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Abstract Every Riemannian symmetric space of noncompact type is isometric to
some solvable Lie group equipped with a left-invariant Riemannian metric. The cor-
responding metric solvable Lie algebra is called the solvable model of the symmetric
space. In this paper, we give explicit descriptions of the solvable models of noncom-
pact real two-plane Grassmannians, and mention some applications to submanifold
geometry, contact geometry, and geometry of left-invariant metrics.

1 Introduction

In the studies on Riemannian symmetric spaces of noncompact type, the solvable
models have played important roles. Let M = G/K be a Riemannian symmetric
space of noncompact type, where G is the identity component of the isometry group
Isom(M). Let G = K AN be an Iwasawa decomposition, where K is maximal com-
pact, A is abelian, and N is nilpotent. Then M is isometric to the solvable Lie
group S := AN , by being equipped with a suitable left-invariant metric 〈, 〉. The
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solvmanifold (S, 〈, 〉), or the corresponding metric solvable Lie algebra (s, 〈, 〉), is
called the solvable model of the symmetric space M = G/K .

For a real hyperbolic space RHn , its solvable model is the so-called Lie algebra
of RHn , which is of a quite simple form and has several interesting properties (see
[13, 16, 18]). For other (complex, quaternion, and octonion) hyperbolic spaces,
which are of rank one, their solvable models are given by Damek–Ricci spaces
[1, 5]. Particularly in the case of a complex hyperbolic space CHn , the solvable
model provides a lot of interesting examples of isometric actions and homogeneous
submanifolds. We refer to a survey paper [11] and references therein. These studies
have still continued, for examples, the third author [14] studied the geometry of polar
foliations on CHn , and the second author and Kajigaya [10] studied homogeneous
Lagrangian submanifolds in CHn .

For higher rank cases, the solvable models are theoretically known, and can be
described in terms of the root systems. They have played fundamental roles in the
studies on symmetric spaces of noncompact type. Among others, successive exam-
ples would be the studies on homogeneous codimension one foliations [3] and hyper-
polar foliations [4]. However, we sometimes need more explicit descriptions of the
solvable models, in order to study more detailed properties, as in the case of complex
hyperbolic spaces CHn .

In this paper, we concentrate on a noncompact real two-plane Grassmannian
G∗

2(R
n+2), and explicitly describe its solvable model according to [8]. It is not diffi-

cult to determine the structure of the solvable model, but as far as we know, it is hard
to find it in the literature. We also give several applications of the solvable model
of G∗

2(R
n+2). The topics contain cohomogeneity one actions (homogeneous codi-

mension one foliations), geometry of Lie hypersurfaces, particular contact metric
manifolds, and left-invariant Einstein and Ricci soliton metrics on Lie groups. We
believe that our solvable model would play a fundamental role in further studies on
geometry of G∗

2(R
n+2).

2 The Solvable Model

In this section, we recall a description of the solvable models of noncompact
real two-plane Grassmannians G∗

2(R
n+2) = SO0(2, n)/S(O(2) × O(n)), according

to the description given in [8].

2.1 A Description of the Solvable Model

In this subsection we give a definition of the solvable model of G∗
2(R

n+2). We usu-
ally assume n ≥ 3, since, in the case of n = 2, the symmetric space G∗

2(R
4) is not

irreducible and has different features.
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Definition 1 Let c > 0 and n ≥ 3. We call (s(c), 〈, 〉, J ) the solvable model of
G∗

2(R
n+2) if

(1) s(c) := span{A1, A2, X0, Y1, . . . , Yn−2, Z1, . . . , Zn−2, W0} is a 2n-dimensional
Lie algebra whose nonzero bracket relations are defined by

• [A1, X0] = cX0, [A1, Yi ] = −(c/2)Yi , [A1, Zi ] = (c/2)Zi , [A1, W0] = 0,
• [A2, X0] = 0, [A2, Yi ] = (c/2)Yi , [A2, Zi ] = (c/2)Zi , [A2, W0] = cW0,
• [X0, Yi ] = cZi , [Yi , Zi ] = cW0.

(2) 〈, 〉 is an inner product on s(c) so that the above basis is orthonormal,
(3) J is a complex structure on s(c) given by

J (A1) = −X0, J (A2) = W0, J (Yi ) = Zi .

Let S(c) denote the connected and simply-connected Lie group with Lie algebra
s(c), equipped with the induced left-invariant metric 〈, 〉 and the induced complex
structure J . The triplet (S(c), 〈, 〉, J ) is also called the solvable model.

Theorem 2 ([8]) The solvable model (S(c), 〈, 〉, J ) is isomorphic to G∗
2(R

n+2) with
minimal sectional curvature −c2.

The proof is given by describing the Iwasawa decomposition of so(2, n) explicitly,
in terms of matrices. This is long but a straightforward calculation.

We here see the structure of the Lie algebra s(c). One can directly see that

n := [s(c), s(c)] = span{X0, Y1, . . . , Yn−2, Z1, . . . , Zn−2, W0}.

Furthermore, by the given bracket relations, we have

[n, n] = span{Z1, . . . , Zn−2, W0}, [n, [n, n]] = span{W0}, [n, [n, [n, n]]] = 0.

Therefore, s(c) is solvable, whose derived subalgebra is three-step nilpotent. This is
compatible with the root space decomposition, mentioned in the next subsection.

2.2 A Description in Terms of Root Spaces

In this subsection, we describe the root space decomposition of the solvable model
(s(c), 〈, 〉, J ). We need such description in order to translate some general results
stated in terms of the root spaces.

Let us put a := span{A1, A2} ⊂ s(c), which is an abelian subalgebra. Then, for
each α ∈ a∗, the root space sα of s(c) with respect to a is defined by

sα := {X ∈ s(c) | [H, X ] = α(H)X (∀H ∈ a)}.
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Proposition 3 Let us define εi ∈ a∗ by

ε1(A1) := c/2, ε2(A1) := −c/2, ε1(A2) := c/2, ε2(A2) := c/2.

Then the nontrivial root spaces can be described as follows:

sε1−ε2 = span{X0}, sε2 = span{Y1, . . . , Yn−2},
sε1 = span{Z1, . . . , Zn−2}, sε1+ε2 = span{W0}.

Proof It follows directly from the bracket relations of the solvable model. �
As usual, we put α1 := ε1 − ε2 and α2 := ε2. We then have the root space decom-

position of s(c) with respect to a,

s(c) = a ⊕ sα1 ⊕ sα2 ⊕ sα1+α2 ⊕ sα1+2α2 .

Therefore the set of roots is of type B2, and {α1, α2} is the set of simple roots. This
agrees with the root system of G∗

2(R
n+2).

3 Applications

In this section, we mention several applications of the solvable models (S(c), 〈, 〉, J )

of noncompact real two-plane Grassmannians G∗
2(R

n+2).

3.1 Cohomogeneity One Actions

In this subsection, we study cohomogeneity one actions on G∗
2(R

n+2) in terms of the
solvable model.

Definition 4 For an isometric action on a Riemannian manifold, maximal dimen-
sional orbits are said to be regular, and other orbits singular. The codimension of a
regular orbit is called the cohomogeneity of the action.

Therefore, a cohomogeneity one action is an isometric action whose regular orbits
are of codimension one. For irreducible symmetric spaces of noncompact type, coho-
mogeneity one actions without singular orbit (equivalently, homogeneous codimen-
sion one foliations) have been classified in [3]. The classification result is described
in terms of the root systems, but one can translate it into the solvable models as
follows.

Theorem 5 ([3]) An isometric action of a connected group on G∗
2(R

n+2) is a coho-
mogeneity one action without singular orbit if and only if it is orbit equivalent to one
of the actions given by
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(N) h = span{a1A1 + a2 A2} ⊕ n with a2
1 + a2

2 = 1,
(A1) h = s(c) 
 span{X0},
(A2) h = s(c) 
 span{Y1}.

We refer these actions as the actions of type (N ), (A1), and (A2), respectively.
Note that there exist continuously many actions of type (N ). The orbits of these
actions play leading roles throughout this section.

Remark 6 Let H be a Lie subgroup of the solvable model S(c). We identify
G∗

2(R
n+2) ∼= S(c), and hence H acts on S(c) by the multiplication from the left.

In this paper we consider H is acting on G∗
2(R

n+2) in this way. On the other hand,
one has G∗

2(R
n+2) = SO0(2, n)/S(O(2) × O(n)), and H acts on this homogeneous

space since H ⊂ S(c) ⊂ SO0(2, n). We note that these two actions are equivariant,
by the identification F : S(c) → G∗

2(R
n+2) : g → g.o, where o denotes the origin.

3.2 Lie Hypersurfaces

In this subsection, we study extrinsic geometry of orbits of cohomogeneity one
actions on G∗

2(R
n+2) without singular orbits. These orbits are sometimes called Lie

hypersurfaces.

Proposition 7 ([3, 15]) For the cohomogeneity one actions on G∗
2(R

n+2) described
in Theorem 5, we have the following:

(1) For each action of type (N ), all orbits are isometrically congruent to each other.
(2) For each of the actions of type (A1) and (A2), there exists the unique minimal

orbit.

It depends on the choice of a1A1 + a2 A2 whether a cohomogeneity one action of
type (N ) has minimal orbits or not. In order to study it, we have only to study the
minimality of the orbit H.e through the identity e ∈ S(c). This is equivalent to the
minimality of the Lie subgroup H ⊂ S(c).

We here recall some general facts on theminimality of Lie subgroups. Let (G, 〈, 〉)
be a Lie group with a left-invariant Riemannian metric, which we identify with
the corresponding metric Lie algebra (g, 〈, 〉). First of all, we define the symmetric
bilinear form U : g × g → g by

2〈U (X, Y ), Z〉 = 〈[Z , X ], Y 〉 + 〈X, [Z , Y ]〉 (∀X, Y, Z ∈ g).

Then, the Koszul formula yields that the Levi-Civita connection ∇ : g × g → g of
(g, 〈, 〉) can be written as

∇X Y = (1/2)[X, Y ] + U (X, Y ).
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Let H be a Lie subgroup of G with Lie algebra h. Then the second fundamental form
h : h × h → g 
 h of the submanifold H ⊂ G is defined by

h(X, Y ) := (∇X Y )⊥ := U (X, Y )g
h,

which means the (g 
 h)-component of U (X, Y ) (and 
 denotes the orthogonal
complement). The trace of h is called the mean curvature vector of the submanifold
H in G, and H is said to be minimal if the mean curvature vector vanishes. In order
to study the minimality of some Lie subgroups, the following notion is convenient.

Definition 8 A vector H0 ∈ g is called the mean curvature vector of (g, 〈, 〉) if it
satisfies

〈H0, X〉 = tr(adX ) (∀X ∈ g).

Note that one has to distinguish the mean curvature vector of (g, 〈, 〉) and the
mean curvature vector of a submanifold H in G. These two mean curvature vectors
are related in the following particular cases.

Proposition 9 Let H0 be the mean curvature vector of (g, 〈, 〉), and H be a Lie
subgroup of G whose Lie algebra h contains [g, g]. Then the mean curvature vector
of the submanifold H in G coincides with (H0)g
h.

Proof Since [g, g] ⊂ h, one has a decomposition h = [g, g] ⊕ (h 
 [g, g]). Let {ei }
and {e′

j } be orthonormal bases of [g, g] and h 
 [g, g], respectively. Then, the mean
curvature vector H ′

0 of the submanifold H in G is given by

H ′
0 = ∑

h(ei , ei ) + ∑
h(e′

j , e′
j ) = ∑

U (ei , ei )g
h + ∑
U (e′

j , e′
j )g
h.

Here, since e′
j ⊥ [g, g], one has U (e′

j , e′
j ) = 0. We thus have

H ′
0 = ∑

U (ei , ei )g
h.

Our claim is H ′
0 = (H0)g
h. Take any X ∈ g 
 h. Then we have

〈H ′
0, X〉 = 〈∑ U (ei , ei ), X〉 = ∑〈[X, ei ], ei 〉 = tr(adX |[g,g]).

On the other hand, by the definition of H0, one knows

〈H0, X〉 = tr(adX ) = tr(adX |[g,g]),

where the last equality follows from adX (g) ⊂ [g, g]. This completes the proof. �

Remark 10 In general, the mean curvature vector H0 of (g, 〈, 〉) satisfies

〈H0, [g, g]〉 = 0,
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since 〈H0, [X, Y ]〉 = tr(ad[X,Y ]) = tr([adX , adY ]) = 0. Therefore, if we consider the
particular case h = [g, g], themean curvature vector of the submanifold H = [G, G]
coincides with H0. This is a reason why H0 is called the mean curvature vector.

We apply this general theory to the actions of type (N ) on G∗
2(R

n+2) ∼= S(c). By
the given bracket relations of s(c), one can directly calculate H0.

Proposition 11 H0 := cA1 + c(n − 1)A2 is the mean curvature vector of the solv-
able model (s(c), 〈, 〉).

For an action of type (N ), there exist nominimal orbits in a generic case. However,
if a1 A1 + a2 A2 is a particular one, then the action has minimal orbit (and hence all
orbits are minimal). Such phenomenon has been known in [3, Corollary 3.2], but we
here point out which action has a minimal orbit.

Proposition 12 A cohomogeneity one action of type (N ) on G∗
2(R

n+2) has a minimal
orbit (and hence all orbits are minimal) if and only if it is given by

h := span{A1 + (n − 1)A2} ⊕ n.

Proof Let h := span{a1A1 + a2 A2} ⊕ n, and H be the connected Lie subgroup of
S(c) with Lie algebra h. We study the condition for the submanifold H in S(c) to
be minimal. Note that [s(c), s(c)] = n ⊂ h holds. Therefore, by Proposition 9, H is
minimal in S(c) if and only if (H0)s(c)
h = 0. This is equivalent to h = span{H0} ⊕
n. We thus complete the proof by Proposition 11. �

3.3 Einstein Solvmanifolds

In this subsection,we study intrinsic geometry of orbits of cohomogeneity one actions
on G∗

2(R
n+2)without singular orbits. In particular, they provide examples of Einstein

solvmanifolds. First of all we recall the following notation.

Definition 13 Ametric solvable Lie algebra (s, 〈, 〉) is said to be of Iwasawa type if

(i) a := s 
 [s, s] is abelian,
(ii) for every A ∈ a, adA is symmetric with respect to 〈, 〉, and adA �= 0 if A �= 0,
(iii) there exists A0 ∈ a such that adA0 |[s,s] is positive definite.

One can easily see that the solvable model (s(c), 〈, 〉) of G∗
2(R

n+2) is of Iwasawa
type. More generally, the solvable parts of Iwasawa decompositions of semisimple
Lie algebras are of Iwasawa type.

Proposition 14 ([12], Theorem4.18)Let (s, 〈, 〉)be an Einstein solvable Lie algebra
of Iwasawa type, and H0 be the mean curvature vector of (s, 〈, 〉). We put n := [s, s],
a := s 
 n, and take a nonzero subspace a′ ⊂ a. Then (s′ := a′ ⊕ n, 〈, 〉|s′×s′) is
Einstein if and only if H0 ∈ a′.
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The above procedure is called the rank reduction of an Einstein solvable Lie
algebra (s = a ⊕ n, 〈, 〉). Note that our solvablemodel is Einstein, since it is isometric
to an irreducible symmetric space. Hence, by applying the above procedure, we
immediately have the following.

Proposition 15 Let (s(c), 〈, 〉, J ) be the solvable model of G∗
2(R

n+2), and put h :=
span{A1 + (n − 1)A2} ⊕ n. Then, for the corresponding cohomogeneity one action
of type (N ), all orbits are Einstein hypersurfaces with respect to the induced metrics.

In particular, G∗
2(R

n+2) admits (homogeneous) real hypersurfaces which are Ein-
stein. This is an easy observation, but would be interesting from the viewpoint of
submanifold geometry. In fact, this is in contrast to the case of CHn , namely, CHn

do not admit any Einstein real hypersurfaces (see [19]).

3.4 Contact Metric Manifolds

In this subsection, we apply the solvable model (s(c), 〈, 〉, J ) of G∗
2(R

n+2) to study
contact metric manifolds. Let M be a smooth manifold and X(M) denote the set of
all smooth vector field. A contact metric structure is denoted by (η, ξ, ϕ, g). The
following notion has been introduced in [6].

Definition 16 Let (κ, μ) ∈ R
2. A contact metric manifold (M, η, ξ, ϕ, g) is called

a (κ, μ)-space if the Riemannian curvature tensor R satisfies

R(X, Y )ξ = (κ I + μh)(η(Y )X − η(X)Y ) (∀X, Y ∈ X(M)),

where I denotes the identity transformation and h := (1/2)Lξϕ is the Lie derivative
of ϕ along ξ .

It has beenknown thatκ ≤ 1 always holds. Furthermore, a contactmetricmanifold
is Sasakian if and only if it is a (1, μ)-space [6]. Therefore, the class of (κ, μ)-spaces
is a kind of generalization of Sasakian manifolds. Typical examples of non-Sasakian
(κ, μ)-spaces are the unit tangent sphere bundles T1(M(c)) over Riemannian mani-
folds M(c) of constant curvature c �= 1. Non-Sasakian (κ, μ)-spaces have been stud-
ied deeply by Boeckx [7], but a geometric understanding seems to be not enough.
The following gives a realization of (0, 4)-spaces.

Theorem 17 ([8]) Let (s(2
√
2), 〈, 〉, J ) be the solvable model of G∗

2(R
n+2) with

normalization c = 2
√
2, where n ≥ 3. Then, h := s(2

√
2) 
 span{A1 + A2} is a

subalgebra, and the corresponding Lie group H equipped with the standard almost
contact metric structure is a (0, 4)-space of dimension 2n − 1.

Recall that every real hypersurface in a Kähler manifold admits an almost con-
tact metric structure. Note that G∗

2(R
n+2) is a Hermitian symmetric space, which
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is Kähler, of dimension 2n. Therefore, the above Lie subgroup H is equipped with
an almost contact metric structure, and of dimension 2n − 1. The proof is given by
showing that h is isomorphic to the example constructed by Boeckx [7].

We also note that this result is relevant to the study by Berndt and Suh [2], who
classified contact real hypersurfaces in G∗

2(R
n+2)with constant principal curvatures.

The above (0, 4)-space is an example of such hypersurfaces, and hence is contained
in their classification list (which is called a horosphere).

3.5 Ricci Soliton Solvmanifolds

In this subsection, we see that the orbits of cohomogeneity one actions of type (N )

provide examples of Ricci soliton solvmanifolds. Recall that a Riemannian manifold
(M, g) is called a Ricci soliton if there exist c ∈ R and X ∈ X(M) such that the Ricci
tensor Ricg satisfies

Ricg = cg + LX g,

where LX g denotes the Lie derivative of g along X .

Definition 18 Ametric Lie algebra (g, 〈, 〉) is called an algebraic Ricci soliton with
constant c ∈ R if there exists a derivation D ∈ Der(g) such that

Ric = c · id + D.

An algebraic Ricci soliton is called a solvsoliton if g is solvable, and a nilsoliton
if g is nilpotent. Note that any algebraic Ricci soliton gives rise to a Ricci soliton
metric on the corresponding simply-connected Lie group (see [17]).

Proposition 19 ([8, 17]) Let (s = a ⊕ n, 〈, 〉) be a solvsoliton with constant c <

0. Take any subspace a′ of a, and put s′ := a′ ⊕ n. Then, s′ is a subalgebra, and
(s′, 〈, 〉|s′×s′) is also a solvsoliton with constant c.

Recall that our solvable model s(c) is Einstein with negative scalar curvature and
solvable, which is a special case of solvsolitons with constant c < 0. Therefore, the
above proposition yields the following.

Proposition 20 All orbits of cohomogeneity one actions of type (N ) on G∗
2(R

n+2)

are Ricci soliton solvmanifolds.

Recall that a particular choice of a′, that is h := span{A1 + (n − 1)A2} ⊕ n, gives
rise to an Einstein solvmanifold (see Proposition 15). Other choices of a′ provide
nontrivial (not Einstein) Ricci soliton solvmanifolds.

Corollary 21 The connected, simply-connected and complete (0, 4)-space with
dimension ≥5 is a nontrivial Ricci soliton.
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Proof It has been known in [7] that non-Sasakian (κ, μ)-spaces are locally deter-
mined by its dimension and the values (κ, μ) ∈ R

2. Therefore, a connected, simply-
connected and complete (0, 4)-space is isometric to the one given in Theorem 17
by

h = s(2
√
2) 
 span{A1 + A2} = span{A1 − A2} ⊕ n.

In particular, it is an orbit of a cohomogeneity one action of type (N ). By Proposi-
tion 20, it must be Ricci soliton. Furthermore, it is not Einstein, since A1 − A2 is not
proportional to H0. �

Note that Ghosh–Sharma [9] have studied non-Sasakian (κ, μ)-spaces which are
Ricci soliton. In fact, they have proved the following classification result.

Theorem 22 ([9]) Let M be a non-Sasakian (κ, μ)-space whose metric is a Ricci
soliton. Then M is locally isometric to either (0, 0)-space or (0, 4)-space as a contact
metric manifold.

For (0, 4)-spaces with dimension≥5, the converse statement would not be explic-
itly examined (they have used the softwareMATLAB). Our argument above comple-
ments the theorem of Ghosh–Sharma, by giving a Lie-theoretic proof of the converse
direction, which can be checked by hand.
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