
Chapter 4
Remote Sensing in Mineral Exploration

4.1 Concept

Remote sensing was first adopted as a technique for obtaining information of
distance objects without being in physical contact to the object (Fisher 1975). In
practical terms remote sensing collects electromagnetic or acoustic signals. Earliest
aerial were taken in 1858 from a balloon. However, since 1930 aerial photography
using aircraft has been used extensively for resources survey. Satellite photography
of the earth has been available to geologists since the early 1960s. Several hundred
high oblique satellite photographs were acquired with a 70 mm hand-held camera
during one of the Mercury missions in 1961. First formal geologic photography
experiment (Gemini Mission) was carried out in 1965 (Lowman 1969). The mul-
tispectral terrain photography experiment on Apollo 9, which used four Hasselbled
cameras and four different film–filter combinations, acquired 90 sets of photographs
on 70 mm film between 3 and 13 March 1969. The success of the Apollo 9
experiment set the stage for both the Landsat programme and the Skylab Project.
Operational usage of remote sensing were adopted and continue at present with the
launch of remote sensing satellites like Landsat series (USA), SPOT series (France),
Skylab(USA), IRS series (India), ERS series (Europe), MOS series (Japan), JERS-l
(Japan) and ASTER (Japan and USA). Several high resolution satellites were also
launched that could be used in geological high resolution mapping projects.

Remote sensing has gained importance due to its applications in various mineral
exploration scenarios. The ore bodies may be associated with specific rock types,
controlled by geological structures, and associated with different hydrothermal
types. Some of geologically economic deposits such as laterite, bauxite show dif-
ferent morphological features. Remote sensing can help the exploration geologist to
distinguished different rock types, map the hydrothermally altered rocks, investigate
the morphological features and analyze the structural features.
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Today we utilize the remote sensing as a useful method in mineral exploration,
since remote sensing helps in locating ore bodies that show up some surficial
features such as geomorphology, hydrothermal alteration, structural features,
lithology and geobotany.

4.2 Remote Sensing System

The link between the components of the remote sensing system is the electromagnetic
(EM) energy. Electromagnetic energy disperse as wave energy with the velocity of
light (c = 3 � 1010 cm/see). Here, we know that the source of EM radiation maybe
originating from natural sources such as sun’s reflected light or heat emitted by earth,
or man-made, like microwaves. The physical or compositional properties of surface
materials determine the amount and characteristics of the EM radiation. The sun is the
principal source of EM radiation. The EM radiations incident on the earth’s material
can get absorbed or reflected. The reflectance can be specular, diffused and scattered.
Remote sensing data can be classified based on the wavelength. The visible region
spans between 0.4 and 0.7 µm. Near-infrared region is 0.7–1.0 µm (VNIR).
Short-wave infrared (SWIR) begins from one micrometre and ends with three
micrometres. The thermal infrared (TIR) considered to be 3–20 µm. The microwave
region is between 1 cm and 1 m. Hence, we can classify remote sensing systems into
optical and radar remote sensing.

The energy received by the sensor is then converted to analogue or digital form
either onboard the spacecraft/airborne sensor or on the ground. The raw data
received by the ground station usually needs to be preprocessed in order to make
them usable for the end users (e.g. atmosphere and geometric corrections)
(Lillesand and Keiffer 2000).

4.2.1 Remote Sensing Sensors

Remote sensing sensors acquire data in different wavelengths that is called spectral
band. Each spectral band registers electromagnetic radiation in specific band region
of electromagnetic spectrum. There are several remote sensing satellites that are
imaging the Earth’s surface. Although digital images of Landsat, ASTER, IRS and
SPOT are well known amongst the geologists, but ASTER and Landsat images are
more popular due to their spectral capabilities for geological mapping.

4.2.1.1 Landsat and ASTER Systems

Landsat data have mostly been used semi-arid or desert setting. It helps in locating
for example iron oxides (gossan/oxidation) or even hydrous minerals such as

120 4 Remote Sensing in Mineral Exploration



gypsum or even hydrothermal alteration. Table 4.1 shows the characteristics of
different bands of ETM+ and Lansat 8 images.

The ASTER is an imaging instrument on the Terra platform. The satellite is a
cooperative effort between NASA and Japan’s Ministry of International Trade and
Industry. ASTER obtains information on surface emissivity, temperature, reflec-
tance and elevation. ASTER obtains data in 14 spectral channels from the visible
through thermal infrared regions of the EM. It consists of three separate instrument
subsystems (Abrams et al. 2002). Individual bandwidths and subsystems charac-
teristics are summarized in Table 4.2. Theoretically, the SWIR bands of ASTER

Table 4.1 Characteristics of
ETM+ and Landsat-8 images

Landsat 7 Landsat 8

Spectral bands 7 11

VNIR resolution (m) 30 30

SWIR resolution (m) 30 30

TIR resolution (m) 120 100

PAN resolution (m) 15 15

Spectral bands lm lm

Band-1 0.45–0.52 0.433–0.453

Band-2 0.52–0.60 0.450–0.515

Band-3 0.63–0.69 0.525–0.600

Band-4 0.76–0.90 0.630–0.680

Band-5 1.55–1.75 0.845–0.855

Band-6 10.4–12.5 1.56–1.66

Band-7 2.08–2.35 2.1–2.3

Band-8 0.5–0.9 0.5–0.68

Band-9 – 1.36–1.39

Band-10 – 10.30–11.30

Band-11 – 11.50–12.50

Table 4.2 ASTER characteristics (Abrams et al. 2002)

Band VNIR spectral
resolution
(mm)

Band SWIR Spectral
resolution
(mm)

Band TIR spectral
resolution
(mm)

1(nadir) 0.52–0.60 4 1.600–1.700 10 8.125–8.475

2(nadir) 0.63–0.69 5 2.145–2.185 11 8.475–8.825

3(nadir) 0.76–0.86 6 2.185–2.225 12 8.925–9.275

3(back ward) 0.76–0.86 7 2.235–2.285 13 10.25–10.95

8 2.295–2.365 14 10.95–11.65

9 2.360–2.430

Technology detector Pushbroom
Si

Pushbroom
PtSi:Si

Whiskbroom
Hg: Cd:Te

Spatial resolution (m) 15 � 15 30 � 30 90 � 90

Swath width 60 km 60 km 60 km

Quantization 8 bits 8 bits 8 bit
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have more capability than the Landsat for recognition of areas with hydrothermal
alteration.

4.2.1.2 Indian Remote Sensing Satellites (IRS Series)

In India Remote Sensing is conducted by in Indian Space Research Organization’s
(ISRO)—Indian Remote Sensing satellites (IRS) series Earth observation satellites.
Today there are also OceanSat, CartoSat, ResourceSat and others in the series.
Table 4.3 shows specifications of these satellites.

Hyperspectral Imaging
The sensors that acquire several hundreds of spectral bands over a single area are
called hperspectral imagers. These images are capable of mapping mineralogical
composition present at the surface of the Earth. Thus, the airborne visible-infrared
imaging spectrometer (AVIRIS) and HyMap are the airborne hyperspectral sensors
which are capable of acquiring as many as 200 images over a single area.

The EO-1 (Earth observation) Hyperion is the only available space borne
hyperspectral data available till today (Kruse et al. 2003). The imageries for this
sensor is available free at www.USGS.gov. You may find lots of information
related to characteristics of the sensors onboard EO-1 from this website.

Characteristics of Satellite Images
Each spectral band consists of columns and rows of pixels. Every pixel has an
address in an image that can be shown as BVijk. BV stands for brightness value for
each pixel, i and j represent column and row numbers, respectively, and k repre-
sents the spectral band number. For example in Fig. 4.2, the highlighted pixel in
band-1 can be addressed as 521822, 696, 1.

Figure 4.1 shows a subset of six spectral bands of ETM+ data over an area that
contains vegetation cover (with black pixels in bands 1 and 3) and a hydrothermal
alteration (with bright pixels in band 5). An enlarged portion of this image that is
shown with a red square is shown in Fig. 4.2. The corresponding BVs or digital
numbers (DNs) are also shown. Every surface feature may absorb electromagnetic
energy in one wavelength and reflects in another. Therefore, in a grey scale image
the features are in shades of grey. For example, the vegetation cover that is seen
with dark pixels in bands 1, 2, 3 and 7; appears in higher DNs in band 4. This is due
to the fact that green vegetation cover has absorptions in bands 1, 3 and 7 and
reflection in band 4 of ETM+ images. The pixels covering the hydrothermally
altered areas have higher BVs in band 5 and lower BVs in band 7. This phe-
nomenon can be used in later sections for enhancing vegetation cover and
hydrothermally altered rocks.
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Fig. 4.1 Six images of ETM+ that show an area with hydrothermal alteration and vegetation
cover

4.2 Remote Sensing System 125



Fig. 4.2 An enlarged portion of Fig. 4.1 with grey scale images and corresponding DNs
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4.2.2 EM Spectrum

Electromagnetic spectrum is a continuum consisting of the ordered arrangement of
radiation according to the wavelength, frequency or energy. It extends from highly
energetic cosmic rays photons through gamma rays, X-rays, ultraviolet, visible,
infrared, microwave and radiowaves. The wavelengths that are greatest interest in
remote sensing are visible and near-infrared radiation.

4.2.3 Spectral Characteristics of Hydrothermal Alteration
Minerals

A group of minerals could be used as index minerals that occur in the altered rocks
associated with various mineral deposits such as porphyry copper deposits. The
spectral properties of minerals can be used for their identification, based on their
reflectance behaviour. The spectral reflectance characteristics of rocks and minerals
in the visible near-infrared (VNIR) through the short-wave infrared (SWIR)
wavelength regions (0.4–2.5 µm) are the result of different physical and chemical
properties. However, the spectral feature that is typically displayed by the
well-defined bands is caused by absorptions due to both electronic and vibration
processes in the individual mineral constituents (Hunt and Salisbury 1970; Hunt
and Ashley 1979). Here, we are concerned with the process that leaves to locating
the mineral deposits. Between 0.35 and 1.3 µm, electronic transitions in the
iron-bearing minerals (hematite, goethite and jarosite) cause characteristic features,
in the form of minima, to occur near 0.43, 0.65, 0.85 and 0.93 µm. They are
common components in many ore minerals and indicating iron oxide-rich caps,

Fig. 4.3 a Spectral pattern of oxidized zone—gossan for jarosite, hematite and goethite and
b Spectral profile on an area rich in iron oxide. Note the peak in band 3 and an absorption feature
in band-1 of ETM+ data
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known as gossan. Figure 4.3 depicts the spectra of three iron oxide bearing samples
that show absorption in blue band (band 1) due to electronic process
(charge-transfer) and reflections in red and near-infrared (NIR) portions (bands 3
and 4). This explains why we see oxidize zone in form of gossan which contain
hematite in red and brown.

The oxidation process and products generated comprise within it hydrous
(OH) molecules or even carbonate associated minerals of Al, Fe, Mg as aluminium
ore, iron ore or MgOH. They constitute clays, sulphates and water-bearing minerals
(alunite, kaolinite, illite, montmorillonite, Pyrophyllite, mica, diaspore, jarosite,
chlorite and carbonates) that are common in the hydrothermally altered rocks (Hunt
and Ashley 1979). Figure 4.4 depicts the spectrum. These mineral have an
absorption feature within band 7 and a reflection in band 5 of ETM+, respectively.
Here, the bands ETM+ and ASTER sensors can distinguished between clay min-
erals and alunite, while, ETM+ images is not able to do so, due to the fact that band
7 has more width and covers all absorption features.

Since ASTER and Landsat data are widely used by the geologist around the
world more than any other satellite systems, here the spectral properties of rocks
and minerals are explained based on the spectral bands of these data. The ASTER,
VNIR + SWIR pattern of mineral generated due to hydrous nature of mineral can
be seen clearly. These mineral comprise micas (sericite) illite in rock such as
phyllite. The rock basically consists of clays—kaolinite (Fig. 4.5).

Fig. 4.4 a Showing reflectance spectra of clay minerals. The bands widths of TM and ASTER are
shown. b The relative reflection over an altered area
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4.3 Discrete or Digital Image Processing
of Satellite/Airborne Images

Gillespie (1980), Hord (1982, 1986), Swain and Davis (1978), Lillesand and Kiefer
(1987, 1994), Niblack (1986), Mather (2001), Jensen (1996) and Gupta (2003) have
given reviews in digital image processing of remote sensing data. A digital image
comprises a number of individual picture elements called Pixels, each one having
an intensity value (Digital number) and an address in two dimensional image space,
i.e. rows and columns The digital number (DN) may represent the reflectance of
EM radiation (albedo, emissivity, temperature) or some geophysical, geochemical
or topographical data. The DN value is dependent of the intensity range of the
image which usually stretches from minimum (0) to maximum (255 in 8 bit format).
The image data are usually stored in computer compatible tapes (CCT), floppy
disks, data cartridges, digital audio tapes (DAT) and CD-ROM medium.

We understand that the digital image processing is carried out by computer
processing of digital data generated. In general the purpose of digital image pro-
cessing is to enhance or improve the image quality to extract information from it.
Digital image processing offers precision and flexibility over optical or electrical
methods. Voluminous data becomes a challenging task to analyze within a limited
time. Use and application has helped greatly in data processing and time saving.
Many useful digital image processing operations are available on personal com-
puters and desktop workstations (Niblack 1986).

Fig. 4.5 Showing a Laboratory Reflectance Spectra of important hydrothermal alteration
minerals. ASTER and ALI bands are shown in figure (Honarmand et al. 2011)
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Digital image processing generally involves image correction, image registra-
tion, image enhancement, image segmentation and image classification depending
on the objectives of the study. In the present study, image registration and image
enhancements have been used. Image enhancement broadly comprises of (i) single
image enhancement and (ii) multiple image enhancement.

4.3.1 Image Registration

Image registration involves the geometric transformation in an image. The aim of
geometric restoration and correction is to generate an image which can be registered
or align, with some standards, e.g. maps of the area covered by an image or another
rectified image of the same area. Ground control points (GCPs) are needed for
registration process. Few GCPs we chosen which can be recognized easily both in
the image as well as the map (e.g. stream junctions, road intersection, etc.). The
GCPs are fed into the computer and based on the GCP coordinates, the image is
subjected to coordinate transformation according to a set of equations called affine
projections. The coordinate of the two sets of GCPs defines the transformation
parameters. Typically a set of two equations (affine projections) is used to link the
two coordinate systems:

X 0 ¼ a0þ a1xþ a2yþ a3xy

Y 0 ¼ b0þ b1xþ b2yþ b3xy

where X′ and Y′ are the coordinates in the new system, and x and y are the coor-
dinates of the same points in the map. a1, a2, a3, b0, b1, b2 and b3 are the
unknown constants which can be computed using four control points. To use the
above equations to geometrically transform an image four stages are required. First,
a geometrically correct geographical grid is defined in terms of latitude, longitude
or northing and easting. Second, the computer proceeds through each cell in this
geographical grid and at each cell the computer transforms the latitude/longitude or
northing/easting values into values of x and y which becomes the new address of an
image pixel. Third, the computer visits this address in the image and transfers the
appropriate DN by interpolation. Forth, this process is repeated until the geo-
graphical grid is full at which point the image has been geometrically correlated
(Bernstein 1983).

4.3.2 Image Enhancement

Image enhancement involves the processes applied on the images in order to
improve the image quality so as to make them more interpretable. By applying a
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particular enhancement technique some features may become better discernible at
the cost of other features, e.g. directional filtering enhances the linear features at a
particular directions though other features in the image is suppressed. A particular
band ratio may enhance vegetation cover and another ratio may enhance the iron
oxide or argillic alteration. There are several methods of image enhancement, such
as (1) contrast stretching, (2) band rationing, (3) principal component analysis,
(4) addition and subtraction, (5) RGB coding, (6) spectral angle mapper and
(7) image filtering.

4.3.3 Contrast Stretching

Here, monitor screen of processor, or the light source in a digital film writer is from
0(zero-black) to 255(maximum intensity), but in general, pixels in an image often
occupy a small portion of the possible range of grey-level values, resulting in
low-contrast display on which some features might be indistinguishable. Image
processing software can change any DN in an image to any of 255 intensity levels.
The stretching is done by spreading the DNs equally over the 0–255 range. The
minimum DN is set to 0 and the maximum to 255 with other DNs falling between
these two extreme values. Guides to distinguished or identified even minor varia-
tion is observed. Different methods of contrast stretching such as linear contrast
stretching, multiple linear stretching, logarithmic, power or functional stretching,
Gaussian stretching, histogram equalization stretching and density slicing are
available in the modern image processing softwares. In all cases the images are
stretched.

4.3.4 Band Rationing

Band rationing or spectral rationing is an extremely useful procedure for enhancing
features in the multispectral images. In this technique, the DN values of one band is
divided by the corresponding DN values of another band, pixel by pixel, and the
resultant data is rescaled to fill the dynamic range of the display device by contrast
stretching operation. Ratio images are useful because they have the effect of sup-
pressing the detail in a scene which is caused by topographic effects (i.e. variable
effects of illumination conditions) while enhancing colour boundaries. This prop-
erty has made ratio pictures quite useful in geological applications because they
exaggerate subtle colour differences in a scene and many geological problems
require distinction between rock types that may appear quite similar. Ratio images
are interpreted because they can be directly related to the spectral properties of
materials. More information can be obtained by using those ratios that maximize the
differences in the spectral slopes of materials in the scene. Rationing technique has
been used to enhance argillic verses non-argillic, rock versus vegetation, iron oxide
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versus non iron oxide (Drury and Hunt 1989). A disadvantage of rationing is that it
suppresses differences in albedo. The rocks such as basalt and marls will appear the
same in the ratio image, though they have a lower and a higher albedo, respectively.
Table 4.4 presents few band ratios for enhancing mineral features.

It is possible to use, apart from the simple rationing, the output images resulted
from the other image enhancement techniques (e.g. PC images, ISH images, added
and subtracted images, etc.) as either denominator or numerator. This technique
may provide in some cases, useful information for geological studies.

4.3.5 Addition and Subtraction

Subtraction and addition of satellite images are simple and useful methods of image
enhancement when the multispectral images are highly correlated. Addition of
spectral images generates an image with much larger dynamic range than original
images. Therefore, higher contrast image is the result. The image which is produced
by differences of two images is characterized by lower contrast. This technique
particularly enhances the areas which are less correlated in the original images and
therefore it is possible to derive change-detection image from multispectral data.
Image subtraction sometimes can give the same result as image ratio but with much
simpler operation (Navai and Mehdizadeh-Tehrani 1994).

Table 4.4 ASTER band ratio for enhancing mineral features (based on van der Meer et al 2012)

Mineral feature ASTER bank combinations(2)

Ferric iron
Ferrous iron
Ferric oxide
Gossan
Carbonate/Chlorite/Epidote
Epidote/Chlorite/Amphibole
Amphibole
Dolomite
Carbonate
Sericite/Muscovite/Illite/Smectite
Alunite/Kaolinite/Pyrophyllite
Phengite
Kaolinite
Silica
SiO2

Siliceous rocks

2/1
5/3 and 1/2
4/3
4/2
(7 + 9)/8
(6 + 9)/(7 + 8)
(6 + 9)/8 and 6/8
(6 + 8)/7
13/14
(5 + 7)/6
(4 + 6)/5
5/6
7/5
11/10, 11/12, 13/10
13/12, 12/13
(11 � 11)/(10 � 12)
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4.3.6 Principal Component Analysis (PCA)

The principal component analysis is a multivariate technique that selects uncorre-
lated linear combinations (eigenvector loadings) of variables in such a way that
each successively extracted linear combination, or PC, has a smaller variance.
Remove redundancy from the multispectral data is the main aim of PC analysis.
Principal component analysis is extensively used for mapping of hydrothermal
alteration in metallogenic provinces (Abrams et al. 1983; Loughlin 1991;
Tangestani and Moore 2001, 2002).

A feature oriented principal component selection is known as Crosta technique.
It allows identification of the principal components (through the analysis of the
eigenvector values) that contain spectral information about specific minerals, as
well as the contribution of each of the original bands to the components in relation
to the spectral response of the materials of interest. This technique can be applied on
four and six selected bands of Thematic Mapper (TM) data. The technique indicates
whether the materials are represented as bright or dark pixels in the principal
components according to the magnitude and sign of the eigenvector loadings.

4.3.7 Red-Green-Blue (RGB) Coding

The colour images are the result of the three additive primary colours (red, green
and blue) in the RGB colour coordinate system. However, it is often difficult to
choose proper band combination and produce an optimum FCC especially in the
cases where several images are involved. Optimum index factor (OIF) may solve
this problem up to some extent (Chaves et al. 1982). The technique uses the
computation of total variance and correlation within and between bands. The
combination with higher OIF is chosen for making false colour composite. Similar
statistical method suggested by Hunt et al. (1986) and according to this method the
most informative three spectral bands are the least well correlated ones.

4.3.8 Spectral Angle Mapper (SAM)

The Spectral Angle Mapper (SAM) allows mapping of the spectral similarity of
image spectra to reference spectra. The reference spectra can be selected from either
laboratory or field spectra or extracted from the image. Spectral analysis assumes a
spectral angle which represents the data has been reduced to apparent reflectance,
with all dark current and path radiance biases removed. SAM compares the angle
between the reference spectrum and each pixel vector in n-dimensional space, and
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smaller angles represent closer matches to the reference (Kruse et al. 1993). The
angle can be calculated using following equation:

/¼ cos�1
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ii and ir are the image and reference spectra, respectively, and nb is the number
of bands. Lower angle indicates more correlation between the image spectra and
reference spectra.

The SAM algorithm has been used on hyperspectral and multispectral data for
hydrothermal alteration mapping (Ranjbar and Honarmand 2007; Di Tommaso and
Rubinstein 2007; Tangestani et al. 2008; Shahriari et al. 2013).

4.3.9 Image Filtering

Spatial filters emphasize or deemphasize image data of various spatial frequencies.
Spatial frequency refers to the degree of changes in pixel values from one pixel to
another. In a high frequency image, the tonal changes are abrupt (e.g. changes
across lithological boarder). In contrast, a low frequency image has gradual tonal
changes (e.g. tonal changes within a lithology or water body). Low pass filters are
designed to emphasize low frequency features and deemphasize the high frequency
components of an image (local detail). High pass filters emphasize the detailed high
frequency components of an image and deemphasize the more general low fre-
quency information. There are several low frequency filters such as mean, median,
mode, Gaussian, etc. High pass filters include Laplacian, Sobel and Roberts. The
high pass filters are of two types as follows:

1. The filters that enhance the high frequency features in all directions.
2. The filters that enhance the high frequency features in a specific direction.

For example, if enhancement of faults in a particular direction is desired, a
directional filter can be applied. In cases where the lithological boundaries that may
not have specific directions, Laplacian filter may be applied. Enhancement of
drainage pattern in an image also can be done using Laplacian filter.

In order to digitally filter an image, a kernel is used. Figure 4.6 shows a
Laplacian (A) and a high pass directional filters’ kernels (B). The latter kernel can
enhance the features in east–west direction. This kernel is moving over an image
and a new value is calculated for the central pixel every time the kernel stops over
nine pixels.

As mentioned earlier in the preceding chapters, many of ore deposits (such as
porphyry and vein types) are associated with faults or lineaments. To enhance these
features, the satellite images can be filtered with high pass filters. After this step, the
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lines showing the geological features should be drawn manually with a help of
Geographic Information System (GIS) software.

Another aspect is the Photolineament Factor (PF) is applied for analyzing lin-
eaments distribution and has application in mineral exploration, as suggested by
Hardcastle (1995). Generally, in the system a grid with cell size (e.g. 2 � 2 km) is
superimposed over the lineament map and each parameter is calculated from the
respective cells. The photolineament factor value is calculated using the following
equation:

PF ¼ aþ bþ c ð4:2Þ

where ‘a’ is number of lineament intersections in each cell/average of the area, ‘b’
is number of lineaments in each cell/average of the area and ‘c’ is number of major
lineament directions in each cell/average of the area. According to our study
(Ranjbar and Roonwal 2002) the PF values are thus controlled. Our study further
showed that in known occurrence of mineralization zones even in highly altered
condition, this method is very useful.

4.4 Application of Remote Sensing in Mineral Exploration

As mentioned earlier, mineralization may be associated with a particular lithology,
geological structure, morphology, hydrothermal alteration, etc. remote sensing may
help mapping or enhancing these geological features especially in the arid/semi-arid
parts of the world. Here, few geological features are investigated using remote
sensing.
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Fig. 4.6 Kernels for a Laplacian filter and b directional filter
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4.4.1 Geological Structures

It is an established fact that some of ore bodies, petroleum/gas reservoirs are
controlled by geological structures. Here, several types of structures are shown that
depict the ability of remote sensing for mapping them. Figure 4.7 shows a plunging
syncline in the eastern part of Iran that hosts coal beds. The rocks in the syncline are
composed of sandstone, shale, limestone and marl of Jurassic age. The coal beds are
seen in the shale and sandstone sequence. The southern limb of the fold is normal
but the northern limb is inverted as shown in Fig. 4.7. The fold is plunging to the
southeast direction.

The host lithology is a sequence of shale and sandstone that is seen in bluish
colour in Fig. 4.8 that goes round the fold. This image helps the geologists to locate
the coal beds in the coal–sandstone sequence in other parts of the fold. We know
that folded structures are proper places for exploration of hydrocarbon. Some of
these structures are outcropping at the surface that can be mapped by remote
sensing. If these structures are covered by alluvium or other lithologies, they can be
mapped by geophysical methods such as gravity and seismic. Here remote sensing
can help the geophysists to lay down proper geophysical lines for data collection
(Ranjbar 2011).

Figure 4.8 shows many double plunging anticlines in south of Iran. The
outcropping lithology is limestone that belongs to the Asmari and Jahrom
Formations which act as reservoirs while being enclosed with impermeable strata.

Fig. 4.7 Satellite image in true colour that shows a plunging syncline in east of Iran. The map
coordinate is N, UTM, Zone 40, WGS84
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Here they are outcropping at the surface and do not contain hydrocarbon.
Hydrocarbon may be present within the underlying strata. Faults are important
structure in mineral exploration scenarios. They provide pathways for hydrothermal
solutions, increase permeability, and act as barrier and traps for hydrocarbons.

Although the lithological changes are abrupt on both sides of a fault, it is very
easy to detect it (Fig. 4.9). In cases where the fault has occurred in one lithology,

Fig. 4.8 Landsat image in false colour that shows doubly plunging anticlines in south of Iran
(color figure online)

Fig. 4.9 Faults that separated
volcanic from the sedimentary
rocks. The map coordinate is
N, UTM, Zone 40, WGS84
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the changes in drainage pattern are used for its recognition. The faults are cutting
across the Darrehzar intrusive which is a granodiorite that hosts a porphyry copper
deposit in southeast of Iran (Fig. 4.10). On the eastern part, the drainage is dissected
several times due to faulting.

Porphyry copper deposits are associated with faulting systems. The faulting
increases permeability in the rock units that do not have primary permeability,
provide the pathways for the hydrothermal solutions. In order to graphically show
the areas with higher lineament density, photolineaments maps are prepared.
Figure 4.11 depicts the Landsat image of an area located in the southeast Iran that
hosts Sar Cheshmeh porphyry copper deposit and few smaller porphyry and vein
type mineralization. This image is filtered, the lineaments were extracted and finally
the PF value contours were drawn using Eq. 4.2. The copper deposits are associated
with higher PF values.

4.4.2 Hydrothermal Alteration Mapping

As mentioned earlier in this chapter, exploratory remote sensing is mostly used for
enhancing the hydrothermal alteration that may be associated with mineralization.
Several image processing techniques such as band rationing, principal component
analysis and spectral angle mapper can be used for mapping hydrothermal alteration
types.

Porphyry copper deposits received large attentions for exploration by the remote
sensing techniques all over the world. The associated zones of hypogene
hydrothermal alteration and weathering are spatially large enough to be detected
and mapped by using multispectral remote sensing data. Most of the known

Fig. 4.10 A false colour
image of landsat. Faults that
cut across the Darrehzar
intrusive body which hosts a
porphyry copper deposit. The
map coordinate is N, UTM,
Zone 40, WGS84 (color
figure online)
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Porphyry copper deposits are characterized by a well-developed zonal pattern of
mineralization and wall rock alteration that can be defined by assemblages of
hydrothermal alteration minerals. The most intense alteration occurs in the core of
the porphyry body and diminishes radially outward in a series of concentric zones
of alteration minerals (Fig. 4.12).

Fig. 4.11 a False colour image that shows lithological variation in the Sarcheshmeh area. EH,
ER1, ER2, ER3 volcanic rocks of Eocene, gd granodiorite, dc dacite, Ng2 Neogene sedimentary
rocks, Q Quaternary sedimens. b Photolineament factor value of the above image (color figure
online)
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4.4.2.1 Band Ratio

It has been observed that hydroxide molecules of minerals form large halos because
of hydrous nature. Examples of this are clearly seen in the minerals comprising
sheet silicates since they contain Hydroxyl-bearing minerals form the most wide-
spread products of hydrothermal alteration. An abundance of clays and sheet sili-
cates, which contain Al–OH– and Mg–OH-bearing minerals and hydroxides in
alteration zones, is characterized by absorption bands in the 2.1–2.4 µm due to

Fig. 4.12 Concept of hydrothermal alteration of porphyry copper deposit showing various
rock-type zones such as, potasic, phyllic, argillic and propylitic alteration (modified from Sabins
1999)

Fig. 4.13 Band 4/Band 6
ratio of ASTER data that
shows hydrothermally altered
areas with bright pixels
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molecular vibrational processes (Fig. 4.4). Here, due to clays and sheet silicates
higher reflectance in band 4 of ASTER data is observed. Here, common features of
phyllosilicates have been recorded and utilized for mineral exploration (e.g. Galvao
et al. 2005; Hubbard and Crowley 2005; Mars and Rowan 2006; Rowan et al.
2006).

Band ratio techniques though simple are important criteria in distinguishing and
identifying remote sensing image analysis. It guides to spectral differences between
bands as well as to help reduce influence of topography (Rowan and Mars 2003;
Zhang et al. 2007). Distinguishing spectral bands produce an image that provides
relative band intensities. The resulted image enhances the spectral differences
between the bands. Areas with hydrothermal alteration are usually enhanced as
bright pixels in images of band 4/band 9, band 4/band 5 and band 4/band 6 for clay
and sheet silicates and 9/8 ratio for chlorite and epidote in ASTER data. Figure 4.13
shows band4/band6 for Darrehzar porphyry copper deposit. Figure 4.14 shows
band 5/band 7 ratio images of Landsat ETM+ data. In both images the
hydrothermally altered areas are enhanced with bright pixels. The area of this image
covers the area shown in Fig. 4.11.

4.4.2.2 Principal Component Analysis

In Sect. 4.3.6 we have already discussed about principal component analysis,
additional aspects of PCA are narrated here.

Fig. 4.14 Band 5/Band 6 of ETM+ data that depicts hydrothermal alteration with bright pixels

4.4 Application of Remote Sensing in Mineral Exploration 141



Standard PCA is applied on ETM+ data of Sar Cheshmeh area. The intrusive
bodies are composed of diorite, quartz diorite and granodiorite of Oligocene–
Miocene age that intrude Eocene Volcanic-Sedimentary complex comprised mainly
of volcano-clastics, andesite, trachy-andesite and sedimentary rocks. The
hydrothermally altered rocks are highly fractured, and supergene alteration has

Fig. 4.15 Geology of porphyry copper deposit of Sar Cheshmeh, Kerman, Iran. Index shows: 1
Quaternary alluvium, 2 Quaternary gravel fan, 3 Quaternary calcareous terraces, 4 Neogene
sediments, mostly arenites with pebbles and boulders of volcanic and intrusive rocks. Dacites and
dacitic pyroclastics, 5 Granodiorite, quartz diorite, diorite porphyries and monzonite, dikes of
Oligocene-Miocene age, 6 Eocene volcanic-sedimentary complex, trachyandesites, trachybasalts,
basaltic andesites, pyroclastics, etc. 7 Fault, 8 Working mine and copper deposit, 9 hydrothermal
alteration (after, Dimitrijevic et al. 1971)

Table 4.5 Eigenvector loadings for six bands of ETM+ data

PC1 PC2 PC3 PC4 PC5 PC6

Band 1 0.26 −0.49 0.20 0.02 0.62 −0.50

Band 2 0.34 −0.39 0.18 −0.21 0.14 0.79

Band 3 0.49 −0.39 0.02 0.09 −0.72 −0.26

Band 4 0.34 0.010 −0.91 0.11 0.20 −0.37

Band 5 0.53 0.54 0.13 −0.62 0.05 0.05

Band 6 0.42 0.40 0.29 0.74 0.13 −0.16

% of variance 88 8.5 1.9 0.08 0.05 0.01
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produced extensive limonite and leaching of sulphide, giving a characteristic red-
dish or yellowish colour to the altered rocks. A weathered zone is developed a few
metres to 80 metres below the surface (Fig. 4.15).

The eigenvector loadings and the eigenvalues are described in Table 4.5, using
six ETM+ spectral bands. The first PC contains 88% of the variance of the six
bands and gives information mainly on albedo and topography as all the bands have
positive loadings. PC3 enhances vegetation cover in dark pixels, as the loading for
band 9 is high and negative. PC4 enhances the hydroxyl minerals as both bands 5
and 7 have high loadings with opposite signs. Negative value for band 5 loading
causes the altered parts to appear as dark pixels in Fig. 4.16. The vegetation cover
also appears as dark pixels because of their water content that cause absorption in

Fig. 4.16 PC4 image that shows altered areas with black pixels. The map coordinate is N, UTM,
Zone 40, WGS84
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band 7 of ETM+. PC5 enhances iron oxide minerals. Iron oxide minerals have
higher reflectance in band 3 and absorption in band 1 of ETM+. Here both the
bands have high loadings but with opposite signs. As the reflectance band has
negative signs, the areas with iron oxide minerals appear in dark pixels (Fig. 4.17).
Gossan or iron oxide cap rock is developed over the mineral deposits that have
undergone the process of oxidation. Elements such as copper, molybdenum, Pb, Zn,
etc. are leached out and iron oxide minerals such as hematite, goethite and jarosite
are formed at the surface. This can be an indication of buried deposit. If you
compare Figs. 4.16 and 4.17, it is noticed that the areas with hydrothermal

Fig. 4.17 PC4 image that shows iron oxide bearing areas with black pixels. The map coordinate is
N, UTM, Zone 40, WGS84
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alteration also contain iron oxide minerals. The Sar Cheshmeh mine pit has alter-
ation, but iron oxide minerals are extracted out and the mining activity is now in the
supergene and hypogene parts. That is the reason that iron oxide is not seen over the
mine pit.

4.4.2.3 Spectral Angle Mapper

Since our focus is on mineral exploration to map hydrothermal alteration haloes
around porphyry copper mineralization, the spectra of selected alteration minerals
from USGS spectral library were used as the end members and SWIR bands of
ASTER data were used in the analysis. Muscovite (sericite) and illite is represen-
tative of phyllitic zone; kaolinite and montmorillonite are representative of argillic
zone; and chlorite and epidote are representative of propylitic zone. Let’s apply
SAM method on Darrehzar area. The ASTER SWIR bands should be preprocessed
before applying SAM. Internal average relative reflectance was applied on SWIR
images. The preprocessed SWIR bands classified using SAM method (Fig. 4.18).

SAM classification method gave a good result that was very close to the reality
for identification of alteration types in the area. When, we compare Figs. 4.13 and
4.18, it is clear that SAM classification has provided far better result than ratio
image.

Govil (2015), used SAM method to map hydrothermally altered minerals around
Askot basement mineralization of Kumoan Himalaya, India, using EO-1 hyper-
spectral data. Askot basemetal mineralization occurred in the Askot crystallines of
the Kumaon Himalaya, India. In the Kumaon Himalaya at Askot copper deposit, the
country rocks are crystallines which are underlain by younger formation of Inner
Sedimentary Belt (ISB) of the region. Structurally, this is confined by Main Central
Thrust in the north, and Almora Thrust in the South. As mentioned the crystallines
rock comprise varieties of gneisses such as augen gneiss, granite gneiss,

Fig. 4.18 Classified
ASTER SWIR images using
SAM. The map coordinate is
N, UTM, Zone 40, WGS84
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garnetiferous-biotite gneiss, biotite-muscovite gneiss. In addition, calcsilicates and
quartzites are also seen. Dykes of aplites and pegmatites are frequent (Govil 2015).

The Hyperion data was preprocessed and later on analyzed using SAM method
(Govil 2015). Figure 4.19 shows the resulted images that depict the distribution of
alteration minerals in the area.

These alteration maps providing the initial exploratory data that acts as basis for
other exploratory techniques such as geophysics, geochemistry and drilling. They
can provide necessary data to the exploration geologist for laying out the geo-
physical survey lines or choosing the area for geochemical sampling.

4.4.3 Application of Remote Sensing in Bauxite
and Carbonate Exploration

Sanjeevi (2008) studied the potential of spectral analysis of multispectral satellite
image data for targeting of mineral content in bauxite and limestone rich areas in
southern India around Ariyalur and Kolli Hills areas. ASTER images have been
used for this study. Image processing of ASTER data delineated areas rich in
carbonates and alumina. Several geological and geomorphological parameters that
control limestone and bauxite formation were also mapped using ASTER images.

Fig. 4.19 Mineral map of the Askot basement mineralization. a Chlorite, b Goethite, c Illite,
d Muscovite (Govil 2015)
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Figure 4.20 shows an image that shows CaCO3 abundances which is derived from
ASTER data. Figure 4.21 shows abundance map of bauxite that is derived from
ASTER data.

4.4.4 Application of Remote Sensing in Exploration
of Placer Deposits

In the southern state of Tamil Nadu in the peninsular India along the coast line
occurs excellent deposit of heavy mineral beach placers. These deposits have been
investigated by remote sensing (Fig. 4.22). Beside mineral exploration, remote

Fig. 4.20 a Carbonate fraction image and b density sliced fraction image; red <50%; green 50–
60%; blue 60–70%; yellow 70–80%; cyan 80–90%; white >90% (Sanjeevi 2008) (color figure
online)

Fig. 4.21 Density sliced
alumina fraction image
draped over digital elevation
model, showing location with
70–100% alumina (shown in
red) (Sanjeevi 2008)
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sensing has also helped to identify environmental parameters for sustainable mining
of these deposits. It has also guided to control coastal erosion.

4.4.5 Application of Remote Sensing for Iron Ore
Exploration

In the high-grade granulite country around Salem, Rajendran et al. (2011) described
a technique for discriminating iron ores (magnetite quartzite deposits) and associ-
ated lithology in high-grade granulite region of Salem, Southern Peninsular India
using visible, near-infrared and short-wave infrared reflectance data of Remote
Sensing—ASTER Image spectra has shown lithology very clearly. They comprise
magnetite quartzite of garnetiferous pyroxene granulite, hornblende biotite gneiss,
amphibolite, dunite and pegmatite have absorption features around spectral bands 1,
3, 5 and 7.

Deposits of iron ores here are banded iron formations rich in iron and iron
silicates of meta-sedimentary rocks. A full geological succession is visible in
Kanjamalai region of Salem (Fig. 4.23).

Fig. 4.22 Lithological map of Salem region (Rajendran et al. 2011)
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In case of iron oxide mineral exploration, the algorithm is relatively simple. Iron
oxide minerals such as hematite, goethite and jarosite show an absorption trough in
blue band and two reflection peaks at red and near-infrared parts of spectrum. Band
3/band1 ratio for landsat, band 2/band 1 ratio for IRS, SPOT and ASTER, can be
used for enhancing these minerals. Other image processing methods such as PCA
and SAM can also be used.

4.4.6 Remote Sensing Application for Chromite Exploration

Rajendran et al. (2012) have used ETM+ and ASTER data for chromite bearing
mineralized zones in Semail ophiolite massifs of the northern Oman mountains.
They used the capabilities of Landsat TM and Advanced Spaceborne Thermal
Emission and Reflection Radiometer (ASTER) satellite data; applying image pro-
cessing methods including non-correlated stretching, different band rationing and
PCA for mapping chromite bearing areas. The study results show that the processed
VNIR and SWIR spectral wavelength regions are promising in detecting the areas
of potential chromite bearing mineralized zones within the ophiolite region, and
proved to be successful for mapping of serpentinized harzburgite containing
chromites. Figure 4.24 shows the colour combination of PC images that depicts
several lithological units in the area.

Fig. 4.23 Colour combination of band ratios ((1 + 3)/2, (3 + 5)/4, (5 + 7)/6) in red, green and
blue (color figure online)

4.4 Application of Remote Sensing in Mineral Exploration 149



Fig. 4.24 Remote sensing image showing geology of the area; PC7, PC5 and PC4 of PCA bands.
The index shows: E Basic extrusive rocks primarily spilites pillow lava, conglomerate; D Diabase
dyke swarms; G Gabbro; HG Gabbroid hypabyssal rocks; PG Cumulate layered gabbro; P and CD
Sheared serpentinized harzburgite (adopted from Rajendran et al. 2012)
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