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Abstract We classify maximal antipodal subgroups of the group Aut(g) of
automorphisms of a compact classical Lie algebra g. A maximal antipodal subgroup
of Aut(g) gives us as many mutually commutative involutions of g as possible. For
the classification we use our former results of the classification of maximal antipodal
subgroups of quotient groups of compact classical Lie groups. We also use canonical
forms of elements in a compact Lie group which is not connected.

1 Introduction

The group Aut(g) of automorphisms of a compact semisimple Lie algebra g is a
compact semisimple Lie group which is not necessarily connected. The identity
component of Aut(g) is the group Int(g) of inner automorphisms. A subgroup of a
compact Lie group is an antipodal subgroup if it consists of mutually commutative
involutive elements. In this article we give a classification of maximal antipodal
subgroups of Aut(g) when g is a compact classical semisimple Lie algebra su(n)

(n ≥ 2), o(n) (n ≥ 5) or sp(n) (n ≥ 1) (Theorem 4). A maximal antipodal subgroup
Aut(g) gives us as many mutually commutative involutions of g as possible.

Let G be a connected Lie group whose Lie algebra is g. Then G is a compact
connected semisimple Lie group whose center Z is discrete. The quotient G/Z is
isomorphic to Int(g) via the adjoint representation. Therefore our results [5] of the
classification of maximal antipodal subgroups of G/Z gives the classification of
maximal antipodal subgroups of Int(g). In order to consider the case where Aut(g) is
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not connected, we give a canonical form of an element of a disconnected Lie group
(Proposition 3).

After we submitted the manuscript, we found Yu studied elementary abelian
2-subgroups of the automorphism group of compact classical simple Lie algebras in
[6]. Elementary abelian 2-subgroups are nothing but antipodal subgroups.

2 Maximal Antipodal Subgroups of Quotient Lie Groups

In this section we refer to our former results in [5].
Although the notion of an antipodal set is originally defined as a subset of a

Riemannian symmetric space M in [1], we give an alternative definition when M is
a compact Lie group with a bi-invariant Riemannian metric.

Definition 1 Let G be a compact Lie group and we denote by e the identity element
of G. A subset A of G satisfying e ∈ A is called an antipodal set if A satisfies the
following two conditions.

(i) Every element x ∈ A satisfies x2 = e.
(ii) Any elements x, y ∈ A satisfy xy = yx .

Proposition 1 ([5]) If a subset A of G satisfying e ∈ A is a maximal antipodal set,
then A is an abelian subgroup of G which is isomorphic to a product Z2 × · · · × Z2

of some copies of Z2. Here Z2 denotes the cyclic group of order 2.

Let

Δn :=

⎧
⎪⎨

⎪⎩

⎡

⎢
⎣

±1
. . .

±1

⎤

⎥
⎦

⎫
⎪⎬

⎪⎭
⊂ O(n).

For a subset X ⊂ O(n) we define X± := {x ∈ X | det(x) = ±1}.
Proposition 2 (cf. [1]) A maximal antipodal subgroup of U (n), O(n), Sp(n) is
conjugate to Δn. A maximal antipodal subgroup of SU (n), SO(n) is conjugate to
Δ+

n .

Let

D[4] :=
{[±1 0

0 ±1

]

,

[
0 ±1

±1 0

]}

⊂ O(2),

which is a dihedral group. Let

Q[8] := {±1,±i,±j,±k},

which is the quaternion group, where 1, i, j,k are elements of the standard basis of
the quaternions H. We decompose a natural number n as n = 2k · l into the product
of the k-th power 2k of 2 and an odd number l. For s with 0 ≤ s ≤ k we define



Maximal Antipodal Subgroups of the Automorphism Groups … 41

D(s, n) := D[4] ⊗ · · · ⊗ D[4] ⊗ Δn/2s

= {d1 ⊗ · · · ⊗ ds ⊗ d0 | d1, . . . , ds ∈ D[4], d0 ∈ Δn/2s } ⊂ O(n).

We always use k and l in the above meaning when we write n = 2k · l.
The center ofU (n) is {z1n | z ∈ U (1)} and we identify it withU (1). LetZμ be the

cyclic group of degreeμwhich lies in the center ofU (n). Letπn : U (n) → U (n)/Zμ

be the natural projection.

Theorem 1 ([5]) Let n = 2k · l. Let θ be a primitive 2μ-th root of 1. Then a maximal
antipodal subgroup of U (n)/Zμ is conjugate to one of the following.

(1) In the case where n or μ is odd, πn({1, θ}D(0, n)) = πn({1, θ}Δn).
(2) In the case where both n and μ are even, πn({1, θ}D(s, n)) (0 ≤ s ≤ k), where

the case (s, n) = (k − 1, 2k) is excluded.

Remark 1 Since we have an inclusion Δ2 � D[4] which implies D(k − 1, 2k) �

D(k, 2k), the case (s, n) = (k − 1, 2k) is excluded.

Theorem 2 ([5]) Let n and μ be natural numbers where μ divides n. Let n = 2k · l.
Let Zμ be the cyclic group of degree μ which lies in the center of SU (n). Let θ be
a primitive 2μ-th root of 1. Then a maximal antipodal subgroup of SU (n)/Zμ is
conjugate to one of the following.

(1) In the case where n or μ is odd, πn(Δ
+
n ).

(2) In the case where both n and μ are even,

(a) when k = 1, πn(Δ
+
n ∪ θΔ−

n ) or πn((D+[4] ∪ θ D−[4]) ⊗ Δl), where
π2(Δ

+
2 ∪ θΔ−

2 ) is excluded when n = μ = 2.
(b) When k ≥ 2, under the expression μ = 2k ′ · l ′ where 1 ≤ k ′ ≤ k and l ′

divides l,
(b1) if k ′ = k, πn(Δ

+
n ∪ θΔ−

n ) or πn(D(s, n)) (1 ≤ s ≤ k), where the case
(s, n) = (k − 1, 2k) is excluded.

(b2) If 1 ≤ k ′ < k, πn({1, θ}Δ+
n ) or πn({1, θ}D(s, n)) (1 ≤ s ≤ k), where

the case (s, n) = (k − 1, 2k) is excluded and, moreover, π4({1, θ}Δ+
4 )

is excluded when n = 4.

Remark 2 Since Δ+
4 = Δ2 ⊗ Δ2 � D[4] ⊗ D[4] = D(2, 4), π4({1, θ}Δ+

4 ) is
excluded.

Theorem 3 ([5]) Let πn be one of the natural projections O(n) → O(n)/{±1n},
SO(n) → SO(n)/{±1n}, Sp(n) → Sp(n)/{±1n}. Let n = 2k · l.

(I) A maximal antipodal subgroup of O(n)/{±1n} is conjugate to one of πn

(D(s, n)) (0 ≤ s ≤ k), where the case (s, n) = (k − 1, 2k) is excluded.
(II) When n is even, a maximal antipodal subgroup of SO(n)/{±1n} is conjugate

to one of the following.

(1) In the case where k = 1, πn(Δ
+
n ) or πn(D+[4] ⊗ Δl), where π2(Δ

+
2 ) is

excluded when n = 2.



42 M.S. Tanaka and H. Tasaki

(2) In the case where k ≥ 2, πn(Δ
+
n ) or πn(D(s, n)) (1 ≤ s ≤ k), where the case

(s, n) = (k − 1, 2k) is excluded and moreover π4(Δ
+
4 ) is excluded when

n = 4.

(III) A maximal antipodal subgroup of Sp(n)/{±1n} is conjugate to one of πn(Q[8] ·
D(s, n)) (0 ≤ s ≤ k), where the case (s, n) = (k − 1, 2k) is excluded.

3 Canonical Forms of Elements of a Disconnected
Lie Group

Let G be a compact connected Lie group and let T be a maximal torus of G. Then
we have

G =
⋃

g∈G

gT g−1,

which means that a canonical form of an element of G with respect to conjugation
is an element of T . We give a formulation of canonical forms of elements of G in
the case where G is not connected. Let G0 be the identity component of a compact
Lie group G. Then G/G0 is a finite group and we have

G =
⋃

[τ ]∈G/G0

G0τ,

where [τ ] denotes the coset represented by τ ∈ G.
Ikawa showed a canonical form of a certain action on a compact connected Lie

group in [3, 4]. Using this canonical form we can obtain the following proposition.

Proposition 3 For τ ∈ G we define an automorphism Iτ of G0 by Iτ (g) = τgτ−1

(g ∈ G0). Let Tτ be a maximal torus of F(Iτ , G0) := {g ∈ G0 | Iτ (g) = g}. Then
we have

G0τ =
⋃

g∈G0

g(Tτ τ )g−1.

Therefore a canonical form of an element of a connected component G0τ of G
with respect to conjugation under G0 is an element of Tτ τ .

4 Maximal Antipodal Subgroups of the Automorphism
Groups of Compact Lie Algebras

Let g be a compact semisimple Lie algebra. Then the groupAut(g) of automorphisms
of g is a compact semisimple Lie group which is not necessarily connected. By the
definition of antipodal sets, the set of maximal antipodal subgroups of Aut(g) is
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equal to the set of maximal subsets of Aut(g) satisfying (i) each element has order 2
except for the identity element and (ii) all elements are commutative to each other.

Let G be a connected Lie group whose Lie algebra is g. Then G is a compact
connected semisimple Lie group whose center Z is discrete. The quotient group
G/Z is isomorphic to Int(g) via the adjoint representation Ad : G → Aut(g). Hence
the classification of maximal antipodal subgroups of G/Z gives the classification of
maximal antipodal subgroups of Int(g).

Theorem 4 Let n = 2k · l be a natural number.

(I) Let τ denote a map τ : su(n) → su(n) ; X 
→ X̄ . A maximal antipodal sub-
group of Aut(su(n)) is conjugate to {e, τ }Ad(D(s, n)) (0 ≤ s ≤ k), where the
case (s, n) = (k − 1, 2k) is excluded. Here e denotes the identity element of
Aut(g).

(II) A maximal antipodal subgroup of Aut(o(n)) is conjugate to Ad(D(s, n)) (0 ≤
s ≤ k), where the case (s, n) = (k − 1, 2k) is excluded.

(III) A maximal antipodal subgroup of Aut(sp(n)) is conjugate to Ad(Q[8] ·
D(s, n)) (0 ≤ s ≤ k), where the case (s, n) = (k − 1, 2k) is excluded.

Before we prove Theorem 4, we need some preparations. Let τ ′ : C
n → C

n be the
complex conjugation τ ′(v) = v̄ for v ∈ C

n . Since τ ′ ∈ GL(2n, R), {1n, τ
′}U (n) is a

subset of GL(2n, R). We have gτ ′ = τ ′ḡ for g ∈ U (n). This implies Ad(τ ′) = τ , so
we identify τ ′ with τ . We can see that {1n, τ }U (n) is a subgroup of GL(2n, R) and
the center is {±1n}. Let Zμ := {z1n | z ∈ U (1), zμ = 1} ⊂ U (n). We can see that
Zμ is a normal subgroup of {1n, τ }U (n). Therefore {1n, τ }U (n)/Zμ is a Lie group.
We have {1n, τ }U (n)/Zμ = U (n)/Zμ ∪ τU (n)/Zμ, which is a disjoint union of the
connected components.

Theorem 5 Let πn : {1n, τ }U (n) → {1n, τ }U (n)/Zμ be the natural projection. Let
θ be a primitive 2μ-th root of 1. Let n = 2k · l. Then a maximal antipodal subgroup
of {1n, τ }U (n)/Zμ is conjugate to one of the following by an element of πn(U (n)).

(1) In the case where μ is odd, πn({1n, τ }{1, θ}Δn) = πn({1n, τ }Δn).
(2) In the case where μ is even, πn({1n, τ }{1, θ}D(s, n)) (0 ≤ s ≤ k), where the

case (s, n) = (k − 1, 2k) is excluded.

Remark 3 Since {1n, τ }{1, θ}Δn ⊂ {1n, τ }U (n) ⊂ GL(2n, R), we can consider πn

({1n, τ }{1, θ}Δn).

Lemma 1 Let A be a maximal antipodal subgroup of {1n, τ }U (n)/Zμ. Then we
have A ∩ τU (n)/Zμ �= ∅.

Proof Weassume A ⊂ U (n)/Zμ. By taking conjugation byU (n)/Zμ we can assume
A = πn({1, θ}D(s, n)) by Theorem 1. Since πn(τ )πn(θ1n) = πn(θ1n)πn(τ ), A ∪
πn(τ )A is an antipodal, which contradicts the maximality of A.

Lemma 2 Let A be a maximal antipodal subgroup of {1n, τ }U (n)/Zμ. Let θ be a
primitive 2μ-th root of 1. Then πn(θ1n) ∈ A.
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Proof Since we showed that πn(θ1n) and πn(τ ) are commutative in the proof of
Lemma 1, πn(θ1n) is commutative with every element of {1n, τ }U (n)/Zμ. Hence
πn(θ1n) ∈ A.

Lemma 3 A maximal antipodal subgroup of {1n, τ }U (n) is conjugate to {1n, τ }Δn

by an element of U (n).

Proof Let A be amaximal antipodal subgroup of {1n, τ }U (n). Then A ∩ τU (n) �= ∅
by Lemma 1 for μ = 1. We set R(φ) =

[
cosφ − sin φ

sin φ cosφ

]

and r = � n
2 �. Then

T =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎡

⎢
⎢
⎢
⎣

R(φ1)

. . .

R(φr )

(1)

⎤

⎥
⎥
⎥
⎦

∣
∣
∣
∣
∣
∣
∣
∣
∣

φ j ∈ R (1 ≤ j ≤ r)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

is a maximal torus of O(n) = F(τ, U (n)). Here (1) in the above definition of T
means 1 when n = 2r + 1 and nothing when n = 2r . By Proposition 3 we have

τU (n) =
⋃

g∈U (n)

g(τT )g−1.

Therefore, by retaking A under the conjugation by U (n) if necessary, we may
assume that A ∩ τU (n) has an element τg0 ∈ τT . Since 1n = (τg0)2 = g2

0 , we have

g0 ∈ Δn . Applying
√−1τ

√−1
−1 = −τ to a diagonal element −1 of g0, we have

τg0 = g1τ1ng−1
1 for a suitable g1 ∈ U (n)which is a diagonal matrix whose diagonal

elements are 1,
√−1.1 Therefore if we retake A under the conjugation by U (n) if

necessary, we may assume τ ∈ A. Hence A ∩ τU (n) = τ(A ∩ U (n)). Since τ ∈ A
and A is commutative, we have A ∩ U (n) ⊂ O(n).We show that A ∩ U (n) is a max-
imal antipodal subgroup of O(n). If there is an antipodal subgroup Ã which satisfies
A ∩ U (n) ⊂ Ã ⊂ O(n), then {1n, τ } Ã is an antipodal subgroup of {1n, τ }U (n) and
we have A = (A ∩ U (n)) ∪ (A ∩ τU (n)) = {1n, τ }(A ∩ U (n)) ⊂ {1n, τ } Ã. By the
maximality of A we have A = {1n, τ } Ã, hence A ∩ U (n) = Ã. Therefore A ∩ U (n)

is a maximal antipodal subgroup of O(n). By Proposition 2, A ∩ U (n) is conjugate
to Δn by O(n). Hence A = {1n, τ }(A ∩ U (n)) is conjugate to {1n, τ }Δn by O(n).
Therefore any maximal antipodal subgroup of {1n, τ }U (n) is conjugate to {1n, τ }Δn

by an element of U (n).

We prove Theorem 5.

Proof Since we proved the case of μ = 1 in Lemma 3, we assume μ > 1. We note
that θ̄ �= θ in this case. Let A be a maximal antipodal subgroup of {1n, τ }U (n)/Zμ

1We have {τg | g ∈ U (n), (τg)2 = 1n} =⋃
g∈U (n) gτ1n g−1. It is remarkable in contrast to {g ∈

U (n) | g2 = 1n} = ⋃
g∈U (n) gΔn g−1.
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and we set B = π−1
n (A). Then θ ∈ B by Lemma 2. Since A ∩ τU (n)/Zμ �= ∅ by

Lemma 1, we have B ∩ τU (n) �= ∅. Therefore, by retaking A under the conjugation
byU (n)/Zμ if necessary, we may assume that B ∩ τU (n) has an element τg0 ∈ τT ,
where T is a maximal torus of O(n) defined in the proof of Lemma 3. By a similar
argument as in the proof of Lemma 3 we may assume g0 = 1n . Thus τ ∈ B. We note
that B is not commutative because τθ = θ̄ τ �= θτ . Since πn(τ ) ∈ A, we have

A = (A ∩ πn(U (n))) ∪ (A ∩ πn(τU (n))) = πn({1n, τ })(A ∩ πn(U (n))).

We consider A ∩ πn(U (n)). Since every element of A ∩ πn(U (n)) is commu-
tative with πn(τ ), A ∩ πn(U (n)) ⊂ {πn(u) | u ∈ U (n), πn(τu) = πn(uτ)}. Since
uτ = τ ū, the condition πn(τu) = πn(uτ) is equivalent to πn(u) = πn(ū), which
is equivalent to the condition that there exists an integer m such that θ2mu = ū.
Hence we have θmu = θ−mū = θmu, which means θmu ∈ O(n). When m is even,
we have πn(θ

mu) = πn(u). Thus πn(u) ∈ πn(O(n)). When m is odd, we have
πn(θ

mu) = πn(θu). Hence πn(u) = πn(θ1n)
−1πn(θ

mu) = πn(θ1n)πn(θ
mu). Thus

πn(u) ∈ πn(θ1n)πn(O(n)). Therefore

A ∩ πn(U (n)) ⊂ πn({1, θ}O(n)).

We consider the case where μ is odd. We have πn(θ1n) = πn(θ
μ1n) = πn(−1n).

Henceπn({1, θ}O(n)) = πn(O(n)). Since−1n /∈ Ker πn , we have O(n) ∩ Ker πn =
{1n} and the restriction πn|O(n) gives an isomorphism from O(n) onto πn(O(n)).
Hence we have πn({1, θ}O(n)) = πn(O(n)) ∼= O(n). Therefore A ∩ πn(U (n)) is
conjugate to πn(Δn) by an element of πn(O(n)) by Proposition 2. Hence A is con-
jugate to πn(Δn) ∪ πn(τ )πn(Δn) = πn({1n, τ }Δn) by an element of πn(U (n)).

We consider the case whereμ is even. In this case πn({1, θ}O(n)) = πn(O(n)) ∪
πn(θ O(n)) is a disjoint union. We show that A ∩ πn(O(n)) is a maximal antipo-
dal subgroup of πn(O(n)). Let Ã be an antipodal subgroup which satisfies A ∩
πn(O(n)) ⊂ Ã ⊂ πn(O(n)). Since every element of Ã is commutative with πn(τ ),
it turns out that πn({1n, τ }{1, θ}) Ã is an antipodal subgroup of πn({1n, τ }U (n))).
We have A ∩ πn(U (n)) = πn({1n, θ1n})(A ∩ πn(O(n))). Therefore

A = πn({1n, τ }{1n, θ1n})(A ∩ πn(O(n))) ⊂ πn({1n, τ }{1n, θ1n}) Ã.

By themaximality of Awe have A = πn({1n, τ }{1n, θ1n}) Ã.Moreover, we have A ∩
πn(O(n)) = Ã. Thus A ∩ πn(O(n)) is a maximal antipodal subgroup of πn(O(n)).
Since μ is even, we have −1n ∈ Ker πn . Hence πn(O(n)) ∼= O(n)/{±1n}. We
decompose n as n = 2k · l. By Theorem 3, A ∩ πn(O(n)) is conjugate toπn(D(s, n))

(0 ≤ s ≤ k) by an element of πn(O(n)). Here the case (s, n) = (k − 1, 2k) is
excluded. Therefore A is conjugate to πn({1n, τ }{1n, θ1n}D(s, n)) by πn(O(n)).

We prove Theorem 4.

Proof We have Aut(g)= Int(g) when g = o(n) where n is odd and g = sp(n).
Hence we obtain (II) when n is odd and (III) by Theorem 3. In general we have
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Aut(o(n))∼= O(n)/{±1n} if n �= 8. Hence we obtain (II) when n is even and n �= 8
by Theorem 3. We consider Aut(o(8)). It is known that Aut(o(8))/Int(o(8)) ∼= S3,
where S3 denotes the symmetric group of degree 3. S3 has three elements of order
2, denoted by τ1, τ2, τ3, and two elements of order 3. Using these we can see that
if A is an antipodal subgroup of Aut(o(8)), there is τ ∈ Aut(o(8)) which satisfies
that the coset τ Int(o(8)) corresponds to τi ∈ S3 for some i ∈ {1, 2, 3} such that
A ⊂ Int(o(8)) ∪ τ Int(o(8)). Therefore a maximal antipodal subgroup of Aut(o(8))
is conjugate to a maximal antipodal subgroup of O(8)/{±18}. Hence we obtain (II)
when n = 8.

Finallyweprove (I). The adjoint representationAd : {1n, τ }SU (n) → Aut(su(n))

is surjective (cf. [2, Chap. IX, Corollary 5.5, Chap. X, Theorem 3.29]). We have
Ker Ad = Z{1n ,τ }SU (n)(SU (n)) = Zn , where Z{1n ,τ }SU (n)(SU (n)) denotes the cen-
tralizer of SU (n) in {1n, τ }SU (n) and Zn = {z1n | z ∈ C, zn = 1}. Thus we obtain
an isomorphism Aut(su(n)) ∼= {1n, τ }SU (n)/Zn . Therefore we determine maximal
antipodal subgroups of {1n, τ }SU (n)/Zn .

Let πn : {1n, τ }SU (n) → {1n, τ }SU (n)/Zn denote the natural projection. We
decompose n as n = 2k · l. Let θ be a primitive 2n-th root of 1. Let A be a max-
imal antipodal subgroup of {1n, τ }SU (n)/Zn . Since {1n, τ }SU (n)/Zn is a sub-
group of {1n, τ }U (n)/Zn , A is an antipodal subgroup of {1n, τ }U (n)/Zn . Hence
there is a maximal antipodal subgroup Ã of {1n, τ }U (n)/Zn such that A = Ã ∩
{1n, τ }SU (n)/Zn . By Theorem 5, Ã is conjugate by an element of πn(U (n)) to
πn({1n, τ }{1, θ}D(s, n)), where s = 0 when n is odd and 0 ≤ s ≤ k when n is even,
moreover, the case (s, n) = (k − 1, 2k) is excluded. Hence there is g ∈ U (n) such
that

Ã = πn(g)πn({1n, τ }{1, θ}D(s, n))πn(g)−1 = πn(g{1n, τ }{1, θ}D(s, n)g−1).

We can write g = g1z where g1 ∈ SU (n) and z ∈ U (1). Then

g{1n, τ }{1, θ}D(s, n)g−1 = g1{1n, τ z−2}{1, θ}D(s, n)g−1
1 .

Hence Ã is conjugate to πn({1n, τ z−2}{1, θ}D(s, n)) by an element of πn(SU (n)).
Since A = Ã ∩ πn({1n, τ }SU (n)), A is conjugate to

πn({1n, τ z−2}{1, θ}D(s, n)) ∩ πn({1n, τ }SU (n))

= πn({1, θ}D(s, n)) ∩ πn(SU (n)) ∪ πn(τ )
(
πn(z

−2{1, θ}D(s, n)) ∩ πn(SU (n))
)

by an element of πn(SU (n)). In the proof of Theorem2 ([5]) we showed

πn({1, θ}D(s, n)) ∩ πn(SU (n)) = πn(D+(s, n) ∪ θ D−(s, n)).

We consider πn(z−2{1, θ}D(s, n)) ∩ πn(SU (n)). We show

πn(z
−2{1, θ}D(s, n)) ∩ πn(SU (n)) = πn(z

−2{1, θ}D(s, n) ∩ SU (n)).
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It is clearπn(z−2D(s, n)) ∩ πn(SU (n)) ⊃ πn(z−2D(s, n) ∩ SU (n)). Conversely, for
d ∈ D(s, n), πn(z−2d) ∈ πn(SU (n)) holds if and only if θ2m z−2d ∈ SU (n) for
some m. Since det(θ2m z−2d) = θ2mnz−2ndet(d) = z−2ndet(d), θ2m z−2d ∈ SU (n)

is equivalent to z−2ndet(d) = 1. Since d ∈ D(s, n), det(d) = ±1.When det(d) = 1,
z−2ndet(d) = 1 is equivalent to z−2n = 1.Hence z−2 ∈ Ker πn . Thereforeπn(z−2d) ∈
πn(SU (n)) is equivalent toπn(d) ∈ πn(SU (n))when d ∈ D+(s, n).When det(d) =
−1, z−2ndet(d) = 1 is equivalent to z−2n = −1, that is, z2n = −1. Henceπn(z21n) =
πn(θ1n). Therefore πn(z−2d) ∈ πn(SU (n)) is equivalent to πn(θd) ∈ πn(SU (n))

when d ∈ D−(s, n). Thus we obtain πn(z−2D(s, n)) ∩ πn(SU (n)) ⊂ πn(z−2D
(s, n) ∩ SU (n)). Moreover, we obtain πn(z−2D(s, n) ∩ SU (n)) = πn(D+(s, n) ∪
θ D−(s, n)) by the argument above. As a consequence, A is conjugate to πn({1n, τ }
(D+(s, n) ∪ θ D−(s, n))), where s = 0 when n is odd and 0 ≤ s ≤ k when n is
even, moreover, the case (s, n) = (k − 1, 2k) is excluded. The isomorphism between
πn({1n, τ }SU (n)) and Ad(su(n)) is given by

πn({1n, τ }SU (n)) � πn(x) 
→ Ad(x) ∈ Ad(su(n)) (x ∈ {1n, τ }SU (n)).

Hence πn({1n, τ }(D+(s, n) ∪ θ D−(s, n))) corresponds to Ad({1n, τ }D(s, n) under
the isomorphism, because Ad(θ1n) = e. Hence we obtain (I).
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