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Abstract
Hairy root (HR) cultures are attracting more attention due to their unique ability 
in degrading different pollutants and production of metabolites with therapeutic 
or industrial applications. This specific type of plant cell culture is derived from 
explants that are infected by Agrobacterium rhizogenes. The HR cultures 
are categorized by their growth rate as well as their genetic and biochemical 
stability. Progress in design of innovative bioreactors and process intensification 
for HR growth will allow successful industrial production of metabolites. This 
chapter will present advances in work on HR cultures related to the detoxifica-
tion of pollutants, production of valuable metabolites, and their cultivation in 
large-scale intensified bioreactors.
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7.1  Introduction

Plants are able to produce a wide range of primary and secondary metabolites 
(Yazaki et al. 2008; Sharma et al. 2013). However, the large-scale production of 
these valuable compounds has been limited by low growth rates, climate depen-
dency, restricted cultivation areas, plant diseases, pests, overharvesting, and intense 
labor requirement (Sharma et al. 2013; Meena et al. 2013a; Bahadur et al. 2014; 
Maurya et al. 2014; Jat et al. 2015; Kumar et al. 2016b; Rates 2001). Moreover, the 
chemical synthesis of plant-derived metabolites is not a feasible choice due to their 
complex structures and their specific stereochemical requirements (Sharma et al. 
2013; Namdeo 2007). All these issues emphasize the need for developing new 
methods and protocols for the industrial-level fabrication of plant-derived 
metabolites.

Suspension culture of plant cells has been considered as another promising 
source for biosynthesis of valuable secondary metabolites (Sharma et  al. 2013). 
More than 25% of the available pharmaceuticals are either based on originally 
found compounds in plants or are extracted from them (Giri and Narasu 2000). 
Production of secondary metabolites by using suspended plant cell culture is usu-
ally a challenging task as these compounds produce at distinct developmental 
stages. Therefore, in vitro studies of differentiated and organized tissues (mainly the 
roots) have been developed and were reported to be a more predictable approach as 
compared to cell suspension cultures (Sharma et al. 2013; Kumar et al. 2015; Ahmad 
et al. 2016; Meena et al. 2016a; Parewa et al. 2014).

The plant roots are suitable for large-scale production since they are the key 
point for synthesis and/or storage of certain chemicals. The biotechnological fabri-
cation of wide range of valuable secondary metabolites by using plant cultures can 
be seen as an alternative to the extraction of whole plant material (Namdeo 2007). 
Several strategies have been investigated in order to further enhance the production 
of secondary metabolites from medicinal plants. Some of these include high yield-
ing cell line screening, media modification, elicitation, precursor feeding, large- 
scale cultivation system, plant cell immobilization, hairy root culture, 
biotransformation, and others (Rao and Ravishankar 2002; Vanisree et al. 2004).

Recently, hairy root (HR) culture has been developed in order to inhibit the use 
of large volumes of plants that are needed to be purified. Totipotency is among the 
major characteristics of plant cells; therefore, HRs could successfully produce pri-
mary and secondary metabolites similar to intact roots (Giri and Narasu 2000; 
Qaderi et  al. 2016). HR culture is a tool that makes use of soil bacterium 
Agrobacterium rhizogenes ability to transfer genes to the genome of the host plant 
(Sharma et al. 2013; Thwe et al. 2016). This technique was developed as the innova-
tive path for bulky production of secondary metabolite and phytochemicals which 
allows developing large amount of roots and secondary metabolites in short time for 
continuous supply of improved value products (Korde et al. 2016). These HRs have 
also been used for root physiology and biosynthetic pathway (Giri and Narasu 
2000), regeneration of whole plants with desirable phenotypes, and phytoremedia-
tion of toxic substances and reactive dyes (Talano et al. 2012; Prakash and Verma 
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2016; Meena et  al. 2015a, 2016b; Priyadharsini and Muthukumar 2016; Kumar 
et al. 2017). Finally, HR cultures include other aspects such as molecular metabolic 
engineering, bioreactor design, and optimization (Ono and Tian 2011). In this chap-
ter, we present advances in work on HR cultures related to the detoxification of 
pollutants, production of valuable metabolites, and fabrication in large-scale inten-
sified bioreactors. A suggestion to overcome current challenges and emerging trends 
for future progression of research has also been provided.

7.2  Definition and Basic Features of HRs

HR production is carried out through the plant tissue culture technique in order to 
study the plant metabolic processes or to manufacture precious secondary metabo-
lites with the use of plant genetic engineering. HR culture is also called as trans-
formed root culture from gram-negative soil bacterium A. rhizogenes that contains 
root-inducing plasmids (Ri plasmids) (Korde et  al. 2016; Pistelli et  al. 2010). It 
infects roots of dicot, and some monocot plants cause them to produce the opines 
which is a type of unusual amino acids (octopine, agropine, nopaline, mannopine, 
and cucumopine). Such opines are used by the bacterium as a carbon, nitrogen, and 
energy source (Ferdosi and Kashefi 2014).

The morphology of HRs is significantly different from the normal roots as they 
are much more branched and have much lateral meristematic growth, which will 
lead to higher biomass. The abnormal roots however are easier to grow in artificial 
media without hormone, and they are neoplastic in nature, with hazy growth. 
Fabricated HRs by infection of A. rhizogenes have a high growth rate as well as 
genetic and biochemical makeup (Korde et al. 2016).

However, new techniques are developed in order to make HRs by the use of new 
plant species (Georgiev et al. 2011). HRs have numerous advantages such as indefi-
nite and fast in vitro growth even in the absence of phytohormones as well as high 
genotype and phenotype stability (Ono and Tian 2011). HR culture is among the 
main cultures that are used to investigate metabolic processes of plants, secondary 
metabolites production, recombinant proteins, plant genetic engineering, phytore-
mediation, artificial seed production, biofortification, and biopharmaceuticals. 
Applications of these efficient technologies also include several aspects as meta-
bolic engineering, bioreactor design, and process optimization (Raghavendra et al. 
2016; Zahedi 2016; Meena et al. 2015b; Rawat et al. 2016; Kumar et al. 2016a).

7.3  Mechanism of HR Cultures

The interaction between plants and A. rhizogenes in HR establishment involves a 
complex series of events. A. rhizogenes is responsible for a neoplastic outgrowth of 
fine roots at the infection site, and infected plants show reduced vitality. These 
symptoms came to be known as the hairy root disease. Roots arising at the site of 
infection can be cultured aseptically, and the resulted transformed root clones may 
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be subcultured indefinitely on basal medium, growing at rates several times quicker 
than normal roots (Flores and Filner 2012). Agrobacterium recognizes various phe-
nolic compounds that have been produced from wounded plant cells, namely, ace-
tosyringone and α-hydroxy acetosyringone.

After microbial colonization, consequently their attachment to plant cells T-DNA 
will be inserted (Sharma et al. 2013). This T-DNA is a transferable DNA from bac-
terium to plant cell. The T-DNA has a set of genes that are capable to encode 
enzymes required for cytokinin biosynthesis, phytohormone auxin control (iaaM, 
iaaH, ipt), and synthesis of sugar and amino acids (unusual amino acids). These 
segments have eukaryotic regulatory sequences and approximately 10–30 kbp in 
size and encode for the Ri conjugation, catabolism, opine synthesis, and integration 
of the T-DNA itself (Pistelli et al. 2010). Genes of T-DNA fragment facilitate the 
formation of neoplastic crown gall tumor and HR tissues followed by the synthesis 
of opines (Sharma et al. 2013; Yasin et al. 2016; Meena et al. 2016c; Jaiswal et al. 
2016; Jha and Subramanian 2016). Depending on the bacterial strain, these metabo-
lites are used as a carbon and nitrogen source for the bacteria. A. rhizogenes strains 
were categorized into two main classes, namely, Agropine-type and Mann opine- 
type strains. Among these, agropines are the most often used strains due to their 
strongest virulence (Sharma et al. 2013). The virulent strains of A. rhizogenes con-
tain the Ri plasmids with different gene sequences (Fig.  7.1). Plasmids can be 
divided in strains producing mannopine and cucumopine with single DNA and 
strains producing octopine and agropine with two T-DNAs. The two T-DNAs are 
classified in the TR-DNA (right DNA) and the TL-DNA (left DNA). The root- 
inducing genes (rol A, rol B, rol C, rol D) are found in the center of TL-DNA of the 
agropine-producing strains. Parts of the TR-DNA are genes for the biosynthesis of 
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Fig. 7.1 Schematic overview of a Ri plasmid of A. rhizogenes
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auxins and the synthesis of mannopine and agropine. After the transfer of the TL- 
DNA and TR-DNA, they are integrated in the genome of the plant cell. The TL-DNA 
is vital for the hairy root induction (Chandra 2012).

7.4  Establishment of HR Cultures

Successful HR culture system requires several essential check marks, namely, selec-
tion of best A. rhizogenes strain, appropriate explants and antibiotic, and a suitable 
culture medium (Sharma et al. 2013). Strains of A. rhizogenes are widely varying in 
their transforming ability. HRs that are fabricated by using different types of bacte-
rial strains show significantly different morphologies. These observed virulence and 
morphology differences could be justified by the different strain plasmid harbored 
(Saha et al. 2016a; Yadav and Sidhu 2016; Nguyen et al. 1992; Meena et al. 2015f). 
Most plant materials like hypocotyl, stem, cotyledon, leaf, tuber, or storage root 
may be applied to make HRs (Królicka et al. 2001; Sevón and Oksman-Caldentey 
2002; Giri et al. 2001). In order to induce HRs, explants should be infected with 
strains of A. rhizogenes either by cocultivation or direct inoculation (Giri et  al. 
2001; Ur Rahman et al. 2004). Subsequently, roots are subculture using a medium 
such as MS or B5 (Fig.  7.2) (Sevón and Oksman-Caldentey 2002; Le Flem- 
Bonhomme et al. 2004; Palazón et al. 2003a, b).

7.5  Application of HR Cultures

The HR culture shaves diverse and abundant applications (Fig. 7.3). They tradition-
ally have been used to investigate root physiology in conjunction with biosynthetic 
pathway elucidation (Ibanez et al. 2016). Nowadays, HR culture technique is now 
being used for the fabrication of bioactive compounds, secondary metabolites, and 
phytochemicals. HRs are popular for regeneration of whole plants with desirable 
phenotypes by infection of ornamental plants with A. rhizogenes (Meena et  al. 
2016d; Saha et al. 2016b; Verma et al. 2015b; Bahadur et al. 2016b; Das and Pradhan 
2016; Dominguez-Nunez et al. 2016; Dotaniya et al. 2016).

Moreover, HR cultures have been used for phytoremediation of toxic substances 
and reactive dye. Presently, several high-value bioactives are fabricated by using 
HRs from various plant sources which have application in pharmaceutical and cos-
metic products (Ono and Tian 2011). Furthermore, recombinant protein production 
using this system was found to be a sustainable method for producing cytokines as 
well as protein therapeutics (Talano et al. 2012).
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Fig. 7.2 An overview of the HR culture establishment
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7.5.1  Application of HR Cultures for Secondary Metabolites 
Production

Plants are known as chemical factories since they pose the ability to fabricate impor-
tant phytochemical. However, the major issue is that their growth is dependent to 
the outside environmental stress. HR cultures are promising source for phytochemi-
cal due to sizable biomass production and biosynthetic capacity.

Furthermore, HR cultures frequently accumulate phytochemical at much higher 
levels than cell or callus cultures (McCoy and O’Connor 2008; Ono and Tian 2011). 
Secondary metabolites as summarized in Table 7.1 are naturally more complex as 
compared to primary metabolites. These compounds have been categorized into 
terpenoids, phenolics, and alkaloids (Chinou 2008).

Several HR cultures have attracted significant amount of attention due to their 
potential in production of valuable phytochemical including Artemisia annua, 
Catharanthus roseus, Arachis hypogaea, and Camptotheca acuminata/Ophiorrhiza 
pumila (McCoy and O’Connor 2008). List of secondary metabolites produced by 
wild HR cultures is summarized in Table 7.2. Although, non-transgenic HR cultures 
continue to serve as a good source for phytochemicals and secondary metabolites 
(Ono and Tian 2011).

However, application of metabolic engineering methods requires acritical under-
standing about the regulation of secondary metabolite pathways and the metabolic 

Fig. 7.3 The systematic applications of HR cultures
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phenotype of the HR culture to regulate the dynamic distribution of metabolites 
between different biochemical pathways (Kruger and Ratcliffe 2009; Talano et al. 
2012). Table 7.3 tabulated the common secondary metabolites that are produced by 
transgenic HRs.

7.5.2  Application of HR Cultures in Phytoremediation

Environmental remediation is a method that deals with the removal of toxins in 
order to support the environment (Macek et al. 2008). Remediation processes can be 
expensive; therefore, efficient and inexpensive technologies are still developing to 
address the needs in the field. Bioremediation includes the environmental treatment 
with the use of microorganisms and plants (Novakova et al. 2007; Najmanova et al. 
2007). In case of using plants, this is so-called phytoremediation (Garbisu and 
Alkorta 2001; Korde et  al. 2016). The use of plants to absorb and accumulate 
organic and inorganic pollutants or to transform toxic molecules to harmless once 
has attracted attention (Eapen et al. 2007; Doty 2008; Macek et al. 2008; Ibanez 
et al. 2016).

Phytoremediation process usually occurs through several complex interactions 
between the key involved sources (Krystofova et  al. 2009; Guillon et  al. 2006). 
Roots are normally the main contact point between contaminants and the plant tis-
sues they are the key point of assessment of the phytoremediation potential (Verma 
et al. 2014; Meena et al. 2014a, 2015e; Teotia et al. 2016).

However, in this sense HR culture has been found suitable in order to study the 
xenobiotic detoxification without the soil matrix or microbes interaction (Talano 
et al. 2012). Figure 7.4 summarizes how a plant deposits the toxin efficiently. Plants 
are able to chemically modify toxic substances through their direct metabolism 
(Krystofova et  al. 2009). Greater genotypic and phenotypic stability are the 

Table 7.1 Classification of secondary metabolites (Rao and Ravishankar 2002)

Terpenes (composed 
of C and H)

Phenols (composed of 
sugars, benzene ring, H 
and O) Alkaloids Steroids

Monoterpenes Phenolic acids Acridines Cardiac glycoside
Sesquoiterpenes Coumarins Glucosinolates Pregnenolone 

derivativesDiterpenes Lignins Betalains
Triterpenes Flavonoids Quinolizidines
Tetraterpenoids Tannins Furonoquinones

Anthocyanins Harringtonines
Hydroxycinnamoyl 
derivatives

Isoquinolines

Phenalenones Indoles
Proanthocyanidins Purines
Stilbenes Pyridines
Tanins Tropane alkaloids
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Table 7.2 List of the secondary metabolites that are produced by wild HR cultures

Secondary metabolite Function HR References
Ajmalicine, ajmaline Antihypertensive Rauvolfia micrantha Sudha et al. 

(2003)
Artemisinin Antimalarial Artemisia annua Weathers et al. 

(2005)
Azadirachtin Biopesticide Azadirachta indica Srivastava and 

Srivastava 
(2012c)

Benzylisoquinoline 
alkaloids (morphinan, 
codeine, and 
sanguinarine)

Analgesic, antibiotic Papaver somniferum Park and 
Facchini (2000) 
and Le 
Bonhomme 
et al. (2004)

Betalain Red pigments for food 
industry, strong 
aphrodisiac, laxative

Beta vulgaris Rudrappa et al. 
(2004) and 
Pavlov et al. 
(2003)

Camptothecin Antitumor, AIDS, 
falciparum malaria, 
colorectal and ovarian 
cancers treatment

Ophiorrhiza alata 
Craib, Ophiorrhiza 
pumila

Ya-ut et al. 
(2011) and 
Sato et al. 
(2001)

3,4-Dihydroxyl-L- 
phenylalanine

Therapeutic agent 
against Parkinson’s 
disease

Stizolobium hassjoo Sung and 
Huang (2006)

Dopa and dopamine Neurotransmitters Beta vulgaris Rudrappa et al. 
(2004)

Flavone glycosides Anti-inflammatory 
action

Catharanthus roseus Talano et al. 
(2012)

Flavonoids Meant for the treatment 
of gastric ulcers, anti- 
inflammatory, and 
antitussive

Glycyrrhiza 
pallidiflora

Li et al. (2002)

Flavonoids Antimutagenic, 
antiulcer, antitumor, 
antimicrobial

Glycyrrhiza uralensis Zhang et al. 
(2009)

Glycyrrhizin Artificial sweetener and 
pharmaceutical products 
(peptic ulcers treatment)

Glycyrrhiza inflate Wongwicha 
et al. (2011)

Glycyrrhizin Diuretic, tonic, 
alexiteric, antifertility

Abrus precatorius Dixit and 
Vaidya (2010)

Hyoscyamine Narcotic and 
antispasmodic activity, 
used against Parkinson’s 
disease

Datura stramonium Pavlov et al. 
(2009)

Indole alkaloids 
(vinblastine, vincristine)

Anticancer Catharanthus roseus Ayora-Talavera 
et al. (2002)

Iridoid glycosides Anti-inflammatory, 
analgesic, antidiabetic

Harpagophytum 
procumbens

Georgiev et al. 
(2006)

(continued)
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Table 7.2 (continued)

Secondary metabolite Function HR References
6-Methoxy- 
podophyllotoxin

Anticancer Linum album, Linum 
persicum

Wink et al. 
(2005)

Physalins Diuretic, febrifuge, 
vermifuge

Physalis minima Azlan et al. 
(2002)

Plumbagin Diuretic, antibacterial 
and used against leprosy

Plumbago zeylanica Sivanesan and 
Jeong (2009)

Resveratrol Anti-inflammatory, 
antioxidant, anti- 
infective, anticancer

Arachis hypogaea Kim et al. 
(2008)

Rosmarinic acid Astringent, antioxidant, 
anti-inflammatory, 
antimutagenic, 
antimicrobial, antiviral

Nepeta cataria Yang (2010)

Rutin Antioxidant, 
anticarcinogenic, 
antithrombotic, 
cytoprotective, 
vasoprotective

Fagopyrum 
esculentum

Kim et al. 
(2010)

Rutin, hispidulin, and 
syringin

Anti-inflammatory; 
antifungal

Saussurea involucrata Fu et al. (2005)

Serpentine Diabetes treatment Catharanthus roseus Datta et al. 
(2010)

Sesquiterpenes Phytoalexins Hyoscyamus albus Kawauchi et al. 
(2010)

Shikonin Dye for silk and food 
industry, anti- 
inflammatory, anti- 
allergic, and 
antineoplasic activities

Arnebia Talano et al. 
(2012)

Stilbenoids (resveratrol, 
pinosylvin, and 
derivatives)

Antioxidant, anticancer, 
antiatherosclerosis, 
neuroprotective, and 
estrogenic activities

Arachis hypogaea Medina-Bolivar 
et al. (2010)

Tropane alkaloids Narcotic, anticholinergic 
and antispasmodic 
activity

Datura metel, 
Hyoscyamus muticus

Moyano et al. 
(2003)

Tropane alkaloids Narcotic, anticholinergic 
and antispasmodic 
activity

Hyoscyamus niger Zhang et al. 
(2004)

Tropane alkaloids 
(scopolamine and 
hyoscyamine)

Narcotic, anticholinergic 
and antispasmodic 
activity

Datura innoxia Dechaux and 
Boitel-Conti 
(2005)

Tropane alkaloid 
(hyoscyamine, atropine, 
and hyoscine)

Used against Parkinson’s 
disease

Atropa belladonna Richter et al. 
(2005)

(continued)
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important advantages of HR cultures which provide a more promising system over 
time for phytoremediation (Doran 2009). Additionally, the organized nature of HR 
cultures offers an added advantage that makes them more useful for cultivation in 
bioreactors at large scale (Angelini et al. 2011; Bahadur et al. 2017; Verma et al. 
2017b; Kumar et al. 2017b). HRs that have been functionalized by genetic engineer-
ing are expected to become a new solution for environmental treatment in near 
future (Guillon et al. 2006).

HRs produced by hyper-accumulators are capable to uptake nickel, uranium, or 
cadmium from polluted environment (Boominathan and Doran 2003; Boominathan 
et al. 2004; Eapen et al. 2003; Agostini et al. 2003; Suresh et al. 2005; Gujarathi 
et al. 2005). Phytoremediation of several environmental pollutants by wild-type and 
transgenic HR cultures is shown in Table 7.4.

7.6  Recent Advances in HR Cultures Scale-Up

Root tissues are not identical to microbial cultures in many ways. Therefore, biore-
actors for HR cultures are more challenging to be controlled, operated, and scaled 
up. Development of innovative bioreactors and process intensification will allow to 
optimize cell growth and large-scale production (Sharma et al. 2016; Meena et al. 
2013c, 2016e; Verma et al. 2015a; Bahadur et al. 2016a; Masood and Bano 2016).

7.6.1  Development of Groundbreaking Bioreactors in HR 
Cultures

Design and optimization of bioreactors have been the great advance in HRs for 
industrial-scale production of metabolites (Huang and McDonald 2012). Production 
of HRs in bioreactors helps to have a better control on operating conditions and 
consequently optimize the growth and biosynthesis of the secondary metabolite 
(Eibl and Eibl 2008). Bioreactor optimization for fabrication of HRs is of critical 
importance for scale-up strategies.

HR bioreactors can be in general divided into gas or liquid phase. In liquid-phase 
bioreactors, roots are always placed in the medium; as a result they are called sub-
merged reactors. On the other hand, in gas-phase reactors, the roots are almost exposed 

Table 7.2 (continued)

Secondary metabolite Function HR References
Tropane alkaloids 
(scopolamine and 
hyoscyamine)

Parasympatholytic Przewalskia tangutica Lan and Quan 
(2010)

Withanolide A Brain regenerative 
properties

Withania somnifera Praveen and 
Murthy (2012)

Xanthotoxin 
(furocoumarin)

Leucoderma Ammi majus Krolicka et al. 
(2001)
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Table 7.3 List of secondary metabolites produced through transgenic HR cultures (Talano et al. 
2012)

Secondary 
metabolite Function Transgenic HR Foreign genes
Solanoside Antineoplastic agent Solanum 

khasianum
Gene encoding a 
specific antibody that 
binds solanoside

Indole Beneficial effects on cancer, 
sedative and hypotensive 
action

Catharanthus 
roseus

Modified anthranilate 
synthase (AS) alpha 
subunit (trp5) and 
tryptophan 
decarboxylase gene 
(TDC)

Ginseng Traditional Chinese 
medicine, tonic, antiaging, 
anticancer, and anti- 
diabetes properties

Panax ginseng cs gene for cycloartenol 
synthase enzyme

Scopolamine Hyoscyamus 
niger

Putrescine 
N-methyltransferase 
pmt) and hyoscyamine 
6ß-hydroxylase (h6h) 
genes

Catharanthine Anticholinergic agents that 
act on parasympathetic 
nervous system

Catharanthus 
roseus

Geraniol 
10-hydroxylase (G10H) 
and a jasmonate- 
responsive transcript 
factor (ORCA3)

Hyoscyamine, 
scopolamine

Scopolia 
parviflora

Putrescine 
N-methyltransferase 
(pmt) and hyoscyamine 
6ß- hydroxylase (h6h)

Anisodamine, 
anisodine, 
hyoscyamine, 
scopolamine

Anisodus 
acutangulus

Putrescine 
N-methyltransferase 
(pmt) and gene 
codifying tropinone 
reductase I (TRI)

Glycyrrhizin Medicine, healthcare 
products, food (sweetener), 
and cosmetics

Glycyrrhiza 
uralensis

Chalcone synthase

Flavones: 
baicalin, 
baicalein, 
wogonin

Diuretic, anti-inflammatory, 
antiseptic, antispasmodic, 
and anticancer

Scutellaria 
baicalensis

Chalcone isomerase

Vitamin C Antioxidant properties Solanum 
lycopersicon

gal UR gene

Total sterols Hypocholesterolemic, 
anticarcinogenic properties

Centella asiatica Farnesyl diphosphate 
synthase from Panax 
ginseng
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to air or another gas mixture (Kim et al. 2002a, b; Stiles and Liu 2013). The design of 
the reactor also depends on the product location, which is either intracellular or extra-
cellular (Meena et al. 2013b, 2015d; Shrivastava et al. 2016; Singh et al. 2015).

HR cultivation is usually associated with clumps formation that are naturally 
composed of primary roots and their bridged lateral roots. It is very difficult to find 
appropriate bioreactor for HR cultures because the rheological properties of HR 
cultures vary from one species to another and even within clones of a single species. 
Several bioreactor designs have been reported for HRs (Mishra and Ranjan 2008). 
Schematic diagrams of promising bioreactor types that have been successfully 
tested are depicted in Fig. 7.5.

7.6.1.1  Liquid-Phase Bioreactors
In liquid-phase reactors, the culture space is filled up with liquid medium, and sev-
eral techniques are used to provide the required aeration to the media. Since the 
roots are submerged, therefore, mixing and mass transfer are the main issues in 
scaling up the process (Eibland Eibl 2008; Curtis 2000; Nath et al. 2017; Sarkar 
et al. 2017; Verma et al. 2017a).

Fig. 7.4 Types of phytoremediation. Plant metabolizes the pollutant via organic and inorganic 
phytoremediation or rhizospheric metabolism. Phytoremediation includes several approaches, 
namely, phytostabilization, phytoextraction, phytodegradation, and phytostimulation

7 Hairy Root Culture: A Biotechnological Approach to Produce Valuable Metabolites
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Table 7.4 Phytoremediation of several environmental pollutants by wild-type and transgenic HR 
cultures

Chemical 
nature of 
pollutant Nature of HR Pollutant Plant species References
Inorganic Wild type Arsenic Nicotiana tabacum Talano et al. 

(2014)
Cadmium Thlaspi 

caerulescens
Nedelkoska and 
Doran (2000)

Cadmium and lead Brassica juncea Eapen et al. (2007)
Chromium Brassica napus and 

Pantoea sp. FC1
Ontañon et al. 
(2014)

Nickel Alyssum murale Vinterhalter et al. 
(2008)

Nickel Alyssum bertolonii Boominathan et al. 
(2004)

Uranium Armoracia 
rusticana

Soudek et al. 
(2011)

Uranium Daucus carota Straczek et al. 
(2009)

Zinc and nickel Brassica juncea Ismail and 
Theodor (2012)

Transgenic Copper Nicotiana tabacum Ibanez et al. 
(2016)

Organic Wild type
Explosives (DNT, 
TNT; ADNTs; 
DANTs)

Armoracia 
rusticana

Nepovim et al. 
(2004)

N-acetyl-4- 
aminophenol

Armoracia 
rusticana

Huber et al. (2009)

PCBs Solanum nigrum Rezek et al. 
(2007), (2012)

Phenol and chloro 
derivatives

Brassica juncea Singh et al. 
(2006), Coniglio 
et al. (2008), and 
Gonza’lez et al. 
(2012)

Daucus carota, 
Ipomoea batatas L.

De Araujo et al. 
(2006)

Nicotiana tabacum Talano et al. 
(2010)

Helianthus annuus Jha et al. (2013)
Nicotiana tabacum Talano et al. 

(2010)
Solanum 
lycopersicon

Khoudi et al. 
(2012)

Solanum 
lycopersicum

Gonzalez et al. 
(2006); (2008)

(continued)
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Design considerations comprise of mechanisms to provide adequate nutrient to 
the roots. Mixing and aeration strategy represents the main design differences 
between the various types of liquid-phase bioreactors. The most commonly used 
liquid-phase bioreactors are, namely, pneumatic reactors and stirred tanks. Methods 
for immobilizing HRs include cages, meshes, and polyurethane foam (Eibl and Eibl 
2008).

Past studies evaluated the use of stirred tank reactors (STR) for HRs cultivation. 
In order to supply required amount of oxygen, compressed air is always spared into 
the bioreactor from a placed device in the impeller region. STRs are normally not 
useful for HR cultures despite their wide range of application in biotechnology. This 
is mainly because of the callus formation and wound response which are usually a 
response to the impeller rotation shear stress (Taya et al. 1989; Mishra and Ranjan 
2008). Pneumatic bioreactors are the ones that include both airlift and bubble col-
umn reactors.

Table 7.4 (continued)

Chemical 
nature of 
pollutant Nature of HR Pollutant Plant species References

Reactive red 198 
dye

Tagetes patula L. Patil et al. (2009)

Tetracycline, 
oxytetracycline

Helianthus annuus Gujarathi et al. 
(2005)

Textile dye: Methyl 
orange

Brassica juncea. Telke et al. (2011)

Textile dye: reactive 
green 19A- HE4BD

Sesuvium 
portulacastrum L.

Lokhande et al. 
(2015)

Transgenic Phenol Nicotiana tabacum Alderete et al. 
(2009)

Brassica juncea 
inoculated with two 
rhizobacteria

Gonzalez et al. 
(2013)

Solanum 
lycopersicum

Oller et al. (2005)

Brassica juncea 
inoculated with 
Pantoea sp. FC1

Ontañon et al. 
(2014)

Nicotiana tabacum 
expressing tpx1 
and/or tpx2 genes

Sosa Alderete 
et al. (2009), 
(2012)

Nicotiana tabacum 
expressing tpx1 
gene + AMF

Ibanez et al. 
(2011)

TCE Atropa belladonna Banerjee et al. 
(2002)

DNT 2,4-dinitrotoluene, PCB polychlorinated biphenyls, TNT 2,4,6-trinitrotoluene, DANTs diami-
nonitrotoluenes, ADNTs aminodinitrotoluenes, AMF Arbuscular Mycorrhizal Fungi, TCE 
trichloroethylene
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Bubble column reactors (BCR) are among the simplest bioreactors that are easy 
to scale up. The use of bubbles instead of mechanical mixers minimizes the shear 
stress on the cultures (Choi et al. 2008; Huang and McDonald 2012). However, the 
major drawback with BCRs are the undefined flow pattern of the liquid (Choi et al. 
2008) and the reduced growth performance (Kwok and Doran 1995). In the 
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presence of high biomass, the bubbles may coalesce resulting in the reduction of 
gas-liquid interface area (Huang and McDonald 2012). BCRs are liquid-phase bio-
reactors in which the roots are submerged in the medium. Liquid mixing is obtained 
by the upflow of air bubbles generated from an air distributor situated at the bottom 
of the column. In contrast to BCRs, airlift reactors (ALRs) contain a draft tube 
(either internal or external) to avoid coalescing bubbles. ALRs distribute shear stress 
more evenly, reduce shear stress, consume little energy, and promote a cylindrical 
mixing of the medium (Stiles and Liu 2013).

The draft tube in ALRs prevents bubble coalescence by forcing the bubbles to 
move in one direction. It also distributes shear stresses equally throughout the reac-
tor. As a result, cells are able to grow in a more stable physical environment than 
those growing under high shear, a condition causing cell damage and lower produc-
tivity in STRs. It has also been shown experimentally that shear stress rates gener-
ated in ALRs are lower than those generated in BCRs.

ALRs have been extensively used for HRs since the initiation of HR bioreactor 
studies for species including Panax ginseng (Yoshikawa and Furuya 1987), 
Armoracia rusticana (Taya et al. 1989), Trigonella foenum-graceum (Rodriguez- 
Mendiola et al. 1991), Lippia dulcis (Sauerwein et al. 1991), Lithospermum eryth-
rorhizon (Shimomura et  al. 1991), Ophiorrhiza pumila (Sudo et  al. 2002), and 
Echinacea purpurea (Abbasi et al. 2009).

Conventional ALRs have been extensively used for scale-up cultures of HR 
lines; however, they are generally not appropriate for high-density cultures due to 
inadequate mixing and oxygen mass transfer (Choi et al. 2008). This phenomenon 
is mainly based on uneven distribution of root tissue at certain regions as well as 
excessive gas-phase channeling (Taya et al. 1989).

7.6.1.2  Gas-Phase Bioreactors
In gas-phase reactors, roots are exposed to a mixture of air or gas mixture. The liq-
uid nutrient is usually sprayed onto the top of the root bed (Kim et al. 2002a, b). 
These reactors have been widely used in plant tissue and HR cultures due to their 
abundant oxygen supply (Stiles and Liu 2013; McKelvey et al. 1993; Katuri et al. 
2011; Wyslouzil et al. 1997). However, gas-phase reactors yet require a matrix for 
anchoring the HRs. These can be mesh trays or mesh cylinders. In addition, these 
reactors are labor intensive as their requirement for uniform loading (Eibl and Eibl 
2008; Choi et  al. 2008; Srivastava and Srivastava 2007; Velazquez et  al. 2016; 
Meena et al. 2014b, 2015c; Sindhu et al. 2016; Singh et al. 2016; Ramakrishnan and 
Curtis 2004).

Nutrient mist reactors (NMRs) are another one of gas-phase-type reactors. In 
these systems plant organ is usually dispersed in the air phase with the help of a 
mesh support. NMRs have definite advantages, such as easy operation, high dis-
solved oxygen tension present in the mist, lack of shear, and ease of scaling up. 
Whitney (1992) investigated the performance of different types of bioreactors for D. 
stramonium and Nicotiana tabacum cultivation. Authors stressed that the growth 
rate and yield of tobacco HRs were greater in NMRs than in STRs, TBRs, and 
ALRs. Recently, HRs of Stizolobium hassjoo (velvet bean) were cultivated in 3 and 
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9 l NMRs by Huang et al. (2004) to evaluate the oxygen uptake rate, effects of inter-
mittent medium supply, and other growth-related parameters.

Several other comparative studies also have been evaluated the optimal bioreac-
tor type for a particular species of HRs. The production of Artemisia annua HRs 
was compared both in bubble and mist bioreactors. Based on the results, authors 
suggested that the overall biomass was higher in the BCR (Kim et al. 2002a, b). 
However, the mist reactor usually accumulates lower amount of biomass as com-
pared to the BCR. This behavior could be due to insufficient nutrient availability 
(Choi et al. 2008; Srivastava and Srivastava 2012a, b).

7.6.1.3  Novel Bioreactors
Hybrid reactor can be seen as a method to address this issue, a reactor which allows 
the roots to attach uniformly to the anchoring system (Stiles and Liu 2013). 
Disposable bioreactors could also be seen as another alternative to the traditional 
protocols. These reactors can significantly reduce the operation costs by eliminating 
the need for cleaning or sterilization though out the process (Eibl and Eibl 2006). 
Disposable wave bioreactor systems could also be another advancement in the bio-
reactor design area (Mishra and Ranjan 2008). These systems work on the basis of 
using wave for agitation purpose which in turn reduces the stress levels (Palazón 
et al. 2003a, b). Large-scale wave bioreactors having the capacities of up to 600 L 
are now commercially applicable (Mishra and Ranjan 2008; Eibl and Eibl 2006).

7.6.2  Process Intensification

Process intensification methods could also be utilized in plant and tissue culture 
works (Stiles and Liu 2013). The ability to exploit HR cultures as a source of bioac-
tive chemicals depends on the development of a suitable bioreactor system where 
several physical and chemical parameters must be taken into consideration. Selection 
of highly productive cell lines, manipulation of nutrients, optimizing the culture 
environment, elicitation, metabolic engineering, in situ product removal, and ultra-
sound have been applied for process intensification in HR bioreactor cultures 
(Mishra and Ranjan 2008; Stiles and Liu 2013).

7.6.2.1  Optimization of Bioreactor Parameters
Development of an appropriate bioreactor depends on several physical and chemi-
cal parameters, such as optimum pH, sufficient substrate, controlled temperature, 
salts for nutrition, product and by-product removal, oxygen, inoculation size and 
density, and product recovery. The agro-bacterial concentration has an important 
role in the production of transformed roots (Mishra and Ranjan 2008). Dissolved 
oxygen is another important factor in the bioreactor microenvironment. HRs 
cultured in bioreactors have the affinity to form clumps which critically inhibits 
the oxygen transfer (Bordonaro and Curtis 2000). Nutrient availability is also a 
major point for scale-up, and minerals are an important regulatory factor for HR 
growth (Sivakumar et  al. 2005). Furthermore, periodic measurement of nutrients 
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concentration during periods in bioreactors would provide key information regard-
ing metabolic production (Wilhelmson et al. 2006; Sivakumar et al. 2005).

Light also plays a key role for both growth and production of secondary metabo-
lites. The stimulatory role of light on the production of secondary compounds has 
been demonstrated using plant species “Perilla frutescens and Artemisia annua” 
(Zhong et al. 1991; Wang et al. 2001; Abbasi et al. 2007; Taya et al. 1994; Jacob and 
Malpathak 2004).

7.6.2.2  Elicitation
Elicitation is the effective technique which is currently used for improving the pro-
duction of secondary metabolites (Zhao et al. 2005; Baenas et al. 2014). Overall, 
based on origin, elicitors are classified biotic and abiotic. Basically, biotic elicitors 
are either physical factors or chemical factors such as ultraviolet light heavy metals 
and salts (Stiles and Liu 2013). Salts including AlCl3, AgNO3, CdCl2, CaCl2, CuCl2, 
CoCl2, KCl, HgCl2, MgSO4, VOSO4NiSO4, and Zn ions have been used to increase 
the secondary metabolite production in a variety of plant (Ramirez-Estrada et al. 
2016; Li et al. 2006; Vasconsuelo and Boland 2007). Abiotic elicitors are usually 
cheaper than biotic; however, they are not as efficient for the cultivation of the target 
microorganism (Georgiev et  al. 2007). Specificity of the elicitor, culture growth 
stage, treatment interval, the concentration, medium composition, and light are the 
main factors that affect the effectiveness of elicitation (Sharma et al. 2013).

7.6.2.3  Metabolic Engineering
Metabolic engineering of biosynthetic pathways has been established recently to 
enhance the fabrication of secondary metabolites. In this case some general issues 
have to be taken into account, namely, competing pathways, cofactors for the reac-
tion, and rate-limiting enzymatic steps which are among the major metabolic engi-
neering issues (Ludwig-Müller et  al. 2014; Georgiev et  al. 2010; Chandra and 
Chandra 2011).

7.7  Concluding Remark and Future Developments of HR 
Cultures

To date, significant progresses have been made in the genetic transformation and 
tissue culture in order to amplify the key pathways for the biosynthesis of targeted 
metabolites. Commercial production of HRs has attracted much attention recently 
as compared to the other plant cells. HR cultures are unique due to their much 
higher genetic and biosynthetic stability. However, exploration into inexpensive 
novel elicitors and bioreactors are required in order to warrant their industrial imple-
mentation. Further, generated knowledge from plant metabolic pathways and 
advancements in genetic engineering will help HRs to become a promising and 
sustainable fabrication system in the near future.
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