
Chapter 7
Embedding Methods in Quantum Chemistry

Albrecht Goez and Johannes Neugebauer

Abstract An overview over different embedding schemes for electronic-structure

calculations is given, with the main focus on methods used for molecular systems.

The in-principle exact subsystem DFT formalism is used as a reference point to

classify the different approaches according to their components of the exact embed-

ding potential. Special attention is paid to recently proposed ideas from the field of

density-based embedding and density matrix reconstruction approaches.
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7.1 Introduction

“Embedding” as a general term encompasses all methods where at some point in a

calculation, the effect of an environment on a certain part of the total system is evalu-

ated. The terms “embedding methods” and “fragment-based methods” are therefore

closely related, since a division of the total system is unavoidable in order to formu-

late an embedding theory. A fragment-based method without embedding is theoreti-

cally possible, but would be restricted to the treatment of non-interacting fragments

(note that we regard many-body expansions as a form of effective embedding in

this context). There are two main motivations for embedding methods, which are

(i) reduction of the computational cost and (ii) improved interpretability of the total

system in terms of fragments and their interactions.

The first motivation can be understood by considering the scaling behavior of

typical quantum-chemical methods with the system size. Even Kohn–Sham density

functional theory (DFT) methods, which are among the most cost-effective ab initio

methods, formally scale at least with O(N3). Approaches based on wave function

theory (WFT) often lead to scaling of even higher order, such as Hartree–Fock (HF)

with O(N4), second-order Møller–Plesset perturbation theory (MP2) with O(N5),
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or Coupled Cluster with single/double excitations as well as perturbative triple exci-

tations (CCSD(T), often referred to as the “gold standard” of quantum chemistry),

which even has a formal scaling behavior of O(N7). It is clear that the overall compu-

tational cost could be strongly reduced by splitting the total system into small parts

to be evaluated sequentially or in parallel.

The second aspect is especially important from a chemist’s perspective. In many

cases, individual building blocks of a large system (e.g., functional groups, small

molecules, cofactors in a protein) will have similar (though not identical) properties

both in a complex and on their own. In fact, this is the way of thinking chemists

usually apply to most problems. Quantum-chemical models, however, generally treat

the system as a whole without any such classification. It is then much harder or even

impossible to define and evaluate interaction terms between different components of

the system. Fragment-based methods often have a decisive advantage in this respect.

This is also the reason why it can be worthwhile to apply an approach which is more
expensive than a supermolecular calculation in some cases.

The present chapter attempts to give an overview over the current state of embed-

ding methods in quantum chemistry. However, the sheer number of individual

approaches has become so vast that no single article can cover everything. Therefore,

this review focuses especially on actively developed methods from the field of mole-

cular quantum chemistry, whereas other approaches—though they might be histori-

cally significant—are omitted or treated in less detail. For a much broader overview,

the reader is referred to a collection of reviews published in the recent Chemical

Reviews issue “Calculations on Large Systems” [1], in particular Refs. [2–7], and to

further reviews on density-based embedding formalisms [8–11].

This chapter is structured as follows. In Sect. 7.2, some preliminary concepts will

be introduced, which are important for several of the methods described later. In

addition, our classification of the presented methods will be detailed. In order to be

able to relate the wealth of existing approaches, the in-principle exact subsystem

DFT formalism will be treated in Sect. 7.3. The embedding potential arising from

this theory has many interesting features, which can be used to compare the different

approaches with respect to the incorporated interactions. The body of this chapter

consists of Sects. 7.4–7.6, where a number of important embedding schemes are

reviewed in three different classes. Finally, a short summary is presented in Sect. 7.7.

7.2 General Embedding Strategies

The interest in theoretical fragmentation or embedding methods has increased greatly

over the past decades. This results in a situation where not only the number of

approaches described in the literature is vast, but even the number of different clas-

sification schemes grows continually. A famous early attempt was made by Li et al.

[12], who distinguished between density-based and energy-based methods. In the

former case, a total density (matrix) of the system is assembled first, from which any

supermolecular properties are obtained in a second step. In contrast, energy-based
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methods directly evaluate the total energy of the system from fragment contribu-

tions in a linear fashion. Molecular properties can then be determined by taking

derivatives of the energy with respect to appropriate quantities. This classification

was generalized by Gordon et al. in the framework of a comprehensive review [13].

Here, the energy-based group is renamed “one-step” group and extends the definition

to quantities other than the energy, which can be determined directly from individ-

ual fragment contributions. For instance, the extension of the Molecular Fractiona-

tion with Conjugate Caps (MFCC) method (see Sect. 7.5.1) to dipole moments and

the electrostatic potential [14] now falls into this category, since the total property

is constructed in a strictly additive fashion from the fragment contributions. The

other class of methods is accordingly termed “two-step” methods and contains all

approaches where a supermolecular quantity (usually the density or density matrix)

is constructed from fragment contributions and used to nonlinearly determine prop-

erties in a second step.

A different approach to classifying fragment-based methods focuses on the geo-

metric nature of the employed fragments. Suárez et al. [15] presented an intuitive

distinction between different energy-based methods, depending on whether overlap-

ping or disjoint fragments are constructed. Mayhall and Raghavachari [16] applied

the terms “top-down methods” for the former and “bottom-up methods” for the latter.

To avoid double counting in top-down methods, derivative subsystems correspond-

ing to the overlapping sections are formed according to the inclusion–exclusion prin-
ciple (IEP) of set theory, which can be symbolically cast as

|A1 ∪ A2 ∪⋯ ∪ ANF | =
NF
∑

K
AK −

NF
∑

K<L
|AK ∩ AL| +

NF
∑

K<L<M
|AK ∩ AL ∩ AM| +⋯

+ (−1)NF−1|AK ∩⋯ ∩ ANF | ,

(7.1)

where AK is one of NF
fragments, AK ∪ AL represents the union of fragments AK and

AL, and AK ∩ AL is their intersection. Thus, overlaps of even order are subtracted,

whereas overlaps of odd order enter with a positive sign. Properties of the total sys-

tem (especially the energy) can be approximated by combining the fragment contri-

butions in the same way.

In contrast, a straightforward many-body expansion (MBE) is applied in bottom-

up methods, where no overlap exists between the individual fragments. The energy

can be determined as

EMBE =
NF
∑

K
EK +

NF
∑

K<L
𝛥EKL +

NF
∑

K<L<M
𝛥EKLM +⋯ (7.2)

with

𝛥EKL = EKL − (EK + EL) (7.3)

𝛥EKLM = EKLM − (𝛥EKL + 𝛥EKM + 𝛥ELM) − (EK + EL + EM) . (7.4)
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Here,EK is the energy of subsystemK,EKL is the energy of a dimer formed fromK
and L, and so on. While the accuracy of an MBE method is determined primarily by

the order to which the expansion is carried out, the most important factor influencing

the results of IEP-based approaches is the size and type of the fragments [16].

If fragments are connected by covalent bonds, many approaches apply capping

groups to saturate free valences (“dangling bonds”) left over after the original divi-

sion of the system. It should be noted that the definition of “overlap” between frag-

ments can be ambiguous in this situation. Many authors apply it based only on the

original fragmentation; i.e., before capping groups are applied. This means that even

though the fragments that are subjected to calculations might actually possess some

spatial overlap, this is only counted if it consists of atoms originally present in the

supermolecule. This is the reason why for instance the MFCC method is regarded

as based on overlapping fragments (capping groups consist of the adjacent amino

acids, saturated with additional hydrogen atoms), whereas the Kernel Energy Method

(KEM, see Sect. 7.5.4) employs disjoint fragments (capped only with hydrogen

atoms). The boundary between the two classes is blurred further if intermediate

capping groups are applied (such as small amino acid termini in some variants of

MFCC). The Fragment Molecular Orbital (FMO) method (see Sect. 7.5.2) is one of

the few examples which can be clearly classified as employing disjoint fragments,

since no capping atoms are used.

Two further classification schemes were presented by Richard and Herbert [17]

and Akimov and Prezhdo [2], who both chose not to establish definitive categories,

but rather define a number of attributes to determine for any given method. In this

contribution, we thus divide the method space into three empirical categories: (i)

QM/MM and related multilevel approaches, (ii) schemes based on an MBE, and (iii)

quantum-chemical Divide-and-Conquer (DC) methods. The first class comprises

methods where a certain part of the total system is treated with a more approxi-

mate description, often based on physical considerations. The second class contains

all many-body expansion methods, regardless of the exact description of the inter-

actions (e.g., supplemented by long-range Coulomb interactions or not). Methods of

the third class are based on the general DC idea and often can be shown to be in prin-

ciple exact. As for all classifications, there will be methods that defy categorization

under the present scheme. An example is the extension of density-based embed-

ding to the embedding of a WFT description in a DFT environment, which could

be attributed to categories (i) or (iii). The fact that we file it into the latter merely

reflects the development history. Likewise, Frozen Density Embedding (FDE) itself

can be classified either as a QM/QM scheme, where the interaction term is evaluated

with orbital-free DFT,
1

or as a DC method where the total orbital space is divided

among the subsystems.

1
This holds especially if the environmental density is obtained from model considerations instead

of separate fragment calculations.
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7.3 Exact Embedding Potential

In this section, the in-principle exact subsystem DFT framework [18–20] will be

described. The embedding potential that arises from such a treatment has many inter-

esting features that can be used to classify other embedding frameworks. The present

approach is somewhat similar to the one taken by Gomes and Jacob in their review

on excited-state embedding methods [9].

The central idea of subsystem DFT is to partition the electron density of the total

system, 𝜌
tot

, into several additive fragment contributions 𝜌K ,

𝜌
tot (r⃗ ) =

NF
∑

K
𝜌K(r⃗ ) . (7.5)

Here, NF
is the total number of fragments, and r⃗ denotes a spatial coordinate. Note

that in contrast to the Divide-and-Conquer approach (see Sect. 7.6.1), a fixed number

of electrons are contained in each subsystem. All fragment densities can be expressed

in terms of the Kohn–Sham (KS) formalism as a sum of subsystem orbital contribu-

tions,

𝜌K(r⃗ ) =
Norb
K∑

i

|
|𝜓K,i(r⃗ )||

2
, (7.6)

where Norb
K is the number of orbitals {𝜓K,i} centered on subsystem K. In accordance

with the regular KS formalism, the energy of an individual, non-interacting subsys-

tem is simply given by

Eiso
K [𝜌K] = Ts[{𝜓K,i}] + ∫ vextK (r⃗ )𝜌K(r⃗ )dr⃗ +∬

𝜌K(r⃗ )𝜌K(r⃗ ′)
|r⃗ − r⃗ ′|

dr⃗dr⃗ ′ + Exc[𝜌K]

(7.7)

with Ts
being the kinetic energy of the electrons in the fictitious reference system

and

vextK (r⃗ ) = −
Nnuc
K∑

I

ZI
|r⃗ − R⃗I|

(7.8)

representing the external potential due to the Nnuc
K nuclei with charge ZI and posi-

tion R⃗I in the current fragment. The second term in Eq. (7.7) thus describes the

electrostatic electron–nuclei interaction, while the third and fourth terms contain

the Coulomb and exchange–correlation (XC) interactions, respectively, between the

electrons within the isolated subsystem. For non-interacting subsystems, the total

energy would simply be the sum of all the isolated contributions,
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Etot,non−int [𝜌tot ] =
NF
∑

K
Eiso
K [𝜌K] , (7.9)

but an exact expression for the real (interacting) case can be obtained in the form

EsDFT[𝜌tot ] =
NF
∑

K

[

Eiso
K [𝜌K] +

Eemb,elstat
K

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

NF
∑

L≠K

(

∫ vextL (r⃗ )𝜌K(r⃗ )dr⃗ +
1
2 ∬

𝜌L(r⃗ )𝜌K(r⃗ ′)
|r⃗ − r⃗ ′|

dr⃗dr⃗ ′
)]

+ Exc[𝜌tot ] −
NF
∑

K
Exc[𝜌K] + Ts[𝜌tot ] −

NF
∑

K
Ts[𝜌K]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Eemb,nad
K

.

(7.10)

Although this expression seems complicated, it boils down to a sum of the electro-

static interaction energies between all possible combinations of fragments, Eemb,elstat
K ,

as well as the consideration of kinetic and XC effects through Eemb,nad
K . The contri-

butions inherent to each fragment are already contained in Eiso
K . The second line of

Eq. (7.10) has a more complicated form, since the described effects are of nonad-

ditive nature. Thus, a formally exact nonadditive term is introduced in the form of

Eemb,nad
K .

While the above expression gives the energy of fixed interacting subsystem den-

sities, the energy (and total density) of the ground state can be determined by min-

imizing this energy with respect to the KS orbitals of the individual subsystems.

This leads to one set of Kohn–Sham Equations with Constrained Electron Density
(KSCED) [21] per fragment, which can be cast in the form

[

−∇⃗ 2

2
+ veffK [𝜌K](r⃗ ) + vemb

K [𝜌K , 𝜌tot ](r⃗ )
]

𝜓
KSCED
K,i (r⃗ ) = 𝜀K,i𝜓

KSCED
K,i (r⃗ ) , (7.11)

yielding optimal fragment KS orbitals 𝜓
KSCED
K,i and orbital energies 𝜀K,i. Here, ∇⃗ is

the Nabla operator and veffK is the effective potential of the isolated fragment, which

depends on the fragment density 𝜌K and has the same form as in a usual KS-DFT

calculation. In addition, however, the embedding potential vemb
K is contained in the

Hamiltonian and incorporates the effect which the other fragments exert on K. This

embedding potential has the form

vemb
K [𝜌K , 𝜌tot ](r⃗ ) =

( NF
∑

L,L≠K
vextL (r⃗ )

)

+ vCoul[𝜌tot − 𝜌K](r⃗ )

+ vkin,nad[𝜌K , 𝜌tot ](r⃗ ) + vxc,nad[𝜌K , 𝜌tot ](r⃗ ) .

(7.12)
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The embedding potential can be related to certain physical effects by turning to

intermolecular perturbation theory (see Ref. [22] for an instructive review). The first

term in Eq. (7.12) represents a sum of the individual nuclear potentials of all frag-

ments except K. The second term contains an analogous electronic potential. Physi-

cally speaking, these two contributions can be clearly identified with the first-order

electrostatic interaction, i.e., the electrostatic potential (ESP) of the environmental

subsystems acting on the active fragment. The second line of Eq. (7.12) again con-

tains nonadditive contributions which can be expressed as

vkin,nad[𝜌K , 𝜌tot ](r⃗ ) =
𝛿Ts[𝜌]
𝛿𝜌(r⃗ )

|
|
|
|𝜌=𝜌tot

− 𝛿Ts[𝜌]
𝛿𝜌(r⃗ )

|
|
|
|𝜌=𝜌K

(7.13)

and

vxc,nad[𝜌K , 𝜌tot ](r⃗ ) =
𝛿Exc[𝜌]
𝛿𝜌(r⃗ )

|
|
|
|𝜌=𝜌tot

− 𝛿Exc[𝜌]
𝛿𝜌(r⃗ )

|
|
|
|𝜌=𝜌K

. (7.14)

The nonadditive XC component of the embedding potential is responsible for

short-range exchange–correlation effects and can thus be related to higher-order

intermolecular interactions such as dispersion. Finally, the nonadditive kinetic poten-

tial takes care of non-orthogonality effects between the different fragments and thus

incorporates the Pauli repulsion. It should be stressed that the mathematical form

of the embedding potential is exact and will lead to the supermolecular KS solu-

tion for the limiting case of exact nonadditive functionals. Furthermore, if an exact

expression for Exc
were known, the physically exact solution would be reached.

The total embedding potential of course depends on the densities of all subsys-

tems. Therefore, the KSCEDs have to be either solved simultaneously or in an itera-

tive fashion [20] (see Sect. 7.6.3) to guarantee that the mutual interactions between

all fragments are treated consistently. Physically speaking, this corresponds to an

incorporation of inductive effects.

Partition DFT (PDFT) [23, 24] can be considered an alternative formulation to

subsystem DFT, which is also in principle exact. The real system of interacting frag-

ments is formally replaced by a system of non-interacting fragments, which are cou-

pled by a common “partition potential” that acts as a constraint to ensure normal-

ization to the total number of electrons in the system. In contrast to subsystem DFT,

the number of electrons per subsystem is not fixed, but used as a variational parame-

ter to minimize the total energy. In close relation to PDFT, Huang et al. introduced

an embedding theory [25] where active fragment and environment are required to

share a common embedding potential, thus avoiding the general non-uniqueness of

the density partitioning (see Ref. [10] for details on this problem).
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7.4 QM/MM and Related Approaches

In this section, a variety of multilevel approaches will be presented, where a certain

part of the total system is described with a more accurate method than its surround-

ings. In particular, Continuum Solvent Models (CSMs), QM/MM approaches, and

methods based on effective potentials will be discussed.

7.4.1 Continuum Solvent Models

One of the oldest strategies to embed a system of interest in an environment is rep-

resented by implicit models. The general idea of these approaches is to represent

the surroundings (usually a solvent) by a uniform description, often in the form of

a featureless continuum. Naturally, any atomistic details about the environment are

forfeited in such a representation. Specific interactions such as hydrogen bonds, 𝜋-

stacking, or salt bridges should therefore be treated by including the participating

molecules in the active system.

By far the most common class of implicit solvent models is of the Apparent Sur-
face Charge (ASC) type. In this family of methods, a cavity is created around the sys-

tem of interest (solute), which is then discretized and furnished with point charges

located on the individual segments. The electrostatic potential due to the solvent

continuum is then simply given by

𝜙
ASC(r⃗ ) =

∑

𝜇

q
𝜇

|r⃗ − s⃗
𝜇
|
, (7.15)

where q
𝜇

and s⃗
𝜇

are the magnitude and position, respectively, of point charge 𝜇.

The differences between the various ASC methods lie in the way how these ASC

magnitudes are determined (see below).

A crucial feature of all ASC methods is the construction of the cavity. The major-

ity of algorithms is based on either the solvent-accessible surface (SAS) or the

solvent-excluded surface (SES), which were pioneered by Connolly [26, 27]. In both

cases, a preliminary surface is created by interlocking atom-centered spheres accord-

ing to the individual van der Waals radii. The actual cavity is then generated by

rolling a “solvent ball” of certain radius over this object and tracing either its surface

(SES) or its center (SAS).

The ASC approach itself can only represent the electrostatic component of the

embedding potential. However, several methods have been combined with empirical

treatments to account for dispersion, and a cavitation term is also frequently included

to obtain realistic free energies (see, e.g., Ref. [28]).

The polarizable continuum model (PCM) is the oldest ASC method. Its original

formulation (nowadays known as D-PCM [29]) has long been superseded by the

more recent integral equation formalism (IEF) [30]. In the latter, the electrostatic
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problem is reformulated in terms of Green’s functions, which allows to derive an

expression for the ASC without resorting to an evaluation of the normal component

of the field on the cavity surface. The solution requires only the knowledge of the

molecular ESP, which considerably simplifies the procedure (for details, the reader is

referred to the original publication [30]). Besides making the evaluation cheaper, the

IEF reformulation contains an inherent correction to the problem of outlying charge,

i.e., the fact that part of the solute electron density will always be located outside of

the cavity.

An additional variant is the so-called C-PCM method [31], which borrows the

assumption of a perfectly conducting dielectric from the COSMO approach (see

below). Apart from the choice of the exact screening factor, the two methods can be

considered equivalent. It should be noted that the IEF-PCM contains both D-PCM

and C-PCM as special cases. A recent review focusing specifically on the PCM fam-

ily of methods is available [32].

In 1993, Klamt and Schüürmann presented the Conductor-Like Screening Model

(COSMO) as an alternative ASC method [33]. The crucial difference between the

original PCM and COSMO is the assumption that the solvent can be represented

as a perfect conductor (infinite permittivity). This leads to a much simpler bound-

ary condition which requires the total potential to vanish at the cavity surface. The

corresponding surface charge distribution can be determined for a given molecular

potential (due to the nuclei and electrons inside the cavity) from the equation

𝐀q⃗ = −(𝐁Z⃗ + C⃗ ) , (7.16)

where

A
𝜇𝜈

=
⎧
⎪
⎨
⎪
⎩

|r⃗
𝜇
− r⃗

𝜈
|−1 for 𝜇 ≠ 𝜈

1.07
√

4𝜋
F
𝜇

for 𝜇 = 𝜈
(7.17)

BA𝜇 = |r⃗
𝜇
− R⃗A|

−1
(7.18)

C
𝜇
= ∫V

V
𝜇
(r⃗ )𝜌(r⃗ )dr⃗ . (7.19)

Here, q⃗ is the vector of surface charge magnitudes, while Z⃗ contains the nuclear

charges. The matrices 𝐀 and 𝐁 hold inverse charge–charge and charge–nuclei dis-

tances, respectively. For the special case of the diagonal elements of 𝐀, a “self-

interaction” within the surface segment with area F
𝜇

is described, which has been

derived in the original article [33]. Finally, the vector C⃗ represents the interaction

between the electron density of the system and each surface charge. Equation (7.16)

can be solved directly by matrix inversion, but is more commonly subjected to an iter-

ative procedure. To correct for the assumption of a perfect conductor, the obtained

charges are scaled with a permittivity-dependent function which has the form
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f (𝜀) = 𝜀 − 1
𝜀 + g

, (7.20)

where 𝜀 is the (real) permittivity and a value of 0.5 has been suggested for the factor

g by the original authors, while others set it to zero in accordance with Gauss’ law

[34].

The COSMO approach was soon combined with a statistical thermodynamics

treatment to yield the Conductor-Like Screening Model for Real Solvents (COSMO-

RS) [35], which determines solution properties on a more physical basis by evaluat-

ing the chemical potential of each species in terms of interacting surface segments.

By first carrying out a regular COSMO calculation for all participating components

(solute and solvent alike), a consistent description is achieved. Both COSMO and

COSMO-RS are discussed and compared in a recent review [36]. An algorithm simi-

lar to COSMO-RS was presented by Lin and Sandler and termed COSMO-SAC [37].

An extension of the COSMO scheme to electronically excited states was presented

by Klamt a few years after the original publication of the method [38]. A recent

modification of COSMO-RS allows the calculation of response properties also in

the framework of this more sophisticated approach [39]. In addition, the problem

of missing correlation between different surface segments was first addressed by

the COSMO-RS-DARE approach [40], which was specifically intended for dimer-

ization reactions, and later refined to yield the COSMO-RSC method [41]. One

notable recent advancement was the development of the domain decomposition

COSMO (ddCOSMO) algorithm [42–44], which represents an intrinsically linear-

scaling COSMO variant based on a Schwarz decomposition. Significant speedups at

almost no loss of accuracy have been reported in combination with different semi-

empirical and quantum-chemical methods [45]. In addition, a variant of the COSMO

scheme specifically adapted to subsystem electronic-structure approaches has been

published under the name “Local COSMO” (LoCOSMO) [46].

The Surface Volume and Polarization for Electrostatics (SVPE) method [47] was

specifically designed to remedy the problem of outlying charge. As such, it requires a

treatment not only of the cavity surface (surface polarization), but also of the adjacent

continuum (volume polarization). In order to avoid the costly integration procedures

resulting from this process, the related Surface and Simulation of Volume Polariza-

tion for Electrostatics (SS(V)PE) approach [48, 49] was developed. Here, an addi-

tional surface charge density distribution is introduced to account for the required

boundary conditions. It has later been shown that the SS(V)PE method is equivalent

to the isotropic formulation of IEF-PCM [50].

One of the best-known non-ASC continuum models is the SMx family of

approaches by Cramer and Truhlar [51–53], where x denotes the version (currently

12). These methods are based on a Generalized Born (GB) treatment; i.e., instead

of solving a non-homogeneous Poisson equation, the solute is modeled as a collec-

tion of monopoles residing on the atomic positions, which are assigned certain radii.

The atomic charges are usually obtained from a suitable population analysis scheme,

although a density-based scheme called SMD has been introduced recently [54]. The

crucial part of setting up a GB model is the determination of suitable Coulomb radii
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for the individual solute monopoles. Since the original publication [51], a plethora

of parameterizations and methodological extensions have been presented, which cul-

minated in the two most recent formulations SM8 [55] and SM12 [53].

7.4.2 QM/MM Approaches

The idea of combining an active region of a system described by quantum-chemical

methods with an environmental representation in terms of a force field dates back

to the seminal papers by Warshel, Karplus, and Levitt [56, 57] and was eventually

awarded the 2013 Nobel Prize in chemistry. Since the original formulation, an over-

whelming plethora of different extensions, variants, and improvements have been

developed in groups all over the world. A systematic review of the QM/MM method

is clearly out of the scope of this work, which is why only the very basics and a small

selection of relatively recent developments will be detailed. The reader is referred to

several excellent reviews for more details on this topic [7, 58–60].

A central distinction between different QM/MM methods can be made in terms

of whether they utilize a subtractive or an additive scheme. For the former, the total

energy is expressed as

EQM∕MM = EQM(core) + EMM(core + env) − EMM(core) , (7.21)

where “core” and “env” represent the region of interest and the environment, respec-

tively, whileEQM
andEMM

denote the energy obtained with a QM or MM description

in the respective region. In order to carry out a subtractive calculation, the energy

of the core region thus has to be determined with both methods, in addition to an

MM energy evaluation for the whole system. A clear benefit of this approach is the

avoidance of a complicated coupling term between QM and MM regions. However,

it relies on the assumption that the energy change of the core upon embedding in

the environment is transferable between the different descriptions. Furthermore, the

subtractive approach requires MM parameters for the core region, which can be prob-

lematic if nonstandard moieties are to be modeled. A prime example of this class of

methods is the IMOMM scheme [61] and its better known successor, the ONIOM

approach [62, 63], which will be discussed below.

In additive QM/MM schemes, the total energy is instead simply expressed as

EQM∕MM = EQM(core) + EMM(env) + EQM−MM
, (7.22)

where the energies in the core and environmental regions are evaluated exclusively

by either a QM or an MM description, with the additional coupling term EQM−MM

describing the interactions between them. While the bonded terms across the bound-

ary and the non-electrostatic contribution to the non-bonded energy are almost

always described by force field terms [58], the electrostatic coupling is usually eval-

uated following one of three different schemes [64]:
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1. Mechanical embedding. In this case, a classical representation of the core charge

distribution is created and coupled electrostatically to the environmental force

field charges. Only an improved total energy is obtained, while the core den-

sity/wave function stays the same.

2. Electrostatic embedding. Here, the environmental charge distribution is incorpo-

rated as an embedding potential in the QM Hamiltonian, thus directly altering the

core density/wave function.

3. Polarizable embedding. Through the use of a polarizable description of the envi-

ronment, a mutual polarization between QM and MM regions is modeled. While

this approach best represents the underlying physics, the evaluation of environ-

mental polarization can of course make it more costly than the other embedding

schemes.

A major hurdle in all additive approaches is the modeling of a smooth boundary

between the different regions of the system. This is especially problematic if cuts

occur through covalent bonds, as is often the case in biological molecules. Many

different solutions have been proposed, a comprehensive review of which can be

found in Ref. [58].

The Integrated Molecular Orbital and Molecular Mechanics (IMOMM) method

[61] is a prototypical example of a subtractive QM/MM scheme. The total energy

is calculated based on Eq. (7.21), such that the energy of the QM core (“model sys-

tem”) has to be determined both with a QM method of choice and with MM. In addi-

tion, the total system (“real system”) has to be subjected to an MM calculation. The

subtraction of the MM energy of the model system eliminates any double counting.

However, the latter requires the existence of force field parameters for the compounds

in this region. While the bonded parameters play only a minor role (since they are

mostly canceled by the subtraction), it is important to employ a good parametrization

for long-range interactions [65].

A logical extension was soon presented in the form of the Integrated Molec-

ular Orbital and Molecular Orbital (IMOMO) method [66], where two different

QM methods are combined, with the less expensive method taking the role of the

MM in IMOMM. Finally, a generalization of both schemes was reported under the

name “Our Own n-Layered Integrated Molecular Orbital and Molecular Mechanics”

(ONIOM) [62, 63]. Here, a general formulation for a system divided into n layers

was given, each of which are overlapping and described by different theoretical meth-

ods. The general notation of all derived methods is ONIOMn(M1:M2:. . . :Mn), where

M1. . .Mn denote the methods used for the different layers. For the most typical case

of three layers (i.e., a partitioning of the system into model, intermediate, and real

system), the energy expression

EONIOM3 =Ehigh(model) + Emedium(intermediate) − Emedium(model)
+ Elow(real) − Elow(intermediate)

(7.23)

is obtained, such that again no contribution is overcounted.
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In the original formulation, the interaction between the two parts of the system

was described purely in terms of an MM approach, corresponding to mechanical

embedding. The partial charges for the model system have to be either taken from a

force field (if available) or computed on the fly from the QM results [67]. By includ-

ing environmental MM point charges in all calculations for the model system, a situ-

ation corresponding to electrostatic embedding can be brought about [65]. Recently,

a further extension to ONIOM calculations with polarizable embedding has also

been reported [68]. If all layers are described with various QM methods, a total den-

sity can be obtained from ONIOM calculations in the same spirit as the total energy

[69], although it should be noted that patches of negative density can occur due to

the subtraction.

If covalent bonds run through layer boundaries, this can be taken care of by

including link atoms, similar to additive QM/MM calculations [69]. Expressions for

the ONIOM gradient and other derivatives with and without link atoms have been

derived [69]. Furthermore, the ONIOM scheme was combined with the implicit sol-

vent model PCM [70] as well as with an adaptive atomistic description of a sol-

vent shell [71]. In addition, there are ONIOM approaches with other fragmenta-

tion schemes applied to parts of the system, leading to methods such as the Multi-

centered QM:QM approach [72] and Generalized ONIOM [73]. A comprehensive

review concerning the history, current developments, and applications of different

ONIOM methods can be found in Ref. [5].

The Quantum-regions Interconnected by Local Descriptions (QUILD) method

[74] was developed by Swart and Bickelhaupt as a generalized framework for mul-

tilevel QM/QM or QM/MM calculations. Although somewhat similar to ONIOM,

the different regions can be defined in any desired way, including several overlap-

ping parts. In this way, different interactions can be treated by different methods. For

instance, a calculation for a short DNA strand was reported in the original article,

where the 𝜋-stacking interactions are calculated with a different density functional

than the intramolecular interactions and hydrogen bonding effects.

As mentioned above, the full mutual polarization between QM and MM regions

can be described by using a polarizable force field for the classical part (polarizable

embedding, according to Bakowies and Thiel [64]). Interestingly, this approach was

already suggested by Warshel and Levitt in one of the first QM/MM articles in the

literature [57] and further developed by Luzhkov and Warshel [75, 76]. Thompson

and Schenter later presented a more consistent formulation, where the MM region is

polarized by the proper QM density instead of derived classical point charges [77,

78]. This framework has since then been referred to as QM/MMpol. The approach

was rederived by Curutchet et al. and applied to the description of excitation energy

transfer [79]. Furthermore, it was combined with the PCM approach [80], and gra-

dients have been derived for both ground [68, 78] and excited states [81].



152 A. Goez and J. Neugebauer

7.4.3 Effective Fragment Potential

The effective fragment potential (EFP) method [82–84] is an approach where cer-

tain molecules (e.g., of a solvent) are represented by embedding potentials which

are approximated on the basis of distinct physical effects. Moreover, it is a focused

approach in QM/MM style, where a central molecule of interest treated with a

quantum-chemical method is embedded in an approximate description of the envi-

ronment.
2

Since the environmental representation is fully polarizable, EFP is often

referred to as a QM-derived polarizable force field.

The original model (nowadays referred to as EFP1) [82, 83] was designed specifi-

cally for embedding a system of interest in water. Each solvent molecule (“fragment”)

is represented by an effective potential, which is derived from ab initio calculations.

It is important to note that EFP is a rigid-body method, which means that the frag-

ment potentials for different solvent molecules are usually chosen to be identical

(except for their positions in space).

In EFP1, the total energy of the supersystem is obtained in the form

EEFP1 =
⟨

𝛹
|
|
|
ĤQM + V̂Coul + V̂ ind + V̂ rep||

|
𝛹

⟩

+ ECoul + Eind + Erep
, (7.24)

where 𝛹 is the wave function of the central molecule and ĤQM
represents its unper-

turbed Hamiltonian, which is modified by three different potentials stemming from

the environment. V̂Coul
describes the static Coulomb embedding due to the fragment

potentials, whereas V̂ ind
and V̂ rep

model induction and exchange repulsion effects,

respectively. In terms of intermolecular perturbation theory, these are second-order

effects. The additional terms ECoul
, Eind

, and Erep
represent the respective interac-

tions among the environmental fragments.

The Coulomb contribution is evaluated by placing multipoles (up to octupoles) on

specific points within the solvent molecules. While all multipoles directly affect the

molecular wave function (through V̂Coul
), the evaluation of ECoul

neglects octupole

couplings except for monopole–octupole terms (all lower-order terms are coupled to

each other). Since the multipole expansion is only valid for large fragment distances

[85], damping terms are added to account for short-range charge penetration.

In order to model mutual polarization, the solvent fragments are furnished with

anisotropic polarizability tensors at certain locations, which create induced di-

poles. These interact with the mentioned (static) multipole moments and with other

induced dipoles (Eind
), as well as with the quantum region (V̂ ind

). The polar-

ization contribution is evaluated self-consistently by first iteratively converging the

environmental induced dipoles for a frozen density of the QM system, whereafter

the wave function or density of the latter is updated and the cycle is repeated until no

significant changes occur anymore. The EFP1 exchange repulsion term is described

by a highly parametrized form obtained through fitting of several dimer geometries

2
It is also possible to describe a system on equal footing by treating all constituents as effective

fragment potentials.
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for the solvent at hand. By placing Gaussians (for solute–solvent interactions) or sin-

gle exponentials (for solvent–solvent interactions) on the fragment atoms and centers

of mass, a convenient description is obtained, albeit at the price of a rather involved

fitting process, which can be considered one of the major drawbacks of the EFP1

method.

In 2001, Gordon and co-workers presented the EFP2 method [84], which

addresses several problems of the original formulation. Most importantly, the repul-

sion term is split into exchange and charge transfer, and a dispersion term is newly

introduced. All terms are evaluated on the basis of the actual structure at hand instead

of a cumbersome parametrization process. The Coulomb and induction terms are

determined similarly to EFP1, although much attention was paid to the construction

of improved damping functions [85–87]. The exchange repulsion term is now evalu-

ated on the fly, based on overlap and kinetic energy integrals of Localized Molecular

Orbitals (LMOs) centered on the individual fragments (the LMOs and correspond-

ing Fock matrices are determined in a preparation run before the actual calcula-

tion). Dispersion is included by modeling the interaction between induced dipoles

in a typical R−6
form. The dispersion coefficients are also determined on the fly by

numerical integration over a certain set of distributed polarizability points [88]. The

dispersion term is corrected for charge penetration as well. Finally, charge transfer is

treated in a pairwise additive fashion on the basis of interactions between occupied

valence orbitals and unoccupied orbitals on different fragments [89, 90], which are

also determined before the actual run.

This leads to the favorable situation that no involved parametrization process is

required to apply the EFP2 method for a specific solvent. Although several quantities

are indeed computed beforehand, this is done solely on the basis of a single isolated

molecule of the requested solvent. Furthermore, this process has been automatized

in the MAKEFP routine implemented in GAMESS [91, 92]. Analytical gradients for

both EFP1 [83, 84] and EFP2 [93, 94] are available, and several studies on EFP MD

simulations have been published [95, 96]. EFP1 has been coupled to numerous QM

methods (for a summary, see Ref. [13]), whereas a general interface for EFP2 is still

under active development [97–99]. An extension to fragments bound covalently to

the QM region has been reported [100, 101], and the EFP approach has been coupled

to the Fragment Molecular Orbital (FMO) method in the framework of the EFMO

[102] and the subsequent FIEFMO scheme [103].

Using a similar approach as in the EFP model, Olsen et al. developed the Polariz-

able Embedding (PE) method in 2010 [104] (not to be confused with the identically

named QM/MM type from Ref. [64]). PE can be regarded as a special QM/MM

variant, with the particular aim of obtaining various response properties of the QM

system under the self-consistent influence of a structured environment. The energy

of the QM core under the influence of the environment is given as

EPE = EQM + Ees + Eind + ELJ
, (7.25)

where EQM
is the energy of the isolated QM core, Ees

and Eind
give the electrostatic

and induction contributions, respectively, and ELJ
covers all other interactions in the
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form of a classical (density-independent) Lennard-Jones potential. The electrostatic

and induction contributions are evaluated as in the EFP method, by placing multi-

poles (up to octupoles) and anisotropic dipole–dipole polarizability tensors on cer-

tain sites of the environment (usually atomic positions and possibly bond midpoints)

and self-consistently determining the respective contributions in every SCF step. The

multipoles and polarizability tensors are obtained from the LoProp approach [105].

By truncating the multipole expansion at certain orders and applying isotropic or

anisotropic polarizabilities, a systematic variety of QM-based embedding potentials

for use in the response calculations can be constructed. The salient feature of the PE

scheme is the fully self-consistent treatment of many-body environmental response

up to arbitrary order (first- and second-order expressions are given in the original

article [104], and a third-order form was derived later [106]), allowing for the deter-

mination of a wealth of response properties (e.g., vertical excitation energies, static

and dynamic (hyper)polarizabilities, and nuclear shielding constants).

The PE formalism was originally derived for HF and DFT, but has since been

extended to more sophisticated methods such as Coupled Cluster [107, 108], Multi-

Configuration Self-Consistent Field (MCSCF) [109], or Density Matrix Renormal-

ization Group (DMRG) [110] approaches. Gradients have been derived recently

[111], and a short review is available [112]. In the framework of the Polarizable Den-

sity Embedding (PDE) extension [113], the environment is further partitioned into

two regions, with the solvent multipoles replaced by exact densities in the “inner”

environment. However, the induction term is still evaluated in the basis of distrib-

uted polarizability tensors in both environmental regions. In addition, a short-range

non-electrostatic repulsion term is considered in terms of orbital contributions.

7.5 Many-Body and Inclusion–Exclusion-Based Methods

In this section, some approaches based on an MBE will be discussed. A common

feature of all these methods is the fact that the interactions between certain fragment

combinations are described in a fully quantum-mechanical fashion (by carrying out

calculations for fragment oligomers or using overlapping fragments), whereas oth-

ers are neglected or treated in a more approximate manner (in particular long-range

electrostatics).

7.5.1 Molecular Fractionation with Conjugate Caps

The Molecular Fractionation with Conjugate Caps (MFCC) method [114] was one

of the earliest subsystem approaches based on overlapping subsystems. In contrast

to later, more general schemes, the MFCC method was specifically intended for the

description of proteins. In particular, the original scheme only aimed at reproduc-

ing protein–ligand interaction energies, but it was soon realized that an application

to other quantities, such as dipole moments or electrostatic potentials, is also possi-

ble [14].
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The general idea of the MFCC algorithm is to split a protein into its constituent

amino acid residues (or possibly small combinations thereof) by cutting through pep-

tide bonds. The resulting fragments of course feature dangling bonds, which is why

they are patched with certain capping groups. In the original MFCC, these are chosen

to be whole residues adjacent to the current fragment. In order to saturate any remain-

ing dangling bonds (to further residues past the ones used for capping), hydrogen

atoms are attached. It should be noted that the MFCC approach uses rigid structures

for all calculations, such that both cap and non-cap atoms have the same position as

in the original structure (except for the additional hydrogens which are not present

in the actual protein).

Assuming a protein P with the sequence

P = A1 − A2 −⋯ − ANAA , (7.26)

where AK are the NAA
constituent amino acids, typical capped fragments are formed

as CK−1∗ − AK − CK
, where CK∗

and CK
represent capping groups on different ends

of residue AK . The total binding energy VMFCC
to a ligand L can then be calculated

in the MFCC framework by evaluating the expression

VMFCC(P − L) =
NF
∑

K
V(L − CK−1∗ − AK − CK) −

NC
∑

M
V(L − CM∗ − CM) . (7.27)

The first sum runs over all combinations of capped protein subsystems with

the ligand. Clearly, this includes artificial interactions between the ligand and the

attached cap atoms. This is corrected for by the second sum, which contains binding

energies of the ligand with pairs of capping groups, called “concaps” by the authors.

These are small closed-shell species formed by fusing adjacent capping groups.

As mentioned above, quantities other than the binding energy can be obtained in

completely analogous fashion [14]. As an important example, the total density of a

protein can be expressed simply as

𝜌
MFCC(P) =

NF
∑

K
𝜌(L − CK−1∗ − AK − CK) −

NC
∑

M
𝜌(L − CM∗ − CM) , (7.28)

which also allows to obtain total energies by numerical integration [115], although

it must be mentioned that the total kinetic energy of the electrons is approximated by

simply combining the individual fragment contributions in MFCC style. The MFCC

approach was put on a more general basis by Chen et al., who reformulated it in terms

of density matrices [116]. In the regular MFCC spirit, each element of the total den-

sity matrix is constructed as a sum over all corresponding elements obtained for the

fragments, with the cap contributions being subtracted. Naturally, many contribu-

tions vanish since most atoms are present only in a few fragments. Special care has

to be taken with regard to the capping atoms not present in the supermolecule. The



156 A. Goez and J. Neugebauer

respective matrix elements can either be neglected (MFCC-SDM) or accounted for

by employing ghost atoms (MFCC-GDM). While the former strategy is cheaper, it

does not conserve the total number of electrons.

Even though not explicitly stated by the authors, the MFCC scheme works based

on the IEP. From an embedding point of view, the choice of the capping groups

as parts of the preceding/succeeding sequence is very important, since it represents

the only influence of neighboring fragments onto each other.
3

This is also why we

classify MFCC as an IEP-based approach, rather than a DC scheme. However, the

fragment overlaps are created solely along the protein sequence. The original scheme

thus lacks a number of effects, most importantly the following:

1. Treatment of disulfide bridges

2. Interactions between residues which are spatially close, but far from each other

in the sequence

3. Long-range Coulomb interactions between remote parts of the protein

4. Mutual polarization among different fragments

All of these were addressed in different ways over the last decade. First of all,

Chen et al. demonstrated that proteins with disulfide bonds can be treated essentially

in the same way as regular ones, although different capping groups should be used

(usually S-CH3, yielding dimethyl disulfide as the concap) [119]. Non-bonded inter-

actions between spatially close residues are incorporated in a straightforward MBE

spirit in the Energy-Corrected MFCC (EC-MFCC) approach [120]. This is achieved

by additionally constructing pairs of such residues (according to a user-specified cut-

off radius) and determining a second-order energy correction according to Eq. (7.3).

In contrast to bonded pairs, both fragments are only capped with hydrogens instead

of the usual larger caps. Since proper quantum-chemical calculations are carried out

for the dimers, all types of interaction are included, albeit only at the two-body level.

No improved density was computed in this way (although theoretically possible), but

EC-MFCC geometry optimizations are still enabled by corresponding energy gradi-

ent expressions. In the so-called MFCC-DM-PIC (Pairwise Interaction Correction)

scheme [121], however, a similar correction is applied to the MFCC-DM formalism,

which allows to obtain an improved density matrix for the total system.

Long-range Coulomb interactions were first treated in the context of the Elec-

trostatic Field-Adapted MFCC (EFA-MFCC) approach by Jiang and co-workers

[122]. In this method, the Coulomb interaction with charged groups in the system is

included by determining the electronic structure of the individual capped fragments

and concaps under the influence of point charges. These are placed on certain charge

centers, such as the nitrogen atom of the ammonium group. However, only actually

cationic or anionic groups are considered, whereas interactions with polar groups are

still treated as in the original MFCC scheme. In the Generalized MFCC (GMFCC)

scheme [123], an approach similar to EC-MFCC is pursued. In particular, quantum-

chemical interaction energies between pairs of spatially close residues are calculated

3
It should be noted that later methods based on the MFCC approach often employ an additional

embedding potential, thus allowing for smaller capping groups (see, e.g., Refs. [117, 118]).
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and added to the total energy. In addition, however, the interaction between distant

pairs is evaluated in MM style by applying Coulomb’s law to suitable partial charges

as well as a Lennard-Jones potential with corresponding parameters from a force

field. Again, only a correction to the total energy is obtained in this way. Some years

later, Wang et al. presented the Electrostatically Embedded GMFCC (EE-GMFCC)

scheme [124], where a direct Coulomb interaction is now included already on the

level of the individual fragment calculations as in the EFA-MFCC scheme, but with

atomistic point charges. In this way, the supermolecular density also includes polar-

ization due to the presence of non-neighboring fragments. In addition, both the reg-

ular MFCC approach and the EE-GMFCC scheme have been combined with the

C-PCM solvent model [125, 126] and the latter has been applied to geometry opti-

mizations and the determination of vibrational frequencies [127] as well as ab initio

MD simulations [128].

Finally, it should be noted that even with full electrostatic embedding, the mutual

polarization among the fragments is not necessarily taken into account. Ji and

co-workers addressed this problem by introducing so-called Polarized Protein-

Specific Charges (PPCs) in EE-GMFCC calculations [129], which are determined

self-consistently. However, only the Coulomb interaction is recovered in this way,

whereas non-classical contributions are missing. An additional problem concerns the

subtraction procedure present in all MFCC variants. When a total density is sought

for, it is well possible that unphysical areas of negative density occur. Both of these

problems are solved in the framework of the 3-FDE approach, which will be dis-

cussed in Sect. 7.6.3.

The Generalized Energy-Based Fragmentation (GEBF) formalism was presented

by Li et al. in 2007 [12] and is closely related to the MFCC approach. Unlike MFCC,

it is not specifically intended for the description of proteins, but of extended systems

in general. In the GEBF scheme, the supersystem is partitioned in a general, albeit

more complicated way. A detailed description (including an instructive example) can

be found in the original article, but the most important points are as follows:

∙ First, the total structure is split into “fragments,” which can be as small as individ-

ual functional groups or as large as small molecules (e.g., amino acid residues).

∙ Subsequently, overlapping “primitive subsystems” are constructed for each frag-

ment by including all nearby fragments which are either covalently bound to the

current fragment or have a hydrogen bond to it (alternatively, a distance criterion

𝜁1 can be used). Any remaining dangling bonds are capped with hydrogen atoms.

∙ Primitive subsystems which are identical to or completely contained in any other

primitive subsystem are eliminated.

∙ Possible overcounting of interactions is avoided by using the IEP to construct

“derivative subsystems” from all parts which are contained in more than one of

the remaining primitive subsystems (i.e., overlap between primitive subsystems).

This process is started from the largest possible fragments and repeated for ever

smaller fragments until overcounting is eliminated.
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The GEBF energy expression has the simple form

E =
NF
∑

K
CKEK , (7.29)

whereEK are the energies of primitive or derivative subsystems andCK are the corre-

sponding summation coefficients. While primitive subsystems have a positive coef-

ficient (usually +1), derivative subsystems enter with a negative coefficient to cancel

the respective overcounting. The magnitude of the negative coefficient depends on

the number of times the current interaction would otherwise be overcounted. Note

that the GEBF fragmentation would reduce to the MFCC one in case of a linear pro-

tein chain, where each primitive subsystem includes a single amino acid capped by

its two neighboring residues (and additional hydrogens).

In addition to the general approach outlined above, two-body interactions between

residues which are further apart than the primary cutoff radius 𝜁1, but less than a

larger radius 𝜁2 are included in the same manner as in the EC-MFCC approach.

Furthermore, a point charge background is used to represent the remainder of the

total system already in each subsystem calculation, just like in the later proposed

EE-GMFCC approach.

Geometry optimizations and the calculation of vibrational frequencies in the

GEBF framework are possible through analytical derivatives [130], and the frag-

mentation procedure has later been improved and completely automatized by Hua

et al. [131, 132]. Use of GEBF as the QM method in a QM/MM scheme has been

reported under the name “Fragmentation QM/MM” [133]. Very recently, an exten-

sion to periodic boundary conditions was reported [134], and a review on the GEBF

method is available [135].

7.5.2 Fragment Molecular Orbital Method

The Fragment Molecular Orbital (FMO) approach was first established by Kitaura

et al. in 1999 [136], based on their earlier Pair Interaction Molecular Orbital (PIMO)

method [137]. It can be regarded as a truncated MBE, where the electrostatic interac-

tions between different fragments are taken into account self-consistently up to the

full nth-order expression, while all other interactions are treated on a much lower

order (usually two- or three-body expansion).

The FMO approach is based on disjoint fragments, without resorting to the use

of capping groups. If covalent bonds have to be split, this is done in a heterolytic

fashion, i.e., assigning both electrons of a bond to one of the fragments. The atom

which obtains the bonding electrons is referred to as bond-attached atom (BAA),

whereas the other binding partner is termed bond-detached atom (BDA). An impor-

tant point concerns the proper division of basis functions among the fragments. To

ensure that the BDA does not generate density contributions in the bonding region,
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the corresponding hybrid orbital is projected out either by a suitable projection oper-

ator [138] or Fock matrix transformation [139]. Conversely, certain orbitals of the

BDA are included in the BAA-containing fragment to describe the detached bond.

The choice of fragmentation is in general left to the user, although reasonable

defaults have been supplied for standard situations, such as the division of proteins

[140, 141]. The workflow of an FMO calculation then proceeds as follows:

1. The electronic structures of all isolated fragments are determined.

2. An ESP contribution due to each of the fragments is extracted from the results.

3. Additional monomer calculations are set up, which include the ESP stemming

from all other fragments in their Hamiltonian. Since every such calculation pro-

duces a new fragment ESP, the monomers are iterated to self-consistency.

4. Pairs of monomers are combined to dimers, which are subjected to similar calcu-

lations. However, the background field is fixed and not updated anymore (single

calculation per dimer)

5. If required, higher-order combinations (trimers, tetramers, etc.) can be con-

structed and treated in the same way as the dimers.

The FMO total energy is then determined based on the calculated energies accord-

ing to Eqs. 7.3 and 7.4 or corresponding higher-order expansions (currently, expan-

sions up to third [142] and fourth orders [143] have been tested). Since the ESP for

the monomer calculations is iterated until convergence, the electrostatic interaction

is treated to the full order, while the non-electrostatic contributions are of course

only contained up to the chosen order. The physical justification for this approach is

the relatively short range of the latter. The incorporation of the Coulomb field into

the QM calculations ensures proper coupling of the different kinds of interactions.

There are many different ways to treat the environmental ESP. Originally, the

exact ESP was used by evaluating two-electron contributions for the electronic part.

Since this was deemed too time-consuming, it was proposed to use either Mulliken

populations or derived partial charges to approximate the ESP [144, 145]. In addi-

tion, different approximations can be used based on the inter-fragment distance,

although this requires a slight reformulation of the energy expression to account for

dimers where the constituents are treated on an unequal footing [144, 146]. For far-

separated monomers, dimer calculations can even be forfeited and replaced solely

by the electrostatic interaction [144]. In principle, an orbital-based exchange term

could be included in the embedding potential for the individual fragments. How-

ever, this is discouraged on the grounds of imbalancing an otherwise favorable error

compensation [147].

In order to obtain a supermolecular density and derived properties, several vari-

ants of the FMO method are available. For instance, in the FMO-MO approach [148],

a supermolecular density is calculated from an MBE and used to construct a total

Fock matrix, from which supermolecular orbitals can be derived. The FMO/F and

FMO/FX variants proposed by Fedorov and Kitaura accomplish this without calcu-

lating the total density, directly from fragment Fock matrices [147].

Following the initial implementation for HF wave functions, many important

classes of QM methods have been interfaced with the FMO scheme, e.g., DFT [149],
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MP2 [150], Coupled Cluster [151], and MCSCF [152]. Recently, a combination

with the semiempirical Density Functional Tight Binding (DFTB) method was also

reported [153, 154]. In addition, a multilayer formalism in QM/QM style was pre-

sented [140], and based on nearly [155] or fully analytical gradients [156], several

applications to geometry optimizations [157] and MD simulations [158, 159] have

been reported. Furthermore, a combination with the PCM approach [160], an exten-

sion to periodic boundary conditions [161], and several excited-state treatments were

published [162, 163]. For more information, the reader is referred to several exhaus-

tive reviews [13, 164, 165] and a book about the method [141].

The FMO scheme has been combined with the EFP approach in two ways. Nagata

et al. employed FMO as the QM method in an EFP1 calculation and gave a detailed

description of the interactions between the two regions [166]. Steinmann et al. pre-

sented the Effective Fragment Molecular Orbital (EFMO) method [102], where the

self-consistency cycle for the molecular ESP is avoided by applying the EFP polariz-

ability model, and long-range electrostatics are described by a multipole expansion,

just like in the EFP scheme. In its successor, the Fully Integrated EFMO (FIEFMO)

method [103], exchange repulsion, dispersion, and charge transfer are also included

in EFP style instead of merely through low-order many-body terms.

There are several methods which are related to the FMO approach. The Fast Elec-

tron Correlation (FEC) method by Hirata et al. employs the same functional prin-

ciple, but approximates the electrostatic interaction solely by dipole–dipole terms

[167] or even by atom-centered point charges [168]. The Electrostatically Embedded

Many-Body (EE-MB) scheme [169] is also very similar to FMO, but uses a constant

charge background (thus avoiding iterative optimization). In the Hybrid Many-Body

Interaction (HMBI) scheme [170], higher-order terms are approximated by a polar-

izable force field with a special focus on applications for periodic systems. In partic-

ular, a non-periodic method for short-range interactions (e.g., within a unit cell) can

be combined with a periodic treatment of all long-range interactions.

7.5.3 Molecular Tailoring Approach

After the initial proposal of the Molecular Tailoring Approach (MTA) in 1994 [171],

development lay silent for almost a decade until a much improved version and an

automatic fragmentation scheme were presented by Babu et al. [172]. Similar to

DC schemes (see Sect. 7.6.1), the total density matrix of the system is constructed

(“tailored”) from fragment contributions in the original approach. For each element

of the total density matrix, one of many overlapping fragments is identified where

the two corresponding atoms (or single atom in case of intraatomic elements) are

embedded in the best representation of their molecular environment (as defined in

the following). In the original implementation [172], this is evaluated by counting

the minimum number of bonds to be traced until the fragment edge is encountered. A

refined version was reported under the name Cardinality-Guided MTA (CG-MTA) in

2006 [173]. The sophisticated automatic fragmentation algorithm will be detailed in
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the following. The central quantity is the “R-goodness” parameter Rg, which is used

on several levels. The atomic R-goodness RK
g (A) of atom A in a certain fragment

K is defined as the maximum radius of a sphere centered on that atom, such that

the sphere only includes other atoms belonging to K. In this way, RK
g (A) describes

“how embedded” an atom is in a given fragment. Each atom will be represented

by the fragment in which it has the largest R-goodness. The general R-goodness of

atom A, Rg(A), is then simply determined as the maximum of all obtained values

for that atom, i.e., the value obtained for the representing fragment. Finally, the total

R-goodness of a given fragmentation scheme, Rg, is defined as the minimum of all

atomic values, giving the minimum radius of the embedding molecular environment

around each atom.

The fragmentation algorithm requires two parameters, a minimum R-goodness

Rmin
g and a maximum fragment size in terms of atoms per fragment. First, certain

moieties which should not be fragmented, such as aromatic rings, are identified. A

large set of overlapping fragments is then created by centering a sphere of radius

Rmin
g on each heavy atom in the system. This ensures that every such atom will have

at least an R-goodness of Rmin
g in its parent fragment. A complicated set of rules is

used to merge adjacent fragments, depending on their overlap. The given maximum

fragment size determines the end of the merging process. Any dangling bonds are

then capped with hydrogen atoms. The electronic structure now has to be determined

for the resulting subsystems as well as for additional fragments created from the over-

lap between the basic subsystems. Instead of constructing the total density matrix as

in the original approach, the energy of the system can be evaluated directly, based

on the IEP (see Eq. (7.1)). Here, all overlaps of even order (e.g., between two or four

fragments) are subtracted, whereas all odd-order terms (e.g., ternary intersections)

are subtracted. One of the major benefits of the refined version is its treatment of

bonded and non-bonded effects on the same footing, since the atom-centered spheres

are bond-independent. The set-theoretical evaluation can be extended to other prop-

erties [174]. It should be noted that without any additional embedding components,

the total interaction is only described through the molecular overlap between the

fragments.

Gradients and other derivatives have been derived for the CG-MTA [173], and

the method has been combined with several quantum-chemical methods [175, 176].

In addition, it was noticed that the MTA error in the correlation energy (as opposed

to the HF energy) is approximately independent of the basis set. Thus, a “grafting

correction” was introduced, where this error is determined with a smaller basis set

and used to correct the MTA correlation energy in a calculation with a large basis

set [177]. This concept was soon extended to the estimation of the total error at the

level of the small basis set [178], and a variant which utilizes different fragment sizes

to completely avoid supermolecular calculations was also reported [179]. Recently,

CCSD(T) was employed in the context of grafting corrections [180].

In regular (CG-)MTA, each fragment is only embedded within directly overlap-

ping fragments. Although the embedding potential has the correct quantum-chemical

form, it usually does not represent the full environment, but merely a comparatively
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small region, which can lead to problems for charged or very polar systems. Ganesh

et al. already suggested to create additional fragments by combining charged moi-

eties and include them in the MTA expansion [173]. In order to account for all long-

range Coulomb effects, the Electrostatically Embedded MTA (EE-MTA) approach

[181] was conceived by the Truhlar group. Here, all quantum-chemical calculations

are performed in an electrostatic field created by point charges representing the rest

of the system (as in FMO or EE-GMFCC), which was found to clearly improve the

description of polar and charged systems. The overcounting of Coulomb interactions

is taken care of by a suitable energy expression. Furthermore, the use of a tuned flu-

orine atom was put forward in this work as an alternative to regular hydrogen caps.

Many details about the MTA, especially concerning the current implementation, can

be found in a recent book chapter [182], and a review is available as well [174].

7.5.4 Kernel Energy Method

The Kernel Energy Method (KEM) was first reported by Huang, Massa, and Karle

in 2005 [183] and specifically aims at the description of biological entities. The total

system is decomposed into fragments (“kernels”), which are capped with hydrogen

atoms and subjected to isolated calculations. Subsequently, pairs of these kernels

are formed and additional calculations are performed. The total energy is simply

obtained as

EKEM =
NF−1∑

K

(NF−m∑

K=1

NF−m∑

L=K+m
EKL

)

− (NF − 2)
NF
∑

K=1
EK , (7.30)

which has been shown to be equivalent to the regular two-body expansion in Eq. (7.3)

[15]. The effect of the cap atoms is expected to cancel due to inclusion in both single

and double kernels. In principle, all double kernels can be included in the calcula-

tion, although this might be very expensive for large systems. In the original publi-

cation, the double kernels were therefore restricted to bonded pairs. In applications

to DNA, the important hydrogen bonds between base pairs were added by including

the corresponding double kernels [184]. Straightforward extension to higher orders

is possible, and tests including up to fourth-order terms have been reported [185]. In

2010, a generalized scheme based on earlier work by Deev and Collins [186, 187]

was introduced, where only those combinations of kernels are taken into account

which are connected in the molecular graph [188].

From an embedding point of view, the interaction between different kernels is

taken into account only at the N-body level (where N is the order of the expan-

sion), and no additional terms are added. The KEM can thus be likened to the

FMO approach without inclusion of the environmental ESP in the quantum-chemical

calculations. To our knowledge, no particular automatic fragmentation algorithm

has been reported for the KEM. However, for the treatment of graphene flakes,
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a “fissioning” process was proposed in order to cut through aromatic bonds [189]. In

this approach, an aromatic bond is cut along the bond instead of across it, yielding

two single bonds which are capped with hydrogen atoms.

The original tests were based on HF/STO-3G results, but the method was soon

shown to be applicable in combination with a variety of methods and basis sets

[190]. Gradients have not yet been derived, although a derivation according to the

MBE should be straightforward. Recently, the KEM was used to determine Atoms-

in-Molecules (AIM) charges for a collection of large molecules [191].

7.5.4.1 Other Methods

Independent of each other, the Generalized Many-Body Expansion (GMBE) by

Richard and Herbert [17] and the Many-Overlapping-Body Expansion (MOBE) by

Mayhall and Raghavachari [16] were put forward in 2012. Both approaches attempt

to unify methods based on the IEP (overlapping fragments) with those based on an

MBE (non-overlapping fragments) in a common framework. The resulting energy

expressions are very similar, although not quite identical. Furthermore, a somewhat

different fragmentation scheme is used, although this is not an essential ingredient

of either method [3]. A detailed comparison of the two schemes was carried out later

by Richard and Herbert [192], who confirmed that the two schemes are not exactly

equivalent, although very similar numerical results are obtained for many cases.

The Systematic Molecular Fragmentation (SMF) algorithm by Deev and Collins

[186] is very similar to the original MFCC approach, where whole neighboring

residues were used as caps. The SMF scheme is also based on creating overlapping

fragments and combining their individual energies or properties according to the

IEP. However, it is formulated in a more general way and employs functional groups

as the smallest non-breakable units (as opposed to amino acid residues). A hierarchy

of fragmentation schemes can be generated by specifying a desired “fragmentation

level,” which corresponds to the number of overlapping groups between adjacent

fragments (and thus to the fragment size). By increasing the fragmentation level,

the supermolecular result is systematically approached. Non-bonded interactions are

treated by including additional two- or three-body correction terms. To avoid exces-

sive calculations for far-separated fragments, long-range electrostatic interactions

have also been modeled by a multipole expansion [187] or effective fragment poten-

tials [193]. The fragmentation scheme has been refined in the Systematic Molecular

Fragmentation by Annihilation (SMFA) approach [194], among other new features

allowing for automatic ring fragmentation. The SMF and SMFA methods have been

reviewed and compared to the Combined Fragmentation Method [195] in a recent

article [196].

After reviewing and comparing several existing fragmentation methods, Suárez

et al. presented the Fragment Energy Method (FEM) in Ref. [15], which can be

regarded as a generalization of the MFCC scheme and a special case of the SMF

approach. The Multilevel Fragment-Based Approach (MFBA) [197] works in a sim-

ilar way, but different theoretical methods are used to determine fragment interac-
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tions based on a distance criterion. Gradients have been derived, and the method

has been deemed especially suitable for fragment-based geometry optimizations.

The same strategy was pursued by Mayhall and Raghavachari with their very gen-

eral Molecules-in-Molecules (MIM) scheme [198]. The original formulation com-

bines a GEBF-like fragmentation scheme with the multilevel treatment of ONIOM

approaches. However, instead of treating a central fragment of interest with a more

sophisticated model than its surroundings, one or more cutoff criteria are intro-

duced to determine interaction terms in different ways. While many existing ideas

were incorporated in the MIM approach, these have been combined to a conglom-

erate of remarkable generality, which can treat a variety of different situations (e.g.,

overlapping/non-overlapping fragments, different fragmentation schemes, one or

several different theoretical treatments) within a common framework. Gradients for

the MIM approach are available [199], and it has recently been applied to the calcu-

lation of vibrational, circular dichroism and Raman spectra [200–202].

7.6 Quantum-Chemical Divide-and-Conquer Methods

In this section, several methods originating from a mathematical decomposition of

the supermolecular solution are presented. All approaches are at least related to the

DC scheme, although the nature of the embedding can be very different. A major

distinction from the methods presented so far is the fact that hardly any embedding

components are included based on empirical considerations (except for those aris-

ing naturally, such as the Coulomb contribution of the subsystem DFT embedding

potential).

7.6.1 Divide and Conquer

The Divide-and-Conquer (DC) method was originally formulated by Yang in terms

of DFT [203]. Very similar to subsystem DFT (see Sect. 7.3), the additivity of the

electron density is exploited to partition the total density into fragment contributions.

To this end, a positive partition function pK(r⃗ ) for each subsystem is introduced

under the requirement that

NF
∑

K
pK(r⃗ ) = 1 ∀ r⃗ , (7.31)

i.e., the values of the individual subsystem partition functions must add up to unity

at each particular point in space. A subsystem density 𝜌
K(r⃗ ) can then be expressed

in terms of the total density 𝜌(r⃗ ) as

𝜌
K(r⃗ ) = pK(r⃗ )𝜌(r⃗ ) (7.32)
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and it thus follows that

𝜌(r⃗ ) =
NF
∑

K
𝜌
K(r⃗ ) . (7.33)

Clearly, the value of the partition functions will be large within and close to their

corresponding subsystem, while it will be small far away from it. An example for

a smooth partition function was given in the original article in terms of spherical

atomic densities [203]. The crucial point of the DC formalism is to express the indi-

vidual subsystem densities through localized subsystem orbitals instead of supersys-

tem functions. This is accomplished by rewriting these densities as

𝜌
K(r⃗ ) = 2pK(r⃗ )

Norb
∑

m
f
𝛽

(
𝜀F − 𝜀

K
m
) |
|
|
𝜓

K
m (r⃗ )

|
|
|

2
, (7.34)

where f
𝛽
(x) = [1 + exp(−𝛽x)]−1 is a smooth distribution function of width 𝛽, 𝜀F is the

Fermi energy, and 𝜓
K
m are local eigenfunctions of a subsystem Hamiltonian obtained

through projection of the total KS Hamiltonian on a basis set unique to subsystem

K (thus, 𝜓
K
m are localized on the latter). The Fermi energy can be obtained from the

normalization condition to the total number of electrons Nel
,

Nel = 2
∑

K

∑

m
f
𝛽

(
𝜀F − 𝜀

K
m
) ⟨

𝜓
K
m
|
|
|
pK(r⃗ )||

|
𝜓

K
m

⟩

. (7.35)

It should be noted that only the total number of electrons is fixed, but not the

subsystem values. The density-based DC strategy can be summarized as follows:

First, a local basis set has to be chosen for each subsystem. For instance, a straight-

forward choice would be the basis functions centered on a certain subset of nuclei.

Furthermore, a form for the partition functions must be selected. Subsequently, the

total Hamiltonian has to be projected on the local basis sets, generating a set of

subsystem eigenfunctions (orbitals) and eigenvalues (orbital energies). The Fermi

energy can then be determined from Eq. (7.35), which allows to determine subsys-

tem densities from Eq. (7.34) and thus a total density. This process must be iterated

to self-consistency (until identical Fermi energies for the individual subsystems are

obtained), since the total Hamiltonian depends on all fragment densities and thus

couples them. For a more detailed derivation, the reader is referred to the original

article [203] as well as an excellent review [2].

In order to avoid the evaluation of three-dimensional integrals over the partition

functions and to generalize the DC approach to wave function methods, Yang and

Lee soon introduced a reformulation where the total density matrix is partitioned

instead of the spatial electron density distribution [204]. The density matrix 𝐃 is

defined as (for simplicity, we consider a single-determinant closed-shell case here)
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Dij = 2
Norb
∑

m
CimCjm , (7.36)

where Cim and Cjm are the coefficients for atomic orbitals i and j in the LCAO expan-

sion for occupied molecular orbital m. The spatial partition functions of the original

scheme are replaced by corresponding partition matrices 𝐏K
with the requirement

that ∑

K
PK
ij = 1 , (7.37)

such that the subsystem contributions for each matrix element of 𝐏 add up to 1. The

original proposal for the form of the partition matrix was simply

PK
ij =

⎧
⎪
⎨
⎪
⎩

1 if i ∈ K and j ∈ K
0.5 if i ∈ K and j ∉ K
0 if i ∉ K and j ∉ K

, (7.38)

which guarantees the above normalization condition. All further expressions corre-

spond directly to the density-based formulation. In particular, the subsystem density

matrix contribution is given as

DK
ij = 2PK

ij

∑

m
f
𝛽

(
𝜀F − 𝜀

K
m
)
CK
imC

K
jm (7.39)

and the total density matrix can be obtained by simply summing over all subsystem

contributions.

As mentioned above, a simple and chemically intuitive choice for the local basis

sets would consist of the functions centered on a certain subset of nuclei. In order

to improve the description, basis functions of adjacent nuclei can be included in the

subsystem description, leading to the concept of “buffer regions” [205]. In its sim-

plest form, all basis functions located within a certain cutoff distance of the current

fragment are added to the subsystem basis. Buffer regions are central to the embed-

ding aspect of DC techniques, since it is through this overlap in terms of basis func-

tions that the individual subsystem Hamiltonians are coupled. The subsystems are

usually defined by “core regions,” which are mutually exclusive, and buffer regions,

which are allowed to overlap with the core and/or buffer regions of adjacent frag-

ments. In particular, the core of one fragment could play the role of buffer region for

another fragment [2]. Several advanced partition matrix prescriptions utilizing mul-

tiple buffer regions have been put forward by Dixon and Merz [206, 207], where the

density matrix elements corresponding to combinations of buffer functions are set

to zero. This allows to improve the SCF results for a fragment, while ensuring that

its density matrix contributions exclusively stem from the primary functions of that

fragment. Lee et al. demonstrated that upon growing the total system but maintain-

ing the size of the subsystems and their buffer regions, linear scaling can be achieved

[208].
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Some related methods, which can be regarded as non-self-consistent DC vari-

ants, were proposed by the Mezey group. In the Molecular Electron Density Lego

Approach (MEDLA) [209], total densities are obtained by simply combining den-

sities from a fragment library in an additive fashion. The fragment densities are

obtained by carrying out calculations for small analogous molecules (e.g., CH4 for

an sp3 carbon) and extracting a partial density by considering only certain density

matrix contributions according to Eq. (7.38). The Adjustable Local Density Assem-

bler Method (ALDA) [210, 211] used the same strategy, but instead of fragment

densities on a grid, only the fragment density matrices are stored and evaluated on

the fly, which also allows for small geometric modifications. Finally, the Adjustable

Density Matrix Assembler (ADMA) approach [210, 211] is used to directly con-

struct a supermolecular density matrix from subsystem matrices, as in other DC

schemes. This approach has also been combined with a classical treatment of long-

range electrostatics [212].

As mentioned above, the density matrix formalism allows to apply the DC strat-

egy to a variety of electronic-structure methods. For instance, a combination with

semiempirical methods was explored [206, 207] and Li et al. carried out first tests

for correlated methods [213]. Subsequently, interfaces to HF/hybrid DFT [214],

MP2 [215, 216], and Coupled Cluster [217, 218] approaches have been reported.

Kobayashi et al. exploited the multilevel nature of the buffer region concept by using

differently sized buffer regions (and thus basis functions) for the HF and correlation

part of post-HF calculations [217, 219]. Song and co-workers separately optimized

the exchange contributions for different fragments based on CCSD(T) calculations in

a DC framework [220]. Guidon et al. introduced the idea of evaluating HF exchange

in a smaller basis through introduction of an auxiliary density matrix, which is then

corrected by a suitable density functional [221]. Recent progress on the DC family

of methods includes the extension to time-dependent calculations [222, 223], a GPU

implementation [224], and several developments with respect to AIMD simulations

[225, 226]. Furthermore, Fornace and co-workers presented the Embedded Mean-

Field Theory (EMFT) approach [227], which is also based on a division of the total

density matrix into blocks, facilitating the representation of different parts of the sys-

tem using different theoretical approaches. Unfortunately, no comprehensive review

on DC methods seems to be available, but many useful details can be found in two

perspectives [228, 229] and in Ref. [2].

7.6.2 Density Matrix Embedding Theory

Density Matrix Embedding Theory (DMET) is a very recent approach proposed by

Knizia and Chan [230, 231] to treat strong embedding effects, such as between two

fragments linked by a covalent bond. It is related to the earlier Dynamical Mean-

Field Theory (DMFT), which employs the many-body Green’s function as the cen-

tral object (reviews on DMFT can be found, e.g., in Refs. [11, 232, 233]). One

notable recent advancement in the context of Green’s function embedding was the
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Self-Energy Embedding Theory (SEET) presented by the Zgid group [234–236]. In

contrast to both of these methods, DMET employs the density matrix as the parti-

tioned object.

The central idea of DMET is to represent the total wave function of a system by

a Schmidt decomposition into a linear combination of states of an embedded open

quantum system (fragment) F and states of the environment (bath) B, i.e.,

|𝛹⟩ =
Nfs
∑

i
𝜆i|Fi⟩|Bi⟩ , (7.40)

where 𝜆i is a coefficient, |𝛹⟩ is the total wave function, and |Fi⟩ and |Bi⟩ are states

local to fragment or environment, respectively. It can be shown [230, 231] that the

number of effective bath statesNbs
required to recover the exact solution as described

above is at most the same as the number of fragment states Nfs
.

This approach yields the exact wave function, but already requires it for the deter-

mination of effective bath states. In practice, solutions for individual fragments are

therefore determined with a sophisticated correlation method, while the bath states

are approximated by a cheap supermolecular solution (e.g., a single Slater determi-

nant). An “embedding basis” of effective bath states that interact with the fragment

and its embedding Hamiltonian is determined by several projection procedures onto

the fragment states. This yields Nfs
interacting (“entangled”) bath states and a num-

ber of non-interacting (“pure”) bath states. Only the former need to be taken into

account to express the effect of the bath on the active fragment, while the latter

merely form a multiplicative “core determinant.”

In order to ensure consistency between the different electronic-structure meth-

ods, the density matrix difference between the (correlated) fragment solutions and

the (mean-field) supersystem solution should be minimal. This is achieved by intro-

ducing additional embedding operators uK for all fragments, which are added to the

fragment Hamiltonians as well as to the supersystem Hamiltonian. As summarized

in Ref. [231], the whole DMET self-consistency procedure thus takes the following

form:

1. Determine the (mean-field) supersystem solution.

2. Construct an embedding basis and a fragment Hamiltonian for each fragment by

projection and solve its electronic structure with a correlated method.

3. Construct embedding operators for each fragment to minimize the difference

between the low- and high-level density matrices.

4. Repeat above steps with the embedding operators added to each Hamiltonian

(except the fragment’s own) until self-consistent operators are obtained.

DMET has been applied to physical model systems such as a 2D Hubbard model

[230, 237] as well as to first chemical problems like molecular chains and rings [231,

238], solids [239], and even a chemical reaction [238]. A short review including a

comparison between density-based embedding, DMFT, and DMET is available [11].
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An interesting variant was recently published under the name “Bootstrap Embed-

ding” [240]. The motivation was to improve the slow convergence of the DMET solu-

tion with respect to the fragment size, which was shown to depend on the volume-

to-surface ratio. In contrast to regular DMET, the system is partitioned in multiple

ways, such that each atom is close to the fragment boundary in some partitionings

and buried deeper within the fragment in others. Instead of trying to match the envi-

ronment density matrix of the mean-field description to the one obtained from a

correlated description of the fragment (which is bound to fail due to the restriction

to a single Slater determinant), the “edge” region of one fragment is matched to the

“core” region of a corresponding fragment from a different partitioning scheme. In

this way, the total density matrix is improved systematically. Since wave functions

of the same type (e.g., Full Configuration Interaction (FCI) in the original article)

are matched to each other, the condition can be fulfilled exactly, which decreases the

influence of the nature of the bath. In addition, the choice of partitioning scheme

clearly becomes less important, since multiple different types are constructed and

made consistent with each other. Bootstrap Embedding has only been applied to lat-

tice models so far, but could theoretically be extended to molecular systems, even

though a division in terms of atomic orbitals might not be straightforward [240].

7.6.3 Frozen Density Embedding

Frozen Density Embedding (FDE) [21] is one particularly interesting variant of sub-

system DFT, which has been introduced in Sect. 7.3. FDE can be regarded as the

special case of solving the KSCEDs for a single (“active”) subsystem while keeping

all environmental densities frozen. The active density is thus relaxed in the embed-

ding potential generated by the frozen density. On the one hand, FDE could thus be

used as a focused approach, with the environmental density obtained from a different

method or from model considerations (see, e.g., Ref. [241]). On the other hand, the

subsystem DFT solution can be recovered by successively interchanging the roles of

active and frozen density (or densities) and running additional calculations. When

this process is carried out until self-consistency is reached, an iterative (but equiv-

alent) solution to the subsystem DFT problem is obtained. In the literature, these

relaxation cycles are often referred to as “Freeze-and-Thaw” (FT) cycles [20]. Phys-

ically speaking, the FT cycles introduce the inductive component of the intermole-

cular interaction between the subsystems (see Ref. [22]), although this interpreta-

tion formally has to be taken with a grain of salt (see the discussions in, e.g., Refs.

[242, 243]).

Certain approximations are usually made in practical FDE calculations. The first

is to introduce approximate forms for the XC potential (fragment contributions as

well as nonadditive correction) and the nonadditive kinetic energy. This approach is

necessitated by the fact that exact expressions are not known. Since the total den-

sity is available in each step of an FDE calculation, all common density-dependent

forms can be used to evaluate the XC contributions (e.g., the Local Density Approxi-
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mation (LDA) or functionals derived from the Generalized Gradient Approximation

(GGA)). Hybrid functionals, however, cannot be used directly, since the evaluation

of their orbital-dependent contribution would require orbitals for the supersystem

[244–246]. Optimized Effective Potential (OEP) methods [247] could offer a solu-

tion here.

For the same reason, it is difficult to obtain a suitable form for the nonadditive

kinetic energy. Purely density-dependent forms can be employed for this contribu-

tion as well, but this is a much more severe approximation, as it is known that den-

sity functionals for the kinetic energy, such as the Thomas–Fermi functional [248,

249], only work for limiting cases. However, since in practice the nonadditive kinetic

term is often relatively small, they can still be viable in many situations. In partic-

ular, for weakly bound complexes, good results have been obtained [20, 250, 251]

with the PW91k functional [252], whereas the interactions between covalently con-

nected subsystems are described qualitatively wrong [253, 254]. In these cases, a

better description could be obtained by potential reconstruction approaches [253,

255, 256], although these require a preliminary supermolecular calculation. A com-

prehensive discussion of different approaches for constructing nonadditive kinetic

potentials can be found in Refs. [6, 10].

It has been shown that the kinetic energy contribution vanishes if the subsys-

tems’ orbitals are orthogonal to each other [257, 258], although this is not a strict

requirement to recover the exact KS solution [259]. If such an orthogonalization is

desired, it can be carried out by employing the projection technique introduced by

Manby et al. [260]. In this approach, localized orbitals are determined for different

fragments, which allows to use a simple projection operator to orthogonalize envi-

ronmental fragment orbitals, eliminating the nonadditive kinetic energy. Since a full

calculation of the supersystem is required to obtain localized orbitals, the approach

is mainly suitable for WFT-in-DFT embedding (see below). An alternative is the use

of additional Lagrangian multipliers to enforce intersubsystem orbital orthogonality

[257].

A further simplification is to employ different subsystem basis sets for the indi-

vidual fragment calculations. Clearly, this reduces the computational effort tremen-

dously, since most matrix operations during the solution of the SCF problem scale

with the number of basis functions. However, one important consequence is that

charge transfer between fragments becomes impossible by construction (which might

be desired in some situations [261]). It should be noted that the approximation of a

subsystem basis set is by no means a requirement for FDE calculations, but merely

facilitates calculations for large molecules.

Early applications of the FDE method were especially concerned with the descrip-

tion of hydrogen-bonded and van der Waals complexes, as summarized in Ref. [262].

Soon, attention turned to molecular properties and spectra. An extension to time-

dependent DFT (TDDFT) was published by Casida and Wesołowski in 2003 [263],

and several studies concerning solvent/environment-induced shifts were reported

[264, 265]. An extension to NMR shifts was presented by Jacob and Visscher [266].

In 2007, Neugebauer rederived the FDE-TDDFT approach and extended it to cou-

pled excitations, delocalized over different subsystems [267]. Such a scheme is par-
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ticularly suitable for the treatment of coupled chromophores, e.g., in photosynthetic

light-harvesting complexes, where the subsystem picture enables a natural approach

to the investigation of excitonic interactions. Several subsequent studies applied this

approach for the determination of spectral properties of natural light-harvesting pro-

teins (see Refs. [268, 269] for reviews of earlier work, Refs. [270–274] for method-

ological extensions and Refs. [275, 276] for more recent applications). Much effort

has also been dedicated to the application of FDE for the investigation of spin den-

sities and charge transfer processes [261, 277–279].

Already in 1998, the purely density-based FDE formalism was extended to the

embedding of WFT methods in a DFT environment [280, 281]. In such a formalism,

the same working equations as outlined in Sect. 7.3 can be used by determining the

density of an embedded system with a WFT method and letting it enter the energy

expression. In addition, the embedding potential is added to the Hamiltonian for the

embedded system. The WFT-in-DFT formalism was later refined to produce self-

consistent densities for all subsystems [282] and has been extended to excited states

[283, 284]. Recently, thorough rederivations of the excited-state formalism for state-

specific approaches [285] and response theory treatments [286] have been presented,

and a corresponding implementation for coupled excitations was reported [287]. In

WFT-in-DFT embedding, the bottleneck is often the high-level calculation of the

embedded cluster. Thus, more sophisticated methods for estimating the nonadditive

kinetic energy can be used, which require a calculation of the full system on the basis

of DFT. This was first exploited by Roncero et al. [255] and later used by the Miller

group to construct an accurate WFT-in-DFT embedding scheme [288].

Proteins can be considered a unique challenge for FDE, since they comprise

extremely large, covalently connected units (necessitating cuts through covalent

bonds), while routinely being too large even for a cheap DFT calculation (prevent-

ing the use of exact embedding schemes). An interesting variant of FDE specifically

adapted for the treatment of proteins was therefore devised by Jacob and Visscher

[117], based on earlier work by Casida and Wesołowski [263]. In the so-called Three-

Partition FDE (3-FDE) method, the fragmentation scheme of the MFCC method

(see Sect. 7.5.1) is combined with the embedding potential of FDE. Fragments are

thus constructed by cutting certain peptide bonds and applying small capping groups

to saturate remaining free valences. Since the fully quantum-chemical embedding

potential is applied to represent the environment of each fragment, the caps can be

chosen much smaller than originally intended by the MFCC developers and usually

consist of neutral or methylated amino acid termini [117, 289]. An important feature

of the 3-FDE method is the application of an additional cap potential, which forces

the density in the region of the cap atoms to be identical to the one obtained for

the concaps. This guarantees that upon subtraction of the latter, no negative density

patches are obtained. The 3-FDE method has been tested on some small example

systems [117, 289] and was used to obtain a fully quantum-chemical density of the

Fenna–Matthews–Olson complex of green sulfur bacteria, which consists of more

than 6,500 atoms [276]. Subsequently, a robust protocol to construct fully converged

3-FDE protein densities was presented [290], and a comprehensive benchmark was

published [291].
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Analytical gradients for regular FDE were first implemented by Wesołowski [292]

and have been used for geometry optimizations [293] as well as MD simulations

[294, 295]. Recently, a detailed derivation and new implementation in the Amster-

dam Density Functional (ADF) program were reported [296]. In addition, approxi-

mate analytical gradients for WFT-in-DFT embedding are available [297].

Recent developments include a variant of the COSMO scheme especially suited

to subsystem calculations [46], the embedding of DMRG [298] and ADC(2) [299]

wave functions in a DFT environment, and the derivation of excited-state gradients

[300]. Many more details about the different flavors of FDE can be found in several

extensive reviews [6, 9, 10, 268, 269].

7.7 Summary and Conclusions

In the present chapter, we have attempted to give an overview over different classes

of embedding methods, focusing especially on actively developed approaches, many

of which have been put forward only recently. Three major classes of methods have

been identified, which are (i) QM/MM and related approaches (Sect. 7.4), which in

general require the identification of a chemically interesting part of the total system,

(ii) methods based on an MBE or the IEP (Sect. 7.5), where a truncated expansion is

usually supplemented by physically motivated embedding components, and (iii) DC-

like approaches (Sect. 7.6), most of which are potentially able to recover the exact

solution from fragment calculations. Clearly, this division is somewhat arbitrary, as

the boundaries between different classes have been blurred over the last decades

through the adaptation and combination of different ideas.

Especially, the approaches from the first two categories have been compared to

an exact embedding potential, which emerges from the subsystem DFT approach

(see Sect. 7.3). In many cases, distinct physical effects can be identified as particular

terms of the interaction expressions, whereas this is more difficult for the approaches

presented in Sect. 7.6. Therefore, the benefits of the first two classes of methods

lie in their practical and often computationally cheap form, whereas the DC-like

approaches are much more deeply rooted in formally exact theories.

Contributions from all these classes of methods will most certainly continue to

be highly relevant in the field of large-scale calculations, where many systems only

become accessible through fragment-based approaches, as well as with respect to

the investigation of molecular interactions, where embedding facilitates interpreta-

tion and leads to chemical insight. The many recent developments presented in this

chapter bear testimony to the continued interest in such approaches and their impor-

tance in both chemistry and physics.
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