The Schwarz Lemma for Super-Conformal
Maps

Katsuhiro Moriya

Abstract A super-conformal map is a conformal map from a two-dimensional
Riemannian manifold to the Euclidean four-space such that the ellipse of curva-
ture is a circle. Quaternionic holomorphic geometry connects super-conformal maps
with holomorphic maps. We report the Schwarz lemma for super-conformal maps
and related results.

1 Introduction

For a smooth manifold M, we denote the tangent bundle by 7 M and its fiber at
p € Mby T,M. Let X be a two-dimensional oriented Riemannian manifold and
f: X — R*be an isometric immersion. We denote the Riemannian metric of X by
g.Foratangent vector X € T, X, we denote the norm with respect to the Riemannian
metric by || X||. We denote the second fundamental form of f by 4. Then

&={hX.X): X e T, 2, |X| =1}

is called the ellipse of curvature or the curvature ellipse of f at p € M [9]. It is
indeed an ellipse in the normal space at p if it does not degenerate to a point or a
line segment. If the ellipse of curvature is a circle or a point at any point p, then f
is said to be super-conformal [2].

The author showed that a super-conformal map is a Bécklund transform of a
minimal surface [6]. Regarding f as an isometric immersion, the inequality

| — K — K+ >0 (1
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holds between the mean curvature vector .7, the Gaussian curvature K and the
normal curvature K+ [10]. The equality holds if and only if f is super-conformal.
From this point of view, a super-conformal map is called a Wintgen ideal surface [8].
The integral of the left-hand side of (1) over X is the Willmore energy of f. This
implies that a super-conformal map is a Willmore surface with vanishing Willmore
energy. Hence the super-conformality is invariant under Mobius transforms of R*.

We discuss the Mobius geometry of super-conformal immersion by exchanging
a two-dimensional oriented Riemannian manifold with a Riemann surface and an
isometric immersion with a conformal immersion. Regarding C as a subspace of R*
and a holomorphic function on X as a map form X to R*, a holomorphic function
satisfies (1) and it is super-conformal. We may regard Mobius geometric theory of
holomorphic functions on a Riemann surface as a special case of Mobius geometry
of super-conformal immersion.

The author [7] discussed super-conformal maps as a higher codimensional ana-
logue of holomorphic functions and meromorphic functions. In this paper, we report
a part of the paper which discusses the Schwarz lemma for super-conformal maps.

For the discussion, we use quaternionic holomorphic geometry [3]. Quaternionic
holomorphic geometry of surfaces in R* connects theory of holomorphic functions
with theory of surfaces in R*.

2 Classical Results

We begin with reviewing the classical results of super-conformal maps by Friedrich
[4] and Wong [11].

Throughout this paper, all manifolds and maps are assumed to be smooth. We
compute the ellipse of curvature. We denote the inner product of R* by ( , ). Letey,
e, e3, e4 be an adapted orthonormal local frame of the pull-back bundle f*7TR* and
01, 05, 65, 64 the dual frame. Assume that the second fundamental form is

2

4
h =Z Zhijp9i®9j®el7'
p=3i,j=1

Then the ellipse of curvature is parametrized by the map

e(u) = h(eycosu + ey sinu, ey cosu + e sinu)

hyi3—h hiis —h
:jf+( ”32 223€3+ ”42 22464)c052u+(h12363+h124e4)sin2u.

The map f is super-conformal map if and only if £(u) parametrizes a circle. The
map f is minimal if and only if &(«) parametrize a curve of the linear transform of
the circle centered at the origin. The linear transform is given by
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P (s es) = (es es) (hm hm)

hiia hios

Hence f is super-conformal and minimal if and only if the ellipse of curvature is a
circle centered at the origin.

We normalize the second fundamental form and the ellipse of curvature. Let
n(u) = ez cosu + e4 sinu. Because

2 2
(h,n(u)) = Z hij36; ® 0; cosu + Z hija6; ® 6; sinu,
ij=1 i,j=1
tr(h, n(u)) = hy1z3cosu + hypg sinu + hypz cosu + hypg Sinu
= (h113 + hp3) cosu + (hy14 + hyog) sinu,

we may assume that &j14 + haog = 0. Let A,, be the shape operator such that

(Ae, (X),Y) = (h(X,Y), e4) forany X, Y € T,X. Taking e; and e as the eigenvec-
tors of A.,, we may assume that /1124 = 0. The ellipse of curvature becomes

e(u)

_h113+h223e n hii3 — haos
2 7 2

e3 + h114e4) cos2u + (hx3e3) sin 2u.

Then f is super-conformal if and only if

hi1z — has

2
(h113 = ha3)hinz = 0, ( > ) + hi, = hiy

This is equivalent to
hiz =hi1a =0, hyj3 = hops or hypz = hygs, hiy, = hiss.
Hence the ellipse of curvature of a super-conformal map becomes
g(u) =0ore(u) = hyiz + (hiaeq) cos 2u + (Fhy4e3) sin 2u.
If f is minimal, then the ellipse of curvature is
e(u) = (hy1zesz + hyjaes) cos2u + (hazez) sin2u.
Hence f is super-conformal and minimal if and only if
e(u) = (hy1aeq) cos2u + (£hy14e3) sin2u.

Another notion is defined by the second fundamental form for surfaces in R*.
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Definition 1 ([5, 11]) The set
Sy ={{h,n):neT, 2" |n|| =1}.

is called the indicatrix of the normal curvature or the Kommerell conic of f.

The indicatrix is parametrized by

2
L) = (h,n(u)) = Z (hij3 cosu + hijasinu)f; 0.

ij=1
By the normalization, we may assume that

L(u) = (/’1113 cosu ~|—]’l1]4 Sil’ll‘)@] ®91 +h123 COSMQ] ®92
+hoi3cosuby ® 6y + (hypzcosu — hypasinu)f, ® 65.

We regard (h, n(u)) as the shape operator which is is a symmetric (1, 1)-tensor.
With the standard inner product of symmetric (1, 1)-tensors, the curve (h, n(u)) is
isometrically the curve parametrized by

1 1
t(u) = (E(hm cosu + hyjgsinu), «/Ehm cosu, E(l’lzm cosu — hjp4sin u))

in R®. Hence f is super-conformal if and only if the indicatrix is parametrized by

t(u) = (%(hm cosu), 0, %(hm cosu))

or

1 1
t(u) = (\—fz(hllg cosu + hi14sinu), :I:«/ih114 cos u, ﬁ(hlm cosu — hiq4 sin u)) .

We see that f is minimal if and only if the indicatrix is parametrized by

1 1
t(u) = (—(h cosu + hy1asinu), v/2hip3 cosu, —
113 114 123 «/i

V2

(=hy13cosu —hyq4 sinu)).

Moreover, f is super-conformal and minimal if and only if

1 ) 1 .
L(u) =0 OI‘L(M) = (—(h114 smu), :tx/ihmcosu, —(—h114 s M)) .

V2 V2
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Set
Fp(X) = {(h(X, ),n) :n € T,5* |Inll = 1} C (T, %)".

Definition 2 ([4]) An immersion f is called superminimal if #,(X) is a circle
centered at 0 in (7, X)*.

The following lemma explains the relation among the super-conformal maps,
minimal surfaces and superminimal surfaces.

Lemma 1 Amap f is superminimal if and only if f is super-conformal and minimal.

Proof For X = Xe; 4+ X,e, and the normalization, we have

2 2
(h(X, ),n(u)) = Z Xihij30; cosu + Z Xihij40; sinu

ij=1 ij=1
= ((X1h113 + X2h123)01 + (X1hi23 + X2h223)0:) cos u
+ (X 1811401 — X2h11465) sinu.

Hence f is superminimal if and only if
(X2hi13 — X3hp3)hi1e =0,

(X1h113 + Xaho13)* + (Xihios + Xohon3)? = (X7 + X)h3,,

Hence
hia = Xihiiz + Xohoiz = X1hiz + Xohop3 =0
or
X2hi13 — X5hys =0,
(X1h113 + Xahi23)* + (X1hios + Xohon3)? = (X + X5)hiy,

Because X; and X, is arbitrary under X% + X% # 0, we have h =0, or hyj3 =
hy3 = 0 and h%23 = h%l 4+~ Hence the lemme holds. 0O

For a holomorphic function g(z) on C, defineamap g: C — C?> = R*by 3(z) =
(z, g(2)). Then g is called an R-surface [5]. Kommerell showed that an R-surface is
superminimal.
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3 Quaternionic Holomorphic Geometry

We review super-conformal maps by quaternionic holomorphic geometry of surfaces
in R* [2]. We identify R* with the set of all quaternions H. The inner product of R*
becomes

(a, b) = Re(ab) = Re(ba) = %(Eb + ba).

We identify R? with the set of all imaginary parts of quaternions Im H. Then
two-dimensional sphere with radius one centered at the origin in R is S = {a €
ImH : a*> = —1}.

Let X be a Riemann surface with complex structure Jx. For a one-form w on X,
we define a one-form * w by *w = w o Jy. Amap f: ¥ — His called a conformal
map if (df o Jx,df) = 0. This is equivalent to that xdf = Ndf = —df R with
maps N, R: ¥ — S?. Each point where f fails to be an immersion is isolated. This
means that a conformal map is a branched immersion. The second fundamental form
of fis

1
h(X,Y)= E(*df(X)dR(Y) —dN((X) %df(Y)).
Let 77 : ¥ — H be the mean curvature vector of f. Then
— 1 — 1
df = —5(*dN+NdN), Hdf = 5(*dR+ RdR).

The ellipse of curvature is

Ep = [Jf|df(el)|2 + %cos%’(a —Db)(er) + %sinZ@N(a +Db)(er) : 6 € R] ,
a=df (xdR—RdR), b= (xdN — NdN)df.
Then f is super-conformal if and only one of the following equations holds.
*dR— RdR =0, xdN —NdN =0

at any point p € X
In the following, we restrict ourselves to super-conformal maps with xdN =
NdN.

Lemma 2 A super-conformal map f: X — H with xdf = Ndf and *dN =
N dN is superminimal if and only if f is holomorphic with respect to a right quater-
nionic linear complex structure of H.
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Proof A super-conformal map f: ¥ — H with xdf = Ndf and *xdN = NdN
satisfies the equation

df ## = —NdN.

Hence f is minimal if and only if N is a constant map. Define J: H — H by
Jv = Nv for any v € H. Then J is a right quaternionic linear complex structure of
H. Because *df = J df, the map f is holomorphic with respect to J.

By the above lemma, we see that a holomorphic map g from X toC> = C @ Cj =
H is superminimal because *dg = i dg. A holomorphic function and an R-surface
are special cases of this superminimal surface.

4 The Schwarz Lemma

Because a holomorphic function is a super-conformal map, we may expect that
a super-conformal map is an analogue of a holomorphic function. A factorization
of super-conformal map given in Theorem 4.3 in [7] may support this idea. The
following is a variant of the theorem.

Theorem 1 ([7], Theorem 4.3) Let ¢: ¥ — H be a super-conformal map with
xdp = Ndp, *xdN = NdN and Np = pi andh: ¥ — C>=C®Cj =Hbe a
holomorphic map. Then, amap f = ¢h is a super-conformal map withxdf = N df.

This theorem shows that a holomorphic section of a complex vector bundle of
rank two, trivialized by the super-conformal map f is a super-conformal map. We
see that N + i is a super-conformal map with N(N +i) = (N +i)i. The condi-
tion *dN = N dN implies N is the inverse of the stereographic projection fol-
lowed by an anti-holomorphic function ([7], Corollary 3.2). Hence if X is an
open Riemann surface and N: ¥ — S? is the inverse of the stereographic pro-
jection of an anti-holomorphic function with N(X) C §?\ {—i}, then N +i is a
global super-conformal trivializing section. A super-conformal map f: X — H
with xdf = Ndf, *dN = N dN always factors f = (N + i)h with a holomor-
phicmaph: ¥ — C @ Cj. We don’t need to see —i in a special light. If ¢ € S? and
a ¢ N(X), then we can rotate f so that —i ¢ N(X). The condition that N fails to
be surjective is necessary.

This fact suggests that we should distinguish the case where the Riemann surface
X is parabolic or hyperbolic. In the case where X = C, we have an analogue of
Liouville’s theorem.

Theorem 2 ([7], Theorem 4.4) Let ¢: C — H be a super-conformal map with
xdp = Ndp, xdN = NdN and N¢ = ¢i. Assume that N(C) C S?\ {—i} and
|¢|~" is bounded above. If f: C — H is a super-conformal map with xdf = N df
and | f| is bounded above, then f = ¢C for some constant C € H.
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In the case where ¥ = B> ={z € C: |z| < 1}, we have an analogue of the
Schwarz lemma.

Theorem 3 ([7], Theorem 4.5) Let ¢: B> — H be a super-conformal map with
xdp = Ndp, *dN = NdN and N¢ = ¢i. Assume that N(B*) C S§? \ {—i} and
|¢| < cand|p|™" < & If f: B> — His a super-conformal map with +df = N df
and f(0) = 0, then there exists a constant C such that

|f @] = Clz].

Moreover, if f = ¢ (Ao + A1J) for holomorphic functions Ly and Ay, then there
exist constants Cy, C1 > 0 such that

If(2)] < e(CE+CH'z).

The equality holds if and only if ¢ = c and there exists zy € B? such that |A,(z)| =
Culzol (n =0, 1). We also have

| £:(0) — N(0) £,(0)] < c(C§ + CDH'>.

The equality holds ifand only if f = c and there exists zo € B? such that |1, (z)| =
Culzol (n =0, D).

Assume that f(B?) C B* ={a € H: |a| < 1}. It is known that

(1 —lai»(@—a) — la —ai*a
T(a) = 21,12
1 + |al*|ai|* — 2{(a, a1)

is a Mobius transform of R* with T'(a;) = 0 [1]. The transform T is

—ay — |lai)’a + |a Pay — |al*a; + ala)|* + ayaa; — a1 *a;

@ a
T(a) =
|1 —aal?

a—a, — |al*a; + ajaa; _ (1 —aja)(a —ay)

1 —aal? B 1 —aal?

= —aa)'(a—a)

and T preserves B*. If f: B> — B*is a super-conformal map with xdf = N df
and xdN = N dN, then

xd(Tof)=(1~- fa) ' xdfay(l — fa) '(1 — f) — (1 — fa) " = df
= - fa) 'N(1 - fa)d(T o f).

It is known that a M&bius transform of a super-conformal map is super-conformal.
Then we have an analogue of the Schwarz-Pick theorem.
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Theorem 4 ([7], Theorem 4.7) Let ¢: B> — B* be a super-conformal map with
xdp = Ndp,«xdN = N dN and N = ¢i. Assume that |¢| and |¢|~" are bounded.
Let f: X — H be a super-conformal map with *df = N df. Assume that the map

Ni=01-F@f@)'NI-f@f@): £ - s
satisfies N(B?) C §2 \ {—i}. Then there exists a constant C > 0 such that

f@=f@l _ -zl
1-Fafe| -

Moreover,

Sl _ A ¢
L= [f@IP 1= 1f@)P ~ 1=

We fix Riemannian metrics ds%}2 on B2 and a’s%4 on B* as

dsp, = (dx ®dx +dy ®dy),

(1= (2 +y2)?

4 3
(Z da, @ day).

dS§4 =
(1- Zizo az)? n=0

Then a geometric version of the Schwarz-Pick theorem becomes as follows.

Theorem 5 Let¢p: B> — B* beasuper-conformalmap withxd¢p = N d¢, xdN =
N dN and N¢ = ¢i. Assume that |¢| and |¢|~" are bounded. Let f: X — H be a
super-conformal map with xdf = N df. Assume that the map

N:i=(0~-f@f@))'NI0-f@f@): ¥ — §*

satisfies N(B%) C S2\{—i}. Then there exists a constant C > 0 such that
f*a’slzg_1 < Cdslzgz.
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