
Chapter 10
Relativistic Time-Dependent Density
Functional Theory for Molecular
Properties

Muneaki Kamiya and Takahito Nakajima

Abstract In this review article, we introduce the two-component relativistic
time-dependent density functional theory (TDDFT) with spin–orbit interactions to
calculate linear response properties and excitation energies. The approach is
implemented in the NTChem program. Our implementation is based on a non-
collinear exchange–correlation potential presented by Wang et al. In addition,
various DFT functionals including the range-separated hybrid functionals have
been derived and implemented with the aid of a newly developed computerized
symbolic algebra system. The two-component relativistic TDDFT with spin–orbit
interactions was successfully applied to the calculation of the frequency-dependent
polarizabilities of SnH4 and PbH4 molecules containing heavy atoms and the
excitation spectra of a HI molecule.

Keywords Relativistic time-dependent density functional theory ⋅ Spin–orbit
couplings ⋅ Frequency-dependent polarizabilities ⋅ Automatic functional
implementation ⋅ NTChem

10.1 Introduction

There is now a growing interest in obtaining electric and other response properties
from first-principles theory for organic, inorganic, and organometallic compounds
containing heavy elements. The inclusion of relativity is crucial for a proper
description of photochemistry for systems those containing heavy elements. In
particular, it is known that the spin–orbit couplings affect excited-state characters,
relaxation dynamics, and radiative and nonradiative decay pathways, as well as

M. Kamiya
Faculty of Regional Studies, Gifu University, 1-1, Yanagido, Gifu 501-1193, Japan

M. Kamiya ⋅ T. Nakajima (✉)
RIKEN Advanced Institute for Computational Science, 7-1-26,
Minatojima-Minami-Machi, Chuo-ku, Kobe 650-0047, Japan
e-mail: nakajima@riken.jp

© Springer Nature Singapore Pte Ltd. 2018
M.J. Wójcik et al. (eds.), Frontiers of Quantum Chemistry,
https://doi.org/10.1007/978-981-10-5651-2_10

223



lifetimes and reactivity [1] due to the changes induced in the splitting of the orbitals
and thus potentially also in the pole structure of a molecule [2, 3].

Time-dependent density functional theory (TDDFT) [4–6] has become one of
the most widely used methodologies for computing linear response properties since
satisfactory accuracy can often be achieved at an acceptable computational cost.
The efficient treatment of electron correlation by DFT is particularly important in
calculations involving heavy atoms, since electronic correlation effects can be even
more important than relativistic effects. There are several ways to calculate the
excitation energy from the calculation of the linear response by TDDFT. The first is
to calculate the location of the poles and the residues of the frequency-dependent
polarizability through eigenvalue-type problems and is widely used in many
implementations [7–9]. The other is to obtain the excitation energy by directly
plotting the dynamic polarizability as a function of the frequency and analyzing the
polar structure of the linear response [10, 11]. Since this approach can calculate the
absorbing properties in the frequency window of interest, it can potentially be
applied to excited states of large molecules with an enormous number of excita-
tions. However, the implementation of this approach is still limited because it is
necessary to compute the response of complex numbers.

Until now, in most of the TDDFT linear response calculations for heavy-element
systems, only the scalar relativistic effect was taken into account while the spin–
orbit effect on the excitation energies is not negligible. Scalar relativistic calcula-
tions of the first- and second-order hyperpolarizabilities using the Douglas–Kroll–
Hess transformed one-component Hamiltonian [12–14], as well as using
effective-core potentials [15, 16], have been reported by Norman et al. [17]. At the
all-electron level, there exist four-component relativistic implementations of
response theory at Hartree–Fock and Kohn–Sham levels of theory for linear [18]
and quadratic response functions [19].

However, in most of these implementations, the treatment of noncollinear spin
density terms, which is important due to the spin–orbit interaction, is ignored. In
recent years, calculations using noncollinear kernels have been performed in
excitation energy calculation by pole/residue calculation [20–23], but most are a
Tamm–Dancoff approximation [24], and the full linear response calculations have
hardly been performed [25].

In this review, the two-component relativistic linear-response TDDFT for
molecular properties is derived and implemented on the NTChem program suite
[26]. Our implementation is based on a noncollinear exchange–correlation potential
presented by Wang et al. [20, 22]. In addition, since it is difficult to manually
implement the latest complicated exchange–correlation functional, the computer-
ized symbolic algebra system is developed and used for those complicated
implementation in NTChem. The automatic code generator performs differentia-
tions using the SymPy library [27], which is an open-source symbolic mathematics
library for the Python programming language.
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10.2 Theory

10.2.1 Polarizability

In the presence of a time-dependent external electric field, the molecular polar-
ization is expressed as a perturbation expansion where the coefficients define the
molecular properties known as polarizabilities and hyperpolarizabilities. The elec-
tric polarizability provides a measure of the distortion of an atomic or molecular
charge distribution by an external field and is therefore an important property.
Higher-order dynamic electric polarizabilities are extremely important in nonlinear
optical materials research.

The expansion of the following frequency-dependent dipole moment to the third
order introduces the linear polarizability α −ω;ωð Þ, the first-order hyperpolariz-
ability β −ωσ;ω1,ω2ð Þ, and the second-order hyperpolarizability
γ −ωσ;ω1,ω2,ω3ð Þ:

μα tð Þ= μ0α + ∑
ω
∑
β
ααβ −ω;ωð ÞEω

β e
− iωt

+
1
2

∑
ω1,ω2

∑
β, γ

βαβγ −ωσ ;ω1,ω2ð ÞEω1
β Eω2

γ e− i ω1 +ω2ð Þt

+
1
3!

∑
ω1,ω2,ω3

∑
β, γ, δ

γαβγδ −ωσ;ω1,ω2,ω3ð ÞEω1
β Eω2

γ Eω3
δ e− i ω1 +ω2 +ω3ð Þt,

ð10:1Þ

where μ0α is the permanent electric dipole moment along the molecular axis α, Eω

are the Fourier components of the perturbing fields, and the sums are performed
over both positive and negative frequency (ω) components.

The real part of the linear polarizability αR is connected to the refractive index,
and the imaginary part αI describes the absorption of light quanta. The linear
absorption cross section equals

σ ωð Þ= 4πω
c

ᾱI −ω;ωð Þ, ð10:2Þ

where c is the speed of light and the isotropic average of the polarizability has been
introduced:

ᾱ=
1
3

∑
i= x, y, z

αii. ð10:3Þ

From the standard time-dependent perturbation theory, we obtain a
sum-over-states (SOS) expression for the linear polarizability involving the mani-
fold of excited states of the unperturbed system:
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ααβ −ω:ωð Þ= 1
ℏ
∑
n

⟨0jμα nj ⟩⟨njμβ 0j ⟩

ω0n −ω
+

⟨0jμβ nj ⟩⟨njμα 0j ⟩

ω0n +ω

� �
, ð10:4Þ

where μα is the electric dipole moment operator along the molecular axis α,
ℏω0n =En −E0 are the electronic excitation energies, and the sums are performed
over the manifold of states of the unperturbed system nj ⟩ð Þ excluding the ground
state 0j ⟩ð Þ.

Such a formula is applicable only in the nonresonant region, since when photon
energies are in the proximity of the excitation energies of the system a perturbation
analysis is no longer valid. Thus, in the near-resonance case, two alternative
strategies have been used: either turning to a few-states model or the inclusion of
phenomenological damping terms in the SOS expressions.

The damping terms in the latter approach represent the finite lifetime of the
excited states and correspond to line broadening in the absorption spectra. Having
introduced damping terms, the SOS expression for the linear polarizability can be
written as

ααβ −ω:ωð Þ= 1
ℏ
∑
n

⟨0jμα nj ⟩⟨njμβ 0j ⟩

ω0n −ω− iγ
+

⟨0jμβ nj ⟩⟨njμα 0j ⟩

ω0n +ω+ iγ

� �
, ð10:5Þ

where damping factor γ is defined using common lifetime τ of the excited states as

γ =
1
2τ

. ð10:6Þ

It is immediately seen that in the nonresonant region, the imaginary part of α
depends linearly on γ and that it equals zero in the static limit ω=0ð Þ regardless of
γ. Furthermore, by using the identity

lim
γ→ 0

Im
A

B− iγ

� �� �
=Aπδ Bð Þ, ð10:7Þ

we see by comparing with Eqs. (10.2), (10.3), and (10.7) that

lim
γ→ 0

σ ωð Þ= 4π2ω
3ℏc

∑
n

δ ω0n −ωð Þ ∑
i= x, y, z

⟨0jμi nj ⟩j j2
" #

, ð10:8Þ

and it is clear that the regular oscillator strengths are related to the infinite lifetime
approximation of the absorption as described by the imaginary part of the linear
polarizability.

226 M. Kamiya and T. Nakajima



10.2.2 Time-Dependent Kohn–Sham Theory

We assume that a molecule is initially in a stationary state, the electronic structure
of which is suitably described by time-independent Kohn–Sham (KS) density
functional theory.

In the density matrix formalism, the KS Hamiltonian and density matrices satisfy
the time-independent KS equation:

∑
q

F 0ð Þ
pq D

0ð Þ
qr −D 0ð Þ

pq F
0ð Þ
qr

� �
=0, ð10:9Þ

and the idempotency condition (corresponding to the orthonormality condition of
orbitals):

∑
q
D 0ð Þ

pq D
0ð Þ
qr =D 0ð Þ

pr , ð10:10Þ

where F and D are the KS Hamiltonian and density matrices, respectively, repre-
sented by Kohn–Sham orbitals for the unperturbed ground state ϕp

� 	
, and p, q,

r are spin-orbital indexes.
In two-component generalized KS equations, KS orbitals may be complex and

have two spin components:

ϕp =
ϕα
p

ϕβ
p

 !
, ð10:11Þ

where ϕα
p and ϕβ

p are spatial orbitals which are expanded in a linear combination of

atomic orbitals χμ
� 	

,

ϕω
p = ∑

μ
χμC

ω
μp ω= α, βð Þ, ð10:12Þ

where λ, μ, ν, υ, etc. are used for atomic-orbital indexes.
The KS Hamiltonian and density matrices for the ground state are simply

F 0ð Þ
pq = εpδpq, ð10:13Þ

D 0ð Þ
ij = δij, ð10:14Þ

D 0ð Þ
ia =D 0ð Þ

ai =D 0ð Þ
ab =0, ð10:15Þ

where εp is the pth spin-orbital energy, and we use i, j, k, l, m, n, etc., for occupied
orbitals, a, b, c, d, e, f, etc., for virtual orbitals, and p, q, r, s, and t for general
orbitals throughout this chapter.
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We then apply an oscillatory perturbation, which can be described as a single
Fourier component:

g 1ð Þ
pq =

1
2

h 1ð Þ
pq e

− iωt + h 1ð Þ*
qp eiωt

� �
, ð10:16Þ

where the matrix h represents a one-electron operator describing the details of the
perturbation.

The response in the density matrix D to this applied perturbation consists of the
first-order (linear) and higher-order terms:

Dpq =D 0ð Þ
pq +D 1ð Þ

pq +D 2ð Þ
pq +D 3ð Þ

pq + . . . , ð10:17Þ

with

D 1ð Þ
pq =

1
2

d 1ð Þ
pq e

− iωt + d 1ð Þ*
pq eiωt

� �
. ð10:18Þ

The first-order change in the KS Hamiltonian matrix arises from two sources: the
direct change in the one-electron part described by Eq. (10.16) and the indirect
change induced by the first- and higher-order responses in the density matrix, i.e.,

Fpq =F 0ð Þ
pq + g 1ð Þ

pq + ∑
r, s

∂Fpq

∂Drs
D 1ð Þ

rs + . . . , ð10:19Þ

with

∂Fpq

∂Drs
= pqjsrð Þ− cx prjsqð Þ− clrx prjsqð Þlr + f xcpq, sr, ð10:20Þ

where the prefactor cx is the mixing ratio of Hartree–Fock (HF) exchange in the
hybrid functional and clrx is the mixing ratio of long-range exchange in the
range-separated hybrid functional. The regular two-electron integrals and
long-range two-electron integrals are defined in the Mulliken notation as

pqjsrð Þ=
Z Z

ϕ*
p r1ð Þϕq r1ð Þ 1

r12
ϕ*
s r2ð Þϕr r2ð Þdr1dr2, ð10:21Þ

and

pqjsrð Þlr =
Z Z

ϕ*
p r1ð Þϕq r1ð Þ erf μr12ð Þ

r12
ϕ*
s r2ð Þϕr r2ð Þdr1dr2, ð10:22Þ

where r12 = r1 − r2j j for coordinate vectors of electrons, r1 and r2, and μ is an
adapted parameter determining the ratio of short- and long-range parts of electron
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repulsion operator 1 ̸r12. The response of the exchange–correlation potential term,
also called the exchange–correlation kernel, is given as:

f xcpq, rs =
Z Z

ϕ*
p r1ð Þϕq r2ð Þ δExc

δρ r1ð Þδρ r2ð Þϕ
*
r r2ð Þϕs r2ð Þdr1dr2. ð10:23Þ

We substitute the time-dependent KS and density matrices into the following
time-dependent KS equation:

1
i
∑
q

FpqDqr −DpqFqr

 �

=
∂Dpr

∂t
. ð10:24Þ

Collecting the terms that are linear in the perturbation with the time dependence,
we obtain

∑
q
F 0ð Þ
pq d

1ð Þ
qr − ∑

q
d 1ð Þ
pq F

0ð Þ
qr + ∑

q
h 1ð Þ
pq D

0ð Þ
qr + ∑

q, s, t

∂Fpq

∂Dst

� 

d 1ð Þ
st D

0ð Þ
qr

− ∑
q
D 0ð Þ

pq h
1ð Þ
qr − ∑

q, s, t
D 0ð Þ

pq
∂Fqr

∂Dst

� 

d 1ð Þ
st =ωd 1ð Þ

pr .
ð10:25Þ

The terms multiplied by the eiωt factor lead to the conjugate complex of the
above equation.

Because the KS (or HF) equation and energy are invariant to rotations among
just occupied orbitals or among just virtual orbitals, we only need to consider the

occupied virtual block of d, i.e., d 1ð Þ
ai

n o
and d 1ð Þ

ia

n o
. Substituting Eqs. (10.13)–

(10.15) into Eq. (10.25), we arrive at a pair of equations:

εa − εið Þd 1ð Þ
ai + h 1ð Þ

ai + ∑
b, j

∂Fai

∂Dbj

� 

xbj + ∑

b, j

∂Fai

∂Djb

� 

ybj =ωd 1ð Þ

ai , ð10:26Þ

εi − εað Þd 1ð Þ
ia − h 1ð Þ

ia − ∑
b, j

∂Fia

∂Dbj

� 

xbj − ∑

b, j

∂Fia

∂Djb

� 

ybj =ωd 1ð Þ

ia , ð10:27Þ

where xai = d 1ð Þ
ai and yai = d 1ð Þ

ia . These may be cast into a compact matrix linear
equation:

A B
B* A*

� 

x
y

� 

−ω

1 0
0 − 1

� 

x
y

� 

= − h

h†*

� 

, ð10:28Þ
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with

Aai, bj = δijδab εa − εið Þ+ aijjbð Þ− cx abjjið Þ− clrx abjjið Þlr + f xcai, jb

Bai, bj = aijbjð Þ− cx ajjbið Þ− clrx ajjbið Þlr + f xcai, bj,
ð10:29Þ

where 1 and 0 are unit matrix and zero matrix, respectively. Equation (10.28) can
be solved for x and y by standard iterative techniques that use trial vectors and that
work with just atomic-orbital-based integrals [28, 29]. Once the equation is solved,
the frequency-dependent polarizability is readily evaluated by [30]:

αα −ω;ωð Þ= −Tr h 1ð ÞDα ωð Þ
h i

= − ∑
a, i

h 1ð Þ
ai x

α
ai + h 1ð Þ

ia yαia
n o

, ð10:30Þ

if h is a dipole moment matrix.
The poles of the frequency-dependent polarizability correspond to electronic

excitations, occurring with an infinitesimal perturbation, i.e., h=0. Substituting this
into Eq. (10.28) leads to a nonsymmetric matrix eigenvalue problem:

A B
B* A*

� 

x
y

� 

=ω

1 0
0 − 1

� 

x
y

� 

, ð10:31Þ

which can be solved for electronic excitation energies ω and corresponding x and y
vectors of TDHF or RPA by standard techniques using Davidson’s trial vector
algorithm [31] (as adapted to a nonsymmetric problem [32]) in an
atomic-orbital-based scheme [33].

In a phenomenological way, relaxation effects may be introduced into
Eq. (10.24) as follows [10, 34]:

1
i
∑
q

FpqDqr −DpqFqr

 �

− γpr Dpr −D 0ð Þ
pr

� �
=

∂Dpr

∂t
, ð10:32Þ

where the damping terms γpq correspond to the rate at which density matrix element

Dpq relaxes to its equilibrium value of D 0ð Þ
pq . Applying the common lifetime

broadening factor γ for all excited states, Eq. (10.25) becomes

∑
q
F 0ð Þ
pq d

1ð Þ
qr − ∑

q
d 1ð Þ
pq F

0ð Þ
qr + ∑

q
h 1ð Þ
pq D

0ð Þ
qr + ∑

q, s, t

∂Fpq

∂Dst

� 

d 1ð Þ
st D

0ð Þ
qr

− ∑
q
D 0ð Þ

pq h
1ð Þ
qr − ∑

q, s, t
D 0ð Þ

pq
∂Fqr

∂Dst

� 

d 1ð Þ
st = ω+ iγð Þd 1ð Þ

pr .
ð10:33Þ

Since the difference between Eq. (10.25) and Eq. (10.33) is only in those fre-
quency ω and ω+ iγ, substituting ω to ω+ iγ in Eq. (10.28), we obtained the
first-order damped-response equation:
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A B
B* A*

� 

x
y

� 

− ω+ iγð Þ 1 0

0 − 1

� 

x
y

� 

= − h

h†*

� 

. ð10:34Þ

In the spin–orbit case, Eq. (10.34) can easily be solved since many of the
intermediate quantities that are computed are already complex to begin with.

10.2.3 Noncollinear Formulation for Exchange–
Correlation Kernel

In relativistic density functional calculations for open-shell systems with spin–orbit
couplings, the spin is no longer a good quantum number and a noncollinear for-
mulation for the exchange–correlation potential and exchange–correlation kernels
are often used [35–42]. In relativistic TDDFT, this noncollinear formula is
important, since the excited state can be an open-shell electronic state by excitation
even in the closed–shell system even in the ground state.

In the nonrelativistic calculation, spin electron densities ρα and ρβ can be written
as ρα =1 ̸2 ρ+ sð Þ and ρβ =1 ̸2 ρ− sð Þ, using the total electron density ρ, the dif-
ference electron density s. Similarly, we can define two new quantities:

ρ+ =
1
2

ρ+ sð Þ

ρ− =
1
2

ρ− sð Þ,
ð10:35Þ

where the difference electron density s is defined as the spin density (magnetization)
vector m= mx,my,mz


 �
by

s=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

x +m2
y +m2

z

q
. ð10:36Þ

Here, Eq. (10.35) represents the local eigenvalues of spin density. In terms of
two-component spinors, ϕ, ρ, and m are defined as:

ρ rð Þ= ∑
i
ϕ†i rð Þϕ rð Þ, ð10:37Þ

m rð Þ= ∑
i
ϕ†i rð Þσϕ rð Þ, ð10:38Þ

where σ are the Pauli spin matrix vector. It should be noted that in the generalized
case, the spin density vector can change its modulus and direction at every point in
space, but one would like to use only its modulus to evaluate the exchange–
correlation energy.
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The expression of the exchange–correlation energy is extended in a consistent
way as

Exc =
Z

drE ̂xc ρ+ , ρ− , γ + + , γ − − , γ + −ð Þ, ð10:39Þ

with

γij =∇ρi ⋅ ∇ρj i, j= + , −ð Þ, ð10:40Þ

where E ̂xc is general exchange-correlation functional.
The exchange–correlation potential and kernel can be obtained by a proper

functional derivative of Eq. (10.39). In LDA case, those are expressed as

Z
dr

δE ̂xc
δρ

ϕ*
pϕq =

1
2

Z
drϕ*

pϕq
∂Ex̂c

∂ρ+
+

∂E ̂xc
∂ρ−

� 


+
1
2

Z
dr

∂E ̂xc
∂ρ+

−
∂E ̂xc
∂ρ−

� 

1
s

∑
i= x, y, z

mi ϕ*
pσiϕq

� �
,

ð10:41Þ

and

Z
dτϕ*

pϕq
δ2E ̂xc
δρδρ′

ϕ*
rϕs =

1
4

Z
dr

∂
2E ̂xc
∂ρ2+

+
∂
2E ̂xc
∂ρ2−

+2
∂
2E ̂xc

∂ρ+ ∂ρ−

� 

ϕ*
pϕq

� �
ϕ*
rϕs


 �

+
1
2

Z
dr

∂E ̂xc
∂ρ+

−
∂E ̂xc
∂ρ−

� 

1
s

∑
i= x, y, z

mi ϕ*
pσiϕq

� �

+
1
4

Z
dr

∂
2E ̂xc
∂ρ2+

−
∂
2E ̂xc
∂ρ2−

� 

1
s

× ϕ*
pϕq

� �
∑

i= x, y, z
mi ϕ

*
rσiϕs


 �
+ ∑

i= x, y, z
mi ϕ*

pσiϕq

� �
ϕ*
rϕs


 �" #

+
1
4

Z
dr

∂
2E ̂xc
∂ρ2+

+
∂
2E ̂xc
∂ρ2−

− 2
∂
2E ̂xc

∂ρ+ ∂ρ−

� 

1
s

× ∑
i= x, y, z

mi ϕ*
pσiϕq

� � 1
s

∑
i= x, y, z

mi ϕ
*
rσiϕs


 �

−
1
2

Z
dr

∂E ̂xc
∂ρ+

−
∂E ̂xc
∂ρ−

� 

1
s3

∑
i= x, y, z

mi ϕ*
pσiϕq

� �
∑

i= x, y, z
mi ϕ

*
rσiϕs


 �

+
1
2

Z
dr

∂E ̂xc
∂ρ+

−
∂E ̂xc
∂ρ−

� 

1
s

∑
i= x, y, z

ϕ*
pσiϕq

� �
ϕ*
rσiϕs


 �
.

ð10:42Þ
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Note that all the derivatives are taken at the ground-state density and spin
densities. Equation (10.42) can be further simplified in some special cases. For
closed-shell systems, we will have the following additional conditions with s→ 0
[20]:

δE ̂xc
δs

→ 0, ð10:43Þ

δ2E ̂xc
δρδs

→ 0, ð10:44Þ

1
s
δEx̂c

δs
→

δ2E ̂xc
δs2

. ð10:45Þ

Equation (10.42) is then simplified to

Z
dτϕ*

pϕq
δ2E ̂xc
δρδρ′

ϕ*
rϕs =

1
4

Z
dr

∂
2E ̂xc
∂ρ2+

+
∂
2Ex̂c

∂ρ2−
+2

∂
2E ̂xc

∂ρ+ ∂ρ−

� 

ϕ*
pϕq

� �
ϕ*
rϕs


 �

+
1
4

Z
dr

∂
2E ̂xc
∂ρ2+

+
∂
2Ex̂c

∂ρ2−
− 2

∂
2E ̂xc

∂ρ+ ∂ρ−

� 

∑

i= x, y, z
ϕ*
pσiϕq

� �
ϕ*
rσiϕs


 �
.

ð10:46Þ

From Eq. (10.46), it is shown that in the nonrelativistic limit with the molecular
spinors of either spin α or spin β, if p and q have the same spin and s and t have the
same spin, the first term of Eq. (10.46) is exactly the same as the corresponding
term in nonrelativistic TDDFT calculations.

When p and q have different spins and s and t have different spins, these
transitions correspond to spin-flip excitations, and it has already been shown that
for closed-shell systems, spin-flip transitions will result in singlet–triplet excitations
and the excitation energies calculated from the second term of Eq. (10.46) are the
same as those from ordinary TDDFT for singlet–triplet transitions. From this
argument, we can see that the TDDFT formulation based on a noncollinear
exchange–correlation potential has the correct nonrelativistic limit and can recover
the threefold degeneracy of triplet excitations correctly.
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10.3 Implementation

10.3.1 Trial Vector Algorithm

In the present implementation of TDHF and TDDFT, the explicit formation of an
enormous number of the two-electron integrals in Eq. (29) is avoided by invoking a
trial vector algorithm, which is based on the idea of projecting the full matrices onto
ones of greatly reduced dimensions. The generalization of this algorithm to a
non-Hermitian eigenvalue equation has been considered by Hirao and Nakatsuji
[32] and for the particular form of Eq. (10.31) by Olsen, Jensen, and Jørgensen
[33], who also propose efficient algorithm for linear equation of Eq. (10.28) using
trial vectors in the same paper. It should be remembered that A and B matrices are
complex matrices and hence we cannot reduce Eq. (10.31) to a Hermitian eigen-
value equation of half the dimension as has usually been done in the implemen-
tations in the nonrelativistic program [7–9, 43]. In NTChem, the KAIN algorithm
[44] for linear equation and Olsen’s algorithm [33, 45] for non-Hermitian eigen-
value equation are implemented.

The key steps in these trial vector algorithms are to calculate matrix–trial vector
products. By projecting the A and B matrices in Eq. (10.28) onto a subspace
spanned by a set of trial vectors

x 1ð Þ
y 1ð Þ

 !
,

x 2ð Þ
y 2ð Þ

 !
, . . . ,

x pð Þ
y pð Þ

 !( )
, ð10:47Þ

the matrix–trial vector products are written as:

x ̄ pð Þ
ai = ∑

b, j
Aai, bjx

pð Þ
bj +Bai, bjy

pð Þ
bj

� �
,

y ̄ pð Þ
ai = ∑

b, j
B*
ai, bjx

pð Þ
bj +A*

ai, bjy
pð Þ
bj

� �
.

ð10:48Þ

Using the AO representation of the A and B matrices, Eq. (10.48) is written as:

x ̄ pð Þ
ai = ∑

ω,ω′

∑
μ, ν

Cω*
μa C

ω′

νi G D pð Þ
h iωω′

μν

y ̄ pð Þ
ai = ∑

ω,ω′

∑
μ, ν

Cω*
μa C

ω′

νi G D pð Þ
h iωω′*

μν

 !*

,

ð10:49Þ
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where the trial density matrices D pð Þ and trial Fock matrices G are defined as:

D pð Þωω′

λκ = ∑
b, j

Cω
λbx

pð Þ
bj C

ω*
κj + ∑

b, j
Cω
λjy

pð Þ
bj C

ω′ *

κb , ð10:50Þ

G D pð Þ
h iωω′

μν
= μνjλκð ÞD pð Þωω′

λκ + f xcμν, λκD
pð Þωω′

λκ

− δωω′ cx μκjλνð Þ− clrx μκjλνð Þlr
h i

D pð Þωω′

λκ , ð10:51Þ

and

G D pð Þ
h iωω′

μν
f xcμν, λκ =

Z Z
χμ r1ð Þχν r2ð Þ δ2Exc

δρ r1ð Þδρ r2ð Þ χλ r2ð Þχκ r2ð Þdr1dr2. ð10:52Þ

In two-component TDDFT equations, the one-electron trial density matrix will
present a nonvanishing αβ block coupling the two spin components:

D pð Þ = D pð Þαα D pð Þαβ

D pð Þβα D pð Þββ

� 

. ð10:53Þ

Therefore, the evaluation of these matrix–trial vector products can be carried out
in the direct AO-based algorithm. Since the time-consuming calculation of G for
two trial vectors is only one time, the cost is not so different from the CIS or
Tamm–Dancoff approximation using one trial vector.

The contribution to the matrix–trial vector product from the noncollinear
exchange–correlation kernel (10.46) can be calculated as:

∑
ωω′

f xcμν, λκD
pð Þωω′

λκ =
Z

dr
δ2Exc

δρ2
ρ pð Þ χμχν

 �

+ ∑
i= x, y, z

Z
dr

δ2Exc

δm2 m pð Þ
i χμσiχν

 �

,

ð10:54Þ

where trial total electron density and trial spin density vector are defined by analogy
of total electron density and spin density vector as:

ρ pð Þ
0 = ∑

μν
D pð Þ0

μν ϕμϕν, ð10:55Þ

m pð Þ
i = ∑

μν
D pð Þi

μν ϕμϕν i= x, y, zð Þ, ð10:56Þ
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and corresponding density matrices are obtained by:

D pð Þ0
μν =D pð Þαα

μν +D pð Þββ
μν , ð10:57Þ

D pð Þx
μν =D pð Þβα

μν +D pð Þαβ
μν , ð10:58Þ

D pð Þy
μν = − i D pð Þβα

μν −D pð Þαβ
μν

n o
, ð10:59Þ

D pð Þz
μν =D pð Þαα

μν −D pð Þββ
μν . ð10:60Þ

Here, the first term on the right-hand side of Eq. (10.54) is a term derived from
singlet excitation and derived in GGA as

Z
dr

δ2Exc

δρ2
χμχν

 �

=
1
4

Z
dr χμχν

 �

ρ pð Þ
0

∂
2Exc

∂ρα∂ρα
+2

∂
2Exc

∂ρα∂ρβ
+

∂
2Exc

∂ρβ∂ρβ

( )

+
1
4

Z
dr χμχν

 �
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� �

×
2 ∂

2Exc
∂γαα∂ρα

+2 ∂
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Similarly, the second term of Eq. (10.54) is the triplet-excitation term and
written as:

Z
dr

δ2Exc

δm2 m pð Þ
i χμσiχν

 �

=
1
4

Z
dr χμχν

 �

m pð Þ
i

∂
2Exc

∂ρα∂ρα
+

∂
2Exc
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− 2

∂
2Exc
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( )

+
1
4

Z
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∂
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∂
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∂Exc
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ð10:62Þ

In NTChem, these matrix elements of the noncollinear exchange–correlation
kernel and functional derivatives of exchange–correlation functional for the LDA,
GGA, and meta-GGA functionals have been derived and implemented into efficient
computer codes with the aid of a newly developed computerized symbolic algebra
system.

10.3.2 Automatic Implementation

Increasing complexity of quantum chemistry methods, most of the modern
exchange–correlation functionals have rather complicated forms and manual
implementation of these algebraic formulas into a computer program is often
impractical. In particular, the problem is more serious in implementing the nth order
properties, which require the same order derivatives of the exchange–correlation
functionals because of the nonlinear dependencies on density matrices.

Alternatively, several automatic implementations have been attempted using
symbolic differentiation techniques [46, 47] or automatic differentiation techniques
[48]. In NTChem, such implementation was achieved with the aid of a newly
developed computerized symbolic algebra system. The automatic code generator
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performs differentiations using the SymPy library, which is an open-source sym-
bolic mathematics library for the Python programming language.

The procedure for implementation of the exchange–correlation functional using
our automatic implementation program is shown below.

The first thing to do is to write out the definition formula in the original paper in
the input file. In this input file, the functional is described in multiple lines using the
predefined input/output variable and the intermediate variable defined by the author,
whereas in many programs those are defined with only one line. Figure 10.1 shows
the input file of spin-polarized form of PBE exchange functional [49], which is
defined as:

sσ =
∇γσσj j
ρ4 ̸3
σ

cs, ð10:63Þ

Ex = ∑
σ = α, β

Cxρ
4
3
σ 1+ κ−

κ

1+ μs2σ
κ

 !
, ð10:64Þ

where κ, μ, and cs are constants independent of electron density. Here, the
right-hand side of each line is written in the SymPy format, which is similar to
Fortran’s grammar, and variables are defined in order from above in the same way
as in ordinary programs. As predefined input and output variables, “Exc” indicates
the exchange-correlation energy of output and “rhoa” and “gma” are the input the
alpha-spin density ρα and its gradient γαα =∇ρα ⋅ ∇ρα, respectively (accordingly
“rhob” and “gmb” denote the beta-spin quantities). In this way, those definitions
can be described in the input file just like implementing into code. Importantly, at
this stage, the SymPy library itself merely interprets the variables and does not
optimize or deform the expressions at all, so it is possible to use the traditional
programming techniques in some extent, such as avoiding zero-division and
omitting digits.

After reading the input file, the autogeneration program checks the dependency
on the input variables for each line. Based on the input variable dependency, the
autogeneration program performs differentiation for each expression up to the
desired rank. If there is a derivative of the intermediate variable that becomes zero,
those terms are searched and erased in all expressions. In case of closed-shell
system, duplicate calculations are erased by replacing the electron density of beta
spin with alpha spin. Figure 10.2 shows the result of differentiation of the input of
Fig. 10.1 for conversion to a closed-shell system. Here, “d1Exd1” indicates the first

sa=gma**(1/2)/(rhoa**(4/3))*Cs
sb=gmb**(1/2)/(rhob**(4/3))*Cs
gxa=1+kappa-kappa/(1+mu*sa**2/kappa)
gxb=1+kappa-kappa/(1+mu*sb**2/kappa)
Exa=Cx * rhoa**(4/3) * gxa
Exb=Cx * rhob**(4/3) * gxb
Ex=Exa + Exb

Fig. 10.1 Input equations of
PBE exchange functional
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derivative of the input variables of “Ex”. At this point, we have not yet done the
optimization that SymPy provides yet, so we still can find many common terms
generated by chain rules.

Next is the optimization of the whole expression. This is particularly important
for rather long functional expressions to reduce the number of floating-point
operations by extracting common subexpressions and if nonoptimized compilers
are evoked afterward. In order not to destroy the formula of the input at the input
stage much here, we developed a new optimization program that considers only
“break down” and “common term” instead of using SymPy’s advanced optimiza-
tion. Figure 10.3 shows the result of optimizing the equations in Fig. 10.2. Despite
only being optimized by extremely simple rules, the mathematical expressions
generated are sufficiently optimal expressions.

The expressions are finally translated into Fortran routines with the addition of
the proper skeleton common to all functionals. A conditional branch statement can
also be added to this skeleton program. This capability enables us to treat classes of
functionals that have stability issues, including meta-GGA and range-separated
hybrid functionals, in NTChem.

sa = Cs*sqrt(gma)/rhoa**(4/3)
gxa = kappa - kappa/(1 + mu*sa**2/kappa) + 1
Exa = Cx*gxa*rhoa**(4/3)
Ex = 2*Exa
d1sad1 = -4*Cs*sqrt(gma)/(3*rhoa**(7/3))
d1gxad1 = 2*d1sad1*mu*sa/(1 + mu*sa**2/kappa)**2
d1Exad1 = Cx*d1gxad1*rhoa**(4/3) + 4*Cx*gxa*rhoa**(1/3)/3
d1Exd1 = d1Exad1
d1Exd2 = d1Exad1
d1sad3 = Cs/(2*sqrt(gma)*rhoa**(4/3))
d1gxad3 = 2*d1sad3*mu*sa/(1 + mu*sa**2/kappa)**2
d1Exad3 = Cx*d1gxad3*rhoa**(4/3)
d1Exd3 = d1Exad3
d1Exd4 = d1Exad3

Fig. 10.2 Output equations
of first derivative of PBE
exchange functional derived
by autogeneration program

v0 = sqrt(gma)
v2 = rhoa**(1/3)
v1 = rhoa*v2
v3 = Cs/v1
sa = v0*v3
x4 = (kappa + mu*sa**2)/kappa
gxa = kappa - kappa/x4 + 1
v4 = Cx*v1
Ex = 2*gxa*v4
v5 = 2*mu*sa/x4**2
d1Exad1 = -4*Cs*v0*v4*v5/(3*rhoa*v1) + 4*Cx*gxa*v2/3
d1Exd1 = d1Exad1
d1Exd2 = d1Exad1
d1Exad3 = v3*v4*v5/(2*v0)
d1Exd3 = d1Exad3
d1Exd4 = d1Exad3

Fig. 10.3 Working equations
of the first derivative of PBE
exchange functional derived
and optimized by
autogeneration program

10 Relativistic Time-Dependent Density Functional Theory … 239



10.4 Applications

10.4.1 Dynamic Polarizabilities of SnH4 and PbH4

As a first application, dynamic polarizabilities of SnH4 and PbH4 molecules were
calculated by two-component TDDFT for linear response, in which noncollinear
magnetism was considered for all response calculations. These calculations were
performed with various exchange–correlation functional functions, where SVWN
[50, 51] as LDA functional, BLYP [52, 53] as pure GGA functional, B3LYP [54]
as hybrid type functional, LC-BLYP [55] as range-separated functional, and
CAM-B3LYP [56] as range-separated hybrid function were used.

To compare relativistic effects, we used nonrelativistic Hamiltonian, spin-free
Hamiltonian, and full relativistic Hamiltonian including spin–orbit interaction.
Those Hamiltonians are obtained from spin-free and spin-dependent parts of the
third- and first-order Douglas–Kroll Hamiltonians, respectively. The screened
nucleus spin–orbit approximation was adopted for the spin-dependent part. Pol-DK
basis set [57] was used for relativistic calculation, and Pol basis set [58] was used
for nonrelativistic calculation. The molecular structures were Td symmetry, and the
bond lengths r(Sn–H) and r(Pb–H) were 1.7108 Å and 1.742 Å, respectively [59].

Figures 10.4 and 10.5 show the dynamic polarizabilities of SnH4 and PbH4,
respectively, by TDDFT, CCSD-LR, and TDHF with spin-free DK3 Hamiltonian.
In both systems, LDA and BLYP overestimate the dynamical polarizability, the
extent of which increases as the frequency increases. By adding long-range Har-
tree–Fock exchange, the overestimation is greatly improved in the results of the
hybrid functional and the range-separated functional, which are in good agreement
with the CCSD-LR results. However, in PbH4, the correction in the hybrid func-
tional B3LYP is not sufficient, and at a large frequency, the polarizability is
overestimated. The importance of long-range exchange interaction with such
frequency-dependent dynamical polarizability and its dispersion has been
discussed.

In Figs. 10.6 and 10.7, dynamical polarizabilities of SnH4 and PbH4 with the
Hamiltonian of various relativistic approximation levels obtained by RHF and
LC-BLYP methods are shown. The scalar relativistic effect by DK3 increases the
polarizability, and its magnitude is greater for Pb, a heavier element. The effect of
electronic correlation is larger than the relativistic effect in the polarizability cal-
culation in the comparison between RHF and LC-BLYP. From the comparison
between LC-BLYP and RHF, it is shown that the contribution of the electron
correlation to the polarizability is equal to or greater than those of the relativistic
effect. Furthermore, by comparing the results with or without the spin–orbit
interaction, it is found that the spin–orbit effect also increases the polarizability at
low frequencies far from the poles, but its magnitude is small and less than 1%.
However, as seen in 0.22 a.u. in Fig. 10.7, in the vicinity of the poles, the orbitals of
Pb are split by spin–orbit interaction, so that a large influence of spin–orbit inter-
action on polarizability is observed.
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10.4.2 Excitation Spectra of HI

For the next test, complex dynamic polarizabilities, that is, excitation energies of HI
molecule, were calculated by the damped-response calculation. Those obtained peaks
were compared with excitation energy obtained from pole/residue calculation. In the
pole/residue calculation, we obtained 50 roots from the bottom. The damping factor
in Eq. (10.6) is set to 0.004 a.u. in the all damped-response calculations. LC-ωPBE
[60–62], which is a range-separated functional, was used as the exchange–correlation
functional. The Ext-Pol basis set and Ext-Pol-DK basis [63] set were used in non-
relativistic and relativistic calculation, respectively. The relativistic Hamiltonians are
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Fig. 10.4 Dynamical
polarizabilities of SnH4 by
TDDFT, CCSD-LR, and
TDHF with spin-free DK3
Hamiltonian
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Fig. 10.5 Dynamical
polarizabilities of PbH4 by
TDDFT, CCSD-LR, and
TDHF with spin-free DK3
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obtained from spin-free and spin-dependent parts of the third- [64] and first-order [14]
Douglas–Kroll Hamiltonians, respectively. The screened nucleus spin–orbit
approximation [65] was adopted for the spin-dependent part.

The calculated dynamical polarizabilities with or without damping and transition
dipoles obtained by pole/residue calculation are shown in Figs. 10.8, 10.9, and
10.10. From Figs. 10.8 and 10.9, the divergence of the dynamic polarizabilities at
the poles shown in Fig. 10.9 is suppressed in Fig. 10.8 by introducing the effect of
the relaxation of the excitation, but instead the imaginary polarizabilities appear.
The position and the relative size of the imaginary polarizability are in good
agreement with the square of the magnitude of the transition dipole by the
pole/residue calculation. Here, Fig. 10.10 shows the peak of the pole/residue
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Fig. 10.6 Dynamical
polarizabilities of SnH4 with
the Hamiltonian of various
relativistic approximation
levels
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calculation is only up to 0.35 a.u. because the 50 roots obtained by the pole/residue
calculation failed to cover the whole frequency range of 0.0 a.u. to 0.4 a.u. On the
other hand, the imaginary polarizability obtained by the damped-response theory
can be calculated with sufficient precision for all the regions of interest within
similar calculation time. In the peak consisting of many excitations like the second
big peak around 0.33 a.u., since the respective states are averaged by the damping
factor at the calculated imaginary polarizabilities, it is difficult to analyze the
characteristics of those excited states.

Figures 10.11 and 10.12 show the results of nonrelativistic and the result
including scalar and so relativistic effect. As shown in Figs. 10.8 and 10.11, the real
and imaginary polarizabilities are slightly shifted by the scalar relativistic effect, but
the peak shape itself does not change much. Also, because the distribution of
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electron density changes due to the relativistic effect, absorption around 0.21 a.u.
can be seen. However, from Figs. 10.8 and 10.12, the spin–orbit interaction greatly
changes the shape of the spectrum, which can be understood from the splitting of
atomic orbitals of I atom because of the large spin–orbit interaction of the I atom.
From these results, we can say that the spin–orbit interaction is extremely important
near the pole of the dynamical polarizabilities and excitation energies compared
with other relativistic terms.

10.5 Conclusion

In this review article, the two-component relativistic linear-response TDDFT for
molecular properties is derived and implemented into NTChem program suite.
Applying an empirical damping for the electronic excited states has shown that
response suitable for simulating dispersion curves can be calculated. The damping
avoids singularities in the calculated real part of the polarizability around the res-
onance frequencies. Further, the damping technique yields both the real and
imaginary parts of dipole polarizability with the latter being directly related to the
radiation absorption of the system. Such an approach makes it possible to calculate
absorption properties within a selected frequency window. This feature could
potentially make this direct response route an alternative to common TDDFT pole-/
residue-based excitation spectra calculations in the case of large molecules having a
large number of excitations within and below a frequency window of interest.

Our implementation is based on a noncollinear exchange–correlation potential
presented by Wang et al. In addition, since it is difficult to manually implement the
latest complicated functional, the computerized symbolic algebra system is devel-
oped and used for those complicated implementation in NTChem. The automatic
code generator performs differentiations using the SymPy library, which is an
open-source symbolic mathematics library for the Python programming language.

By using the present approach, calculations of the frequency-dependent polar-
izabilities of SnH4 and PbH4 molecules containing heavy atoms were carried out. In
the calculation of the dispersion of the polarizability, it is found that the relativistic
effect and the electronic correlation effect are about the same, while the spin–orbit
interaction is not so large. The two-component TDDFT was also applied to the
excitation spectra of HI molecule. The calculated spectra from the imaginary part of
damped dynamical polarizabilities are in excellent agreement with those obtained
using poles/residues TDDFT. It is found that the spin–orbit interaction is extremely
important in the dynamical polarizabilities near the pole and excitation energies.
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