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1 Introduction

With a number of technical advantages of its fast speed, heavy transport capacity,
low energy consumption, and slight pollution, the high-speed railway has become a
common trend of the development of world railway transport. The high-speed train,
which is the core of modern high-speed railway, has overcome a series of technical
difficulties and is developing rapidly. With the increase of the train speed, the
dynamic environment of the train turns out to be aerodynamic domination. The
aerodynamic problem is becoming the key technology of the high-speed train
(Schetz 2001; Raghunathan et al. 2002; Shao et al. 2011; Li et al. 2013). The
aerodynamic drag is proportional to the square of the train speed. The proportion of
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aerodynamic drag in the total resistance is small when the train speed is low.
However, the aerodynamic drag could take a much greater proportion of the total
resistance at a higher train speed, e.g., when the train speed reaches 250-300 km/h,
the aerodynamic drag could take 75% of the total resistance (Brockie and Baker
1990). Thus, the aerodynamic drag has become one of the key factors to restrain
the further increase of the train speed and energy conservation. As a result, the
reduction of the aerodynamic drag is of great importance to the design of the
high-speed train head. However, the reduction of the aerodynamic drag may
increase other aerodynamic forces (moments), possibly deteriorating the operational
safety of the high-speed train. For example, the upward lift would reduce the
wheel-rail contact, which will easily lead to the train derailment due to the
excessive upward lift. The effect of aerodynamic forces (moments) on the opera-
tional safety of the high-speed train can be described through the operational safety
indicators (such as the load reduction factor). Thus, to reduce the aerodynamic drag
and meanwhile to improve the operational safety of the high-speed train has
become one of the key issues in the optimization design of the high-speed train
head.

Currently, the main design methods of the high-speed train head are wind tunnel
tests and numerical simulation. The general design idea of the high-speed train head
design is as follows: the first step is to map out various head types, the next step is
to compare and pick out the best head type through wind tunnel tests or numerical
simulation, and the last step is to improve the design according to the operational
conditions. Maeda et al. (1989) gave some suggestion for the purpose of aerody-
namic drag reduction based on the aerodynamic drag comparison of O series, 100
series and 200 series on Shinkansen, Japan. Kikuchi et al. (2001) studied nine kinds
of train heads (the combination of three types of nose section configuration and
three different nose lengths) using the 3D boundary element method, and found out
that the nose section configuration resembling a wedge could effectively reduce the
air pressure pulse due to train passage. Hemida and Krajnovi¢ (2010) analyzed the
effect of nose length on the flow field and aerodynamic force of the high-speed
train. The calculation results showed that the flow structure and aerodynamic force
of the high-speed train with a long nose were much different from those with a short
nose. The short nose represented more transient and 3D characteristics. Essentially,
the methods adopted mentioned above belong to the optimum seeking method
which is heavily dependent on engineering experience, and only the relationships
between a single optimization design variable and optimization objectives are
obtained. As a result, the final selected head may not be the optimal one.

To get the global optimal head shape, the direct optimization method should be
adopted. The direct optimization design means using mathematical methods to seek
for the minimum or maximum (such as the minimum of the aerodynamic drag or
the minimum of the load reduction factor) of some design goals while at the same
time satisfying certain constraint conditions. Therefore, the optimization design
problem of the high-speed train head can be transformed into a multi-objective
constrained optimization problem. Optimization design variables are extracted from
the parametric modeling of the high-speed train, which can be automatically
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updated through the multi-objective optimization algorithm. Optimization objec-
tives can be obtained by the calculation of aerodynamics and vehicle system
dynamics of the high-speed train. Currently, very few studies on multi-objective
optimization design of train head can be found. Kwon et al. (2001) studied the
influence of the nose shape on the intensity of the pressure gradient of the com-
pression wave at the tunnel entrance, where the response surface method was used
as a basis for the optimization of nose shape of high-speed trains. The analytical
results showed that the front 20% part of the train nose played the most important
role in the minimization of the maximum pressure gradient. Lee and Kim (2008)
developed a proper approximate metamodel to deal with the nose shape design of
the high-speed train so as to minimize the maximum micro-pressure wave and
suggested an optimal nose shape that was an improvement over the current design
in terms of micro-pressure wave. Sun et al. (2010) combined genetic algorithms and
arbitrary shape deformation techniques to optimize the head shape of the China
Railways High-speed3 (CRH3). Ku et al. (2010) used the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm and response surface model to minimize the
micro-pressure wave. The cross-sectional area distribution of high-speed trains with
different nose lengths was selected as an optimization design variable to conduct the
single-objective optimization design. Ikeda et al. (2006) and Suzuki et al. (2008)
used B-spline curve to set up a parametric model of cross-sectional panhead and
optimized the shape of the cross-sectional contour of the panhead. Yao et al. (2012)
adopted a new parametric approach called local shape function based on the free
form surface deformation and a new optimization method based on the response
surface method of genetic algorithm-general regression neural network
(GA-GRNN). After optimization, the aerodynamic drag for a three carriage train
was reduced by 8.7%.

In the present paper, a multi-objective optimization design process of the
high-speed train head is proposed to carry out the automatic optimization design of
the head shape, with the optimization objectives of aerodynamic drag and load
reduction factor. This optimization design process mainly involves the following
aspects: (1) 3D parametric model design; (2) the aerodynamic mesh generation and
the aerodynamic calculation of the high-speed train; (3) the calculation of vehicle
system dynamics; and (4) the multi-objective optimization algorithm. In the opti-
mization process, the 3D parametric model of the high-speed train is established
using CATIA, with which the train head can be generated and deformed auto-
matically. The aerodynamic mesh is divided automatically by ICEM. FLUENT and
SIMPACK are used for the automatic numerical calculation of aerodynamics and
vehicle system dynamics of the high-speed train, respectively. The improved
non-dominated sorting genetic algorithm II (NSGA-II) is used for the automatic
optimization design of the high-speed train head.
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2 Basic Concepts and Optimization Process

2.1 Basic Concepts of Multi-objective Optimization

To get a clear understanding of the multi-objective optimization, a brief introduc-
tion of some basic concepts of multi-objective optimization is provided (Aguilar
Madeira et al. 2005).

Multiple objectives are made to reach the optimization at the same time, which is
known as the multi-objective optimization problem, and the mathematical expres-
sions are

min f;,(x), m=12,...M,

s.t. gi(x) <0, J . (1)
hi(x) =0, k=1,2,.. K,
x}gx,»gx}J, i=1,2,..,N,

where M is the total number of the objective functions, N is the total number of
design variables, J is the total number of inequality constraints, K is the total
number of equality constraints, x; is the design variable, xf‘ is the lower bound of x;,
xlU is the upper bound of x; f,,(x) is the mth objective function, g;(x) is the jth
inequality constraint, and /,(x) is the kth equality constraint.

In most cases, the objectives are contradictory to each other, and it is not
possible for several objectives to achieve the optimal solution at the same time.
Otherwise, it does not belong to the category of the multi-objective optimization.
The ultimate goal of solving the multi-objective problem is to coordinate the
compromises and trade-off between various objectives so that each of the objectives
reaches the optimization as far as possible.

The French economist V. Pareto was the first person to study the multi-objective
optimization problem within the field of economics, and proposed the concept of
the Pareto-optimal set.

Suppose x€X (X is the feasible region for the design variables), if and only if

there is no x'€X so that f,,(x") < f,(x), m=1, 2, ..., M, and at least one strict
inequality holds, then x is a Pareto-optimal solution of the multi-objective
optimization.

A collection of all Pareto-optimal solutions is called Pareto-optimal set. The
Pareto-optimal set in the objective function space is called Pareto-optimal front.

To solve the multi-objective optimization problem is to find the Pareto-optimal
set. Then a compromise solution needs to be made by the decision-makers in
accordance with the relevant information and requirements.
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2.2  Multi-objective Optimization Process

The multi-objective optimization design of the high-speed train head is the core
technology of the high-speed train design. For some original head shape, users are
often required to improve the aerodynamic performance (drag coefficient, lift
coefficient, etc.), to reduce the energy consumption and improve the operational
safety of the high-speed train. The automatic optimization design of the high-speed
train head is of great significance. The multi-objective optimization design of the
high-speed train head mainly involves the following aspects: the 3D parametric
model design of the high-speed train, the aerodynamic calculation of the high-speed
train (including mesh generation), the vehicle system dynamic calculation of the
high-speed train, multi-objective optimization algorithms, system integration
framework, and so on. The multi-objective optimization design process of the
high-speed train head is shown in Fig. 1. The commercial 3D geometric modeling
software or parametric design program can be used to set up the 3D parametric
model. The commercial computational fluid dynamics software or self-programming
can be used for the aerodynamic calculation of the high-speed train. The commercial
multi-body system dynamics software or self-programming can be used for the
vehicle system dynamic calculation of the high-speed train. Genetic algorithms or
neural networks can be used for the optimization design of the high-speed train head.
The commercial integration framework or batch program can be used for system
integration.

3 3D Parametric Model of the Train

The 3D parametric model of the high-speed train is established by CATIA. To
achieve the automatic deformation of the head shape, the following three tasks need
to be done successively:

| Mesh generation l—bl\ Mesh file \'—>| Aerodynamic calculation |

Parametric mode file | Vehicle dynamics calculation Aerodynamic force (moment)

Three-dimensional parametric Operational safety index Optimization objective variables

model
Optimization design variables Multi-objective optimization ] Convergent discriminant

algorithm
Yes
A 4
Begin | End |

Fig. 1 Overall design flow for optimization
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Establish the entity model of the left half of a train head;

. Parameterize the left half of the train head using the script file of CATIA;

3. Modify the parameter values in the script file of CATIA using a MATLAB
program, and perform the deformation of the high-speed train head by running
the script file.

DN =

3.1 Entity Model of the Left Half of the Train Head

As the head shape of the high-speed train has a good symmetry, only the left half
(or right half) portion of the train head needs to be modeled. The head shape of the
high-speed train is quite complex, which cannot be described by simple analytic
surfaces, but can be described by continuous splicing of some sub-surfaces. In this
study, a number of B-spline surfaces are used to approximate the outer surface of
the left half portion of the train head. B-spline surfaces are constituted by a series
of B-spline curves, which are generated by a series of control points on the surface
of the train head.

According to the head shape of a high-speed train, 162 control points are set up
on the surface of the train head, which are used to build 12 B-spline curves. Then,
the 12 B-spline curves can be used to build seven B-spline surfaces. After that, the
left half of the train head is established, as shown in Fig. 2. To facilitate the later
analysis, the B-spline curves are numbered C1-C12, respectively.

Fig. 2 Left-half model of the
train head

C8
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3.2 Parametric Model of the High-Speed Train

Based on the entity model of the left half of the train head, a parametric model of
the left half of the train head is established by the script file of CATIA. The
coordinates of 162 control points of the left half portion can be recorded auto-
matically to the script file by CATIA, and then the deformation of the head shape
can be achieved by modifying the coordinates of 162 control points.

Based on the parametric model of the train head’s left half, the parametric model
of a high-speed train with three carriages can be built through translation, sym-
metry, and so on, which can be recorded to the script file of CATIA.

3.3 Optimization Design Variables

To optimize the head shape of the high-speed train, five optimization design
variables are selected, which correspond to the longitudinal symmetry line C1, the
maximum horizontal contour line C3, the bottom horizontal contour line C4,
the central auxiliary control line C7, and the nose height, respectively. With the
increase of the streamlined length, the aerodynamic performance of the train will
significantly be improved. Therefore, on the basis of a fixed streamlined length, the
external shape of the train head is optimized to improve the aerodynamic perfor-
mance and vehicle dynamic performance of the high-speed train.

The deformation of C1 is carried out by changing the vertical coordinates of the
control points of C1. The vertical coordinate of the midpoint of C1 is varying with
dz,, while the vertical coordinates of both ends of C1 remain unchanged, i.e., the
variation is 0. As to the points between the midpoint and the two end points, the
variation of the vertical coordinates is in accordance with the linear law. Figure 3
shows the deformation of C1, where the original form represents the initial form of
C1, the upward movement means that dz; is positive, and the downward movement
means that dz; is negative.

The deformation of C3 is carried out by changing the horizontal coordinates of
the control points of C3. The horizontal coordinate of the midpoint of C3 is varying
by dys, while the horizontal coordinates of both two ends of C3 remain unchanged,
i.e., the variation is 0. As to the points between the midpoint and the two end points,
the variation of the horizontal coordinates is in accordance with the linear law.
Figure 4 shows the deformation of C3, where the original form represents the initial
form of the C3, the inward movement (i.e., close to the longitudinal symmetry
plane) means that dy; is positive, and the outward movement (i.e., away from the
longitudinal symmetry plane) means that dy; is negative.

The deformation of C4 is similar to that of C3, and the optimization design
variable is dy,, which will not be described in detail here.

The deformation of C7 is carried out to adjust concavity and convexity of the
curve; therefore, the two ends of C7 need to be fixed and the deformation is
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becoming greater from the two end points to the midpoint. The following equation
is adopted for the deformation:

Y7, new (l) = Y7,0ld (l)

dy; (i — 1)(n7 — i) (2)
. (”<i—1><i—1>+<n7—i><n7—i>>’

where n7 is the number of the control points of C7, y;4(i) is the value of the
horizontal coordinate before the deformation, y7 new(Z) is the value of the horizontal
coordinate after the deformation, and i is the number of the control point of C7.
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Fig. 5 Deformation of the 24—
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Figure 5 shows the deformation of C7. The curve is convex when dy; > 0 and
concave when dy; < 0.

As to the variation of the nose height, the vertical coordinates of the control
points of C9 need to be multiplied by a coefficient nscale. When nscale is greater
than 1, the nose height becomes larger, and when nscale is less than 1, the nose
height becomes smaller.

Note that when these curves mentioned above perform deformation, the relevant
curves also need to be changed to ensure that the surface of the train head is
continuous and smooth.

When optimization design variables are determined, the coordinates of the 162
control points in the script file of CATIA are modified by the MATLAB program,
and then a new head shape of the high-speed train can be produced by running the
script file.

4 Aerodynamic Model

As a high-speed train running on the open track, the operating speed is generally
not more than 400 km/h. The impact of the air density on the flow can be ignored
without taking into account the trains passing each other or going through a tunnel.
Therefore, the incompressible steady flow is adopted to simulate the flow field
around the train, and the standard k-¢ turbulence model is adopted, then the control
equation of which can be expressed as follows (Versteeg and Malalasekera 2007):

div(pue) = div(I'grade) + S, (3)
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Fig. 6 Flow-field
computational region

where p is air density, u is velocity vector, ¢ is the flow flux, S is the source item,
and I' is the diffusion coefficient.

The train model for computing the flow field around the train is the 3D para-
metric model established in Sect. 3. The flow-field computational domain is shown
in Fig. 6. The left of the computational domain is set as the velocity inlet boundary,
the right as the pressure outlet boundary, the two sides and the top as the symmetric
boundary, and the train surface as the stationary wall boundary condition. The
ground is set as the slip wall boundary condition, and the slip velocity as the train
speed in order to simulate the ground effect. The triangle mesh is generated on the
train surface, and the tetrahedral mesh is used for spatial meshes.

To perform the automatic optimization design of the high-speed train head, the
mesh generation and the aerodynamics calculation of the high-speed train should be
executed automatically. The script files of ICEM and FLUENT are used for the
automatic mesh generation and aerodynamics calculation, respectively. The script
files can be performed by the batch command.

5 Vehicle System Dynamics Model

The vehicle system dynamics mainly includes vehicle dynamics and wheel-rail
contact. It is assumed that the carbody, bogie, and wheelsets are rigid, and their
elastic deformation can be neglected. The equation of the vehicle system dynamics
is

MX +CX +KX =F, (4)

where M, C, and K are the mass, damping, and stiffness matrices of the train
system, respectively. X is the generalized displacement vector of the system, X is

the generalized velocity vector of the system, X is the generalized acceleration
vector of the system, and F is the generalized load vector of the system, including
the track excitation and aerodynamic loads.
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A multi-body system dynamics model of the high-speed train is constructed by
SIMPACK. The multi-body model of a single car is composed of one carbody, two
bogies, four wheelsets, and eight tumblers. The rigid carbody, bogie, and wheelsets
have six degrees of freedom each, while the tumbler has one. The dynamics model
of a single car has 50 degrees of freedom. The train dynamics model with three
carriages of “trailer car-motor car-trailer car” is built in this study, which has a total
of 150 degrees of freedom. As to the trailer car and motor car, the degrees of
freedom, the connection and constraints of the various components, the structure
and most of the suspension parameters are exactly the same. The difference only
exists in some local parameters such as the body mass, center of gravity height, and
body rotational inertia. The wheel rail contact is in general the core of a railway
model. LMA tread and T60 rail are used in this model. Track irregularities com-
plicate the evaluation of the wheel unloading. Here, we adopt the measured track
spectrum of a high-speed railway in China as the track irregularity.

The aerodynamic loads are dealt with as the external loads on the multi-body
system dynamics model to analyze the operational safety of the high-speed train.
Due to the translation and equivalent of the force, the pressure distribution can be
simplified to a given point to obtain the concentrate forces and moments. The batch
command can be used to call the file of SIMPACK named profile.ksh to realize the
automatic calculation of vehicle system dynamics and the automatic output of the
calculation results.

6 Multi-objective Optimization Algorithm

Currently, there are two major methods to solve the multi-objective optimization
problems: the normalization approach and the non-normalized approach. The
normalization approach transforms multiple objectives into a single objective so
that the single-objective optimization methods can be used directly. When taking
different weights, different solution sets can be computed to approximate the
Pareto-optimal set. The normalization approach which has a poor computational
efficiency is quite sensitive to the shape of the Pareto-optimal front. The
non-normalization approach deals with the multi-objective optimization problems
directly using the Pareto mechanism. The multiple objectives do not need to be
converted to a single objective, and the shortcomings of the normalization approach
are thus overcome. The non-normalization approach enables the forefront of the
solution set to reach the Pareto front as close as possible and tries to evenly cover
the Pareto front. There are two major classes of the non-normalization algorithms,
which are evolutionary multi-objective optimization (EMO) and direct search
method (DSM) algorithms (Custodio et al. 2011; 2012; Zhou et al. 2011). Some
commonalities exist in the design of DSM and EMO algorithms, such as searching
in the neighborhood of existing solutions in order to find improvement, Pareto
non-dominance, diversity maintenance strategies, and so on. However, there are
also remarkable differences between DSM and EMO algorithms. DSM algorithms
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are deterministic, which can present a well-established convergence analysis. EMO
algorithms are randomized, and the convergence will be of probabilistic nature, also
addressing global optimums (Custodio et al. 2012).

In this study, the algorithm NSGA-II is adopted, which is a widely used EMO
method. NSGA-II proposes a fast non-dominated sorting approach with an elitist
strategy and replaces the sharing function approach with a crowded-comparison
approach, which does not require any user-defined parameter for maintaining
diversity among population members. The main loop of NSGA-II is described as
follows (Deb et al. 2002):

1. A random parent population Py of size N is created. The population is sorted
based on the non-domination. Each solution is assigned a fitness (or rank) equal
to its non-domination level. Thus, minimization of fitness is assumed. Then, the
usual binary tournament selection, recombination, and mutation operators are
used to create an offspring population Q, of size N. Let ¢ = 0;

2. At the rth iteration, the combination of the random parent population P, and the
offspring population @, is defined as the combined population R,, viz.
R, =P, U Q,, and the size of R, is 2 N. Then the population R, is sorted
according to non-domination to get non-dominated front Fy, F5, ...;

3. Sort all F; based on the crowded-comparison operator in descending order, and
select the best N solutions to form the new population P,,;

4. The new population P,,; of size N is used for selection, crossover, and mutation
to create a new population Q. of size N;

5. If the termination condition is true, the procedure ends. Otherwise, ¢t = #+1, and
then turn to step 2.

7 Numerical Simulation

There are 12 initial sample points in the design and 25 generations used in the
optimization so that 300 designs of the head shape optimization are obtained after
the optimization.

The histories of optimization design variables and optimization objectives for all
the designs are presented in Fig. 7. Figure 7a shows the history of dz; for all the
designs, and Fig. 7b illustrates the history of aerodynamic drag F for all the designs.
We have the dot notation to present the Pareto-optimal solutions in the optimization
process. As shown in Fig. 7, through repeated iterative calculation, the optimization
design variables and optimization objectives tend to converge along with the opti-
mization process, and the Pareto-optimal set and Pareto-optimal front are obtained.

Figure 8 shows the correlation coefficients between optimization objectives and
optimization design variables. As shown in Fig. 8a, a positive correlation between
the variables dz;, nscale, and the objective Fy within a certain range can be found,
which means that a more concave longitudinal symmetry line or a shorter nose
height would lead to a lower aerodynamic drag. A negative correlation between the
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Fig. 7 Histories of dz; a
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variables dy;, dy, and the objective Fy can be found, which means that when the
horizontal maximum control line or the bottom horizontal contour line moves to the
longitudinal symmetry, the aerodynamic drag would decrease. As shown in Fig. 8b,
a positive correlation between each design variable (except the central auxiliary
control line) and the load reduction factor within a certain range can be found.
There is little impact of the variable dy; on the aerodynamic drag or the load
reduction factor.

The obvious significant factors which affect the aerodynamic drag and load
reduction factor are successively dy,, dys, dz;, and nscale. In addition, from Fig. 8,
each design variable has a bigger impact on the aerodynamic drag than that on the
load reduction factor.

To further dig the nonlinear relationship between optimization objectives and
optimization design variables, according to the analysis above, the variables dy, and
dy;, which are the most influential parameters, are chosen to conduct the response
surface analysis with the aerodynamic drag. A 3D response surface of aecrodynamic
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drag Fg4, the variables dy, and dy; is shown in Fig. 9. No pure linear relationship
exists among Fy, dy4, and dy;, which can never be attained by a usual optimum
seeking method (Fig. 9). The aerodynamic drag Fy of the high-speed train shows a
decreasing trend with the increase of dy, or dys, which is coincident with the results
of Fig. 8.

The convergence of the optimization variables in the image space for all the
designs is shown in Fig. 10. In Fig. 10, (P, — P)/P, indicates the load reduction
factor, the curve connected by the dot notation “@” indicates the Pareto-optimal
front of the multi-objective optimization of the high-speed train head, the penta-
gram “k” represents the aerodynamic drag force and load reduction factor corre-
sponding to the initial head shape, and the square “I” denotes the aerodynamic
drag force and load reduction factor corresponding to designs in the optimization
process. It can be concluded that, after the multi-objective optimization design of
the head shape, the performances of both the aerodynamic drag and load reduction
factor have been improved. Compared with the initial head shape, the aerodynamic
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drag is reduced by up to 4.15% and the load reduction factor is reduced by up to
1.72% after optimization.

8 Conclusion

A parametric model of the high-speed train head is established in the present paper.
The aerodynamic performance and vehicle dynamic performance of the high-speed
train are calculated through the batch commands and script files. The
multi-objective optimization algorithm NSGA-II is used for the automatic
multi-objective optimization of the head shape, with the optimization objectives of
the aerodynamic drag and load reduction factor. The proposed method can greatly
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reduce the design cycle of the head shape, and obtain a better head shape with good
aerodynamic performance and vehicle dynamic performance.

The computational results show that a positive correlation between the variables
dz;, nscale, and the objective Fy within a certain range can be found, and a negative
correlation between the variables dys, dy,, and the objective Fy, as well. There is a
positive correlation between these four variables and the load reduction factor
within a certain range. Through optimization, dy, and dy; are found to be the most
influential parameters, and no linear relationship exists among the aerodynamic
drag force and these two variables. After optimization, the aerodynamic drag is
reduced by up to 4.15% and the load reduction factor is reduced by up to 1.72%.
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