
Chapter 9
Describing Molecules in Motion by Quantum
Many-Body Methods

Ove Christiansen

Abstract For a complete quantum description of molecular systems, it is necessary

to solve Schrödinger equations for both electrons and nuclei. In this chapter, focus is

given to approximate methods for solving the nuclear Schrödinger equation. Simi-

larities and dissimilarities compared to the practice employed for the electronic case

will be noted. A many-body view on potential energy surfaces will be used to moti-

vate a many-body view on the general problem of solving the nuclear Schrödinger

equation. A second quantization multimode formalism will be outlined and used

to formulate many-body wave functions for nuclear motion. The vibrational self-

consistent field (VSCF) method is introduced. Full vibrational configuration inter-

action (FVCI) is introduced as the reference, before primary attention is given to

vibrational coupled cluster (VCC) theory. VCC theory is furthermore analysed from

a tensor decomposition perspective and with a perspective to scaling with system

size.

Keywords Molecules in motion ⋅ Anharmonic molecular vibrations ⋅ Vibrational

coupled cluster ⋅ Many-body methods ⋅ Potential energy surfaces ⋅ Second

quantization ⋅ Tensors

9.1 Introducing

Predicting the behaviour of molecules on the basis of quantum mechanics requires

a quantum treatment of both the electrons and the atomic nuclei. In the Born-

Oppenheimer approximation, we can can consider the electronic and the nuclear

problem as two separate, but coupled problems. Through the years a number of com-

putational tools have been developed for solving the electronic Schrödinger equation.

Among the most successful of these methods are many-body methods such as per-

turbation theory and coupled cluster theory, and they are now text book methods

[1, 2]. Today coupled cluster calculations are in many contexts the golden standard.
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In this chapter, we consider many-body methods for the nuclear Schrödinger equa-

tion. For solving the nuclear Schrödinger equation the application of many-body

methods has been considerable less common, and for nuclear motion variational

treatments using a linear expansion in a basis is prevailing. Nevertheless, there is still

key advantages of a many-body approach. In the next chapter, I will highlight some

general differences between electronic structure theory and vibrational structure the-

ory. Thereafter, I will introduce hierarchies of approximations for the Hamiltonian

that can be denoted many-body like and subsequently discuss construction of wave

functions in second quantization, including, in particular, vibrational self-consistent

field (VSCF), vibrational configuration interaction (VCI) and vibrational coupled

cluster (VCC) methods. I will also present a chapter with a tensor perspective on the

VCC wave function.

9.2 Electronic and Nuclear Schrödinger Equations

Consider a molecular system described by quantum mechanics in the non-relativistic

time-independent Schrödinger picture

(Te + Tn + Vee + Vnn + Ven)𝛹tot(𝐫,𝐑) = E𝛹tot(𝐫,𝐑) (9.1)

Here 𝐫 and 𝐑 symbolize, respectively, electronic and nuclear coordinates. We invoke

from the outset the Born-Oppenheimer approximation. The electronic Schrödinger

equation for a set of clamped nuclei determines the energy Eel(𝐑) as a function of

nuclear coordinates

(Te + Vee + Vnn + Ven)𝛹el(𝐫;𝐑) = Eel(𝐑)𝛹el(𝐫;𝐑) (9.2)

This electronic energy appears as the potential in the nuclear Schrödinger equation,

i.e. with V = Eel(𝐑), we write

(Tn + V)𝛹n(𝐑) = En𝛹n(𝐑) (9.3)

where En is the total energy. In general, nuclear motion covers both translation, rota-

tion and vibration.

Consider the vibrational motion of a nonlinear molecule with N atoms, lead-

ing to M = 3N − 6 vibrational degrees of freedom denoted modes, separating out

translational and rotational motion. The internal relative nuclear motion is thereby

described by a set of M coordinates denoted q1, q2,… , qM . While electronic struc-

ture theory deals with indistinguishable electrons where each is described by a set

of cartesian coordinates as well as a spin coordinate, the internal motion of mole-

cules is described by a set of distinguishable degrees of freedom. The particular set

of coordinates may be a set of normal coordinates (a rectilinear coordinate set) or

general curvilinear coordinates, such as bond lengths, angles and dihedrals.
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The immediate consequence of this is that in the electronic case the kinetic energy

operator is simple (using atomic units throughout),

Te =
∑

i

1
2
∇2

i (9.4)

In contrast, already in normal coordinates the exact kinetic operator is more involved

in the exact Watson [3] form for rovibrational motion (separating out translation)
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(9.5)

Here J
𝛼

is the total and 𝜋
𝛽

the vibrational angular momenta, respectively, 𝜇
𝛼𝛽

is

the inverse of the effective moment of inertia. Considering a non-rotating molecule

through putting J = 0, we observed there are still some terms with the 𝜇 tensor left.

These terms are often neglected for larger molecules as the inverse of the moment of

inertia will decrease their importance. With their neglect a simple kinetic operator

is obtained for the vibrational motion (separating out rotation)

T = −1
2
∑

k

𝜕
2

𝜕Q2
k

(9.6)

Neglecting the additional Watsonian terms can be a significant approximation for

small molecules and/or vibrations with light atoms. The remaining coupling in the

Watson in Eq. (9.5) derives from the interaction between rotation and vibration and

the fact that the rotational set of coordinates is not a rectilinear set of coordinates.

In more general curvilinear coordinates the vibrational kinetic energy operator is

even more complicated. Thus, unlike electronic structure theory the kinetic energy

operator may generally bring coupling between the different degrees of freedom in

the quantum treatment of nuclear motion.

The primary cause of couplings between the modes is the potential. In the case of

the electronic Schrödinger equation, the electron–electron interaction is of Coulomb

type and thus of two-body nature. In contrast, the vibrational structure potential is

the Born-Oppenheimer potential which formally couples all degrees of freedom. The

Coulomb potential is known exactly and before any calculation and is similar for all

molecules. In other words, the potential is universally defined. The potential of the

nuclear Schrödinger equation will not be known exactly, and it is unique for each

different molecule.

The above points show clearly the different outsets for electronic and nuclear the-

ories. Since the spaces and the Hamiltonians are fundamentally different our method

of solution will also differ. Nevertheless, we shall discuss how one can recover in cer-

tain ways a many-body view on describing coupling in many mode systems that is

somewhat similar to many-body theory for electrons.
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In passing I note that though the relevance of time-dependent electronic the-

ory is becoming more and more clear, the overwhelming majority of quantum

chemical studies up to this day are based on time-independent quantum theory,

and some of the extensions to time-dependent theory are furthermore restricted to

special cases, such as periodic perturbations. For nuclear motion, time-dependent

approaches are generally a much more equal part of the bigger field of describing

nuclear motion. For example, a general method like the multi-configurational time-

dependent Hartree (MCTDH) has shown great applicability for both time-dependent

and time-independent phenomena. However, in this chapter we shall stay with a time-

independent description.

9.3 Many-Body Expansion of the Hamiltonian

The potential is decisive for accuracy and efficiency. We have already established

that the potential originates from solving the electronic Schrödinger equation. The

electronic Schrödinger equation cannot be solved exactly for non-trivial systems,

and the first primary cause for concern is thus the accuracy of the electronic struc-

ture methodology used in a concrete case. This is the subject of electronic structure

theory and will not be pursued further here. However, we shall consider other deci-

sive factors such as how to deal with the dimensionality of the potential. How can

we represent the PES in many dimensions? And how can we obtain the effect of the

PES from calculating only a restricted set of points on the PES?

One classical way of obtaining a PES is through Taylor expansion. Thus, follow-

ing geometry optimization and subsequent harmonic analysis, higher (than second)

order derivatives are calculated up to a maximum order. The third (cubic) and fourth

(quartic) order potential terms describe the lowest order anharmonicity. Their cal-

culation and use have perfect meaning in a perturbation theoretical sense, using the

normal coordinate harmonic oscillator as the zeroth order description. However, in

a broader perspective Taylor expanded potentials are problematic. First of all, the

radius of convergence is likely small and for larger distortions from the reference

structure, the PES can be quite unphysical. It is for example common that the Taylor

expanded PES have “variational holes”. That is, at some distortions from the refer-

ence, the PES becomes unphysically of lower energy than at the reference structure.

Applying a Taylor expanded PES in a variational calculation is obviously risky.

There are, however, also some attractive features of the Taylor representation. One

attractive feature is that the corresponding Hamiltonian becomes a sum over products

(at least if either the simple kinetic energy operator is used or the inverse moment

of inertia in the kinetic energy terms is treated in a similar Taylor expansion). Thus,

the Hamiltonian contains a sum of qnii q
nj
j q

nk
k ⋯ terms with prefactors. A general sum

over product Hamiltonian can be written as a sum over T product terms
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Ĥ =
T∑

t=1
ct

M∏

m=1
ĥm,t (9.7)

giving a similar simple product structure for integrals over direct product basis func-

tions. This is in turn decisive for efficient wave function calculations, since this means

that each term is separable into a product over the involved modes. This feature is

in fact so important that even if we do not pursue it directly by Taylor expansion, it

is often desirable to fit the potential to the sum-over-product-form of Eq. (9.7). In

other words, for the PES we can make a fit of energies calculated on a grid to the

particular set of fit functions we choose. Here, we may use polynomials for fitting,

but it is important to distinguish the fitting case from the polynomial obtained as

Taylor expansion.

The above considerations, however, does not solve the problem of dimensionality.

We will now introduce a particular type of many-body expansion of the potential. The

basic idea of restricted mode–mode coupling has been pursued under different names

such as n-mode representation [4], many-body expansion [5], mode-coupling expan-

sion, cut-HDMR (High Dimensional Model Representation) [6], cluster expansion

[7] and others [8–11]. As such it has been an integrated part of much recent research.

The outcome is that the full PES is obtained as a sum of many lower-dimensional

functions. Let a vector of mode indices be called a mode combination (MC), and

𝐦n is such a vector of n indices m1,m2,… ,mn. Consider an expansion point and

a set of coordinates defined to be all zero for the expansion point. Assume that

V(0, 0, 0, 0…0) = 0, noting that an additional constant term can easily be added

after our treatment. We can now write the PES in terms of the particular MCs that

are relevant for the representation of the potential:

V ≈
∑

𝐦∈𝐌𝐂𝐑{𝐕}
V̄𝐦

, (9.8)

Here MCR is a mode combination range—the set of MCs included in the potential.

Equation (9.8) is the basis for introducing approximations. IA sequence of approxi-

mate potentials providing a more and more accurate description of the full coupling

by including more and more mode couplings. The potentials V̄𝐦n are incremental

potentials, defined such that they give zero if any coordinates in the set given by 𝐦n
are zero

V̄𝐦n (… , qi = 0,… .) = 0. (9.9)

For the two-mode example

V̄m1m2 = Vm1m2 − Vm1 − Vm2 (9.10)

where

Vm1 = V(0,… , 0, qm1
, 0,… , 0) (9.11)
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Vm1m2 = V(0,… , 0, qm1
, 0,… , 0, qm2

, 0,… , 0) (9.12)

etc. A two-mode representation of the PES can be written as

V (2) =
∑

m1

V̄m1 +
∑

m1<m2

V̄m1m2 =
∑

m1<m2

Vm1m2 − (M − 2)
∑

m1

Vm1 (9.13)

The mode number indices mi run from mode 1 to mode M and mi ≠ mj. In the two-

mode case, the PES of a three atomic system consists of three two-mode sub-PES

and three one-mode sub-PES. Thus, the expression in Eq. (9.8) is an approximation

to the full PES. Instead of computing the full PES, it is represented in terms of a

number of sub-PES where each of these is restricted to a limited set of modes. This

provides a much more realistic path to accurately representing the PES. Consider for

example a grid-based approach for PES construction, where potential energy values

are calculated on an appropriate set of points each called a single point (SP). For

simplicity we assume that the number of SPs per coordinate is Np and the same for

all coordinates. Including up to n-mode couplings for a molecule withM modes gives

rise to
∑n

i=0

(
M
i

) (
Np

)i
SPs as opposed to the full PES havingNM

p . This is a reduction

from exponential to polynomial computational scaling in M. The leading scaling,(
M
n

) (
Np

)n
is the dominating computational effort. In the sequence of potentials

converging to the full potential

V (1)
,V (2)

,V (3)
,… ,V (M)

(9.14)

where V (n)
include all mode couplings up to and including n-mode couplings, it

is typically only realistic to consider low-order methods, say n = 2, 3, 4. Still, we

have obtained a converging sequence of potentials. We also see clearly the additional

complexity compared to the electronic case with its universally defined two-body

Coulomb potential.

The n-mode PES approach defined above has been used and tuned by many

researchers in different contexts with respect to obtaining accurate potentials with

as few SPs as possible. By fitting to a basis of functions, the sub-PES can be brought

into a sum-over-product form. Thus, the total Hamiltonian can be numerically repre-

sented in an n-mode expanded sum-over-product form. This is highly convenient for

the subsequent calculation and use of the matrix element of the Hamiltonian for the

vibrational wave function calculation. Finally, one should be aware of the fact that

the PES construction and the wave function calculation are not quite independent.

A given wave function spans over a particular region of configuration space, and

it is important the potential is fairly accurate in this region. On the other hand, the

more involved the PES really is, or its representation, the more involved the vibra-

tional structure calculation will be. An adaptive density guided approach (ADGA)

has been developed, where the PES is calculated in accordance with the convergence

of the combined wave function and PES calculation [12].
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The restricted mode-coupling representation of the potential discussed above is

in a certain sense a many-body expansion. Such expansions can be generalized and

applied to the PES in other ways [13]. In particular, the many-body view is in agree-

ment with the so-called incremental method for calculating electronic energies. In

the incremental method, the full system is considered as composed of fragments.

In practice some kind of cutting and capping of the full system into subsystems is

required which will not be further discussed here. The idea is now that the electronic

energy of the system can be calculated in a many-body expansion similar as above.

Let A,B denote fragments. Then the energy of each SP can be written as

Eel =
∑

A
EA +

∑

A>B
(EAB − EA − EB) +⋯ (9.15)

i.e. the energy is obtained as a sum over energies calculated for different fragments

and different fragment combinations. This form of the energy evaluation can now be

combined with potential expansion, such that each SP in the calculation of the many

small sub-PES are expanded as in Eq. (9.15). This means that we have progressed

from a full dimensional PES calculated from full dimensional SPs to a PES given in

terms of sums of lower-dimensional sub-PESs calculated from energies obtained as

sums of lower-dimensional SPs. We denote such approaches as double incremental,

as it is in a certain sense simply the simultaneous application of the same idea in two

different directions.

The efficiency of the double incremental idea can be strongly boosted by using

coordinates with a well-defined locality, meaning that a given coordinate is known to

move only a limited set of atoms relative to each other. To understand this, note that

standard normal coordinates will be formally delocalized over the full systems. This

means, that in the calculation of every sub-PES the displacement of the coordinates

will mean that there are slight variations in all fragment combinations. This means

that all fragments must be recalculated. On the other hand, if we consider a sub-PES

for coordinates that a completely localized to atoms within a few fragments, then the

calculation of this sub-PES requires only calculations for the fragment combinations

that actually change.

It has been shown how an algorithm for flexible adaptation of local coordinates of

nuclei (FALCON) [14] can be used to provide a set of coordinates with a well-defined

locality. Following the above considerations, the double incremental approach with

FALCON coordinates (denoted DIF) is computationally much more efficient than the

double incremental approach in normal coordinates (denoted DIN). Using the partic-

ular structure of FALCON coordinates, the efficiency can be even further improved

by applying DIF with auxiliary coordinate transformations (DIFACT). With the

DIFACT approach one can achieve linear scaling of the total accumulated cost of

the SP calculations [13]. This should be contrasted to the original mode-coupling

expansion case where the accumulated cost of the SP calculations would scale as

Mnmax × Ns
where N is the number of orbitals of the systems and s is the character-

istic scaling of the applied quantum chemical method, i.e. s = 7 for CCSD(T).
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The ideas in the double incremental expansion approach are likely extendable to

other local coordinates than FALCON coordinates, such as various sets of internal

coordinates. It does require a molecule of some size for the fragmentation procedure

to make chemical sense. However, the potentially huge reductions in computational

effort in the construction of the PES is highly encouraging for future applications to

larger systems.

9.4 Second Quantization

Second quantization formulations have proven very productive in many contexts of

many-body theory, for example for the electronic structure of molecules. The com-

mutation or anti-commutation relations of the fundamental creation and annihilation

operators brings to live the symmetry or antisymmetry requirements of the wave

function with respect to particle permutation. The interest in developing many-body

methods for nuclear motion lead to the development of SQ formulations for systems

with distinguishable degrees of freedom [15, 16] and will be briefly summarized.

Assume that for mode m we have a complete basis {𝜙m
pm (qm)} indexed by pm =

0, 1,… ,Nm − 1. Here Nm
is the number of one-mode basis functions for mode m.

We may generate basis functions in the M-mode space as products of the one-mode

basis functions

𝛷𝐬(q1, q2,… , qM) =
M∏

m=1
𝜙
m
sm(qm) (9.16)

The one-mode functions shall be denoted modals while their M-mode product states

are denoted Hartree products. We consider the system as composed ofM distinguish-

able degrees of freedom, and accordingly we do not consider any symmetrization

In setting up second quantization we describe the system in terms of occupation-

number vectors (ONVs) where there per construction is a one-to-one correspon-

dence between second quantization ONVs and first quantization Hartree products.

The ONVs are of the form

|𝐤⟩ = |||{k
1
0, k

1
1,… , k1N1−1},… , {km0 , k

m
1 ,… , kmNm−1},… , {kM0 , k

M
1 ,… , kMNM−1}

⟩

(9.17)

The integer kmpm is the occupation number for modal pm of mode m.

The vacuum state is the state with only zero occupation |vac⟩ = |0, 0,… , 0⟩ and

is normalized as well, i.e. ⟨vac|vac⟩ = 1. Similar to the overlap between two Hartree

products for an orthonormal basis, the ONV inner product for an orthonormal basis

is

⟨𝐤|𝐥⟩ =
M∏

m=1

Nm∏

pm=1
𝛿kmpm l

m
pm

= 𝛿𝐤𝐥 (9.18)
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while for a general vector |𝐜⟩ = ∑
𝐤 c𝐤|𝐤⟩ the inner product is defined as,

⟨𝐜|𝐝⟩ =
∑

𝐤𝐥
⟨𝐤|c∗𝐤d𝐥|𝐥⟩ =

∑

𝐤𝐥
c∗𝐤d𝐥𝛿𝐤𝐥 =

∑

𝐤
c∗𝐤d𝐤 (9.19)

In the ONV space creation and annihilation operators can be introduced with

commutator relations,

[am†pm , a
m′†
qm′

] = [ampm , a
m′

qm′
] = 0, (9.20)

[ampm , a
m′†
qm′

] = 𝛿mm′𝛿pmqm′ . (9.21)

The action of am†pm is to create a vibration in mode m, level pm while amqm annihilates a

vibration in level qm of mode m. In particular, an annihilation operator acting on the

vacuum state gives zero

ampm |vac⟩ = 0 (9.22)

The physically relevant subspace of all |𝐤⟩ that correspond to the set of M-mode

Hartree products are those where only one kmim is equal to 1 for each mode m and all

the others are 0.

Defining some further terminology is useful: 𝐦 denotes a set of modes combined

in a mode combination (MC). A MC may include from 1 to M modes, and we shall

occasionally use a subscript to indicated the dimensionality.

The creation and annihilation operators can in turn be used to construct all SQ

states and operators such that there is a one-to-one correspondence between all

matrix elements and thereby all measurable quantities between calculations done in

first and second quantization. The one-mode shift operators Em
pmqm that moves occu-

pation in mode m from modal qm to pm is highly useful in this regard. They are

defined as

Em
pmqm = am†pm a

m
qm . (9.23)

The general Hartree Product above can now be expressed as

|𝛷𝐬⟩ =
M∏

m=1
am†sm |vac⟩. (9.24)

We may pick out a reference state described by an M-dimensional vector

𝐢 =
(
i1, i2,… , iM

)

|𝛷𝐢⟩ =
M∏

m=1
am†im |vac⟩. (9.25)

We can now generate other Hartree products in the M-mode space by applying exci-

tation operators,
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𝜏
𝐦
𝜇𝐦 =

∏

m∈𝐦
am†am a

m
im (9.26)

to this reference state. In doing so we “excite” all modes in the MC 𝐦 from the

occupied modals im to the virtual modals am. The nomenclature of using indices i, j
to denote occupied modals and a, b, to denote modals unoccupied (virtual) in the

reference product function is standard. The index 𝜇 is a compound index including

the necessary information on the specific modals involved. Examples of one and

two-mode excitation operators are,

𝜏
m1
am1 = am1†

am1 a
m1
im1 = Em1

am1 im1 (9.27)

𝜏
𝐦2
𝜇
𝐦2 = 𝜏

m1m2
am1am2 = am1†

am1 a
m2†
am2 a

m1
im1a

m2
im2 = Em1

am1 im1E
m2
am2 im2 (9.28)

Note here that the 𝐢 vector is often implied, meaning that it is only relevant to keep

track of the unoccupied indices.

The commutator relations can be used to show that all excitation operators com-

mute,

[𝜏𝐦
𝜇𝐦 , 𝜏

𝐦′

𝜈𝐦′ ] = 0 (9.29)

which is of great practical importance. The Hermitian adjoint of the excitation oper-

ator 𝜏
m1
am1 is a de-excitation operator

𝜏
m1†
am1 = am1†

im1 a
m1
am1 (9.30)

From the killer condition for the annihilation operator working on the vacuum state,

we have corresponding killer conditions for the excitation operators

(𝜏𝐦
𝜈𝐦
)†|𝛷𝐢⟩ = 0 = ⟨𝛷𝐢|𝜏𝐦𝜈𝐦 (9.31)

Note that 𝜏
𝐦
𝜇𝐦 and (𝜏𝐦′

𝜈𝐦′ )† do not generally commute. The excited states are orthogonal

to the reference ket |𝛷𝐢⟩ and the set of states {|𝛷𝐢⟩, 𝜏𝜇|𝛷𝐢⟩} thus forms a basis for

the full M-mode space when all possible 𝜇 are included.

9.5 Vibrational Self-consistent-field Theory
and the Mode–Mode Correlation Problem

The vibrational self-consistent field (VSCF) approach [17, 18] is a mean-field theory

applied to the anharmonic vibrational problem. We seek to variationally optimize the

energy

E𝐢 = ⟨𝛷𝐢|Ĥ|𝛷𝐢⟩ (9.32)
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under variation of orthonormal one-mode functions𝜙
m
im (qm) for a given Hartree Prod-

uct state. The reference index vector 𝐢 specifies which reference occupation is used

for each mode as in the previously introduced notation.

The variational conditions with orthonormality constraints leads to the self-

consistent-field equations

F̂m,𝐢
𝜙
m
im (qm) = 𝜀

m
im𝜙

m
im (qm) (9.33)

where the mean-field operator F̂m,𝐢
𝜙
m
im (qm) for mode m is obtained as the average of

the Hamiltonian over all the other degrees of freedom (here given in first quantiza-

tion)

F̂m,𝐢 = ⟨
M∏

m′=1,≠m
𝜙
m′

im′
(qm′ )|Ĥ|

M∏

m′′=1,≠m
𝜙
m′′

im′′
(qm′′ )⟩ (9.34)

After solving the coupled VSCF equations (Eq. (9.33)) self-consistently resulting in

VSCF optimized modals (in analogy to Hartree-Fock orbitals for electrons). The total

energy is obtained from Eq. (9.32) using the converged VSCF modals. In analogy to

the electronic case, we thus have a well-defined mean-field state with a well-defined

energy. This energy is based on an averaged interaction between modes as clearly

seen from the averaging in Eq. (9.34). The VSCF approach thus immediately defines

a correlation problem. VSCF can be implemented to give a fast and efficient evalu-

ation of anharmonic wave functions, see Ref. [19], but will not be further discussed

here. Instead we will focus on methods that goes beyond VSCF, and thereby explic-

itly includemany-body effects.

The basic ansatz for proceeding beyond the single Hartree Product wave function

is vibrational configuration interaction (VCI). The VCI wave function can be written

as

|VCI⟩ = (1 + C)|Φ𝐢⟩ = |Φ𝐢⟩ +
∑

𝜇

C
𝜇
𝜏
𝜇
|Φ𝐢⟩ (9.35)

using intermediate normalization 1 = ⟨𝛷𝐢|VCI⟩. The intermediate normalization is

convenient for later comparisons, but is not essential for the theory, and normally

standard unit norm normalization is used. The 𝐢 index vector is, as mention earlier,

implied for all V excitation operators (𝜏
𝜇
) and the related VCI parameters (C

𝜇
) and

is not explicitly included in the notation here and in the following. The VSCF state

is used for reference here, but it is trivial to use any other Hartree Product state.

We may write the operator generating the VCI wave function in more detail as

C = C1 + C2 + C3 +⋯CM =
M∑

j=1

∑

𝜇j

c
𝜇j
𝜏
𝜇j

(9.36)

where the extra j index denotes the excitation level.
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In the case where we use all configurations possible we have a NM
dimensional

space, and a similar number of free parameters to determine, assuming there are

N modals for each of the M degrees of freedom. Approximate VCI wave functions

are introduced by limiting the space considered. This can be done in many ways.

Here, we shall limit ourself to discuss the hierarchy in which we limit the summa-

tion over excitation levels in Eq. (9.36) to a maximum level n. The VCI wave func-

tion corresponding to this truncation is denoted VCI[n]. In the limit of no truncation

we obtain the Full VCI solution, FVCI = VCI[M]. The linear variational approach

implicit to VCI (using VSCF modals or another set of one-mode functions) has been

the traditional approach to addressing the solution of the M-mode system [20–22].

When convergence close enough to FVCI can be obtained this is obviously fully

satisfactory. The problem comes only from the increased size of the space needed

for increasing systems size, which requires special treatments to be required. While

treating large spaces in such linear expansions are becoming possible [23], we will

here switch to the another parameterization and later show this has interesting prop-

erties for increasing system size.

9.6 Vibrational Coupled Cluster

The vibrational coupled cluster ansatz is given in terms of an exponential operator

working on the reference wave function |𝛷𝐢⟩

|VCC⟩ = exp(T)|𝛷𝐢⟩, (9.37)

Here T is the so-called cluster operator which we in general write as

T =
∑

𝜇

t
𝜇
𝜏
𝜇
. (9.38)

The t
𝜇

parameters are the cluster amplitudes and the free parameters of the methods,

while 𝜏
𝜇

are the corresponding excitation operators. All are indexed by 𝜇—a com-

pound index giving all necessary information to specify the excitation. As for the

VCI case the cluster operator can be written as

T = T1 + T2 + T3 +⋯TM =
M∑

j=1

∑

𝜇j

t
𝜇j
𝜏
𝜇j

(9.39)

The one- and two-mode excitations can be written out as

T1 =
∑

𝜇1

t
𝜇1
𝜏
𝜇1

=
M∑

m1

∑

am1
tm1
am1 𝜏

m1
am1 , (9.40)
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T2 =
∑

𝜇2

t
𝜇2
𝜏
𝜇2

=
M∑

m1<m2

∑

am1

∑

am2
tm1m2
am1am2 𝜏

m1m2
am1am2 . (9.41)

We may also write the cluster operator in terms of MC notation as

T =
∑

𝐦∈MCR[T]

∑

𝜇𝐦

t𝐦
𝜇𝐦𝜏

𝐦
𝜇𝐦 (9.42)

where 𝐦 is simply one of the allowed MCs. The definition of a VCC cluster operator

requires thus in general a definition of the set of different MCs allowed in the cluster

operator. This set (a mode combination range, MCR) is denoted MCR[T] in Eq.

(9.42).

Introducing now the VCC ansatz into the Schrödinger equation and premultiply-

ing with exp(−T), we obtain

exp(−T)Ĥ exp(T)|𝛷𝐢⟩ = E|𝛷𝐢⟩ (9.43)

Projecting onto the reference state and the excited Hartree Products, we obtain

respectively the VCC energy

EVCC = ⟨𝛷𝐢| exp(−T)Ĥ exp(T)|𝛷𝐢⟩ = ⟨𝛷𝐢|Ĥ exp(T)|𝛷𝐢⟩. (9.44)

and the VCC amplitude equations

e𝐦
𝜇𝐦 = ⟨𝜇𝐦| exp(−T)Ĥ exp(T)|𝛷𝐢⟩ = 0. (9.45)

Solving first the VCC amplitude equations in Eq. (9.45) we can calculate the energy

as in Eq. (9.44).

Truncating the cluster operator at the excitation level n, we obtain a hierarchy of

VCC methods, VCC[1], VCC[2], VCC[3], VCC[4], etc. In the limit of no truncation,

we obtain the Full VCI solution, FVCC = FVCI.

The requirements for a VCC calculation is that a Hamiltonian is available in some

suitable set of coordinates together with an appropriate choice of basis set such that

the necessary integrals of the Hamiltonian are available. In the sum-over-product

form this means that when the Hamiltonian expansion coefficients ct and the one-

mode integrals of the hm,t operators are available (see Eq. (9.7)), we can first do

a VSCF calculation defining the VCC reference state. Then we have to select the

set of states to excite to. This is typically done by selecting the MCR, e.g. in the

hierarchical sense of one-, two- and higher mode couplings up to a given maximum

coupling level. This then defines the VCC calculation for the given reference state.

The nonlinear equations are determined by some iterative methods. From a par-

ticular guess for the solution vector 𝐭 containing all the amplitudes, one evaluates the

similarly sized error vector defined by Eq. (9.45). If this error vector is not below a

given threshold in size an improved guess for the 𝐭 is made and the process contin-
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ued. Different methods of quasi-Newton nature. Sufficient here is to state that this

procedure usually works relatively smoothly as long as the reference is a reason-

able description of the final state. The computational most challenging part is the

evaluation of the error vector. The error vector can be very complicated for high-

level couplings in the Hamiltonian and high-level excitations included. For example

VCC[3] with a three-mode Hamiltonian already contains thousands of terms [24]. In

the current preferred approach, all these terms are automatically derived in details,

analysed for computational efficiency and finally evaluated by the programme.

In principle, the above procedure is applicable to both ground and excited states.

Excited states are, however, often immersed in a dense manifold of states. Solving the

nonlinear VCC equations for each state in a state by state fashion can be technically

difficult with respect to convergence and raises a number of theoretical concerns such

as the potential lack of orthogonality between states. For that purpose, it is in most

cases preferable to use response theory to access excited states or alternatively use

the attractive option of directly calculating the spectrum. We shall here avoid at all

entering into the long details of response theory. All our considerations, however,

also apply to response theory calculations of excited states and spectra.

The above VCC theory is the one we have developed and the one we shall fur-

ther investigate here. Our approach is based on the described SQ and applies to any

basis and thereby any reference state, including the VSCF reference state. We note

that there exist other exponential CC-like parameterizations of the vibrational wave

function. The other approaches have been denoted bosonic CC and are by construc-

tion based on a harmonic oscillator like ground state [25, 26].

Let us now investigate further the wave function itself. The wave function for the

case of an untruncated cluster expansion can be expanded as

|VCC⟩ = |𝛷𝐢⟩ + T1|𝛷𝐢⟩ + (T2 +
1
2
T2
1 )|𝛷𝐢⟩ + (T3 + T1T2 +

1
6
T3
1 )|𝛷𝐢⟩

+ (T4 + T1T3 +
1
2
T2
2 +

1
2
T2
1T2 +

1
24

T4
1 )|𝛷𝐢⟩… . (9.46)

The linear VCI and nonlinear VCC parameterization are two alternative ways of

parameterizing the exact wave functions in the untruncated limit. For an exact wave

functions they are therefore related through

C1 = T1

C2 = (T2 +
1
2
T2
1 )

C3 = (T3 + T1T2 +
1
6
T3
1 )

C4 = (T4 + T1T3 +
1
2
T2
2 +

1
2
T2
1T2 +

1
24

T4
1 ) (9.47)

and so on. It is easy to turn this around and obtain
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T1 = C1

T2 = C2 − (1
2
T2
1 )

T3 = C3 − (T1T2 +
1
6
T3
1 )

T4 = C4 − (T1T3 +
1
2
T2
2 +

1
2
T2
1T2 +

1
24

T4
1 ) (9.48)

and so on. We may thus transform between the linear VCI and the exponential VCC

formats. This means that if we have a set of excitations in the straight linear picture,

we can decompose them into a cluster representation. If such expansions has mean-

ing it is expected that the amplitudes in the cluster representation decay faster with

increasing excitation level, as compared to the linear parameterization. Thus higher-

mode excitations are expected to be dominated by products of lower excitations.

9.7 A Tensor Perspective on VCC

A quantity with d indices can be denoted a tensor, of order d. Hence, a vector is a first

order tensor, a matrix is a second order tensor, a 3-way array is an third order tensor,

etc. It is natural to represent tensors in terms of their d-way arrays. However, if there

are N possible values for each index for each dimension there in total Nd
numbers

are required to specify the full tensor. This exponential increase in the data with

increasing number of dimensions is often referred to as the curse of dimensionality.

To address this, we seek in tensor decomposition to numerically represent the same

tensor in terms of simple quantities. That is generally, in stead of one full d-way

arrays we seek to represent the tensor in terms of a set of arrays of lower dimensions

and/or smaller set of index values. For a general overview and descriptions of tensors

and tensor decomposition we refer to the literature, see for example Ref. [27]. We

will proceed by focusing specifically on the simplest variant of tensor decomposition

(CP, see below) as well as on relating the idea to VCC theory.

The most obvious tensor decomposition is CANDECOMP/PARAFAC or canon-

ical polyadic decomposition, abbreviated as CP decomposition. Here a tensor is rep-

resented as a sum of vector outer products with ⊗ denoting a tensor outer product

X ≈
R∑

r
𝐚(1)r ⊗ 𝐚(2)r ⊗⋯⊗ 𝐚(d)r (9.49)

whereR of Eq. (9.49) is the rank. The rank together with the 𝐚(n)r vectors which can be

collected as column vectors in d 𝐀(n)
factor matrices specifies decomposition. Note

that the CP format is often represented with a weight factor 𝜆r for each term but

this prefactor is here (as in many other places) absorbed into the columns of one (or

more) of the factor matrices. The smallest number of vector outer products that are

needed to reproduce the tensor exactly is the tensor rank in a similar fashion to the
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rank of a matrix. The CP decomposition shares in this sense some similarity to the

singular value decomposition of matrices. Unfortunately there is no general simple

way to determine the rank of a tensor, and it becomes a numerical exercise to seek

CP “fits” that reproduce the tensor to high enough accuracy.

9.7.1 Vibrational Coupled Cluster as a Tensor Decomposition

As is perhaps clear from the two preceding sections, a CC formatted wave function

is in a certain sense a decomposition format for the FVCI wave function. We can

view the equations representing the VCI excitation in terms of the VCC excitations

as a kind of tensor decomposition. In other words, we can consider

Tn = f 1(Cn,T1,… ,Tn−1) = f 2(C1,C2,… .,Cn) (9.50)

Similar equations holds at the mode excitation level, where only the excitations for

a given MC, 𝐦, is considered. The cluster excitation operator is written in the form

T𝐦 =
∑

𝜇𝐦

t𝐦
𝜇𝐦𝜏

𝐦
𝜇𝐦 (9.51)

and similarly for the VCI excitations. Based upon the MC, 𝐦 we construct the set

of MCRs, SMCR[𝐦], where the union of all MCs in each MCR is identical to the

original MC, 𝐦. Summing over these MCR[s] we have

C𝐦 =
∑

MCR[s]∈SMCR[𝐦]

∏

𝐦k∈MCR[s]
T𝐦k (9.52)

Here the sum is over all partitions of the set 𝐦 meaning a sum over all ways the set

𝐦 can be obtained as union of disjoint subsets. Thus a set of MCR where the union

of all the non-overlapping sets in each gives the original 𝐦.

We may interpret Eq. (9.52) for the operators to be a tensor decomposition of the

VCI correlation amplitudes

c𝐦 =
∑

MCR[s]∈SMCR[𝐦]
⊗𝐦k∈MCR[s]T𝐦k (9.53)

In terms of the amplitudes, we have the following set of equations in low order

cm1
a1

= tm1
a1

cm1m2
a1a2

= tm1m2
a1a2

+ tm1
a1
tm2
a2

cm1m2m3
a1a2a3

= tm1m2m3
a1a2a3

+ tm1
a1
tm2m3
a2a3

+ tm2
a2
tm1m3
a1a3

+ tm3
a3
tm1m2
a1a2

+ tm1
a1
tm2
a2
tm3
a3

= tm1m2m3
a1a2a3

+ (1 + P12 + P13)tm1
a1
tm2m3
a2a3

+ tm1
a1
tm2
a2
tm3
a3

(9.54)
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etc., where Pijfij = fji. Thus, recasting the FVCI wave function as a FVCC wave func-

tion corresponds implicitly to a decomposition of the correlation amplitudes. Either

set of correlation amplitudes provide adequate descriptions and are permissible as

departure of approximations.

An approximate VCC is not actually obtained as a decomposition of VCI parame-

ters. Rather, approximations are introduced by restricting the excitation level/rank of

the decomposition quantities as described in the above VCC sections. Thus, we for-

mally still have a set of FVCI correlation amplitudes. But we proceed from express-

ing

cn = Fn(t1,… , tn) (9.55)

to

cn = Fapp

n (t1,… tnmax ) (9.56)

The cluster amplitudes are not found by “fitting of tensors” but from equations for the

immersed approximation of the VCC ansatz into a projected Schrödinger equation.

Still, the general decomposition perspective is enlightening and a potential source

for new approximations.

9.7.2 Decomposed Correlation Amplitudes with CP

For the VCC wave function we may consider the full set of amplitudes as one vector,

but we can also consider it as a number of sub-vectors, one vector for each MC.

Each of these vectors are in turn a vectorization of a n-th order tensor, where n is

the number of elements of the particular MC. Thus the whole set of VCC or VCI

correlation amplitudes can be considered as a stack of tensors.

We may now proceed by applying decomposition to the correlation amplitudes

(on top of the inherent recasting of the VCC wave function). For example, the VCC

three-mode excitations for the MC (m0,m1,m2) can be represented in CP format as

tm0,m1,m2
a0,a1,a2

≈
Rm0 ,m1 ,m2∑

r=1
t(m0,m1,m2),0
r,a0

t(m0,m1,m2),1
r,a1

t(m0,m1,m2),2
r,a2

(9.57)

Each different MC has a different set of one-mode factor matrices, or the other way

around, each factor matrix is unique to each MC, and mode for this MC. It is deci-

sive that the rank R𝐦
is unique to the MC 𝐦. This is a trivial but key aspect of the

approach, therein that the rank can be adjusted to the importance of each MC. Thus,

it has been confirmed in numerical studies that in adaptive iterative algorithms we

can solve the equations in a manner such that each individual MC achieve each their

own individual rank. The advantage of this is that specific couplings are very differ-

ent and have different strength. This is advantageous because by allowing the rank

to be flexible this opens for handling large systems with very many MCs, where the
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major fraction will have low rank including often zero rank, while only a smaller

fraction of particularly important MCs will have a large rank.

We note in passing that our approach is one of following the mode-coupling

expansion suggested from the potential, and the hierarchical approach to VCI and

VCC we have taken. A different approach is to go back to the full wave function

ansatz and directly decompose the FVCI wave function. Such approaches have been

undertaken by other groups in various contexts. The drawback of this is that the

FVCI tensor is huge. Our hierarchial approach involves much smaller tensors (for

truncated VCC) but many of them. Furthermore, there are fundamental differences

in performing the decompositions for VCC and VCI.

9.8 Seperability and VCC and VCI Compared

To put tensor decomposition for VCI and VCC in perspective, we will here con-

sider the separability and scalability of energies and wave functions. This is directly

related to concepts such as size-extensivity and size-consistency of electronic struc-

ture theory and to the property of extensivity of thermodynamics.

Consider the case where we combine the two non-interacting subsystems A and

B into a super-system AB described by the Hamiltonian

HAB = HA + HB (9.58)

The two fragments each satisfies their own Schrödinger equation HA|A⟩ = EA|A⟩,
HB|B⟩ = EB|B⟩. Using the SQ formalism the wave functions can be written in the

form

|A⟩ = WA|vac⟩, (9.59)

where WA is a wave operator

WA =
∑

𝐬
C𝐬

M∏

m=1
a†sm (9.60)

The exact wave function for the compound system is required to satisfy the

Schrödinger equation

HAB|AB⟩ = EAB|AB⟩. (9.61)

With the SQ formulation it is simple and rigorous to write up the exact wave function

for the compound system in the multiplicatively separable form

|AB⟩ = WAB|vac⟩ = WAWB|vac⟩ (9.62)
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Related to the product separable wave function, the exact energy is additively sepa-

rable

EAB = EA + EB. (9.63)

For N non-interacting subsystems each with energy E1 the total energy of the N-mer

is NE1, in complete analogy to the extensivity of properties in thermodynamics. The

behaviour with increasing number of degrees of freedom is an important aspect of

an approximate theory. Approximate wave functions can be classified according to

whether the wave function is manifestly separable as a product and energy additively

separable. This has for long been known to be an important aspect for electronic

structure theory. It is also important for vibrational wave functions.

Above we considered that the Hamiltonian was additively separable, indicating

that it can be separated into a part which only affects A and a part that only affects B.

Actually, such a separability depends on the coordinates. Consider now the simple

harmonic limit. If A and B were identical, they would have identical harmonic fre-

quencies in separate harmonic analyses. We could use localized modes (i.e. modes

either solely moving atoms in A or solely atoms in B) and have clearly a separable

Hamiltonian, total energy and wave function. If we consider normal modes with the

same frequencies in the case of two identical non-interacting subsystems combined

into one system mixing the degenerate modes in an orthogonal transformation will

produce new modes with the same frequencies but now delocalized over both A and

B. Clearly, we still have an exact normal coordinate harmonic oscillator descrip-

tion, and as such the wave function and energy are in fact separable. It is, however,

somewhat more obscured what goes on. One can then either choose to formulate the

concepts to clarify the scalability in such general coordinate cases or else stick to

the case of analysing for additively separable Hamiltonians above. We will follow

the latter approach, as (i) it is simpler; (ii) it is the separability with distance we are

interested in, and it is counterproductive to choose a coupled representation when

an uncoupled one can be chosen; (iii), in continuation of the last point we prefer for

real molecules also to have localized coordinates as far as possible (meaning unless

their couplings become too large). We believe this is quite typical for the molecular

case where we strive for low-coupling local coordinates. The case of solids may be

different. Carrying out a similar analysis for solids using delocalized coordinates is

possible [28], however, may to lead to considerations that are less relevant for isolated

molecules where we would imagine vibrational coordinates to be somewhat local-

ized. Our perspective here is that even with local coordinates the size-extensivity

issue is non-trivial and important and there is in fact an important interplay between

size-extensivity and tensor decomposition.

The VSCF wave function is trivially multiplicatively separable since the VSCF

wave operator is a direct product of creation operators. Consider that we initiate the

VSCF procedure with the direct product of the solution for VSCF calculations on

A and B separately. In the averaging for obtaining the VSCF mean field for a mode

localized to system A, we have that the averaging of HB we simply obtain EVSCF
B .



218 O. Christiansen

Accordingly, the VSCF mean-field operator for each subsystem is changed only by

a constant factor, which leads to the same optimized VSCF modals. Thus, with

WVSCF
A =

MA∏

m∈A
am†im (9.64)

and similarly for B, we find that the compound wave operator is multiplicatively

separable as the exact wave operator,

WVSCF
AB = WVSCF

A WVSCF
B (9.65)

while the energy evaluated as an expectation value is additively separable

EVSCF
AB = ⟨AB|HAB|AB⟩

= ⟨vac|∕WVSCF
A )†HAWVSCF

A (WVSCF
B )†WVSCF

B |vac⟩
+ ⟨vac|∕WVSCF

B )†HBWVSCF
B (WVSCF

A )†WVSCF
A |vac⟩

= EVSCF
A + EVSCF

B (9.66)

Here commutativity of creation and annihilations operators have been used for

modals and modes referring to different subsystems.

Consider now a VCC calculation using the VSCF reference state with its correct

separability. For a similar super-system as discussed above it is easy to show that the

cluster operator (for both exact and truncated VCC treatments)

TAB = TA + TB (9.67)

is a solution to the super-system VCC equations, where TA and TB are cluster opera-

tors for the subsystems. This means that WVCC
A = exp(TA)WVSCF

A generates the VCC

wave functions for subsystem A and correspondingly for B. Accordingly, the VCC

wave function is multiplicatively separable

|VCCAB⟩ = exp(TAB)|VSCFAB⟩
= exp(TA) exp(TB)WVSCF

A WVSCF
B |vac⟩

= WVCC
A WVCC

B |vac⟩ (9.68)

where we have used that the cluster excitation operators commute. Similarly,

EAB = ⟨VSCFAB|HA + HB|VCCAB⟩
= EVCC

A + EVCC
B (9.69)

As a direct consequence of the exponential parameterization and the commutativ-

ity of the excitation operators the VCC wave function is multiplicatively
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separable while the energy is additively separable in accord with the exact case for

both exact and truncated wave functions. We see that the separability of VCC derives

from including products of TA and TB that, as we have seen before, are necessary

for correct separability. Such products will be missing in truncated VCI, where the

product excitations will be partly or completely outside the space included in an

approximate VCI.That is a two-mode times two-mode excitations will be outside the

space of VCI[3]. This is an advantage of the exponential VCC parametrization over

the linear VCI parametrization for the same excitation space and the same Hamil-

tonian. VCI will not give the correct separability of the energy and wave function.

This means that as we increase the number of non-interacting systems the VCI solu-

tion for a given excitation level decays in completeness and accuracy. Or in other

words, increasing the size of the system we can in VCC theory expect a fairly con-

stant accuracy with a constant excitation level, while in VCI constant high accuracy

would require increasing the excitation space.

All though the above considerations are simplified as they are derived for non-

interacting systems, we believe they are good models for real molecular systems

which will only be more complicated. For larger molecular system in fairly local

coordinates we can envision significant mode-coupling terms between “close” modes

in the Hamiltonian while couplings between distant modes are small. The above

considerations give reasons to believe that VCC methods can handle this and obtain

fairly constant accuracy with increasing size of the system.

Furthermore we may relate this discussion to the tensor decomposition analy-

sis. Consider now the case where we perform a VCC[n] calculation and choose to

dynamically decompose the amplitudes to lowest rank needed for each MC. With the

VCC format, we thus obtain that the cluster amplitudes belonging to subsystem A

and subsystem B are significant and have some non-zero rank. In the uncoupled limit,

we should actually have TAB = 0 thus it can be represented with rank zero. On the

other hand, we cannot expect VCI amplitudes to give rank zero even for uncoupled

systems, and this difference between VCC and VCI has been numerically confirmed

[29, 30]. For example, four-mode excitations CAB,4 will include contributions from

for example TA,2TB,2 which will not be represented as rank zero, even if TAB,4 has in

fact zero rank. Thus, if two particular cluster operators with ranks RA and RB are mul-

tiplied, this will lead to rank RA × RB in the corresponding VCI representation. This

means in other words, that the wave function separability of VCC is important from

a tensor decomposition perspective. The expected decay of amplitudes for couplings

between distant localized modes will be an important aspect of the ability to apply

VCC to larger systems in the future. It can be exploited both by the tensor analy-

sis above as well as by a careful selection of the excitation space. Rather than the

standard inclusion of excitations solely according to the number of modes involved,

we may with reference to Eq. (9.42) choose which MCs are included or excluded

by an automatic numerical screening [31]. In such a screening, unimportant distant

couplings will be screened away from the outset. Both the automatic screening and

the use of tensor decomposition in VCC is still in its infancy. While the promise of

tensor decomposition has been illustrated, the practical use of the CP format is dif-
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ficult, both due to inherent mathematical limitations of the CP format, as well as the

dynamical recompression to the CP format in the context of the very complex VCC

equations.

9.9 Conclusions

The ability to solve the nuclear Schrödinger equation is important for high accuracy

calculations of spectroscopy and dynamics. Many-body methods in general and cou-

pled cluster methods in particular have proven highly successful in solving solving

Shcrödinger equations. In this chapter, I have discussed many-body expansions in the

context of calculating potential energy surfaces, as well as coupled cluster methods

for solving the anharmonic vibrational Schrödinger equation. It has been emphasized

that these methods have attractive features in relation to scalability with system size.

Here scalability refers both to maintaining a realistic low computational effort as

the size of the system increases, as well as maintaining a sufficiently high accuracy.

Although further work is needed for unfolding their full potential, these many-body

methods are expected to be decisive for pushing the boundaries for computational

methods in spectroscopy and dynamics in the coming years.
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