N. tabacum cv. Xanthi, strongly 
suggested inhibition of TMV replication in the treated plants due to BDP-30 appli-
cation (Srivastava et al. 2015b). The BDP-30-treated plants also remained symp-
tompless (Fig. 28.2). In-gel proteolytic digestion of BDP-30 yielded two peptides, 
KLYDIPPLR and KVTLPYSGNYER, that shared complete sequence identity with 
α-Trichosanthin (TCS), an RIP present in the roots of Trichosanthes kirilowii, while 
sharing homologies of 78% and 100%, respectively, with Bryodin, another RIP con-
tained in the roots of Bryonia dioica (Srivastava et al. 2015b).

28.4.4	 �Bougainvillea spectabilis and B. xbuttiana

Antiviral activity in the leaf extract of B. spectabilis, family Nyctaginaceae was first 
reported in 1983 (Verma and Dwivedi 1983). Multiple sprays of the extract afforded 
complete protection to Crotalaria juncea and Cucumis melo against infection by 
SRV and CGMMV, while TMV, TmYMV and PhySMV were completely inhibited 

Fig. 28.2  (a) Induction of systemic antiviral resistance in Nicotiana tabacum cv. Xanthi. Basal 
leaves of tobacco Xanthi were treated with DW (control) and BDP-30, the purified antiviral protein 
from Boerhaavia diffusa roots (treated). The upper (untreated) leaves of both plants were inocu-
lated with TMV, 18 h post-treatment, and plants observed for development of mosaic after 21 days. 
(b) Detection of TMV RNA by RT-PCR. RT-PCR was carried out with TMV coat protein specific 
primers using the total RNA extracted from the DW treated set after 7 days of TMV inoculation 
(lane 1) and BDP-30-treated sets, after 7, 14 and 21 days of TMV inoculation (lanes 2, 3 and 4, 
respectively). The expected 480 bp amplified product can be seen in the control set (lane 1). DNA 
ladder (lane 5) (c) Detection of TMV coat protein by immunoblot. Leaf sap from control (C) and 
BDP-30 treated (T) plants was analyzed by SDS-PAGE after Coomassie staining (Gel) and 
Immunoblotting (Blot). Lanes were loaded with leaf saps from 1, 3, 7, 14, and 21 days after TMV 
inoculation
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on L. esculentum as evident from the local lesion bioassay on C. amaranticolor 
(Verma and Dwivedi 1983). An RIP was purified from the leaves of B. spectabilis 
(Bolognesi et al. 1997), but its ability to induce systemic antiviral resistance was not 
studied. A 28 kDa basic (pI >8.6) antiviral protein, called BAP I, was purified from 
the roots of B. spectabilis that could inhibit mechanical transmission of TSWV and 
also interfered with in vitro protein synthesis (Balasaraswathi et al. 1998). A partial 
BAP-cDNA was synthesized from the leaf mRNA, cloned and sequenced. The 
probable ORF was translated and showed a poor relatedness to MAP, PAP and 
CAP-34 (Rajesh et al. 2005).

Antiviral principals and systemic resistance inducers were also detectable in the 
leaf extract from B. xbuttiana. Two highly basic glycoproteins of 24 kDa (pI 10.5) 
and 28  kDa (pI 10.0), named BBP-24 and BBP-28, respectively, were reported 
(Narwal et al. 2001a). An antiviral protein (AVP) that could deadenylate rRNA, and 
hence possibly functioned as a ribosome-inactivating protein, was also detected but 
its molecular weight was not specified (Narwal et al. 2001b). Subsequently, AVPs 
from B. xbuttiana were reported to exhibit RNase as well as DNase activity against 
viral RNA and supercoiled plasmid DNA, respectively (Bhatia and Lodha 2005). In 
this case, though not mentioned, the tests were perhaps conducted using a mixture 
of the two proteins that had been purified earlier (Narwal et al. 2001a). A full-length 
cDNA sequence (1364 bp) encoding a 35.49 kDa protein of 319 amino acids was 
also isolated from the leaves of B. xbuttiana. The deduced protein, termed BBAP1, 
possessed the catalytic RIP domain and was phylogenetically more closely related 
to RIPs from Nyctaginaceae family, but distantly related to PAP (Choudhary et al. 
2008). The purified recombinant protein exhibited rRNA N-glycosidase activity 
(Choudhary et al. 2008) and demonstrated antiviral activity against Groundnut bud 
necrosis virus, antifungal activity against Trichoderma harzianum and Rhizoctonia 
solani as well as insecticidal activity against a voracious insect pest, Helicoverpa 
armigera (Lodha and Choudhary 2011; Lodha et al. 2010).

28.4.5	 �Celosia cristata

Aqueous leaf extract of Celosia cristata, family Amaranthaceae, was reported to 
inhibit plant virus infection, offering localized resistance to the host plant (Baranwal 
and Verma 1992). The inhibitor was partially characterized as a protease resistant 
and thermostable glycoprotein of Mr 21–22  kDa (Baranwal and Verma 1997). 
Subsequently, two glycoproteins, CCP-25 (Mr 25 kDa) and CCP-27 (Mr 27 kDa), 
were purified from the leaves and shown to inhibit several mechanically transmitted 
viruses on hosts responding hypersensitively or systemically to virus infection. A 
growth-stage dependent variation was observed in the concentration of the two pro-
teins and they were able to withstand protease digestion in their native state 
(Balasubrahmanyam et  al. 2000). Depurination studies carried out with CCP-25 
yielded a diagnostic fragment from yeast rRNA, indicating its RIP nature. It was 
also shown to inhibit the in vitro translation of Brome mosaic virus and Pokeweed 
mosaic virus RNA (Baranwal et  al. 2002). Through a modification in the 
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purification protocol, the N-terminally free proteins were obtained which allowed 
partial N-terminal sequencing of CCP-25 (Gholizadeh and Kapoor 2004). 
Degenerate primers designed against the conserved RIP domain yielded a small 
cDNA fragment (150 bp) from C. cristata leaves, which when expressed in E. coli 
yielded a fusion protein of 57 kDa. The purified recombinant protein was reported 
to inhibit plant viruses as well (Gholizadeh et al. 2005). Post-flowering stage of C. 
cristata gave a full-length cDNA clone (1015 bp), encoding an ORF deduced to 
yield 283 amino acids. The purified recombinant protein (reCCP-27) inhibited 
in vitro protein synthesis in a rabbit reticulocyte lysate as well as on tobacco ribo-
somes, in addition to exhibiting antiviral activity towards TMV and SRV (Begam 
et al. 2006).

28.4.6	 �Chenopodium album

Leaf extract from Chenopodium species, family Chenopodiaceae, inhibits plant 
viruses (Smookler 1971; Alberghina 1976). C. ambrosoides aqueous leaf extract 
inhibited TMV and SRV on different hosts, but not on C. amaranticolor. Furthermore, 
like C. cristata, the extract could not induce systemic antiviral resistance (Verma 
and Baranwal 1983). Antiviral proteins that could impart resistance in hypersensi-
tive hosts against several viruses were purified from C. album and also partially 
characterized (Dutt et al. 2000). This study was followed by a more comprehensive 
report of two antiviral proteins from the same source, CAP-I and CAP-II, which 
inhibited virus replication in systemic and hypersensitive host/virus combinations 
and worked as resistance inducing proteins. Both proteins were basic in nature 
(pI~10.2), contained no carbohydrate, and inhibited virus infection to different 
extents, CAP-I was at least 2.5-fold more effective than CAP-II. Despite possessing 
the same molecular weight of 24 kDa, both proteins differed in their amino acid 
composition and N-terminal sequence (Dutt et al. 2003). They catalyzed the depu-
rination of rRNA extracted from tobacco ribosomes and hence exhibited 
N-glycosidase activity. Since they could also degrade TMV RNA, they were thought 
to be associated with RNase activity as well (Dutt et al. 2004).

28.4.7	 �Amaranthus tricolor

Amaranthus tricolor, family Amaranthaceae, antiviral protein (AAP-27) was iso-
lated from dried leaves of the plant and characterized as a 27 kDa basic monomeric 
glycoprotein (pI 9.8) that could inhibit plant viruses. It also exhibited N-glycosidase 
and RNase activities. Its full-length cDNA comprised 1058 bp and encoded an ORF 
of 297 amino acids. The deduced amino acid sequence contained the RIP domain 
and also exhibited varied levels of homology with other antiviral proteins (Roy et al. 
2006).
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28.4.8	 �Cuscuta reflexa

Filaments of Cuscuta reflexa, family Cuscutaceae, parasitizing Zizyphus jujube, 
contained a proteinaceous inhibitor of plant viruses. The inhibitor was isolated fol-
lowing fractionation of the extract with a series of organic solvents and subsequent 
precipitation with a saturated solution of ammonium sulphate. Molecular sieving on 
Sephadex G-200 column yielded a virus inhibitory fraction with characteristics of a 
protein, and a molecular weight between 14 and 18 kDa. The inhibitor induced both 
local and systemic antiviral resistance and operated through an AMD-sensitive 
mechanism (Awasthi 1981, 1982).

28.5	 �Antiviral Activity of Other Plant Constituents

Apart from proteins, inhibitory activity was also identified in polysaccharides, plant 
latex, alkaloids, flavonoids, phenolic acids, tannins or essential oils, with effects on 
viruses, bacteria and fungi. A polysaccharide, T-poly, obtained from culture filtrates 
of a fungus Trichothecium roseum, could inhibit viruses on hypersensitive as well as 
non-hypersensitive hosts and could induce systemic resistance in these plants 
(Gupta et  al. 1973; Chandra and Gupta 1981). In addition to being proficient in 
exhibiting antioxidant activity, flavonoids are also known to inhibit animal viruses 
(Kumar and Pandey 2013). Flavonoids (quercetin) and coumarins inhibited the 
infectivity of Southern Sunnhemp mosaic virus on its local lesion host Cyamopsis 
tetragonoloba (Chandra et  al. 1975). Tannins from Terminalia chebula and 
Chrysobalanus icacao also functioned as inhibitors of viruses (Verma and 
Raychaudhuri 1970, 1972). Plant latex from Calotropis procera, Ficus elastica, F. 
nitida, Euphorbia pulcherrima, inhibited TMV (Khurana and Singh 1972; Lal and 
Verma 1974; Nagarajan and Murty 1975; Rafiq et al. 1985) and Tobacco necrosis 
virus (TNV) on bean, Bean yellow mosaic virus (BYMV) on broad bean, and 
Zucchini yellow mosaic virus (ZYMV) on squash (Mahmoud et al. 2010). The anti-
viral activity perhaps stemmed from proteases and other defence-related proteins 
which the latex contain (Kim et al. 2003). Sterols from Artemisia annua were iden-
tified as virus inhibitory agents (Khan et al. 1991). Effect of neem and custard apple 
oil was studied on rice tungro virus transmission by Nephotettix virescens 
(Mariappan and Saxena 1983), while neem and Phyllanthus oils were also studied 
for the inhibition of TMV and ToMV on tobacco, bell pepper and tomato 
(Madhusudhan et al. 2005, 2011). Neem oil could also inhibit PYVMV on pumpkin 
under glass house conditions, with over 78% reduction in virus transmission 
(Jayashree et al. 1999). Essential oils present in Foeniculum vulgare and Pimpinella 
anisum were also associated with virus inhibitory properties (Shukla et al. 1989) 
and essential oil extract of Chenopodium ambrosoides (EOCA) was found to be 
effective against Myzus persicae (Rajapakse and Janaki 2006).
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28.6	 �Control of Plant Viruses by Inhibitors/Systemic 
Resistance Inducers

Plasticity of the viral genome poses a major challenge in protecting crops from viral 
infection. One of the finest approaches for durable resistance is offered by the tradi-
tional method of breeding, while development of transgenic crops resistant to plant 
viruses is a relatively novel approach (Cillo and Palukaitis 2014). Induction of sys-
temic resistance in plants by application of phytoproteins/inhibitors for disease con-
trol has also been successfully used for some time now, especially where virus 
resistant cultivars are not available. Viral mosaic on papaya, cucurbits, urdbean, 
mungbean, and okra is a very common sight and several efforts are on to prevent 
infection on these important crops. In general, the resistance inducing proteins or 
inhibitors are administered as a foliar spray, repeated at specified intervals, often 
over a period of time till the crop produce is ready for harvesting. Sometimes, the 
resistance inducers are coupled with primers such as bovine serum albumin, milk 
proteins, oils or detergents, etc. for enhanced and durable resistance. The treatments 
work well under both glass house and field conditions, and are effective even under 
intense pathogen pressure. The effect that these inducers have on the sprayed plants 
varies, depending upon the host-virus system. In general, the plants show more 
luxuriant growth, along with a several fold increase in crop yield and improved 
response to varied stresses. Legumes, in addition, show improved nodulation 
(Verma et al. 1985b). With the defence responses switched on quickly, the sprayed 
plants are able to protect themselves, thus lowering the incidence of disease. Treated 
plants either show absence of virus or a low virus titre in ELISA or immunoblots. 
Often the viral RNA transcripts remain absent in the RT-PCR reactions set up to 
detect the viral coat protein genes (Srivastava et al. 2009, 2015a, b).

Aqueous extracts from B. diffusa, Cuscuta reflexa, Datura metel and Solanum 
melongena induced systemic antiviral resistance against TMV and TRSV in N. 
tabacum var. NP-31, with the active virus being assayed on N. glutinosa. Such 
plants were resistant for up to three days (Verma et al. 1979b). This demonstration 
of antiviral resistance induction in a host showing a non-hypersensitive reaction to 
virus infection was soon followed by experiments designed to control virus infec-
tion on economically important crops. Foliar sprays were given at regular intervals 
either to prevent natural virus infections or infections following challenge inocula-
tion. Effective control of yellow mosaic disease on mung and urdbeans was reported 
with aqueous leaf extracts of C. fragrans and Aerva sanguinolenta and root extract 
of B. diffusa. The extracts were administered as foliar sprays at intervals of 3–4 days 
spanning a period of 6 weeks (Verma et  al. 1985b). The protection exhibited an 
interesting pattern, not being apparent in the initial stages of the experiment, but 
checking the virus infection and spread in the treated plants between fourth and fifth 
week, when the control set of plants displayed a sharp rise in the disease incidence. 
The protection afforded against viral infection and improvement in growth, yield 
and nodulation was maximal by C. fragrans extract (Verma et al. 1985b). Similarly, 
a lowering of disease incidence by 90% and the accompanying delay in the onset of 
yellow mosaic disease together with mitigation of symptom severity was reported 
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on mungbean (Vigna radiata) by B. diffusa root extract, with plants showing 
improved nodulation and yield (Singh et al. 2004). B. diffusa root extract could also 
induce resistance against TMV, CMV, SRV, GMV, Cucumber green mottle mosaic 
virus (CGMMV) on tobacco, tomato, C. juncea, G. globosa and Lagenaria spp., 
respectively. The most effective spray regimen consisted of six foliar sprays, spread 
over three days, followed by virus inoculations 24 h after the last spray. The treated 
plants showed absolute protection from virus infection even after 45 days of virus 
inoculation (Awasthi et  al. 1984). B. diffusa root extract and C. aculeatum leaf 
extract, either used in combination or alone, were effective in inducing resistance 
against PRSV (Awasthi and Singh 2009; Singh et al. 2011a, b, c). C. aculeatum leaf 
extract was used to control Tomato leaf curl virus (Baranwal and Ahmad 1997), and 
when primed with proteinaceous additives, it could successfully manage SRV and 
Tobacco leaf curl virus infection on C. juncea and tobacco (Verma and Varsha 
1995a, b). CAP-34 (previously called CA-SRI), the purified resistance inducing 
protein from C. aculeatum, could prevent PRSV infection on papaya as well. Only 
10% of the CAP-34 treated plants came down with low level symptoms of mild 
mosaic, with no observable virus, viral protein or viral RNA in the remaining plants 
of the treated set (Srivastava et al. 2009). Pre-inoculation sprays with extracts from 
B. spectabilis and Prosopis chilensis worked against Okra yellow vein mosaic virus 
(Pun et al. 1999) and Sunflower necrosis virus (Lavanya et al. 2009). The virus titer 
was slashed in sunflower and cowpea plants treated with these extracts. Reduced 
disease incidence (33%) was observed in bitter gourd plants treated with B. specta-
bilis and challenge inoculated with bean golden yellow mosaic virus (BGYMV) 
(Rajinimala et  al. 2009). B. spectabilis and M. jalapa leaf extracts reduced leaf 
crinkle disease on blackgram caused by the urdbean leaf crinkle virus (Karthikeyan 
et al. 2009). Leaf extracts of M. jalapa, Datura metel and Azadirachta indica (neem) 
reduced mungbean yellow mosaic infection on black gram (Venkatesan et al. 2010). 
Viral diseases on cucumber were prevented by extracts from A. indica, C. auleatum 
and Terminalia arjuna, and it was also observed that seed treatment with neem 
extract followed by foliar sprays provided good protection (Kumar and Awasthi 
2009). Leaf and seed kernel extract of neem also interfered with aphid transmission 
of a virus causing mosaic disease on Brassica juncea, reducing disease incidence by 
46–54%, while extract from Jatropha curcas was not as effective (Devi et al. 2008).

28.7	 �Mode of Action of SRIs

The antiviral resistance induced by plant extracts or purified resistance inducing 
proteins was sensitive to treatment with the transcription inhibitor, actinomycin D 
(AMD). Effect of AMD on induced resistance was routinely evaluated by using 
AMD concomitantly with the inducers or at various time intervals after the treat-
ment of leaves with the inducer (Verma and Awasthi 1979; Verma and Dwivedi 
1984; Verma et al. 1984; Prasad et al. 1995). In all cases, a breakdown in the induc-
tion of antiviral resistance was seen upon concomitant application of AMD, as evi-
dent from an increase in lesion number to the control level. The effect of AMD on 
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reversal of induced resistance diminished with increase in the time interval between 
the application of inducer and AMD. Furthermore, in vitro incubation of the virus 
along with the leaf extract from the treated plants, from both site and remote site 
leaves, could inhibit TMV, SRV, GMV, TRSV, TmYMV and Physalis shoestring 
mosaic virus (PhySMV) on their assay hosts (Verma and Dwivedi 1984). This pre-
liminary observation led to the suggestion that phytoprotein-mediated induction of 
resistance involved host transcription and that induced resistant tissues possibly car-
ried a virus-inhibitory agent (VIA) that could inactivate viruses in vitro (Verma and 
Awasthi 1980; Mukerjee et al. 1981; Verma and Dwivedi 1984; Verma et al. 1985a; 
Prasad et al. 1995). A proteinaceous nature of the VIAs induced by B. spectabilis 
and B. diffusa extracts was proposed (Verma and Awasthi 1980; Verma and Dwivedi 
1984). Cyamopsis plants treated with CAP-34 (CA-SRI) accumulated a 34  kDa 
basic protein, as compared to the DW-treated fraction, which was also unable to 
inhibit the virus in vitro (Verma et al. 1996). This 34 kDa protein could have been 
the elusive VIA that could not be purified to homogeneity. A complete characteriza-
tion of the VIAs isolated from resistant C. tetragonoloba plants pre-treated with 
CIP-29, the purified inducer from C. inerme leaves, has since been reported (Prasad 
et  al. 2014) and the leaf extract from resistant tissues inhibited SRV, TMV and 
PRSV in vitro. Two VIAs, CT-VIA-32 (Mr 32 kDa) and CT-VIA-62 (Mr 62 kDa) 
were isolated from such tissues. The CIP-29 inducible CT-VIA-62 displayed better 
antiviral activity and was characterized as a basic glycoprotein. Its peptides 
sequenced through LC/MS/MS shared homology with a lectin from Medicago trun-
catula which carried a mannose-binding lectin domain (Prasad et al. 2014). In a 
related effort, CAP-34 inducible CP-VIA-34, a virus-inhibitory basic protein, was 
isolated from resistant leaf tissues of Carica papaya (Srivastava et al. 2015a). No 
protease, DNase or RNase activity was found associated with CP-VIA-34. Such 
proteins, though antiviral but not labelled as VIA, were also detected in C. 
tetragonoloba plants treated with the purified antiviral proteins from C. album. Two 
polypeptides of 17 and 26  kDa accumulated in the un-treated leaves of C. 
tetragonoloba plants whose basal leaves were treated with the inducer (Dutt et al. 
2004). It was obvious that VIAs were accumulating in the plants treated with such 
inducers, but were either absent or present in very low amounts in the un-treated 
plants (Verma et  al. 1996; Prasad et  al. 2014). Furthermore, these VIAs differed 
from the inducers, in that they were unable to induce resistance in plants, though the 
polyclonal antiserum raised against CIP-29 did recognize CT-VIA-32 (Prasad et al. 
2014). Detection of polynucleotide:adenosine N-glycosidase activity in CIP-29 and 
inhibition of in vitro protein synthesis by CAP-34, along with the occurrence of 
inducible proteins (VIAs), has complicated any thoughts on the probable mode of 
action of the resistance inducing proteins based on the inactivation of the virus by 
these VIAs alone.

The role of PAP in plant virus inhibition, and in plant disease resistance, has been 
dealt with in great detail in a recent review (Di and Tumer 2015). RIPs are associ-
ated with depurination linked to ribosome inhibition, cytotoxicity and antiviral 
activity. Experiments were developed to delink these associations so as to pinpoint 
the reason for virus inhibition. Antiviral activity of PAP was earlier correlated and 
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attributed to its RNA N-glycosidase enzymic activity on ribosomes. PAP is a secre-
tory RIP and exists in several isoforms. It forms homodimer complexes in the cyto-
sol, which are less active on rRNA as compared to the monomeric form present in 
the apoplasts (Tourlakis et al. 2010), and this was the presumed way to avoid depu-
rination of pokeweed rRNA, a possible explanation to Allard’s findings (Allard 
1918). PAP-specific antibodies revealed its extracellular location, with PAP being 
sequestered in the cell wall matrix (Ready et  al. 1986). Inhibition of ribosome-
mediated viral protein synthesis by PAP was possible if there was a release of the 
inhibitor (PAP) from the cell wall into the cytosol following the virus inoculation 
(Lodge et al. 1993). A positive correlation was also shown between PAP concentra-
tion, inhibition of TMV and depurination of ribosomes (Chen et al. 1993).

All this while it was believed that ribosome-inactivation led to virus inhibition. 
However, this hypothesis was challenged by the finding that the C-terminus of PAP 
was required for toxicity and depurination of ribosomes but not for antiviral activity. 
Thus, depurination of ribosomes was not the only mechanism for virus inhibition 
(Tumer et al. 1997), and soon overwhelming evidence came in support of this pos-
sibility (Zoubenko et al. 2000). It was subsequently reported that non-depurinating 
mutants of PAP could still depurinate capped BMV and PVX viral RNA and inhibit 
their translation in vitro (Hudak et al. 2000). These mutants had an intact active site 
but were altered such that they were unable to bind to the ribosomes and cause their 
depurination. However, given that in a virus infected cell the capped viral RNAs 
would be present in huge numbers, they would become the preferred substrate for 
PAP, leading to their depurination. PAP was later shown to directly depurinate BMV 
viral RNA3, and this depurination was held responsible for decreased efficiency of 
packaging of the viral genome and consequently generation of fewer infectious par-
ticles (Karran and Hudak 2008, 2011). No effect was observed on the quality of the 
virus. PAP was also able to inhibit uncapped TBSV and satellite panicum mosaic 
virus (SPMV) in vivo without causing detectable depurination in the viral RNAs 
(Vivanco and Tumer 2003). Site-directed mutagenesis in the central domain of PAP 
led to loss of cytotoxicity but not its ability to depurinate indicating that depurina-
tion was not the sole reason for cytotoxicity (Hudak et al. 2004). Yeast cells express-
ing PAP showed apoptotic features and an anti-apoptotic protein reduced cell 
cytotoxicity of PAP, without affecting ribosomal depurination and translation inhi-
bition (Cakir and Tumer 2015). Finally, RIPs depurinate substrates other than rRNA 
as well (Olivieri et al. 1996). Thus, RIPs inhibit plant viruses, but not via inactiva-
tion of ribosomes, while resistance inducing proteins like CIP-29 and CAP-34, pos-
sess RIP function, inhibit viruses and also induce antiviral resistance in plants and 
VIA. Incubating the virus along with the VIA in vitro was devoid of any detrimental 
effect on the virus per se, as fully infectious virus particle could be recovered fol-
lowing their separation from the VIA by ultracentrifugation. Hence the VIA partici-
pates in vivo in plant defence at some level, its production being triggered by the 
application of such inducers.

Besides VIA, there are other examples of inducible antiviral proteins in plants. 
Nagaich and Singh (1970) reported an inhibitory agent in Capsicum pendulum inoc-
ulated with PVX that could prevent PVX infectivity on Gomphrena globosa and 
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Solanum tuberosum. RIPs called Beetins (BE27 and BE29) were induced in Beta 
vulgaris leaves following infection with Artichoke mottled crinkle virus (AMCV) 
and application of H2O2 and salicylic acid (Iglesias et al. 2005). Its external applica-
tion was able to control AMCV infection. JIP-60, a jasmonate inducible 60 kDa 
RIP, was described from barley (Chaudhry et al. 1994; Reinbothe et al. 1994) and 
shown to alleviate stress in plants and delay the onset of senescence (Rustgi et al. 
2014). Induced production of antiviral proteins in tobacco plants displaying SAR is 
also known, variously termed as the antiviral factor (AVF) (Sela and Applebaum 
1962; Mozes et al. 1978) and the inhibitor of replication (IVR) (Loebenstein and 
Gera 1981; Gera et al. 1990). Tobacco and tomato plants transformed with the IVR 
gene were resistant to TMV and a variety of fungal pathogens (Loebenstein et al. 
2010; Elad et al. 2012). Two forms of AVF, gp22 and gp35, were determined to be 
closely related to two pathogenesis-related (PR) proteins, PR-5 (chitinases) and 
PR-3 (1,3-ß-glucanases), although both of these PRs are devoid of any antiviral 
activity (Edelbaum et al. 1991).

PR-proteins were initially discovered in tobacco plants reacting hypersensitively 
to TMV infection, and were associated with the development of resistance termed 
as systemic acquired resistance (SAR) (Gianinazzi et al. 1970; Van Loon and Van 
Kammen 1970; Stintzi et al. 1993). Induced expression of the PR-proteins in resis-
tant plants, in particular PR 1a, along with an enhanced accumulation of endoge-
nous levels of salicylic acid (SA), was always noticed and hence these came to be 
viewed as established markers for SAR. SAR engages a number of signalling mol-
ecules in a cross-talk and has a huge potential in crop protection due to the broad 
spectrum nature of resistance conferred on the plants against subsequent invasion 
by diverse pathogens and even an insect (McIntyre et al. 1981; Kessler and Baldwin 
2002; Durrant and Dong 2004; Fu and Dong 2013; Gozzo and Faoro 2013). PR 
proteins have been assigned to 14 families, some being directly antimicrobial while 
others with proposed indirect roles in plant defence (Stintzi et  al. 1993; Edreva 
2005; Van Loon et al. 2006). Enzymic activities attributed to various PRs include 
β-1,3-glucanase (PR-2), chitinase (PR-3, PR-4, PR-8, PR-11), proteinase (PR-7), 
peroxidise (PR-9), ribonuclease-like (PR-10), etc. PR-10 family that shows homol-
ogy to ribonucleases, is of special interest in the context of plant virus control (Park 
et al. 2004).

Expression of such antimicrobial proteins in plant tissues was expected to curb 
pathogen invasion and spread. Thus, PR-1, PR-2 and PR-5 genes have been incor-
porated in crops like cotton, barley, peanut, potato, rice, etc. for resistance against 
various fungal pathogens (Collinge et  al. 2010). Creation of transgenic plants 
expressing RIPs proved to be relatively difficult because of their cytotoxicity (Lodge 
et al. 1993). However, a variant of PAP, PAPv, obtained through mutagenesis was 
less toxic than the wild type PAPw, and was expressed efficiently in transgenic 
tobacco, although transgenics over-expressing PAP were stunted and exhibited mot-
tled leaves due to apoptosis, while low PAP-expressing plants were normal in 
appearance (Lodge et al. 1993). Transgenic tobacco and potato plants expressing 
PAP were resistant to PVX, PVY and CMV, thus PAP provided broad spectrum 
resistance to plant viruses (Lodge et al. 1993). Similarly, protection against viruses 
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was evident in transgenic plants expressing other RIPs, including type II (Krishna 
et al. 2002; Chen et al. 2002; Vandenbussche et al. 2004). A few cases of enhanced 
resistance to important insects species was also reported (Shahidi-Noghabi et al. 
2009). In a majority of cases, the transgenic plants expressing RIPs did not produce 
PR proteins, but PAP was shown to upregulate the expression of PR1 and PR5 genes 
in transgenic tobacco and such plants displayed enhanced resistance to Tobacco 
etch virus (TEV) and fungal pathogens (Hu and Reddy 1997; Schaad et al. 2000; 
Zoubenko et al. 2000). However, the accompanying increase in levels of SA was not 
always noticed and hence RIPs were purported to follow a SA-independent path-
way. Induced systemic resistance (ISR) by rhizobacteria may also involve PR pro-
teins (Kim et al. 2015). Volatiles of Bacillus sp. strain JS induce the expression of 
several PR genes, causing an up-regulation of glucanases (PR-2), chitinases (PR-3 
and PR-4), peroxidise (PR-9) and PR-14 in tobacco plants exhibiting resistance to 
fungal pathogens (Kim et al. 2015). Thus the differences in the pathways utilized by 
the various agents may not always be distinct.

Molecular changes associated with the induction of resistance against viruses by 
phytoproteins like CIP-29 and CAP-34 have not been studied in detail. In addition 
to the ubiquity of the inducible VIAs, CAP-34 treated C. tetragonoloba plants also 
yielded two basic isoforms of β-1,3-glucanase (PR-2), possessing an Mr of 34 and 
36 kDa (Prasad et al. 2001). Enzymic activities need to be assigned to the induced 
VIAs as well and probable RIP activity cannot be ruled out. Enhancement in the 
total protein content and activity profiles of oxidoreductases like catalase, polyphe-
noloxidase and peroxidises was observed in Samsun NN tobacco treated with C. 
aculeatum leaf extract and C. tetragonoloba plants treated with C. aculeatum, C. 
fragrans and B. diffusa extracts (Verma and Prasad 1988, 1992). However, the 
RNase and DNase activity profiles in the resistant plants remained unaltered (Verma 
and Prasad 1992). Increase in the activity of superoxide dismutase and peroxidise 
and a decrease in catalase activity was noted in tobacco plants treated with AVPs 
from B. xbuttiana, whereas a total reversal in the activity pattern was noted for TMV 
infected tobacco (Bhatia et al. 2004). Antioxidant activity of C. cristata antiviral 
proteins, CCP-25 and CCP-27, was also reported. Enhancement in the activities of 
peroxidise, catalase and poly-phenol oxidase were noted in plants treated with these 
proteins and challenged with TMV (Gholizadeh et al. 2004). Similarly, AVP treated 
sunflower and black gram plants showed increase in peroxidise, polyphenol oxidase 
and phenylalanine ammonia lyase activies, along with enhanced phenolic content 
(Karthikeyan et al. 2009; Lavanya et al. 2009). Thus induction of defence-related 
enzymes and proteins appears to be generally associated with phytoprotein medi-
ated induced resistance in plants. The observation that virus infection is inhibited in 
spatially separated tissues that have not received the inducer treatment prompted a 
study involving calcium-mediated signalling which is thought to be important for 
viral movement and replication. In a study taken up to determine the effect of a 
calcium channel blocker, verapamil, on induced resistance, it was noticed that its 
application increased the calcium efflux from leaf segments, while verapamil itself 
induced resistance and inhibited TMV infection (Singh et al. 2011c).
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28.8	 �Concluding Remarks

In a multicomponent defence response to virus infection, the inducers/inhibitors 
and VIAs are envisaged to play a major role in protecting plants from virus infection 
and enhancing crop yield. It is entirely possible that ISR, SAR and systemic induced 
resistance by plant proteins, may run as parallel pathways, destined to converge 
eventually and give identical end results. Tremendous progress has been made in the 
recent years in the field of induced resistance in plants as a method of plant virus 
control. However, at a global level, only compounds like benzothiadiazole and chi-
tosan and seed bacterization by PGPR have been occasionally used for effective 
control in open fields (Faoro and Gozzo 2015). Phytoprotein-mediated induced sys-
temic protection in plants, having proven its worth in biological control, has the 
potential to become the much sought-after panacea in the management of plant 
viruses, with a well deserved place in any IPM programme, if not as a stand-alone 
practice.
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