Software Release and Patching Time
with Warranty Using Change Point

Chetna Choudhary, P. K. Kapur, A. K. Shrivastava, and Sunil K. Khatri

1 Introduction

With the enormous use of information technology, computer systems are widely
used to control safety-critical systems and day-to-day entities. Increased demand
of high-quality software is the necessity in these application areas. To determine
reliability of the system, the software reliability must be evaluated with utmost
care. Developing reliable software is the main concern among the software industry.
Proper scheduling of processes, limitation of resources, unrealistic requirements,
etc. had a great impact on software reliability. Many softwares nowadays are
interdependent among the modules; it is very hard to develop the consistent
software. It is particularly tough as soon as there is interdependence, and it is
rather difficult to identify whether there is reliable software being delivered. Once
the software is delivered, one way to major its reliability is through customer
feedback like problem being reported, system outages, complaints or compliments,
etc. However, by then it is too late; software vendors need to know whether their
products are reliable before they are shipped to customers. Software reliability
models attempt to provide that information.

C. Choudhary (2)
Amity School of Engineering & Technology, Amity University, Noida, UP, India
e-mail: chetna.choudhary13 @ gmail.com

PK. Kapur * A.K. Shrivastava
Amity Center for Interdisciplinary Research, Amity University, Noida, UP, India
e-mail: pkkapurl @gmail.com; kavinash1987 @ gmail.com

S.K. Khatri
Amity Institute of Information Technology, Amity University, Noida, UP, India
e-mail: sunilkkhatri @ gmail.com

© Springer Nature Singapore Pte Ltd. 2018 369
PK. Kapur et al. (eds.), Quality, IT and Business Operations, Springer Proceedings
in Business and Economics, DOI 10.1007/978-981-10-5577-5_30

mailto:chetna.choudhary13@gmail.com
mailto:pkkapur1@gmail.com
mailto:kavinash1987@gmail.com
mailto:sunilkkhatri@gmail.com

370 C. Choudhary et al.

Various researchers are working on software reliability growth models to pre-
dict the reliability under different sets of parameters. These software reliability
growth models generally follow non-homogenous Poisson process (NHPP) with
consideration that a constant fault detection rate (FDR) and a fault detection
process depend only on the residual fault content [3]. With consideration to specific
environment, software programs are executed and improved with detection and
correction of bugs/errors. Generally SRGMs take into consideration that, in fault
detection process, the faults which occurred due to each failure are independent
and random with time according to the distribution given by Musa et al. [12].
Factors such as running environment, testing strategy, defect density, and resource
allocation can affect the failure distribution. To cover more faults within the shorter
period of time, testing teams keep including new approaches and techniques not
yet been used, or in consultation with some experts, we need to preform software
risk analysis. Hence, the fault detection rate may not be continuously smooth and
can be changed at some time moment Tt known as change point. Foremost, Zhao
[8] used the change point in software and hardware reliability. Then Huang et al.
[13] included the change point to calculate the software reliability growth modeling
with testing effort functions. Kapur et al. proposed the multiple change points in
software reliability growth modeling for fielded software [13]. Looking into the
importance of the change point models in the reliability estimation, an SRGM based
on stochastic differential equations incorporating change point concept has been
proposed by Kapur et al. [16].

Software requires testing to overcome the faults which in turn increase reliability.
However which results in consumption of resources like work force, processing
hours etc. which acquire more cost to the organization. However, in testing phase
if bugs are not eliminated, then users will face the consequences of faults in the
operational time which will increase the debugging cost of the software compared
to the testing phase [2]. The delayed testing not only results in increase in reliability
of software but also the development cost of software. This will further delay the
software from releasing which cause thrashing in terms of market opportunity. On
the other hand, insufficient testing intended for fault confiscation shortens the cost
of software improvement but increase the hazard of more faults during operational
phase. Hence it is significant to determine the optimal time to release the software
from the point of developer.

Therefore, in order to minimize the associated risk, the organization needs proper
scheduling of different prerelease and post-release phases with due consideration
to the change point. From the many decades, researchers are working on software
release time problem [1-3, 12, 19]. Yamada [15] anticipated a software cost model
under warranty to determine the optimal time to release software. Dohi [4] projected
release policies with due consideration to debugging time lag. Yamada and Osaki
[5] proposed problem related to release time on the basis of deprecated cost and
optimized reliability objective. Kapur and Garg presented the release policies based
on testing effort by means of inclination toward intensity of failure [6]. They

Software Release and Patching Time with Warranty Using Change Point 371

furthermore incorporated the concept of cost of penalty while considering software
release time problem [7]. Huang and Huang and Lyu anticipated release time
policies by considering the consequence of testing effort overheads [8]. Yun and
Bai projected the software release time problems presuming software life cycle to
be random [9]. With competitive market surroundings, a need to deliver a better
product has increased. This need is captured by the users in terms of what we
can call a software warranty, which acts as an indicator to judge its reliability with
presumption that a longer warranty period indicates higher reliability [1]. Warranty
is an assurance between the seller and buyer that a product is error-free and will
work as stated, and if defect occurs, it’s a vendor’s job to rectify those defects [2].
The duration of warranty is decided by the developer. In warranty phase rectifying
a bug then reporting a fault is negligible for the user. Pham and Zhang included
service contract and hazard cost to the conventional cost function [10]. Kapur [11]
refined a multi-objective maximization problem to determine release time. Kapur
[11] formulated release policy for the exponential change point SRGM.

Though it is a difficut job for a testing team to develop a software which is
completely free of errors. But in order to ensure that users face least number of
errors during operation phases, today software industry continue to test even after
release it. As software releases, it is noted that either the rate of failure decreases
or else it is invariable, depending on whether there is augmentation consistency of
software throughout the operational phase or not (see Figs. 1 and 2).

Figure 1 illustrates graph for reliability of software for the case when no testing
is done after release. Hence there is no reliability growth. On the other hand, in
Fig. 2 we see that there is growth in reliability after a certain time interval due to

Fig. 1 Growth of software 4
reliability without patching

Fig. 2 Growth of software
reliability including patching

372 C. Choudhary et al.

release of patches/updates after release. This time interval is the difference between
two patching times after release, and the update can also be termed as fix, an
instruction set that is used to repair flaws which successfully deceives the testing
side during prerelease testing phase of software. Well-timed delivery for updates
is able to serve intention and will stipulate the premature release of patch results in
indecent fixation of failures, and delayed updates would lead to more failures during
operational phase and will incur more charge to the development side. Cavusoglu
[20] considered the patch release for security and executive tribulations from the
insight of both the seller and the organization. They formed a game theoretic
model to gain knowledge of balancing the update, and cost management takes place
between the merchant and organization. Consequently, Okamura [24] and Luo [21]
considered a bug discovery process which is nonhomogeneous and examines both
sporadic and asporadic update management models. Lately Dev [3] developed a cost
model for finding optimal release policies for security patch management. Arora
[22] has shown the transposition between releasing buggy software and saving in
patching the buggy software later through a cost model. They have also worked on
showing the disadvantage of releasing the software before time and updating later
on. Jiang [17] estimated scheduling strategies of software where they have shown
the advantage of early software release with continued testing after the release.
Kapur [24] outlined a comprehensive framework to determine the optimum time
to release and to stop testing software along with the benefit of early release and
continuing testing even after release.

Based on the above literature, we see that no research was conducted to consider
the effect of change point in finding the optimal time to release the software and
updating the software under warranty. This gap analysis has led us to develop
a model that can offer a solution to the above problem. In the proposed work,
a generalized outline is provided to develop a cost model for determining the
optimum time to release and to update software under warranty using change
point; therefore, the total expected cost can be minimized. Remaining sections are
structured as follows: In Sect. 2, we will talk about model formation specifying
necessary presumptions essential for the model. Section 3 will give you an idea
about the developed cost model using change point. In Sect. 4, numerical illustration
is catered using a real-life data set to authenticate the projected work. Section 5 will
discuss the final conclusion.

2 Framework of Modeling

This part of the section pays more attention on the structuring outlines for
the proposed work. The following are the notations and presumptions worn in
structuring the proposed work.

Software Release and Patching Time with Warranty Using Change Point 373
2.1 Notations
m(t) | Expected number of faults that are to be removed by time t or mean value of fault
A Number of faults initially lying dormant in the software
bl Rate of fault detection before change point
b2 Rate of fault detection after change point
F(t) | Fault distribution function
Tc Change point
T Release time of software
T Release time of patch
w Length of warranty
Ti. | Life cycle of the software
C Testing cost per unit time
C, | Market opportunity cost
Cs Fault detection/removal cost by tester before releasing the software
C4 | Fault detection/removal cost communicated by means of the user after release of
software in warranty
Cs Fault detection/removal cost communicated by means of the consumer after patch
releasing in warranty period
Cs Fault removal cost communicated by means of the user after warranty
2.2 Assumptions

1. Phenomenon for fault removal pursues NHPP whole time of the software life
cycle.
2. Every time a fault is experienced, an instantaneous debugging attempt takes place
to discover the cause of failure in order to confiscate it.

B~ W

. Number of faults left in the software equally affects the failure rate.
. Fault fixation process is ideal and no fresh faults are being introduced during

debugging process.

. Process of fault detection autonomously and identically circulated.
. Number of bug’s latent in the software is unchanging.

. Life cycle of software is finite.

. Patch cost is negligible.

O 0 3 O\ W

. Opportunity cost is pretended to be invariably growing, twofold continually

differentiable convex function of r. As per approximated outcome of the learning,
the results to a great extent accelerated through definite functional outline of
market opportunity cost; hence, we are taking into consideration the form given
by Jiang and Sarkar (2011).

374 C. Choudhary et al.
2.3 Devising the Model

Through hazard rate we formulate the mean value function for the augmented
amount of faults eliminated which is shown as

dm(r) (f@)
d \1-F@

) (a—m(1)) (1)

where 7 1 (;)(t) is the failure detection rate.

On solving the above equation by considering the initial condition as m(0) = 0,
we get

m(t) = a- F(r) 2)

2.4 Model Framework

In the proposed framework, we have subdivided the software life cycle [0, 7]
into five subparts, i.e., testing phase of software before change point phase [0, 7],
software testing phase after change point [z, 7], releasing of patch [r, 7,], phase
of warranty [7, t + w], and software operational phase [t + w, T}.]. Software time
frame can be depicted as in Fig. 3. Also it is to be mentioned that each subdivision
of fault detection process follows NHPP phenomenon.

First Phase [0, T.] During the phase, testers are detecting or removing the bugs.
The number of fault detected is given by

m (Tc) =a-F (Tc) 3)

where F(t.) rate of fault detection using these bugs is detached commencing from
software before change point in [0, z.].

Second Phase [T, T] For this interval change point has been considered as
software and is ready to be released by the developer. The developers at some
moment change the testing strategies to find more number of bugs in product. The
number of bugs detached in this phase is shown as

“)

mE—z)=a-(1-F (rc))-(l _iz(f))

I_FZ(TC)

Fig. 3 Life cycle of software ¢0 ¢ ¢ i ¢ ¢

Software Release and Patching Time with Warranty Using Change Point 375

where a-(1 — Fi(r.)) is the number of bugs removed after change point.

(1 — %) is the fault removal rate after change point.

Third Phase [T, T,] During this phase update is prepared in reference to the bugs
detected by users. At 7,, a fix/update will be provided to fasten the number of
faults reported by users. The total number of faults detected in this phase is given
below as

m((r—l—rp)—r) =(a—m(1))-F; ((r+tp)—t)

()
= (1= [1 - SR)y (24 1) - 1)

1 — U=F1GE)DU=F@)
1—F(t)

bugs which were left hidden during the first and second phases. F3((t + 7,) — 1) is
the rate for fault detection/removal by the user in [z, 7,].

In the above equation, a (1 - []) represents the outstanding

Fourth Phase [T, T +w] In warranty phase the user faces failure because of
the faults which were not corrected in the first patch. The amount of faults
detected/removed by end of this phase is summarized as

m((+w) — (t+ 7)) =a- (1-[1 - GAEN=LE])
(1=F(t+1)— (1) (6)

Fa(T+w) = (14 1))

1—F> (Tc)
represent the outstanding faults remained hidden during the second and third
intervals. F4((t +w)—(t + 7},)) is the rate of fault removal during the interval
[tp, T + W]

In the above equation, a- (1 — [1 — M]) . (1 —F3 (r + rp) — (r))

Fifth Phase [t +w, T}.] During the post warranty interval, the amount of bugs
discovered is summarized

m (T~ (r +w)) = a(1- [1 - (=Alpu=rE])

(l —F3 (r + rp) — r)) (1 —Fy ((r +w) — (r + r,,))) @)
Fs (Tie — (t +w))

In this interval, the faults, those that are left undiscovered during last intervals,
can cause failure, and the same will be communicated by the user for elimination.
The amount of faults left is substituted as

376 C. Choudhary et al.

a-(l—[l—%‘(l—)mf))])
(1-F(t+1)—1)(1-Fi((t+w—(r +1,))).

Fs(Ti. — (t + w)) expresses the rate of fault removal during the interval [t + w, T}.].
Now, the cost model will be formulated in the next section to calculate the total
cost consumed for the fault removal as per the Eqgs. (3,4, 5, 6, 7) phase wise.

3 Cost Model

Through this section we put emphasis on finding the amount of cost incurred for
“a” initial number of faults detected throughout the software life cycle. In this we
will discuss briefly cost related to testing, market opportunity, and amount spent in
removing the faults per phase.

Cost of Testing The amount incurred while testing the software till release via
testing side is defined as cost of testing. The cost for this phase is measured by doing
product of testing cost with the time duration for which the testing is conducted. Let
c1 denote the testing cost per unit time, and t is the release time of the software as
per the proposed model. So the sum of testing cost is represented by

€1+t ®)

Market Opportunity Cost This can be termed as the cost incurred due to postpone-
ment in release of the software. Market opportunity cost is inversely proportional
to the release of the software. More time taken for the release will increase the
opportunity cost. This can be represented by the below equation, which is same as
provided by Jiang and Sarkar [17]:

T €))

Software Release Cost Before Change Point For the interval [0, t.], testers work
separately for detecting the bugs in the software. This amount, i.e., the fault removed
by testers per unit time is expressed asc3. As obtained using Eq. (3), the number of
faults detected/removed by the testing team before change point is represented by
m(t.). Hence the cost can be formulated in the interval [0, t.]as

Costy, = c3-m (1) (10

Software Release Cost After Change Point In the given interval [t., t], the tester is
functioning independently for detection process. Therefore, the cost of removing
the bugs by testers is expressed ascs. Now, the cost incurred for the interval is
deliberated by multiplying cost with the faults detected. The total cost of removing
the faults is specified by

Software Release and Patching Time with Warranty Using Change Point 377

Cost,, = cq-m (T — 1) (11)

Patch Release Cost Because of the increased market competition, organizations
cannot risk in delaying software release. Hence software is released with some faults
still present in phase of testing. Because of this the users are provided warranty on
the software to fix the faults with updates/patch by the developer during operational
phase. Service contract is assurance provided to users about software that it will
continue to perform efficiently during operational phase; otherwise, the organization
will provide solution in the form of updates for the failure-causing faults, or they will
replace the product. On facing failure within software, the users report the problem
to the organization for fixation. The organization has to again test the software which
is subject to additional charge to the firm. Using Eq. (5), the total amount of bugs
is expressed by m((t + 7,) —) communicated by the user and solved by the tester.
Suppose cs represents the fault removal, cost per unit time and the cost incurred for
the interval are shown as

costry, =cs-m((t + 1) — 1) (12)

Software Under Warranty Cost With the patch release, the user still may find some
faults during the interval [t,, T 4+ w] because of the faults remaining in the patch
phase. Due to warranty of the software, firms need to confiscate the failure-causing
faults. By using Eq. (6), the amount of fault detached subsequent to update release
and is denoted by m((t + w) — (t + 7,,)). Suppose cg represents the removal cost per
unit fault, then the detection cost can be expressed as

COSty, 14w = C6 - M ((T +w) — (T + Tp)) (13)

Post Warranty Cost As the software warranty gets over, the organization does not
provide any support to any kind of failures that occurred, and sometimes they make
agreement with the user for removing the faults all the way through the software
life cycle. This cost has been incorporated while modeling the cost function. During
[t +w, Ti], failures are encountered only by the users due to number of faults
remained unobserved post warranty period. Using Eq. (7), we can obtain the total
number of faults. Let c;denote the removal cost of faults so the total cost incurred is
given by

Costrywr, = c7-m(Tie — (r +w)) (14)
Total Cost This can be summed as all the cost used throughout the life cycle of

software. By adding together the entire cost as per Egs. (8,9, 10, 11, 12, 13, 14), the
total cost function can be expressed as

378 C. Choudhary et al.

totalcost = c¢1-T 4+ ¢y - T2 + Costyr, + Cost;r, + Costmp
(15)
+COStTp,I+W + Costr-l-w,Tlc

In the subsequent section, validation of the projected model has been performed
through a numerical illustration.

4 Numerical Illustration

On the basis of supposition that the fault is identical and is autonomously dis-
tributed, it is clear that the rate of fault removal follows exponential distribution
given as F;(t) = 1 —e %" where b; denotes rate of fault detection in “i” interval. The
parameters are estimated using Woods [18] data set. As per the data, the software
is being tested for 20 weeks to detect 100 bugs for the given duration. The change
point analyzer is used to find the change point of the data sets which is taken to
be eighth week. The parameter estimation is done using the SPSS on the basis
of least square method on the data set that gives ‘a’ = 356.937 and b; = 0.0419
and b, = 0.1326. This depicts that software initially has 357 faults which were
detected/removed by the testing team with rate b; and b,. We have assumed the
software life cycle Tj. = 100.Usually rate of fault detection by the user and by tester
is dissimilar due to different competence. Suppose 1,72, r3 denotes fault detection
rate ratio for the user with respect to tester in third, fourth, and fifth intervals.
The sum of faults detected/removed in interval [0, 7] represented as

338
1

m(t) =a (1 - e_b"IC)

Therefore from Eq. (10) the cost associated with m(t.) number of faults is
specified as

cz-a(l —exp(—=b; - 1)) (16)

Using Eq. (11), we get the faults removed in interval [t.,7] as a -

(1 —(1—exp(=b;-1))) (1 - m’%) and the cost associated cost with

m(t — 1) is specified as

A7)

= (1 —exp (b (1= (o020

1= (1 —exp(=by1c))

Amount of faults detached in [, 7] is expressed as

_ (1=(1—exp(=b1-7)))-(1—(1—exp(—b3-7)))
m ((1’ + Tp) - 7:) =a (1 - 1—(11—exp(—b2'fc)) })

(1—exp(=br-ri- (v + 15— 1)))

Software Release and Patching Time with Warranty Using Change Point 379

and associated cost associated with m((t + tp) —) number of faults is represented
by

(A=(—exp(=b1-7)))-(1=(1—exp(=bs7)))
cs-a-(l— T (e h)
(1—exp(—by-c)) (18)

(I—exp(=br-ri- (v + 1 —1)))

Amount of faults detached in [7},, T + w] is represented by

m((t+w)—(t+ 1))

—a. (1 _ (1— (1 —exp(=b;-1.)))- (1= (1 —exp(—b, - r))))
= 1—(1—exp(—bs-1))
(1= —exp(=b2-r1-(r + 17, —71))))

(L =exp(=brr2- ((t+w) = (7 + 1,))))

and the associated cost associated with m((t + w) — (t + tp))given number of faults
is given by

(A—(—exp(=b1-7)))-(1—(1—exp(—bs1)))
Cce-a- (1 - 1—(T—exp(—b2-7c)))

(1-(1—exp(=b2-r1-(t +1—71)))) (19)
. (1 —exp (—bz 1y ((r +w) — (t + rp))))

Also the amount of faults removed in [t 4+ w, T}.] is given by

1= (1—exp(—b11)))-(1—(1—exp(—by-
m(Te—(t+w) =a- (1 - = exP(,_(lligiL((_bz(.rcﬁxP(: Tm)

. (1 — (1 —exp (—bz -y (1’ + 15— T))))
(I=(1—exp(=b2-r2-((r +w) = (r + 1)))))

and the cost associated with m(7}. — t + w) given amount of faults is shown as

(1=(1—exp(=b1-7))-(1=(1=exp(=b2-1)))
c7-d- (l - 1—(1—exp(—b2'lc)))

(1=(1—exp(=by-ri- (T + 1 —1)))) (20)
. (1 — (1 — exp (—bz 1y ((‘L’ +w) — (t + T,,)))))

By taking phase wise testing cost consequently, we obtain the total cost with
single patching specified by

380 C. Choudhary et al.

totalcost = ¢+ T + ¢2 - T2 + ¢3 -a(l —exp(—=b; - 1)

+eg-a(l—(1—exp(—bit))) (1 - —(11__((11__::15((__:223))))>

(1—(1—exp(—b;)))-(1—(1—exp(=b'1)))
+C5 -a- (1 - 1—(11—exp(—b2‘fc))))

(1—exp(=by-ri- (T + 17— T)))

(A—=(1—exp(=bi-7.)))-(1—(1—exp(—by°7)))
tce-a- (1 - T—(—exp(—5>1.))

(I=(1—exp(=br-ri- (T + 1 —1)))) 21
(I—exp(=br-r-((t+w) = (t + 1))

(1—(1—exp(—b1 -7)))-(1—(1—exp(—br-7)))
+cra - (1 - 1—(11—cxp(—b2'fc)) ;)

(1-(1—exp(=b2-r1-(t +7,—7))))
(1= (1 =exp (b2 12 ((r +w) = (T + 1))
(I —exp(=by 13- (Tic — (r +w))))

now defining the cost parameter values before doing the optimization of the above
given equation and providing all cost values as ¢; =30, c; =5, ¢3 =20, ¢4 =30,
cs =55, cg =55, and ¢; = 135. Also let us suppose that the organization generally
provides the user with warranty of 6 months, i.e., w = 24 (weeks) on the software
and fault detection rate ratios r1 = 0.5, 12 = 0.5, and r3 = 0.6. It should be
noted that values obtained are purely through experience. In general cost of per
unit fault during a given phase is directly relative to the ratio of assets consumed
to the removed fault within that period. It is to be noted that post warranty period
of software is much longer as compared to any other phases of software life cycle;
hence it consumes high amount of resources. Also the number of faults removed
during this period is low as the maximum number of faults is debugged during
testing and warranty phase. Hence cost per unit fault removal during post warranty
period is highest. Based on the similar arguments, magnitude of cost per unit fault
removal in other phases can be described. Now based on the above assumptions,
we will describe the phase-wise fault detection with the associated cost. This is to
inform that the service contract and update time be measured since time of release t,
because after release only updates and warranty can be provided to the customer. By
substituting the cost values in Eq. (21) and performing optimization using MAPLE
for the total cost function, we acquire optimal outcome as software release time
v = 21.19 weeks; optimal time to release the patch rp* = 1 and the optimized cost
value as 14385.69. The below given table (Table 1) summarizes the fault detection
by the tester as well as user with the help of over mentioned values phase wise.

Software Release and Patching Time with Warranty Using Change Point 381

Table 1 Descriptions of faults phase wise

Phase MVE Number of removed faults
Software time to release before m(t.) 101.83 (102 approx.)
change point [0, 7]

Software release time before m(t —t.) 210.7753 (211 approx.)
change point [z, 7]

First patch release time [z, 7p] m((t + 1p) — 1) 2.8446 (3 approx.)
Warranty time [7p,, 7 + w] m((t +w)—(t + 7)) |32.4592 (32 approx.)
Operational time [t + w, T}.] m(Tie — 7 +w) 8.90770

5 Conclusion

Through this paper we anticipated a comprehensive cost model to find the optimum
time for release and for patch of software sold beneath warranty using change point
subsequently to reduce the total anticipated software expenditure. In the existing
effort, we have carefully calculated the case of distinct patching; however, from the
similar lines of anticipated model, we can broaden our work for multiple patches.
In the future we are capable to expand our model by taking into consideration the
budget and consistency constraint on the optimum time to release and to patch.
This model provides information to the developers that how much more testing is
required to test the software after changing the testing strategies after a moment
of time T, and due to the repetitive nature of updates, developers can release the
subsequent patches less costly. As more failure reports are sent by the user or the
tester, it will provide more opportunities for the developer to detect and further
confiscate the corresponding fault. When the next update is released and executed,
software failure rate will be reduced accordingly.

References

1. Kapur PK, Khatri SK, Singh O, Shrivastava AK (2014) When to stop testing under warranty
using SRGM with change point. In the IEEE Xplore conference proceeding of International
Conference on IT in Business, Industry & Govt., CSIBIG held during March 8-9, 2014 at Sri
Aurobindo Institute of Technology Indore Ujjain Highway Indore, pp 200-205

2. Kapur PK, Pham H, Gupta A, Jha PC Software reliability assessment with OR applications
(Springer Series in Reliability Engineering)

3. Goel AL (1985) Software reliability models: assumptions, limitations and applicability. IEEE
Trans Softw Eng SE-11:1411-1423

4. Dohi T, Kaio N, Osaki S (1997) Optimal software release policies with debugging time lag. Int
J Reliability, Quality and Safety Engineering 04(03)

5. Yamada S, Osaki S (1987) Optimal software release policies with simultaneous cost and
reliability requirements. Eur J Oper Res 31:46-51

6. Kapur PK, Garg RB (1991) Optimal software release policies for software systems with testing
effort. Int J Syst Sci 22(9):1563-1571

382

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

20.

21.

22.

23.

24.

C. Choudhary et al.

Kapur PK, Garg RB (1989) Cost-reliability optimum release policies for software system under
penalty cost. Int J Syst Sci 20:2547-2562

Zhao M (1993) Change-point problems in software and reliability. Commun Stat Theory
Methods 22(3):757-768

Yun WY, Bai DS (1990) Optimum software release policy with random life cycle. IEEE Trans
Reliab 39(2):338-353

Pham H, Zhang X (1999) A software cost model with warranty and risk costs. IEEE Trans
Comp 48(1):71-75

Kapur PK, Agarwal S, Garg RB (1994) Bi-criterion release policy for exponential software
reliability growth models. Rech Oper/Oper Res 28:165-180

Musa JD, lannino A, Okumoto K (1987) Software reliability: measurement, prediction,
applications. Mc Graw Hill, New York

Kapur PK,Singh VB, Anand S (2007) Software reliability growth model of fielded software
based on multiple change-point concept using a power function of testing time. In: Kapur PK,
Verma AK (eds) Quality reliability and infocom technology. MacMillan India Ltd., New Delhi,
pp 171-178

Kapur PK, Garg RB, Aggarwal AG, Tandon A (2009) General framework for change-point
problem in software reliability and related release time problem. In proceedings of ICQRIT
Yamada S (1994) Optimal release problems with warranty period based on a software
maintenance cost model. Trans IPS Jpn 35(9):2197-2202

KapurPK, SinghVB, Sameer A (2007) Effect of Change-Point on Software Reliability
Growth Models Using Stochastic Differential Equations. Published in the proceedings of 3rd
International Conference on Reliability and Safety Engineering. Misra RB, Naikan VNA,
Chaturvedi SK Goyal NK (eds), (INCRESE-2007), Udaipur, pp 320-333

Jiang Z, Sarkar S, Jacob VS (2012) Post-release testing and software release policy for
enterprise-level systems. Inf Syst Res 23(3), Part 1 of 2, 635-657

Wood A (1996) Predicting software reliability. IEEE Comput 29:69-77

Ompal S, Kapur PK, Shrivastava AK, Kumar V (2015) Release time problem with multiple
constraints. Published in Int J Syst Assur Eng Manag 6(1):83-91

Cavusoglu H, Cavusoglu H, Zhang J (2008) Security patch management: share the burden or
share the damage? INFORMS 54:657-670

Luo C, Okamura H, Dohi T (2015) Optimal planning for open source software updates. Proc
IMechE Part O. doi:10.1177/1748006x15586507

Arora A, Caulkins JP, Telang R (2006) Research note: sell first, fix later: impact of patching on
software quality. Manag Sci 52(3):465-471

Okamura H, Tokuzane M, Dohi T (2009) Optimal security patch release timing under
non-homogeneous vulnerability-discovery processes. Proceedings of the 20th International
Symposium on Software Reliability Engineering (ISSRE’09), Mysuru, pp 120-128

Kapur PK, Shrivastava AK (2015) When to release and stop testing of a software: a new insight,
published in Conference Proceedings of International Conference on Reliability, Infocom
Technology and Optimization (Trends and Future Directions), held during October 2—4, 2015
at Amity University, Uttar Pradesh, pp 1-6

http://dx.doi.org/10.1177/1748006x15586507

	Software Release and Patching Time with Warranty Using ChangePoint
	1 Introduction
	2 Framework of Modeling
	2.1 Notations
	2.2 Assumptions
	2.3 Devising the Model
	2.4 Model Framework

	3 Cost Model
	4 Numerical Illustration
	5 Conclusion
	References

