The Schwarz Lemma for Super-Conformal Maps

Katsuhiro Moriya

Abstract A super-conformal map is a conformal map from a two-dimensional Riemannian manifold to the Euclidean four-space such that the ellipse of curvature is a circle. Quaternionic holomorphic geometry connects super-conformal maps with holomorphic maps. We report the Schwarz lemma for super-conformal maps and related results.

1 Introduction

For a smooth manifold *M*, we denote the tangent bundle by *T M* and its fiber at $p \in M$ by T_pM . Let Σ be a two-dimensional oriented Riemannian manifold and *f* : $\Sigma \to \mathbb{R}^4$ be an isometric immersion. We denote the Riemannian metric of Σ by *g*. For a tangent vector $X \in T_p \Sigma$, we denote the norm with respect to the Riemannian metric by $||X||$. We denote the second fundamental form of f by h . Then

$$
\mathcal{E}_p = \left\{ h(X, X) : X \in T_p \Sigma, ||X|| = 1 \right\}
$$

is called the *ellipse of curvature* or the *curvature ellipse* of *f* at $p \in M$ [\[9\]](#page-9-0). It is indeed an ellipse in the normal space at *p* if it does not degenerate to a point or a line segment. If the ellipse of curvature is a circle or a point at any point *p*, then *f* is said to be *super-conformal* [\[2\]](#page-8-0).

The author showed that a super-conformal map is a Bäcklund transform of a minimal surface [\[6\]](#page-9-1). Regarding *f* as an isometric immersion, the inequality

$$
|\mathcal{H}|^2 - K - |K^{\perp}| \ge 0 \tag{1}
$$

K. Moriya (\boxtimes)

Division of Mathematics, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan

e-mail: moriya@math.tsukuba.ac.jp

[©] Springer Nature Singapore Pte Ltd. 2017

Y.J. Suh et al. (eds.), *Hermitian–Grassmannian Submanifolds*, Springer Proceedings in Mathematics & Statistics 203, DOI 10.1007/978-981-10-5556-0_6

holds between the mean curvature vector \mathcal{H} , the Gaussian curvature *K* and the normal curvature K^{\perp} [\[10\]](#page-9-2). The equality holds if and only if *f* is super-conformal. From this point of view, a super-conformal map is called a Wintgen ideal surface [\[8](#page-9-3)]. The integral of the left-hand side of [\(1\)](#page-0-0) over Σ is the Willmore energy of f. This implies that a super-conformal map is a Willmore surface with vanishing Willmore energy. Hence the super-conformality is invariant under Möbius transforms of \mathbb{R}^4 .

We discuss the Möbius geometry of super-conformal immersion by exchanging a two-dimensional oriented Riemannian manifold with a Riemann surface and an isometric immersion with a conformal immersion. Regarding $\mathbb C$ as a subspace of $\mathbb R^4$ and a holomorphic function on Σ as a map form Σ to \mathbb{R}^4 , a holomorphic function satisfies [\(1\)](#page-0-0) and it is super-conformal. We may regard Möbius geometric theory of holomorphic functions on a Riemann surface as a special case of Möbius geometry of super-conformal immersion.

The author [\[7\]](#page-9-4) discussed super-conformal maps as a higher codimensional analogue of holomorphic functions and meromorphic functions. In this paper, we report a part of the paper which discusses the Schwarz lemma for super-conformal maps.

For the discussion, we use quaternionic holomorphic geometry [\[3](#page-9-5)]. Quaternionic holomorphic geometry of surfaces in \mathbb{R}^4 connects theory of holomorphic functions with theory of surfaces in \mathbb{R}^4 .

2 Classical Results

We begin with reviewing the classical results of super-conformal maps by Friedrich [\[4\]](#page-9-6) and Wong [\[11\]](#page-9-7).

Throughout this paper, all manifolds and maps are assumed to be smooth. We compute the ellipse of curvature. We denote the inner product of \mathbb{R}^4 by \langle , \rangle . Let e_1 , e_2, e_3, e_4 be an adapted orthonormal local frame of the pull-back bundle $f^*T\mathbb{R}^4$ and θ_1 , θ_2 , θ_3 , θ_4 the dual frame. Assume that the second fundamental form is

$$
h = \sum_{p=3}^{4} \sum_{i,j=1}^{2} h_{ijp} \theta_i \otimes \theta_j \otimes e_p.
$$

Then the ellipse of curvature is parametrized by the map

$$
\varepsilon(u) = h(e_1 \cos u + e_2 \sin u, e_1 \cos u + e_2 \sin u)
$$

= $\mathcal{H} + \left(\frac{h_{113} - h_{223}}{2}e_3 + \frac{h_{114} - h_{224}}{2}e_4\right) \cos 2u + (h_{123}e_3 + h_{124}e_4) \sin 2u.$

The map *f* is super-conformal map if and only if $\varepsilon(u)$ parametrizes a circle. The map *f* is minimal if and only if $\varepsilon(u)$ parametrize a curve of the linear transform of the circle centered at the origin. The linear transform is given by

The Schwarz Lemma for Super-Conformal Maps 61

$$
P(e_3 e_4) = (e_3 e_4) {h_{113} h_{123} \choose h_{114} h_{124}}
$$

Hence *f* is super-conformal and minimal if and only if the ellipse of curvature is a circle centered at the origin.

We normalize the second fundamental form and the ellipse of curvature. Let $n(u) = e_3 \cos u + e_4 \sin u$. Because

$$
\langle h, n(u) \rangle = \sum_{i,j=1}^{2} h_{ij3} \theta_i \otimes \theta_j \cos u + \sum_{i,j=1}^{2} h_{ij4} \theta_i \otimes \theta_j \sin u,
$$

tr
$$
\langle h, n(u) \rangle = h_{113} \cos u + h_{114} \sin u + h_{223} \cos u + h_{224} \sin u
$$

$$
= (h_{113} + h_{223}) \cos u + (h_{114} + h_{224}) \sin u,
$$

we may assume that $h_{114} + h_{224} = 0$. Let A_{e_4} be the shape operator such that $\langle A_{e_4}(X), Y \rangle = \langle h(X, Y), e_4 \rangle$ for any $X, Y \in T_p \Sigma$. Taking e_1 and e_2 as the eigenvectors of A_{e_4} , we may assume that $h_{124} = 0$. The ellipse of curvature becomes

$$
\varepsilon(u) = \frac{h_{113} + h_{223}}{2}e_3 + \left(\frac{h_{113} - h_{223}}{2}e_3 + h_{114}e_4\right)\cos 2u + (h_{123}e_3)\sin 2u.
$$

Then *f* is super-conformal if and only if

$$
(h_{113} - h_{223})h_{123} = 0, \ \left(\frac{h_{113} - h_{223}}{2}\right)^2 + h_{114}^2 = h_{123}^2
$$

This is equivalent to

$$
h_{123} = h_{114} = 0
$$
, $h_{113} = h_{223}$ or $h_{113} = h_{223}$, $h_{114}^2 = h_{123}^2$.

Hence the ellipse of curvature of a super-conformal map becomes

$$
\varepsilon(u) = 0
$$
 or $\varepsilon(u) = h_{113} + (h_{114}e_4) \cos 2u + (\pm h_{114}e_3) \sin 2u$.

If *f* is minimal, then the ellipse of curvature is

$$
\varepsilon(u) = (h_{113}e_3 + h_{114}e_4)\cos 2u + (h_{123}e_3)\sin 2u.
$$

Hence *f* is super-conformal and minimal if and only if

$$
\varepsilon(u) = (h_{114}e_4)\cos 2u + (\pm h_{114}e_3)\sin 2u.
$$

Another notion is defined by the second fundamental form for surfaces in \mathbb{R}^4 .

Definition 1 ($[5, 11]$ $[5, 11]$ $[5, 11]$ $[5, 11]$) The set

$$
\mathscr{I}_p = \left\{ \langle h, n \rangle : n \in T_p \Sigma^{\perp}, ||n|| = 1 \right\}.
$$

is called the *indicatrix* of the normal curvature or the *Kommerell conic* of *f* .

The indicatrix is parametrized by

$$
\iota(u) = \langle h, n(u) \rangle = \sum_{i,j=1}^{2} (h_{ij3} \cos u + h_{ij4} \sin u) \theta_i \otimes \theta_j.
$$

By the normalization, we may assume that

$$
\iota(u) = (h_{113}\cos u + h_{114}\sin t)\theta_1 \otimes \theta_1 + h_{123}\cos u \theta_1 \otimes \theta_2
$$

+
$$
h_{213}\cos u \theta_2 \otimes \theta_1 + (h_{223}\cos u - h_{114}\sin u)\theta_2 \otimes \theta_2.
$$

We regard $\langle h, n(u) \rangle$ as the shape operator which is is a symmetric (1, 1)-tensor. With the standard inner product of symmetric $(1, 1)$ -tensors, the curve $\langle h, n(u) \rangle$ is isometrically the curve parametrized by

$$
u(u) = \left(\frac{1}{\sqrt{2}}(h_{113}\cos u + h_{114}\sin u), \sqrt{2}h_{123}\cos u, \frac{1}{\sqrt{2}}(h_{223}\cos u - h_{114}\sin u)\right)
$$

in \mathbb{R}^3 . Hence *f* is super-conformal if and only if the indicatrix is parametrized by

$$
u(u) = \left(\frac{1}{\sqrt{2}}(h_{113}\cos u), 0, \frac{1}{\sqrt{2}}(h_{113}\cos u)\right)
$$

or

$$
\iota(u) = \left(\frac{1}{\sqrt{2}}(h_{113}\cos u + h_{114}\sin u), \pm \sqrt{2}h_{114}\cos u, \frac{1}{\sqrt{2}}(h_{113}\cos u - h_{114}\sin u)\right).
$$

We see that f is minimal if and only if the indicatrix is parametrized by

$$
u(u) = \left(\frac{1}{\sqrt{2}}(h_{113}\cos u + h_{114}\sin u), \sqrt{2}h_{123}\cos u, \frac{1}{\sqrt{2}}(-h_{113}\cos u - h_{114}\sin u)\right).
$$

Moreover, *f* is super-conformal and minimal if and only if

$$
\iota(u) = 0 \text{ or } \iota(u) = \left(\frac{1}{\sqrt{2}}(h_{114}\sin u), \pm \sqrt{2}h_{114}\cos u, \frac{1}{\sqrt{2}}(-h_{114}\sin u)\right).
$$

Set

$$
\mathscr{I}_p(X) = \left\{ \langle h(X, \cdot), n \rangle : n \in T_p \Sigma^{\perp}, ||n|| = 1 \right\} \subset (T_p \Sigma)^*.
$$

Definition 2 ([\[4\]](#page-9-6)) An immersion *f* is called *superminimal* if $\mathcal{I}_p(X)$ is a circle centered at 0 in $(T_p \Sigma)^*$.

The following lemma explains the relation among the super-conformal maps, minimal surfaces and superminimal surfaces.

Lemma 1 *A map f is superminimal if and only if f is super-conformal and minimal.*

Proof For $X = X_1e_1 + X_2e_2$ and the normalization, we have

$$
\langle h(X, \cdot), n(u) \rangle = \sum_{i,j=1}^{2} X_i h_{ij3} \theta_j \cos u + \sum_{i,j=1}^{2} X_i h_{ij4} \theta_j \sin u
$$

= ((X₁h₁₁₃ + X₂h₁₂₃) θ_1 + (X₁h₁₂₃ + X₂h₂₂₃) θ_2) cos u
+ (X₁h₁₁₄θ₁ - X₂h₁₁₄θ₂) sin u.

Hence *f* is superminimal if and only if

$$
(X_12h113 - X_22h223)h114 = 0,
$$

$$
(X_1h113 + X_2h213)2 + (X_1h123 + X_2h223)2 = (X_12 + X_22)h1142
$$

Hence

$$
h_{114} = X_1 h_{113} + X_2 h_{213} = X_1 h_{123} + X_2 h_{223} = 0
$$

or

$$
X_1^2 h_{113} - X_2^2 h_{223} = 0,
$$

$$
(X_1 h_{113} + X_2 h_{123})^2 + (X_1 h_{123} + X_2 h_{223})^2 = (X_1^2 + X_2^2)h_{114}^2
$$

Because X_1 and X_2 is arbitrary under $X_1^2 + X_2^2 \neq 0$, we have $h = 0$, or $h_{113} =$ $h_{223} = 0$ and $h_{123}^2 = h_{114}^2$. Hence the lemme holds.

For a holomorphic function *g*(*z*) on \mathbb{C} , define a map \tilde{g} : $\mathbb{C} \to \mathbb{C}^2 \cong \mathbb{R}^4$ by $\tilde{g}(z) =$ $(z, g(z))$. Then \tilde{g} is called an *R-surface* [\[5\]](#page-9-8). Kommerell showed that an *R*-surface is superminimal.

3 Quaternionic Holomorphic Geometry

We review super-conformal maps by quaternionic holomorphic geometry of surfaces in \mathbb{R}^4 [\[2\]](#page-8-0). We identify \mathbb{R}^4 with the set of all quaternions \mathbb{H} . The inner product of \mathbb{R}^4 becomes

$$
\langle a, b \rangle = \text{Re}(\overline{a}b) = \text{Re}(\overline{b}a) = \frac{1}{2}(\overline{a}b + \overline{b}a).
$$

We identify \mathbb{R}^3 with the set of all imaginary parts of quaternions Im H. Then two-dimensional sphere with radius one centered at the origin in \mathbb{R}^3 is $S^2 = \{a \in \mathbb{R}^3 : a \in \mathbb{R}^3 : a \in \mathbb{R}^3 : a \in \mathbb{R}^3 \}$ Im $\mathbb{H}: a^2 = -1$.

Let Σ be a Riemann surface with complex structure J_{Σ} . For a one-form ω on Σ , we define a one-form $*\omega$ by $*\omega = \omega \circ J_{\Sigma}$. A map $f: \Sigma \to \mathbb{H}$ is called a conformal map if $\langle df \circ J_{\Sigma}, df \rangle = 0$. This is equivalent to that $*df = N df = -df R$ with maps *N*, $R: \Sigma \to S^2$. Each point where *f* fails to be an immersion is isolated. This means that a conformal map is a branched immersion. The second fundamental form of *f* is

$$
h(X, Y) = \frac{1}{2} (*df(X) dR(Y) - dN(X) * df(Y)).
$$

Let $\mathcal{H}: \Sigma \to \mathbb{H}$ be the mean curvature vector of f. Then

$$
df\overline{\mathscr{H}} = -\frac{1}{2}(*dN + N dN), \ \overline{\mathscr{H}} df = \frac{1}{2}(*dR + R dR).
$$

The ellipse of curvature is

$$
\mathcal{E}_p = \left\{ \mathcal{H} |df(e_1)|^2 + \frac{1}{4} \cos 2\theta (a - b)(e_1) + \frac{1}{4} \sin 2\theta N(a + b)(e_1) : \theta \in \mathbb{R} \right\},\
$$

$$
a = df (* dR - R dR), b = (* dN - N dN) df.
$$

Then *f* is super-conformal if and only one of the following equations holds.

$$
\ast \, d\,R - R\,d\,R = 0, \ \ast \, d\,N - N\,d\,N = 0
$$

at any point $p \in \Sigma$.

In the following, we restrict ourselves to super-conformal maps with $* dN =$ *N dN*.

Lemma 2 *A super-conformal map* $f: \Sigma \rightarrow \mathbb{H}$ *with* $*df = N df$ *and* $* dN =$ *N d N is superminimal if and only if f is holomorphic with respect to a right quaternionic linear complex structure of* H*.*

Proof A super-conformal map $f: \Sigma \to \mathbb{H}$ with $*df = N df$ and $* dN = N dN$ satisfies the equation

$$
df\overline{\mathscr{H}} = -N\,dN.
$$

Hence *f* is minimal if and only if *N* is a constant map. Define $J: \mathbb{H} \to \mathbb{H}$ by $Jv = Nv$ for any $v \in \mathbb{H}$. Then *J* is a right quaternionic linear complex structure of H. Because $*df = J df$, the map f is holomorphic with respect to J.

By the above lemma, we see that a holomorphic map *g* from Σ to $\mathbb{C}^2 \cong \mathbb{C} \oplus \mathbb{C} j \cong \mathbb{C}$ ^H is superminimal because [∗] *dg* ⁼ *i dg*. A holomorphic function and an *^R*-surface are special cases of this superminimal surface.

4 The Schwarz Lemma

Because a holomorphic function is a super-conformal map, we may expect that a super-conformal map is an analogue of a holomorphic function. A factorization of super-conformal map given in Theorem 4.3 in [\[7\]](#page-9-4) may support this idea. The following is a variant of the theorem.

Theorem 1 ([\[7](#page-9-4)], Theorem 4.3) *Let* ϕ : $\Sigma \rightarrow \mathbb{H}$ *be a super-conformal map with* $* d\phi = N d\phi$, $* dN = N dN$ and $N\phi = \phi i$ and $h: \Sigma \to \mathbb{C}^2 \cong \mathbb{C} \oplus \mathbb{C} j \cong \mathbb{H}$ be a *holomorphic map. Then, a map* $f = \phi h$ *is a super-conformal map with* $* df = N df$.

This theorem shows that a holomorphic section of a complex vector bundle of rank two, trivialized by the super-conformal map *f* is a super-conformal map. We see that $N + i$ is a super-conformal map with $N(N + i) = (N + i)i$. The condition $* dN = N dN$ implies N is the inverse of the stereographic projection fol-lowed by an anti-holomorphic function ([\[7](#page-9-4)], Corollary 3.2). Hence if Σ is an open Riemann surface and $N: \Sigma \to S^2$ is the inverse of the stereographic projection of an anti-holomorphic function with *N*(Σ) ⊂ *S*² \ {−*i*}, then *N* + *i* is a global super-conformal trivializing section. A super-conformal map $f: \Sigma \to \mathbb{H}$ with $* df = N df$, $* dN = N dN$ always factors $f = (N + i)h$ with a holomorphic map $h: \Sigma \to \mathbb{C} \oplus \mathbb{C}$ *j*. We don't need to see $-i$ in a special light. If $a \in S^2$ and $a \notin N(\Sigma)$, then we can rotate *f* so that $-i \notin N(\Sigma)$. The condition that *N* fails to be surjective is necessary.

This fact suggests that we should distinguish the case where the Riemann surface Σ is parabolic or hyperbolic. In the case where $\Sigma = \mathbb{C}$, we have an analogue of Liouville's theorem.

Theorem 2 ([\[7](#page-9-4)], Theorem 4.4) Let $\phi: \mathbb{C} \to \mathbb{H}$ be a super-conformal map with $* d\phi = N d\phi$, $* dN = N dN$ and $N\phi = \phi i$. Assume that $N(\mathbb{C}) \subset S^2 \setminus \{-i\}$ and $|\phi|^{-1}$ *is bounded above. If* $f : \mathbb{C} \to \mathbb{H}$ *is a super-conformal map with* $*df = Ndf$ *and* $|f|$ *is bounded above, then* $f = \phi C$ *for some constant* $C \in \mathbb{H}$ *.*

In the case where $\Sigma = B^2 = \{z \in \mathbb{C} : |z| < 1\}$, we have an analogue of the Schwarz lemma.

Theorem 3 ([\[7](#page-9-4)], Theorem 4.5) *Let* ϕ : $B^2 \rightarrow \mathbb{H}$ *be a super-conformal map with* $* d\phi = N d\phi$, $* dN = N dN$ and $N\phi = \phi i$. Assume that $N(B^2) \subset S^2 \setminus \{-i\}$ and $|\phi| < c$ and $|\phi|^{-1} < \tilde{c}$. If $f : B^2 \to \mathbb{H}$ is a super-conformal map with $*df = N df$ *and f* (0) = 0*, then there exists a constant C such that*

$$
|f(z)| \leq C|z|.
$$

Moreover, if $f = \phi(\lambda_0 + \lambda_1 i)$ *for holomorphic functions* λ_0 *and* λ_1 *, then there exist constants* C_0 , $C_1 > 0$ *such that*

$$
|f(z)| \le c(C_0^2 + C_1^2)^{1/2} |z|.
$$

The equality holds if and only if $\phi = c$ *and there exists* $z_0 \in B^2$ *such that* $|\lambda_n(z)| =$ *C_n*| z_0 | (*n* = 0, 1)*. We also have*

$$
\left|f_x(0) - N(0)f_y(0)\right| \le c(C_0^2 + C_1^2)^{1/2}.
$$

The equality holds if and only if f = *c and there exists* $z_0 \in B^2$ *such that* $|\lambda_n(z)|$ = $C_n|z_0|$ (*n* = 0, 1).

Assume that $f(B^2) \subset B^4 = \{a \in \mathbb{H} : |a| < 1\}$. It is known that

$$
T(a) = \frac{(1 - |a_1|^2)(a - a_1) - |a - a_1|^2 a_1}{1 + |a|^2 |a_1|^2 - 2\langle a, a_1 \rangle}
$$

is a Möbius transform of \mathbb{R}^4 with $T(a_1) = 0$ [\[1](#page-8-1)]. The transform *T* is

$$
T(a) = \frac{a - a_1 - |a_1|^2 a + |a_1|^2 a_1 - |a|^2 a_1 + a|a_1|^2 + a_1 \overline{a} a_1 - |a_1|^2 a_1}
$$

=
$$
\frac{a - a_1 - |a|^2 a_1 + a_1 \overline{a} a_1}{|1 - \overline{a}_1 a|^2} = \frac{(1 - a_1 \overline{a})(a - a_1)}{|1 - \overline{a}_1 a|^2}
$$

=
$$
(1 - a \overline{a}_1)^{-1} (a - a_1)
$$

and *T* preserves B^4 . If $f: B^2 \to B^4$ is a super-conformal map with $*df = N df$ and $* dN = N dN$, then

$$
* d(T \circ f) = (1 - f\overline{a}_1)^{-1} (* df\overline{a})(1 - f\overline{a}_1)^{-1}(1 - f) - (1 - f\overline{a}_1)^{-1} * df
$$

=
$$
(1 - f\overline{a}_1)^{-1}N(1 - f\overline{a}_1)d(T \circ f).
$$

It is known that a Möbius transform of a super-conformal map is super-conformal. Then we have an analogue of the Schwarz-Pick theorem.

Theorem 4 ([\[7](#page-9-4)], Theorem 4.7) *Let* ϕ : $B^2 \rightarrow B^4$ *be a super-conformal map with* $* d\phi = N d\phi$, $* dN = N dN$ and $N\phi = \phi i$. Assume that $|\phi|$ and $|\phi|^{-1}$ are bounded. *Let* $f: \Sigma \to \mathbb{H}$ *be a super-conformal map with* $*df = N df$. Assume that the map

$$
\tilde{N} := (1 - \tilde{f}(z)\overline{\tilde{f}(z_1)})^{-1}N(1 - \tilde{f}(z)\overline{\tilde{f}(z_1)}): \Sigma \to S^2
$$

satisfies $\tilde{N}(B^2) \subset S^2 \setminus \{-i\}$ *. Then there exists a constant C > 0 such that*

$$
\frac{|f(z) - f(z_1)|}{|1 - \overline{f(z_1)}f(z)|} \le C \frac{|z - z_1|}{|1 - \overline{z_1}z|}
$$

Moreover,

$$
\frac{|f_x(z_1)|}{1-|f(z_1)|^2}=\frac{|f_y(z_1)|}{1-|f(z_1)|^2}\leq \frac{C}{1-|z_1|^2}.
$$

We fix Riemannian metrics $ds_{B_2}^2$ on B^2 and $ds_{B_4}^2$ on B^4 as

$$
ds_{B^2}^2 = \frac{4}{(1 - (x^2 + y^2))^2} (dx \otimes dx + dy \otimes dy),
$$

$$
ds_{B^4}^2 = \frac{4}{(1 - \sum_{n=0}^3 a_n^2)^2} (\sum_{n=0}^3 da_n \otimes da_n).
$$

Then a geometric version of the Schwarz-Pick theorem becomes as follows.

Theorem 5 *Let* ϕ : $B^2 \rightarrow B^4$ *be a super-conformal map with* $* d\phi = N d\phi$, $* dN =$ *N dN* and $N\phi = \phi$ *i.* Assume that $|\phi|$ and $|\phi|^{-1}$ are bounded. Let $f: \Sigma \to \mathbb{H}$ be a *super-conformal map with* $*df = N df$. Assume that the map

$$
\tilde{N} := (1 - f(z)\overline{f(z_1)})^{-1}N(1 - f(z)\overline{f(z_1)}): \Sigma \to S^2
$$

satisfies $\tilde{N}(B^2) \subset S^2 \setminus \{-i\}$ *. Then there exists a constant* $C > 0$ *such that* $f^* ds^2_{B^4} \leq C ds^2_{B^2}.$

Acknowledgements This work was supported by JSPS KAKENHI Grant Number 25400063.

References

- 1. Ahlfors, L.V.: Möbius transformations in several dimensions. Ordway Professorship Lectures in Mathematics. University of Minnesota, School of Mathematics, Minneapolis, Minn (1981)
- 2. Burstall, F.E., Ferus, D., Leschke, K., Pedit, F., Pinkall, U.: Conformal Geometry of Surfaces in *S*⁴ and Quaternions. Lecture Notes in Mathematics, vol. 1772. Springer, Berlin (2002)
- 3. Ferus, D., Leschke, K., Pedit, F., Pinkall, U.: Quaternionic holomorphic geometry: Plücker formula, Dirac eigenvalue estimates and energy estimates of harmonic 2-tori. Invent. Math. **146**(3), 507–593 (2001)
- 4. Friedrich, T.: On superminimal surfaces. Arch. Math. (Brno) **33**(1–2), 41–56 (1997)
- 5. Kommerell, K.: Riemannsche Flächen im ebenen Raum von vier dimensionen. Math. Ann. **60**(4), 548–596 (1905)
- 6. Moriya, K.: Super-conformal surfaces associated with null complex holomorphic curves. Bull. Lond. Math. Soc. **41**(2), 327–331 (2009)
- 7. Moriya, K.: A factorization of a super-conformal map. Israel J. Math. **207**(1), 331–359 (2015)
- 8. Petrović-Torgašev, M., Verstraelen, L.: On Deszcz symmetries of Wintgen ideal submanifolds. Arch. Math. (Brno) **44**(1), 57–67 (2008)
- 9. Schouten, J.A., Struik, D.J.: Einführung in die neueren Methoden der Differentialgeometrie, vol. II. P. Noordhoff n.v, Groningen-Batavia (1938)
- 10. Wintgen, P.: Sur l'inégalité de Chen-Willmore, C. R. Acad. Sci. Paris Sér. A-B **288**(21), A993– A995 (1979)
- 11. Wong, Y.-C.: A new curvature theory for surfaces in a Euclidean 4-space. Comment. Math. Helv. **26**, 152–170 (1952)