
Chapter 12
Quantum Chemistry at the High Pressures:
The eXtreme Pressure Polarizable
Continuum Model (XP-PCM)

Roberto Cammi

Abstract In this chapter, we review some recent developments in our XP-PCM

method to introduce the effect of high pressure (p > 1GPa) in the quantum chem-

istry study of molecular properties and processes. After a presentation of the physical

basis and the computational aspects of the XP-PCM model, we give examples of its

recent applications. These applications regard the study and analysis of the elec-

tron distribution, of the equilibrium geometry, and of the vibrational frequencies of

molecular systems under high pressure.

Keywords DFT ⋅ Equilibrium geometry ⋅ Vibrational frequencies ⋅ Pressure
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12.1 Introduction

In this chapter, we present a short review of our model in title, aimed to introduce the

effects of high pressure (larger than 1 GPa) in the quantum chemical description of

molecular systems. The issue of high pressure in the quantum mechanical calculation

for atoms and molecules has a long history, which dates back to 1937 [1]. However,

this history testimonies of models which have been restricted, so far, to the study

of very simple systems as atoms or diatomic molecules, remaining excluded by the

impressive developments in the modern computational quantum chemistry.

As denoted by its name, the XP-PCM model is a generalization of the well-known

polarizable continuum model for the study of molecular properties and processes in

solution at standard conditions of pressure and temperature [2, 3]. A first version of

the XP-PCM was presented in 2008 [4]. More developed versions have been pre-

sented for applications to the study of the effect of extreme high pressures on the

equilibrium geometries and vibrational frequencies of molecular systems [5–7]. The

method has recently been extended to study the effect of extreme pressure on the
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electronic excitations of molecular systems [8], and to the study of potential energy

surfaces for chemical reactions at extreme high pressure [9].

In its basic version, the XP-PCM model describes molecular systems (the solute)

in a dense medium at extreme high pressure (p > 1GPa = 105 bar). The medium

is represented as a continuum material distribution having a void molecular cavity

in which the molecular solute is accommodated. The continuum material is char-

acterized in terms of its dielectric permittivity and its averaged electronic charge

distribution, at the given condition of pressure. The molecular solute is described

at the quantum mechanical level, and hence its electron distribution spreads in the

medium outside the void cavity, where it overlaps with the electron distribution of

the medium. Pressure enters through the Pauli repulsive interaction originating by

this overlap, and the effects of the pressure are modeled by shrinking the volume of

the molecular cavity. The shrinking of the cavity increases the amount the electronic

charge density of the molecular solute that lies outside of the cavity boundary, with

a consequent increase of the Pauli repulsion with the solvent.

The present contribution is organized as follows: After a presentation of the essen-

tial of the computational aspects of the XP-PCM model for the study of the mole-

cular systems at extreme pressure (Sect. 12.2), we give examples of its numerical

applications to the studies of the effect of the pressure on the electron distribution

(Sect. 12.3), of the effect of the pressure on the equilibrium geometry (Sect. 12.4),

and of the effect of the pressure on the vibrational frequencies (Sect. 12.5). Finally,

in Sect. 12.6, we draw some provisional concluding remarks on the XP-PCM model.

12.2 The Essential of the XP-PCM Method for Molecules
Under High Pressure

In this section, we summarize the basic XP-PCM equations for the quantum mechan-

ical description of a molecular the solute in a dense medium at extreme high pressure.

The molecular system is described, in the usual clamped nuclei approximation,

by an effective electronic Hamiltonian which may be written as

Ĥ = Ĥo + V̂e(𝛹 ) + V̂r (12.1)

where Ho
the electronic Hamiltonian of the isolated molecule; V̂e(𝛹 ) represents the

solute–solvent electrostatic interaction, giving origin to the solvent reaction field of

the PCM model, and depending on the electronic wave-function |𝛹 > of the mole-

cule [2]; The operator V̂r represents the exchange–repulsion (Pauli) interaction of

the molecular solute with a statistical average distribution of the surrounding mole-

cules of the external medium. According to the theory of intermolecular interaction

[10], the exchange–repulsion contribution originates from the overlap between the

electronic distribution of the molecular solute and a mean electronic distribution

of the solvent (i.e., the external medium). The mean electronic distribution of the

solvent is approximated as a uniform distribution outside of the cavity hosting the
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molecular solute, and with zero density inside the cavity. As a consequence, only

the portion of the electronic distribution of the molecular solute lying outside the

cavity overlaps with the uniform electronic distribution of the solvent, determining

the solute–solvent Pauli repulsion.

The Pauli repulsion operator Vr corresponds to a repulsive step potential barrier

located at the boundary of the cavity hosting the molecular solute [10]
1
:

V̂r = ∫ �̂�(𝐫)V0𝛩(𝐫)d𝐫 (12.2)

�̂�(𝐫) = ∑N
i 𝛿(𝐫 − 𝐫i) is the electron density operator (over the N electrons of the

molecular system), and V0 is the height of a barrier potential 𝛩(𝐫) located at the

boundary of the cavity 𝐂:

𝛩(𝐫) =
{

1 𝐫 ⊆ 𝐂
0 𝐫 ⊈ 𝐂 (12.3)

The potential barrier height V0 is given by

V0(s) =
V0

s3+𝜂
s =

(
Vc

V0
c

)1∕3

(12.4)

where VO is the step barrier at the standard condition of pressure [2], and Vc and

V0
c are, respectively, the actual volume of the cavity and the volume corresponding

to the standard condition of pressure. In Eq. (12.4), 𝜂 is a semi-empirical parameter

that gauges the strength of the solute-solvent Pauli repulsion [13].

The effective electronic Hamiltonian (12.1) implies a quantum mechanical energy

functional, Ge−r, which is defined as:

Ge−r =< 𝛹 |Ĥo + 1
2
V̂e(|𝛹 >) + V̂r|𝛹 > +Ṽnn (12.5)

The energy functional (12.5) has the thermodynamic status of a free energy for the

whole molecule-external medium system, with respect to a reference state given by

the non-interacting electrons and nuclei of the molecular solute and by the unper-

turbed external medium having a preformed cavity to host the solute.
2

The time-dependent Schrödinger equation for the effective Hamiltonian (12.1)

determines the electronic wave-function |𝛹 > of the molecular system [14]:

[Ĥo + V̂e(|𝛹 >) + V̂r]|𝛹 >= E|𝛹 > (12.6)

1
An alternative definition of the operator Vr has been recently given by Chipman and co-workers

in terms of the gradients of the electron density operator [11, 12].

2
The factor 1∕2 in front to the operator V̂e(|𝛹 >) is due to the nonlinear nature of this operator, and

Ṽnn is the nuclei–nuclei interaction contribution in the presence of the external medium.
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The solution of this equation, which can be approached at the available approxi-

mation levels of the Computational Quantum Chemistry (HF/DFT, Couple-Cluster,

. . . ), gives access to the properties of the molecular systems under extreme pres-

sure, at these various levels of theory. Within the XP-PCM model, as for the stan-

dard PCM model, the electronic response properties of the molecular solute can be

expressed as derivatives of the free-energy functional Ge−r with respect to suitable

internal or external perturbations. This connection between the molecular properties

and the free-energy functional Ge−r is a consequence of the form that the Hellmann–

Feynman theorem [15, 16] takes for the PCM model [3, 17].

The free-energy functional Ge−r may also act as the Born–Oppenheimer potential

energy surfaces ruling the nuclear motion of the solute, if a rigid geometry of the

cavity hosting the molecular solute is assumed. This approximation can be used the

case of molecules whose equilibrium geometry do not involve large displacements

of the nuclei under the effect of extreme pressure. This approximation has been used

in all the applications presented in this chapter. In the case of molecular processes

involving large amplitude motions of the nuclei, as in the conformational changes,

or along an intrinsic reaction path, the potential energy surfaces ruling the nuclear

motion is obtained by adding to the electronic free-energy functional Ge−r a free-

energy contribution due to the variation of the cavity geometry within the molecular

process.

The free-energy functional Ge−r may also act as the Born–Oppenheimer poten-

tial energy surfaces ruling the nuclear motion of the solute, if a rigid geometry of the

cavity hosting the molecular solute is assumed. This approximation of a rigid cav-

ity may be used the case of molecules whose equilibrium geometry do not involve

large displacements nuclei under the effect of extreme pressure. This approximation

has been used in the applications presented in this chapter. On the contrary, in the

case of molecular processes involving large amplitude motions of the nuclei, as in

the conformational changes, or along intrinsic reaction paths, the effective potential

energy surfaces ruling the nuclear motion are obtained by adding to the electronic

free-energy functional Ge−r a free-energy contribution due to the variation of the

cavity geometry within the molecular process [9].

In the XP-PCM method, the pressure is not an input parameter, and it is defined in

terms of the dependence of the electronic free-energy functional Ge−r with respect

to the volume of the cavity hosting the molecular solute:

p = −
(
𝜕Ge−r
𝜕Vc

)

(12.7)

where Vc is the volume of the cavity.

The cavity of the molecular solute is defined as the envelope of spheres centered

on the solute atomic nuclei. The radii of these atomic spheres are given by the product

of the corresponding van der Waals radii [18] times a uniform scaling factor, f . To

increase the pressure, the volume of the cavity Vc is decreased by reducing the value
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Fig. 12.1 XP-PCM results for the pressure, p, as a function of the cavity volume, Vc, for the case

of diborane as molecular solute. See Ref. [5] for computational details

of the scaling factor f with respect the reference value f0 = 1.2. Figure 12.1 shows

the pressure as a function of the volume of the cavity for the case of the diborane

molecule [5].

12.3 Effect of the Pressure on the Electron Density
Distribution

Let us consider a molecular solute at a given fixed geometry in a dense phase at

extreme pressure. Under this condition, the effect of the pressure on the molecu-

lar properties reflects the increase of the Pauli repulsion operator, Vr, in the effec-

tive electronic Hamiltonian (12.1). In fact, as we have described previously, XP-

PCM models the effect of the pressure by reducing the volume of the cavity host-

ing the molecular solute, with a corresponding increase of the solute–solvent Pauli

repulsion. The molecular system reacts to this perturbation rearranging its electronic

wave-function, to which corresponds a change of the related electronic properties.

As an example of the effect of the pressure on the electronic properties, we consider

the case of the one-electron density 𝜌(𝐫).



278 R. Cammi

Fig. 12.2 XP-PCM iso-surfaces of the electron density differential 𝛥𝜌(p) = 𝜌(p) − 𝜌(0) for dib-

orane (top) and Buckminsterfullerene (bottom) under extreme pressure (p = 1.0GPa). Diborane:

blue-violet iso-surfaces correspond to a decrease of electron density 𝛥𝜌 < 0 while aquamarine iso-

surface corresponds to an increase of electron density 𝛥𝜌 > 0; C60: light-green iso-surface corre-

sponds to a decrease of electron density 𝛥𝜌 < 0 while orange iso-surface corresponds to an increase

of electron density 𝛥𝜌 > 0

Figure 12.2 shows the differential of the electron density (𝛥𝜌(p) = 𝜌(p) − 𝜌(0))
induced by the pressure p for diborane [5] and Buckminsterfullerene (C60) [6]. The

effect of the pressure corresponds to a flux of electrons from outer regions of the

molecular systems toward more internal regions. In particular, the increase of the

𝜌(𝐫) is concentrated in the internuclear regions of these molecular systems. The

differential of the electron density 𝛥𝜌(p) can be expressed in terms of the mixing

between the molecular orbital (MO) induced by the pressure. At the first order, we

can write:

𝛥𝜌(p) = 2
occ∑

i
𝜙
0
i 𝜙

(1)
i (12.8)
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where the summation is over the occupied MO, 𝜙
0
i are the unperturbed MO and 𝜙

(1)
i

are the first-order perturbations induced by the one-electron Pauli perturbation vr.3

In an uncoupled MO perturbation scheme,
4
𝜙
(1)
i is given by

𝜙
(1)
i =

vac∑

a
< 𝜙

0
i |vr|𝜙

0
a > ∕(𝜀0i − 𝜀

0
a) (12.9)

where the summation runs over the vacant MO 𝜙
0
a > and (𝜀0i − 𝜀

0
a) are orbital energy

differences.

The Pauli repulsion operator vr is totally symmetric with respect to the symmetry

point group of the molecular system (the pressure acts isotropically), hence reasons

of symmetry restrict the summation over the vacant MO that span the same symmetry

(irreducible representation) of the occupied MO 𝜙
0
i . Therefore, each term of Eq.

(12.8) is totally symmetric, and so the difference of the electron density 𝛥𝜌(p), as

clearly shown in Fig. 12.2.

As we will see in the next Section, the differential of the electron density (𝛥𝜌(p) =
𝜌(p) − 𝜌(0)) plays a significant role in the discussion of the effect of the pressure on

the equilibrium geometry.

12.4 Effect of the Pressure on Equilibrium Geometry

The XP-PCM method can study the evolution of the equilibrium geometry of molec-

ular systems under extreme pressure. The equilibrium geometries are determined by

exploiting very effective optimization processes, thanks to the available analytical

form of the gradients of the electronic energy functional Ge−r [19]. In Fig. 12.3, we

show the evolution of the variations of the bond lengths distances in diborane [5]

and Buckminsterfullerene [6] as functions of the pressure, up to 20 GPa. For these

molecular systems, all the atomic bond lengths are shortened with the increase of

the pressure, with a linear dependence with respect to the pressure.

Is there an explanation of this linear behavior of the bond lengths with pres-

sure? What is the physical origin of this response of the molecular geometry to the

pressure? Both questions find a physically coherent explanation with the XP-PCM

method.

3
Formally, the Pauli repulsion operator for N electrons of Eq. (12.2) may be written as V̂r = v̂r(𝐫)

with v̂r(𝐫) = 𝛿(𝐫 − 𝐫′ i)V0𝛩(𝐫).
4
An uncoupled molecular orbital (MO) perturbation scheme is a perturbation method that evaluates

the effect of the perturbation on the molecular orbital by neglecting the effects that the perturbation

has on the electron–electron repulsion contribution of the Fock operator.
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Fig. 12.3 XP-PCM bond lengths variations in diborane (left panel) and Buckminsterfullerene

(right panel) as functions of the pressure. For diborane, B−H
t
, B−H

b
, B−B denote, respec-

tively boron–hydrogen (terminal), boron–hydrogen (bridge), boron–boron bonds; for fullerene C60,

5,6C–C, 6,6C–C denote, respectively, the 5,6 and 6,6 carbon–carbon bonds. See Refs. [5, 6] for the

computational details

12.4.1 On the Linear Dependence on Pressure of the Bond
Distances

As said in Sect. 12.2, the potential energy function for the nuclei motion of the molec-

ular system under an external pressure is given by the electronic energy Ge−r. Hence,

the equilibrium geometry of the molecules corresponds to a minimum of the poten-

tial energy Ge−r. The potential energy Ge−r, may be formally expanded near the equi-

librium geometry in the gas phase with respect to both the nuclear coordinates 𝐐 and

the pressure p. If we express the nuclear coordinates in terms of the normal vibra-

tional coordinates, 𝐐i, of the isolated molecule, Ge−r(𝐐, p) may be expressed up to

second order as [5, 20]

Ge−r(𝐐, p) = Ge−r(0, p) +
1
2
∑

i
kiQ2

i + p
TS∑

i
𝛤iQi (12.10)

where Ge−r(0, p) denotes the electronic energy at the equilibrium geometry 𝐐 = 0
at the pressure p, Qi and ki = (𝜕2Ge−r∕𝜕2Qi)𝐐=0 are the i-th normal mode and the

corresponding harmonic force constant, and 𝛤i is a pressure coupling defined as:

𝛤i =
(
𝜕
2Ge−r
𝜕p𝜕Qi

)

𝐐=𝟎
=

(
𝜕GQi

e−r
𝜕p

)

𝐐=𝟎

(12.11)

The coupling parameter 𝛤i corresponds to a mixed second derivative of the basic

XP-PCM energy. This coupling parameter has the physical meaning of a molecular
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response function which describes the response to the pressure of the component of

energy gradients along the normal mode coordinates, GQi
e−r =

(
𝜕Ge−r
𝜕Qi

)

𝐐=𝟎
. For sym-

metry reasons (as the pressure is isotropic, the symmetry point group of the molecule

is conserved), the summation of Eq. (12.10) runs only over the totally symmetric

(TS) normal modes of the isolated molecules.

At a given pressure p, the new equilibrium geometry is then determined by the

condition
𝜕Ge−r(𝐐, p)

𝜕Qi
= p𝛤i + kiQ

eq
i = 0 (12.12)

which gives:

Qi(p)eq = −
𝛤i

ki
p i ⊆ TS (12.13)

Equation (12.13) shows that the changes of the equilibrium geometry in the molecule
occur with shifts along the totally symmetric normal coordinate Qi, the shifts linearly
depending on the external pressure p. This conclusion is in agreement with the linear

correlation shown in Fig. 12.2.

It is useful to rewrite Eq. (12.13) in the following form

Qi(p)eq = −
GQi

e−r(p)
ki

i ⊆ TS (12.14)

where GQi
e−r(p) = 𝛤ip is the force induced by the pressure along the normal mode.

This form is similar to the analogous equation developed within the framework of

the Bell theory [21] to study the deformation of a molecular system under an external

mechanical force.
5

We now turn to the explanation of the physical origin of the force GQi
e−r(p) induced

by the pressure on the nuclei of the molecular solute.

12.4.2 On the Origin of Forces Induced by the Pressure
on the Nuclei

The force GQi
e−r(p), of Eq. (12.14), induced by the pressure on the nuclei of the mole-

cular solute is a consequence of the primary effects that the pressure has on the

electronic charge distribution that we have discussed previously in Sect. 12.3.

In Sect. 12.3, we have shown that the pressure induces, via the solute–solvent

Pauli repulsion V0, a difference of electron density, 𝛥𝜌(𝐫; p), which corresponds to

a flux of electrons from the outer regions of the molecular solute to its inner, inter-

5
For reasons of space, we can no further discuss this connection between our XP-PCM theory with

the Bell theory and its extensions.
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Fig. 12.4 Correlation between the XP-PCM analytical gradients of the energy G||
er and the

Hellman–Feynman electrostatic forces in diborane. The upper-script || denotes a component along

the direction of the boron–hydrogen (terminal) direction. All quantities are expressed in the perti-

nent atomic units (a.u) see Ref. [5] for computational details

atomic regions. The consequences of the differential of electron density may be ana-

lyzed by using the force concept based on the Hellmann–Feynman (H–F) electrosta-

tic theorem [15, 16, 22–24]. According to this theorem, the force, GQi
e−r(p), induced

by the pressure on the nuclei of the molecular solute is given by the electric field

𝛥𝐅(p) originated by the differential of electron density, 𝛥𝜌(𝐫; p):

𝛥𝐅(𝐑A) = −ZA ∫ 𝛥𝜌(𝐫; p)
(𝐫 − 𝐑A)

|𝐫 − 𝐑A|
3∕2 d𝐫 = G𝐑A

e−r (12.15)

where ZA is the nuclear charge of A, and 𝛥𝜌(𝐫 ∶ p).
A validation of the electrostatic origin of the force induced by the pressure on

the nuclei is shown in Fig. 12.4, where the H–F electrostatic field of Eq. (12.15) at

the terminal hydrogen atoms of diborane is compared with the corresponding energy

gradient, G𝐑H
e−r, computed by analytical differentiation.

In this subsection, we have shown that the pressure has a direct effect on the elec-

tron density and that throughout this direct effect, pressure induces a further, indirect

effect in molecular solute by changing its equilibrium geometry. This chain of effects

triggered by the pressure does not stop here. In turn, the variation equilibrium geom-

etry may influence, in general, many others molecular properties. In the following

section, we will consider the case of the vibrational frequencies of a molecular solute

under pressure.
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12.5 Effect of the Pressure on the Vibrational Frequencies
of Molecular Systems

The perspective of the theoretical modeling of the effects of the pressure on the vibra-

tional frequencies is of considerable interest per se, as the theoretical results can be

compared with available experimental data, toward a more robust validation of XP-

PCM model. Furthermore, the XP-PCM model opens the way toward an understand-

ing of the effects of the pressure on the vibrational frequencies, understanding that

cannot be obtained by the experimental data alone.

Within the XP-PCM method, the vibrational frequencies (harmonic approxima-

tion) are computed at the equilibrium geometry corresponding to the given pres-

sure (see the previous Sect. 12.4). The harmonic vibrational frequencies are deter-

mined from the Hessian matrix of the second derivatives of the electronic free-energy

functional Ger with respect to the Cartesian coordinates of the nuclei. Here, we are

assuming that during the vibrational displacements of the nuclei around the equi-

librium geometry, the cavity hosting the molecular solute remains fixed. As already

discussed in Sect. 12.2, only under this assumption, the electronic free-energy func-

tional Ge−r acts as potential energy surface for the nuclei of the solute.

Specific physical arguments further motivate the approximation to held fixed cav-

ity during the vibrational motion of the nuclei. Within the XP-PCM model, the vibra-

tional frequencies of the molecules are evaluated taking into account the differences

between the timescale of the vibrational degrees of freedom of the solvated molecule

and the timescale of the various degrees of freedom (translational, rotational, vibra-

tional, and electronic) of the molecules composing the solvent. The basic assumption

is that the translational and rotational degrees of freedom of the solvent molecules

remain fixed during a typical timescale of the vibrations of the molecular solute. On

the other hand, the geometry of the cavity is correlated with the physical space non-

accessible to the solvent molecules by the translational and rotational motion, and

hence the displacements of the nuclei of the molecular solute around its equilibrium

geometry are performed assuming a fixed geometry of the cavity.

12.5.1 On the Curvature and Relaxation Effects
of the Pressure on the Vibrational Frequencies

In Fig. 12.5, we compare the XP-PCM linear coefficients of vibrational frequencies

for Buckminsterfullerene (d𝜈∕dp) [6] with the available experimental counterpart.

The figure collects both the radial and tangential normal modes of Buckminster-

fullerene and shows that the correlation between the theoretical and experimental

data is satisfactory. Similar results have been obtained for other molecular systems

[5, 7].

The XP-PCM model allows to analyze these effects of the pressure on the vibra-

tional frequencies in terms of two different physical mechanisms [5]. The first mech-

anism, called the curvature effect, is determined by the influence of the differential
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Fig. 12.5 XP-PCM study of

the effect of the pressure on

the vibrational frequencies

(harmonic approximation) of

Buckminsterfullerene:

comparison between the

computed linear pressure

coefficients (d𝜈∕dp)XP−PCM
(blue bars) and the available

experimental data (d𝜈∕dp)exp
(green bars). The upper
panel is pertinent to the

normal modes with

displacements of the nuclei

along direction normal to the

molecular surface of C60.

The lower panel is pertinent

to the normal modes with

displacements of the nuclei

along directions tangential to

the molecular surface of

C60. See Ref. [6] for

computational details

electron density induced by the pressure (see Sect. 12.3) on the harmonic force con-

stant, evaluated at the equilibrium geometry in vacuo. This effect is determined as

dki
dp

|
|
|
|cur

=
(
𝜕ki
𝜕p

)

𝐐(0)
(12.16)

and the corresponding curvature effect on the vibrational frequencies is denoted by(
𝜕𝜈(p)
𝜕p

)

cur
.

The second mechanism, called relaxation effect, is related to the influence that the

shift of the equilibrium geometry induced by the pressure 𝐐i(p) has on the harmonic

force constant:
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𝜕ki(p)
𝜕p

|
|
|
|rel

=

( TS∑

j
giij(0)Qi(p)

)

(12.17)

where giij(0) are the vibrational cubic force constants of the isolate molecule.

The corresponding relaxation effect on the vibrational frequencies is denoted by(
𝜕𝜈(p)
𝜕p

)

rel
.

Hence, the total effect of the pressure on the vibrational frequencies is partitioned

as (
𝜕𝜈i(p)
𝜕p

)

𝐐(p)
=
(
𝜕𝜈i(p)
𝜕p

)

cur
+
(
𝜕𝜈i(p)
𝜕p

)

rel
(12.18)

Fig. 12.6 XP-PCM analysis

of the effect of the pressure

on the vibrational pressure

coefficients (d𝜈∕dp)XP−PCM
(harmonic approximation) of

Buckminsterfullerene. Blue
bars correspond to the direct

effect (d𝜈∕dp)cur (Eq. 12.15)

and the green bars to the

indirect contribution

(d𝜈∕dp)rel (Eq. 12.16). The

upper panel is pertinent to

the normal modes with

displacements of the nuclei

along direction normal to the

molecular surface of

Buckminsterfullerene. The

lower panel is pertinent to

the normal modes with

displacements of the nuclei

along directions tangential to

the molecular surface of

Buckminsterfullerene. See

Ref. [6] for computational

details
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The results of this partition into curvature and relaxation contributions are shown

in Fig. 12.6 for the vibrational normal modes of fullerene C60. The different nature

of the effect of the pressure on the radial and tangential vibrational normal modes

of C60 is evident. The effect of the pressure on the frequencies of the radial normal

modes is dominated by the curvature mechanism, due to the effect of the pressure

on the electron density, while the effect of the pressure on the frequencies of the

tangential normal modes is dominated by the relaxation mechanism, due to the shift

of the equilibrium geometry induced by the pressure.

12.6 Conclusions

In this chapter, we have reviewed some recent developments in our XP-PCM method

to introduce the effect of high pressure (p > 1GPa) in the quantum chemistry study

of molecular properties and processes.

Since a long time, theoretical chemists [25] have been aware that chemistry under

extreme condition of pressure is a field where quantum chemistry should poten-

tially exploit its predictive power to help predicting and understanding molecular

processes. In spite of this awareness, the chemistry under extreme condition of pres-

sure has been so far a territory distant from the frontiers of modern quantum chem-

istry. We hope that the XP-PCM model could help extending these borders, so to

include even this territory within the domain of quantum chemistry.
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