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Abstract Let M be a real hypersurface of a nonflat complex space form, that is,
either a complex projective space or a complex hyperbolic space. On M we have the
Levi-Civita connection and for any nonnull real number k the corresponding gen-
eralized Tanaka-Webster connection. Therefore on M we consider their associated
covariant derivatives, the Lie derivative and, for any nonnull k, the so called Lie
derivative associated to the generalized Tanaka-Webster connection and introduce
some classifications of real hypersurfaces in terms of the concidence of some pairs of
such derivations when they are applied to the shape operator of the real hypersurface,
the structure Jacobi operator, the Ricci operator or the Riemannian curvature tensor
of the real hypersurface.
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1 Introduction

A complex space form is an m-dimensional Kaehler manifold of constant holomor-
phic sectional curvature c and will be denoted by Mm(c). A complete and simply
connected complex space form is complex analytically isometric to

1. A complex projective space CPm , if c > 0.
2. A complex Euclidean space Cm , if c = 0.
3. A complex hyperbolic space CH m , if c < 0.
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We will deal with non-flat complex space forms and if (J, g) is the Kaehlerian
structure of such a manifold, the metric g is going to be considered with its holo-
morphic sectional curvature equal to either 4 or −4. That is, c = ±4.

Let M be a real hypersurface of Mm(c). Let N be a locally defined unit normal
vector field on M . Writing ξ = −J N , this is a tangent vector field to M called
the structure vector field on M (it is also known as Reeb vector field or Hopf vector
field). Let A be the shape operator of M associated to N ,∇ the Levi-Civita connection
on M and D the maximal holomorphic distribution on M . That is, for any p ∈ M
Dp = {X ∈ Tp M/g(X, ξ) = 0}.

For any vector field X tangent to M we write J X = φX + η(X)N , where φX is
the tangent component of J X . Clearly η(X) = g(X, ξ) and (φ, ξ, η, g) is an almost
contact metric structure on M . That is, we have

• φ2X = −X + η(X)ξ

• η(ξ) = 1
• g(φX, φY ) = g(X, Y ) − η(X)η(Y )

• φξ = 0
• ∇Xξ = φ AX
• (∇Xφ)Y = η(Y )AX − g(AX, Y )ξ

for any X, Y tangent to M .
Since the ambient space is of constant holomorphic sectional curvature ±4, the

Gauss and Codazzi equations are respectively given by

R(X, Y )Z = ε{g(Y, Z)X−g(X, Z)Y + g(φY, Z)φX − g(φX, Z)φY − 2g(φX, Y )φZ}
+ g(AY, Z)AX − g(AX, Z)AY (1)

and

(∇X A)Y − (∇Y A)X = ε{η(X)φY − η(Y )φX − 2g(φX, Y )ξ} (2)

for any X, Y, Z tangent to M , where ε = ±1, depending on the ambient space is
either complex projective space or complex hyperbolic space.

A real hypersurface in Mm(c) is Hopf if its structure vector field is principal.
The classification of homogeneous real hypersurfaces in CPm , m ≥ 2 was

obtained by Takagi [29, 30] and consists in six distinct types of real hypersur-
faces. Kimura, [11], proved that Takagi’s real hypersurfaces are the unique Hopf
real hypersurfaces with constant principal curvatures. Takagi’s list is as follows:

(A1)Geodesic hyperspheres of radius r , 0 < r < π
2 . They have 2 distinct constant

principal curvatures 2cot (2r) with eigenspace R[ξ ] and cot (r) with eigenspace D.
(A2) Tubes of radius r , 0 < r < π

2 , over totally geodesic complex projective
spaces CPn , 0 < n < m − 1. They have 3 distinct constant principal curvatures
2cot (2r)with eigenspaceR[ξ ], cot (r) and−tan(r). The corresponding eigenspaces
of cot (r) and −tan(r) are complementary and φ-invariant distributions in D.
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(B) Tubes of radius r , 0 < r < π
4 , over the complex quadric. They have 3

distinct constant principal curvatures 2cot (2r) with eigenspace R[ξ ], cot (r − π
4 )

and −tan(r − π
4 ) whose corresponding eigenspaces are complementary and equal

dimensional distributions in D such that φTcot (r− π
4 ) = T−tan(r− π

4 ).
(C) Tubes of radius r , 0 < r < π

4 , over the Segre embedding of CP1 × CPn ,
where 2n + 1 = m and m ≥ 5. They have 5 distinct principal curvatures, 2cot (2r)

with eigenspace R[ξ ], cot (r − π
4 ) with multiplicity 2, cot (r − π

2 ) = −tan(r), with
multiplicity m-3, cot (r − 3π

4 ), with multiplicity 2 and cot (r − π) = cot (r) with
multiplicity m-3. Moreover φTcot (r− π

4 ) = Tcot (r− 3π
4 ) and T−tan(r) and Tcot (r) are

φ-invariant.
(D) Tubes of radius r , 0 < r < π

4 , over the Plucker embedding of the complex
Grassmannian manifold G(2, 5) in CP9. They have the same principal curvatures
as type C real hypersurfaces, 2cot (2r) with eigenspace R[ξ ], and the other four
principal curvatures have the same multiplicity 4 and their eigenspaces have the
same behaviour with respect to φ as in type C.

(E) Tubes of radius r , 0 < r < π
4 , over the canonical embedding of the Hermitian

symmetric space SO(10)/U (5) inCP15. They have the same principal curvatures as
type C real hypersurfaces, 2cot (2r) with eigenspace R[ξ ], cot (r − π

4 ) and cot (r −
3π
4 ) have multiplicities equal to 6 and −tan(r) and cot (r) have multiplicities equal
to 8. Their corresponding eigenspaces have the same behaviour with respect to φ as
in type C real hypersurfaces.

In the case of CH m , m ≥ 2, Berndt, [1], classified Hopf real hypersurfaces with
constant principal curvatures into three types:

(A1) Tubes of radius r > 0 over CH k , 0 ≤ k ≤ m − 1 with 3 (respectively, 2)
distinct constant principal curvatures if 0 < k < m − 1 (respectively k = 0 or k =
m − 1), 2coth(2r) with eigenspace R[ξ ], tanh(r) and coth(r) whose eigenspaces
are complementary and φ-invariant distributions in D.

(A2) Horospheres in CH m with 2 distinct constant principal curvatures, 2 with
eigenspace R[ξ ] and 1 with eigenspace D.

(B) Tubes of radius r > 0 over RH m , with 3 (respectively 2) distinct constant
principal curvatures if r �= ln(2 + √

3), (respectively, r = ln(2 + √
3)), 2coth(2r)

with eigenspace R[ξ ], tanh(r) and coth(r), both with multiplicities equal to m-1
and such that φTtanh(r) = Tcoth(r).

Ruled real hypersurfaces can be described as follows: Take a regular curve γ in
Mm(c) with tangent vector field X . At each point of γ there is a unique Mm−1(c)
cutting γ so as to be orthogonal not only to X but also to J X . The union of these
hyperplanes is called a ruled real hypersurface. It will be an embedded hypersurface
locally, although globally it will in general have self-intersections and singularities.
Equivalently, a ruled real hypersurface satisfies that g(AD,D) = 0. For examples
see [12] or [15].

In 2007 Berndt and Tamaru, [3], gave a complete classification of homogeneous
real hypersurfaces inCH m , m ≥ 2, obtaining 6 types of real hypersurfaces including
types (A1), (A2) and (B). The principal curvatures and eigenspaces of the other 3
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types were described by Berndt and Díaz-Ramos, see [2]. Among them, what the
authors call type S real hypersurfaces are either the ruled minimal real hypersurfaces
W 2m−1 introduced in 1988byLohnherr, [14], for r = 0 or an equidistant hypersurface
to W 2m−1 at a distance r > 0.

Real hypersurfaces satisfying Aφ = φ A were classified by Okumura in 1975,
[20], for the case of the complex projective space and by Montiel and Romero in
1986, [18], for the case of the complex hyperbolic space:

Theorem 1 Let M be a real hypersurface of Mm(c), m ≥ 2. Then Aφ = φ A if and
only if M is locally congruent to a homogeneous hypersurface of either the types
(A1) or (A2) in CPm or either the types (A1), (A2) or (B) in CH m.

The Tanaka-Webster connection, [31, 33], is the canonical affine connection
defined on a non-degenerate, pseudo-Hermitian CR-manifold. As a generalization
of this connection Tanno, [32], defined the generalized Tanaka-Webster connection
for contact metric manifolds by

∇̂X Y = ∇X Y + (∇Xη)(Y )ξ − η(Y )∇Xξ − η(X)φY (3)

for any tangent X, Y . Let k be a nonzero number. Using the naturally extended affine
connection of Tanno’s generalized Tanaka-Webster connection, Cho, [7, 8], defined
the k-th g-Tanaka-Webster connection ∇̂(k) for a real hypersurface in Mm(c) by

∇̂(k)
X Y = ∇X Y + g(φ AX, Y )ξ − η(Y )φ AX − kη(X)φY (4)

for any X, Y tangent to M . Then ∇̂(k)η = 0, ∇̂(k)ξ = 0, ∇̂(k)g = 0, ∇̂(k)φ = 0. In
particular, if the shape operator of a real hypersurface satisfies φ A + Aφ = 2kφ, the
k-th g-Tanaka-Webster connection coincides with the Tanaka-Webster connection.

2 Covariant Derivatives

Let M be a real hypersurface in a non-flat complex space form Mn(c). On M we
have the Levi-Civita connection and for any nonzero k the k-th g-Tanaka-Webster
connection. Consider both covariant derivatives.

We have the tensor field of type (1, 2) on M given by the difference of both con-
nections F (k)(X, Y ) = g(φ AX, Y )ξ − η(Y )φ AX − kη(X)φY , for any X, Y tangent
to M . We will call this tensor the k-th Cho tensor on M . Associated to it, for any
X tangent to M and any non null k we can consider the tensor field of type (1, 1)
F (k)

X Y = F (k)(X, Y ) for any Y tangent to M . This operator will be called the k-th
Cho operator corresponding to X . The torsion of the connection ∇̂(k) is given by
T̂ (k)(X, Y ) = F (k)

X Y − F (k)
Y X , for any X, Y tangent to M .

Notice that if X ∈ D, F (k)
X does not depend on k. In this case we will write simply

FX for F (k)
X .
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Consider any tensor T of type (1, 1) on M . We can study when the covariant
derivatives associated to Levi-Civita and g-Tanaka-Webster connections coincide
on T , that is, ∇T = ∇̂(k)T . This is equivalent to the fact that for any X tangent to
M , T F (k)

X = F (k)
X T , and its geometrical meaning is that every eigenspace of T is

preserved by the k-th Cho operator F (k)
X .

On the other hand, as T M = Span{ξ} ⊕ D, we can weak the above condition to
the cases X = ξ or X ∈ D.

For the case T = A, in [27, 28], we obtained the following results:

Theorem 2 Let M be a real hypersurface in CPm, m ≥ 3. Then FX A = AFX for
any X ∈ D, if and only if M is locally congruent to a ruled real hypersurface.

and

Theorem 3 Let M be a real hypersurface in CPm, m ≥ 3. Then F (k)
ξ A = AF (k)

ξ

for a nonnull constant k if and only if M is locally congruent to a type (A) real
hypersurface.

And as consequence of both theorems we get

Corollary 1 There do not exist real hypersurfaces M in CPm, m ≥ 3, such that
F (k)

X A = AF (k)
X , for any X tangent to M and a nonnull constant k.

The structure Jacobi operator Rξ of M is an important tool to study the geometry
of M . It is defined by Rξ X = R(X, ξ)ξ , for any X tangent to M . Therefore its
expression is given by

Rξ X = ε{X − η(X)ξ} + αAX − η(AX)Aξ (1)

If in our study we take T = Rξ , in [21, 22] we have proved the following results

Theorem 4 Let M be a real hypersurface in Mm(c), m ≥ 2. Then FX Rξ = Rξ FX

for any X ∈ D if and only if M is locally congruent to a ruled real hypersurface.

and

Theorem 5 Let M be a real hypersurface in Mm(c), m ≥ 2. Then F (k)
ξ Rξ = Rξ F (k)

ξ

for a nonnull k if and only if M is locally congruent either to a real hypersurface of
type (A) or to a real hypersurface with Aξ = 0.

As above we get

Corollary 2 There do not exist real hypersurfaces M in Mm(c), m ≥ 2, such that
F (k)

X Rξ = Rξ F (k)
X for some nonnull constant k and any X tangent to M.
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The Ricci tensor of a real hypersurface M in Mm(c) is given by

SX = ε{(2m + 1)X − 3η(X)ξ} + h AX − A2X (2)

for any X tangent to M , where h = trace(A).
It is well known that Mn(c) does not admit real hypersurfaces with parallel Ricci

tensor (∇S = 0). Therefore it is natural to investigate real hypersurfaces satisfying
weaker conditions than the parallelism of S. Most important results on the study of
the Ricci tensor of real hypersurfaces in non-flat complex space forms are included
in Sect. 6 of [6].

We are going to suppose that FX S = SFX for any X ∈ D. This is equivalent to
have

g(φ AX, SY )ξ − η(SY )φ AX = g(φ AX, Y )Sξ − η(Y )Sφ AX (3)

for any X ∈ D, Y tangent to M . In [9] we prove the

Theorem 6 There do not exist Hopf real hypersurfaces in Mm(c), m ≥ 2, whose
Ricci tensor satisfies FX S = SFX for any X ∈ D.

Therefore we can locally write Aξ = αξ + βU for a unit U ∈ D, where α and β

are functions defined on M and β �= 0. We also will call DU = Span{ξ, U, φU }⊥.
This is a holomorphic distribution in D.

Taking the scalar product of (3) forY ∈ DwithY yields η(SY )g(φ AX, Y ) = 0 for
any X, Y ∈ D. If g(φ AX, Y ) = 0 for any X, Y ∈ D, M is a ruled real hypersurface.
Therefore

Theorem 7 Let M be a non Hopf real hypersurface in Mm(c), m ≥ 2, such that
FX S = SFX for any X ∈ D. Then either M is ruled of η(SY ) = 0 for any Y ∈ D.

Consider that η(SY ) = 0 for any Y ∈ D. It is easy to see that AU = βξ + (h −
α)U and AφU = 0. Therefore we have two possibilities

1. h = α.
2. h − α �= 0. In this case we obtain β2 = α(h − α) − 3ε. In the case of CPm this

yields α �= 0 and h = β2+α2+3
α

is also nonnull.

In the first case we obtain

Theorem 8 Let M be a real hypersurface in Mm(c), m ≥ 2, such that h = α. Then
FX S = SFX for any X ∈ D if and only if M is locally congruent to a ruled real
hypersurface.

So let us consider the second case for a real hypersurface M in CPm , m ≥ 3. We
have seen that DU is A-invariant. From (3) taking Y ∈ DU such that AY = λY , we
get either λ = 0 or if λ �= 0, either λ = h or AφY = 0.
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Not any eigenvalue in DU can be zero, because in that case the type number is 2
and M should be ruled, giving a contradiction. Moreover there must be distinct than
0 and h and then AφY = 0 for an eigenvector Y corresponding to such an eigenvalue.

By the Codazzi equation we see that φT0 ⊥ T0, where T0 denotes the eigenspace
corresponding to the eigenvalue 0 and φTh ⊥ Th for the eigenspace corresponding to
the eigenvalue h (that maybe does not appear). Thus we can write DU = T0 ⊕ Th ⊕
D̄U . Where φT0 = Th ⊕ D̄U .

If either h or β2+3
α

is an eigenvalue in D̄U we can prove

grad(β) = (β2 + 5)φU

grad(α) = αβ(β2 + 7)

β2 + 3
φU (4)

and this provides a contradiction. Thus we have

Theorem 9 Let M be a non Hopf real hypersurface in CPm, m ≥ 3, such that
α = g(Aξ, ξ) �= h. Then FX S = SFX for any X ∈ D if and only if M is locally
congruent to a real hypersurface such that Aξ = αξ + βU, for a unit U ∈ D, α and
β are nonvanishing functions, AU = βξ + β2+3

α
U, AφU = 0 and DU = T0 ⊕ D̄U .

All eigenvalues in D̄U are nonnull and different from h and β2+3
α

. Moreover the sum
of all nonnull eigenvalues in D̄U is 0.

Remark: The real hypersurface appearing in last theorem satisfies that K er(A) =
Span{φU } ⊕ T0 is an integrable distribution whose integral leaves are totally geo-
desic and totally real in M . Therefore they are RPm−1.

Now consider the Riemannian curvature tensor R of a real hypersurface M in
CPm , m ≥ 3, and suppose that ∇X R = ∇̂(k)

X R for any X ∈ D. If M is non Hopf and
we follow the above notation, we obtain that AφU = 0, AX = 0 for any X ∈ DU

and αg(AU, U )2 = (β2 + 3)g(AU, U ). If g(AU, U ) = 0, M is ruled. If not, AU =
βξ + β2+3

α
U . Then by Codazzi equation applied to X and φX , X ∈ DU , we get

g([φX, X ], U ) = − 2

β
(5)

and

β2 + 3

α
g([φX, X ], U ) = 0. (6)

Both equations give a contradiction.
If M is Hopf we obtain α = 0. If X ∈ D satisfies AX = λX we get −λ2 AφX =

3λφX . If λ = 0, as AφX = μφX we arrive to a contradiction, because μ does not
exist. Therefore λ �= 0 and −3λ = λ. This is impossible and we have, [24],
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Theorem 10 Let M be a real hypersurface in CPm, m ≥ 3. Then ∇X R = ∇̂(k)
X R

for any X ∈ D and some nonzero constant k if and only if M is locally congruent to
a ruled real hypersurface.

If now ∇ξ R = ∇̂(k)
ξ R and M is non Hopf, we get AφU = γφU for a certain

function γ and kαg(AX, U ) = 0 for any X ∈ DU . Thus either α = 0 or g(AU, X) =
0 for any X ∈ DU .

If α = 0 we can prove that Aξ = βU , AU = βξ , AφU = kφU , where k2 = β +
3. Moreover, as DU is A-invariant, if Y ∈ DU satisfies AY = λY , AφY = kλ−1

k φY .
But we can also obtain k2λφY = k2 AφY . Both expressions give a contradiction.
Thus α �= 0.

After some work we get grad(β) = (2 + α
β2+3

k + 2β2)φU . From this we have

(
β2+3

k )2 + β2 + 1 = 0, which is impossible.
Therefore M must be Hopf and we obtain α(Aφ − φ A)X = 0 for any X tangent

to M . If Aφ = φ A, M must be of type (A). If α = 0 we find that M has, at most,
three distinct constant principal curvatures. Then (see [19]) M is locally congruent to
a real hypersurface either of type (A) or of type (B). As type (B) real hypersurfaces
do not have α = 0, we obtain (see [24])

Theorem 11 Let M be a real hypersurface in CPm, m ≥ 3. Then ∇ξ R = ∇̂(k)
ξ R

for some nonnull constant k if and only if M is locally congruent to a type (A) real
hypersurface.

As a consequence

Corollary 3 There do not exist real hypersurfaces in CPm, m ≥ 3, such that ∇ R =
∇̂(k) R for some nonnull constant k.

3 Lie Derivatives

Let L denote the Lie derivative of a real hypersurface M in CPm . Then LX Y =
∇X Y − ∇Y X for any X, Y tangent to M . Moreover, for any tensor T of type (1, 1)
on M (LX T )Y = LX T Y − TLX Y .

Associated to the k-th g-Tanaka-Webster connection ∇̂(k) on M we can consider
the so-called Lie derivative associated to such a connection (introduced by Jeong,
Pak and Suh in [10] for real hypersurfaces of complex two-plane Grassmannians)
defined by L̂ (k)

X Y = ∇̂(k)
X Y − ∇̂(k)

Y X for any X, Y tangent to M .
Suppose that Lξ A = L̂ (k)

ξ A. If M is non Hopf, this yields AU = βξ + kU ,
AφU = α+k

2 φU and DU is A-invariant. But we also obtain k−α
2 AU = β( k−α

2 )ξ +
( k2−α2

4 − β2)U . If α = k this yields β2U = 0, which is impossible. Therefore AU =
βξ + 2

k−α
( k2−α2

4 − β2)U . Both expressions for AU give (k − α)2 = −4β2, which
is impossible and M must be Hopf.

If M is Hopf it is easy to see that M must be of type (A). Therefore we have [23].
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Theorem 12 Let M be a real hypersurface in CPm, m ≥ 2. Then Lξ A = L̂ (k)
ξ A

for some nonnull k if and only if M is locally congruent to a real hypersurface of
type (A).

If now we suppose thatLX A = L̂ (k)
X A for any X ∈ D we can prove that M must

be Hopf. In this case, if λ is a principal curvature in D we obtain

λ2 + (k − α)λ − kα = 0. (1)

Thus either λ = α or λ = −k and M has, at most, two distinct constant principal
curvatures. Therefore M must be locally congruent to a geodesic hypersphere, [5].
As M cannot be totally umbilical, there exists Y ∈ D such that AY = −kY . But then
AφY = αY . Therefore α �= −k and this contradicts the fact that M is a geodesic
hypersphere. Then

Theorem 13 There do not exist real hypersurfaces in CPm, m ≥ 3, such that
LX A = L̂ (k)

X A for some nonnull k and any X ∈ D.

As above

Corollary 4 There do not exist real hypersurfaces inCPm, m ≥ 3, such thatL A =
L̂ (k) A for some nonnull k.

Now consider the structure Jacobi operator Rξ on M . In [26] we proved the
following

Theorem 14 Let M be a real hypersurface in CPm, m ≥ 3, such that Lξ Rξ = 0.
Then either M is locally congruent to a tube of radius π

4 over a complex submanifold
in CPm or to a real hypersurface of type (A) with radius r �= π

4 .

Suppose now thatLξ Rξ = L̂ (k)
ξ Rξ . Then (φ A − Aφ)Rξ = Rξ (φ A − Aφ). This

yields (see [26]).

Theorem 15 Let M be a real hypersurface in CPm, m ≥ 3. Then Lξ Rξ = L̂ (k)
ξ Rξ

for some nonnull k if and only if M is locally congruent to either a real hypersuface
of type (A) and radius r �= π

4 or to a tube of radius π
4 around a complex submanifold

in CPm.

If now we suppose LX Rξ = L̂ (k)
X Rξ for any X ∈ D and M is non Hopf we get

αg(A2φU, U ) = 0.
If α = 0, Aξ = βU , AU = βξ + kU , AφU = −kφU . We also prove that the

unique eigenvalue inDU is k. Now theCodazzi equation yields k = 0, a contradiction.
Therefore α �= 0, AU = βξ + ωU , AφU = δφU , for some functions ω and δ.

Thenwe obtainα2 = 1,ω = β2−1
α

= k, δ = k. That is, Aξ = αξ + βU , AU = βξ +
kU , AφU = kU , AZ = − 1

α
Z , for any Z ∈ DU . This case yields 4k2 − αk + 3 = 0.

There does not exist any k satisfying this equation. Therefore M must be Hopf.
Let X be a unit vector field in D such that AX = λX . From [20], AφX = μφX ,

μ = αλ+2
2λ−α

. Then we have three possibilities
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• λ + μ = 0, λ = k. Then k2 = −1, which is impossible.
• λ + μ = 0, μ = − 1

α
. Then α2 = −1, also impossible.

• λ = μ = − 1
α
. Then 2 = 0, also impossible.

Therefore we obtain

Theorem 16 There do not exist real hypersurfaces in CPm, m ≥ 3, such that
LX Rξ = L̂ (k)

X Rξ for any X ∈ D and some nonnull k.

We also have the following corollaries

Corollary 5 There do not exist real hypersurfaces inCPm, m ≥ 3, such thatL Rξ =
L̂ (k) Rξ for some nonnull k.

and

Corollary 6 Let M be a real hypersurface inCPm, m ≥ 3, and k a nonnull constant.
Then L̂ (k)

ξ Rξ = 0 if and only if M is locally congruent to either a tube of radius π
4

around a complex submanifold in CPm or to a real hypersurface of type (A) and
radius r �= π

4 .
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