
The Chern-Moser-Tanaka Invariant on
Pseudo-Hermitian Almost CR Manifolds

Jong Taek Cho

Abstract Westudyon theChern-Moser-Tanaka invariant (Chern,ActaMath133:219–
271, 1974, [5], Tanaka, Japan J Math 12:131–190, 1976, [14]) of pseudo-conformal
transformations on pseudo-Hermitian almost CR manifolds.

1 Introduction

Acontactmanifold (M, η) admits the fundamental structureswhich enrich the geom-
etry. One is a Riemannian metric g compatible to the contact form η and we obtain a
contact Riemannianmanifold (M; η, g). The other is a pseudo-Hermitian and strictly
pseudo-convex structure (η, L) (or (η, J )), where L is the Levi form associated with
an endomorphism J on D (= kernel of η) such that J 2 = −I . (M; η, J ) is called a
strictly pseudo-convex, pseudo-Hermitian manifold (or almost CR manifold). Then
we have a one-to-one correspondence between the two associated structures by the
relation g = L + η ⊗ η, where we denote by the same letter L the natural exten-
sion (iξ L = 0) of the Levi form to a (0,2)-tensor field on M . So, we treat contact
Riemannian structures together with strictly pseudo-convex almost CR structures.
In earlier works [6–8, 10], the present author started the intriguing study of the
interactions between them. For complex analytical considerations, it is desirable to
have integrability of the almost complex structure J (on D). If this is the case, we
speak of an (integrable) CR structure and of a CR manifold. Indeed, S. Webster [21,
22] introduced the term pseudo-Hermitian structure for a CR manifold with a non-
degenerate Levi-form. In the present paper, we treat the pseudo-Hermitian structure
as an extension to the case of non-integrable H .

There is a canonical affine connection in a non-degenerate CR manifold, the so-
called pseudo-Hermitian connection (or the Tanaka-Webster connection). S. Tanno
[16] extends the Tanaka-Webster connection for strictly pseudo-convex almost CR
manifolds (in which H is in general non-integrable). We call it the general-
ized Tanaka-Webster connection. Using this we have the pseudo-Hermitian Ricci
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curvature tensor. If the pseudo-Hermitian Ricci curvature tensor is a scalar (field)
multiple of the Levi form in a strictly pseudo-convex almost CR manifold, then it is
said to have the pseudo-Einstein structure. A pseudo-Hermitian CR space form is a
strictly pseudo-convexCRmanifold of constant holomorphic sectional curvature (for
Tanaka-Webster connection). Then we have that a pseudo-Hermitian CR space form
is pseudo-Einstein. In Sect. 4, we study the generalized Chern-Moser-Tanaka cur-
vature tensor C as a pseudo-conformal invariant in a strictly pseudo-convex almost
CR manifold. Then we first prove that the Chern-Moser-Tanaka curvature tensor
vanishes for a pseudo-Hermitian CR space form. Moreover, we prove that for a
strictly pseudo-convex almost CR manifold M2n+1 (n > 1) with vanishing C , M
is pseudo-Einstein if and only if M is of pointwise constant holomorphic sectional
curvature.

2 Preliminaries

We start by collecting some fundamental materials about contact Riemannian geom-
etry and strictly pseudo-convex pseudo-Hermitian geometry. All manifolds in the
present paper are assumed to be connected, oriented and of class C∞.

2.1 Contact Riemannian Structures

A contact manifold (M, η) is a smooth manifold M2n+1 equipped with a global one-
form η such that η ∧ (dη)n �= 0 everywhere on M . For a contact form η, there exists
a unique vector field ξ , called the characteristic vector field, satisfying η(ξ) = 1
and dη(ξ, X) = 0 for any vector field X . It is well-known that there also exist a
Riemannian metric g and a (1, 1)-tensor field ϕ such that

η(X) = g(X, ξ), dη(X,Y ) = g(X, ϕY ), ϕ2X = −X + η(X)ξ, (1)

where X and Y are vector fields on M . From (1), it follows that

ϕξ = 0, η ◦ ϕ = 0, g(ϕX, ϕY ) = g(X,Y ) − η(X)η(Y ). (2)

A Riemannian manifold M equipped with structure tensors (η, g) satisfying (1)
is said to be a contact Riemannian manifold or contact metric manifold and it is
denoted by M = (M; η, g). Given a contact Riemannian manifold M , we define
a (1, 1)-tensor field h by h = 1

2£ξϕ, where £ξ denotes Lie differentiation for the
characteristic direction ξ . Then we may observe that h is self-adjoint and satisfies

hξ = 0, hϕ = −ϕh, (3)
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∇Xξ = −ϕX − ϕhX, (4)

where ∇ is Levi-Civita connection. From (3) and (4) we see that ξ generates a
geodesic flow. Furthermore, we know that ∇ξϕ = 0 in general (cf. p. 67 in [1]).
From the second equation of (3) it follows also that

(∇ξh)ϕ = −ϕ(∇ξh). (5)

A contact Riemannianmanifold forwhich ξ is Killing is called a K -contact manifold.
It is easy to see that a contact Riemannian manifold is K -contact if and only if h = 0.
For further details on contact Riemannian geometry, we refer to [1].

2.2 Pseudo-Hermitian Almost CR Structures

For a contactmanifoldM , the tangent space TpM ofM at each point p ∈ M is decom-
posed as TpM = Dp ⊕ {ξ}p (direct sum), where we denote Dp = {v ∈ TpM |η(v) =
0}. Then the 2n-dimensional distribution (or subbundle) D : p → Dp is called the
contact distribution (or contact subbundle). Its associated almost CR structure is
given by the holomorphic subbundle

H = {X − i J X : X ∈ Γ (D)}

of the complexificationCT M of the tangent bundle T M , where J = ϕ|D, the restric-
tion of ϕ to D. Then we see that each fiberHp (p ∈ M) is of complex dimension n
and H ∩ H̄ = {0}. Furthermore, we have CD = H ⊕ H̄ . For the real represen-
tation {D, J } of H we define the Levi form by

L : Γ (D) × Γ (D) → F (M), L(X,Y ) = −dη(X, JY )

where F (M) denotes the algebra of differential functions on M . Then we see that
the Levi form is Hermitian and positive definite. We call the pair (η, L) (or (η, J ))
a strictly pseudo-convex, pseudo-Hermitian structure on M . We say that the almost
CR structure is integrable if [H ,H ] ⊂ H . Since dη(J X, JY ) = dη(X,Y ), we
see that [J X, JY ] − [X,Y ] ∈ Γ (D) and [J X,Y ] + [X, JY ] ∈ Γ (D) for X,Y ∈
Γ (D), further if M satisfies the condition [J, J ](X,Y ) = 0 for X,Y ∈ Γ (D), then
the pair (η, J ) is called a strictly pseudo-convex (integrable) CR structure and
(M; η, J ) is called a strictly pseudo-convex CR manifold or a strictly pseudo-convex
integrable pseudo-Hermitian manifold. A pseudo-Hermitian torsion is defined by
τ = ϕh (cf. [2]).

For a given strictly pseudo-convex pseudo-Hermitian manifold M , the almost CR
structure is integrable if and only if M satisfies the integrability condition Ω = 0,
where Ω is a (1,2)-tensor field on M defined by
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Ω(X,Y ) = (∇Xϕ)Y − g(X + hX,Y )ξ + η(Y )(X + hX) (6)

for all vector fields X,Y on M (see [16], Proposition 2.1]). It is well known that
for 3-dimensional contact Riemannian manifolds their associated CR structures are
always integrable (cf. [16]).

ASasakianmanifold is a strictly pseudo-convexCRmanifoldwhose characteristic
flow is isometric (or equivalently, vanishing the pseudo-Hermitian torsion). From (6)
it follows at once that a Sasakian manifold is also determined by the condition

(∇Xϕ)Y = g(X,Y )ξ − η(Y )X (7)

for all vector fields X and Y on the manifold.
Now, we review the generalized Tanaka-Webster connection [16] on a strictly

pseudo-convex almost CR manifold M = (M; η, J ). The generalized Tanaka-
Webster connection ∇̂ is defined by

∇̂XY = ∇XY + η(X)ϕY + (∇Xη)(Y )ξ − η(Y )∇Xξ

for all vector fields X,Y on M . Together with (4), ∇̂ may be rewritten as

∇̂XY = ∇XY + B(X,Y ), (8)

where we have put

B(X,Y ) = η(X)ϕY + η(Y )(ϕX + ϕhX) − g(ϕX + ϕhX,Y )ξ. (9)

Then, we see that the generalized Tanaka-Webster connection ∇̂ has the torsion
T̂ (X,Y ) = 2g(X, ϕY )ξ + η(Y )ϕhX − η(X)ϕhY. In particular, for a K -contact
manifold we get

B(X,Y ) = η(X)ϕY + η(Y )ϕX − g(ϕX,Y )ξ. (10)

Furthermore, it was proved that

Proposition 1 ([16]) The generalized Tanaka-Webster connection ∇̂ on a strictly
pseudo-convex almost CR manifold M = (M; η, J ) is the unique linear connection
satisfying the following conditions:

(i) ∇̂η = 0, ∇̂ξ = 0;
(i i) ∇̂g = 0, where g is the associated Riemannian metric;
(i i i − 1) T̂ (X,Y ) = 2L(X, JY )ξ , X, Y ∈ Γ (D);
(i i i − 2) T̂ (ξ, ϕY ) = −ϕT̂ (ξ,Y ), Y ∈ Γ (D);
(iv) (∇̂Xϕ)Y = Ω(X,Y ), X, Y ∈ Γ (T M).

The pseudo-Hermitian connection (or The Tanaka-Webster connection) [14, 22] on
a non-degenerate (integrable) CRmanifold is defined as the unique linear connection
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satisfying (i), (ii), (iii-1), (iii-2) and Ω = 0. We refer to [2] for more details about
pseudo-Hermitian geometry in strictly pseudo-convex almost CR manifolds.

2.3 Pseudo-homothetic Transformations

In this subsection, we first review

Definition 1 Let (M; η, ξ.ϕ, g) be a contact Riemannian manifold. Then a diffeo-
morphism f on M is said to be a pseudo-homothetic transformation if there exists a
positive constant a such that

f ∗η = aη, f∗ξ = ξ/a, ϕ ◦ f∗ = f∗ ◦ ϕ, f ∗g = ag + a(a − 1)η ⊗ η.

Due to S. Tanno [15], we have

Theorem 1 If a diffeomorphism f on a contact Riemannian manifold M is ϕ-
holomorphic, i.e.,

ϕ ◦ f∗ = f∗ ◦ ϕ,

then f is a pseudo-homothetic transformation.

Here, the new contact Riemannian manifold (M; η̄, ξ̄ .ϕ̄, ḡ) defined by

η̄ = aη, ξ̄ = ξ/a, ϕ̄ = ϕ, ḡ = ag + a(a − 1)η ⊗ η, (11)

is called a pseudo-homothetic deformation of (M, η, ξ.ϕ, g). Then we have

∇̄XY = ∇XY + A(X,Y ), (12)

where A is the (1, 2)-type tensor defined by

A(X,Y ) = −(a − 1)[η(Y )ϕX + η(X)ϕY ] − a − 1

a
g(ϕhX,Y )ξ.

Then we have

Proposition 2 ([9]) The generalized Tanaka-Webster connection is pseudo-
homothetically invariant.

The so-called (k, μ)-spaces are defined by the condition

R(X,Y )ξ = (k I + μh)(η(Y )X − η(X)Y )

for (k, μ) ∈ R
2, where I denotes the identity transformation. This class involves the

Sasakian case for k = 1 (h = 0). For a non-Sasakian contact Riemannian manifold,
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h has the only two eigenvalues
√
1 − k and−√

1 − k on D with their multiplicities n
respectively. The (k, μ)-spaces have integrable CR structures and further, this class
of spaces is invariant under pseudo-homothetic transformations. Indeed, a pseudo-
homothetic transformation with constant a(> 0) transforms a (k, μ)-space into a
(k̄, μ̄)-space where k̄ = k+a2−1

a2 and μ̄ = μ+2a−2
a (cf. [1] or [3]). In particular,

we find that k = 1 and μ = 2 are the only two invariants under pseudo-homothetic
transformations for all a �= 1.

3 Pseudo-Einstein Structures

Wedefine the pseudo-Hermitian curvature tensor (or the generalized Tanaka-Webster
curvature tensor) on a strictly pseudo-convex almost CR manifold R̂ of ∇̂ by

R̂(X,Y )Z = ∇̂X (∇̂Y Z) − ∇̂Y (∇̂X Z) − ∇̂[X,Y ]Z

for all vector fields X,Y, Z in M . We remark that the generalized Tanaka-Webster
connection is not torsion-free, and then the Jacobi- or Bianchi-type identities do not
hold, in general. From the definition of R̂, we have

R̂(X,Y )Z = R(X,Y )Z + H(X,Y )Z , (13)

and

H(X, Y )Z = η(Y )
(
(∇Xϕ)Z − g(X + hX, Z)ξ

) − η(X)
(
(∇Y ϕ)Z − g(Y + hY, Z)ξ

)

+ η(Z)
(
(∇Xϕ)Y − (∇Y ϕ)X + (∇Xϕh)Y − (∇Y ϕh)X

+ η(Y )(X + hX) − η(X)(Y + hY )
) − 2g(ϕX, Y )ϕZ (14)

− g(ϕX + ϕhX, Z)(ϕY + ϕhY ) + g(ϕY + ϕhY, Z)(ϕX + ϕhX)

− g((∇Xϕ)Y − (∇Y ϕ)X + (∇Xϕh)Y − (∇Y ϕh)X, Z)ξ

for all vector fields X,Y, Z in M .

Now, we introduce the pseudo-Hermitian Ricci (curvature) tensor:

ρ̂(X,Y ) = 1

2
trace of {V �→ J R̂(X, JY )V },

where X,Y are vector fields orthogonal to ξ . This definition was referred as a 2nd
kind in the author’s earlier work [9]. Indeed, the pseudo-Hermitian Ricci (curvature)
tensor of the 1st kind ρ̂1 is defined by

ρ̂1(X,Y ) = trace of {V �→ R̂(V, X)Y },
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where V is any vector field on M and X,Y are vector fields orthogonal to ξ . Then
we can find the following useful relation between the two notions in general:

ρ̂(X,Y ) =ρ̂1(X,Y ) − 2(n − 1)g(hX,Y )

+
2n∑

i=1

(
g((∇̂ei Ω)(X,Y ), ϕei ) − g((∇̂XΩ)(ei ,Y ), ϕei )

) (15)

for X,Y ∈ Γ (D) (cf. [17]). We define the corresponding pseudo-Hermitian Ricci
operator Q̂ is defined by L(Q̂X,Y ) = ρ̂(X,Y ). The Tanaka-Webster (or the pseudo-
Hermitian) scalar curvature r̂ is given by

r̂ = trace of {V �→ Q̂V }.

Then, from Proposition 2, we get

Corollary 1 The pseudo-Hermitian curvature tensor (or The generalized Tanaka-
Webster curvature tensor) R̂ and the pseudo-Hermitian Ricci tensor Q̂ are
pseudo-homothetic invariants.

Definition 2 Let (M; η, J ) be a strictly pseudo-convex almost CR manifold. Then
the pseudo-Hermitian structure (η, J ) is said to be pseudo-Einstein if the pseudo-
Hermitian Ricci tensor is proportional to the Levi form, namely,

ρ̂(X,Y ) = λL(X,Y ),

where X,Y ∈ Γ (D), where λ = r̂/2n.

Remark 1 N. Tanaka [13] and J.M. Lee [11] defined the pseudo-Hermitian Ricci ten-
sor on a non-degenerate CRmanifold in a complex fashion. Further, J.M. Lee defined
and intensively studied the pseudo-Einstein structure. Then every 3-dimensional
strictly pseudo-convex CR manifold is pseudo-Einstein.

Remark 2 From (15), we at once see that for the Sasakian case or the 3-dimensional
case ρ̂ = ρ̂1.

Moreover, we have

Proposition 3 ([9])Anon-Sasakian contact (k, μ)-space (k < 1) is pseudo-Einstein
with constant pseudo-Hermitian scalar curvature r̂ = 2n2(2 − μ).

In [3] they proved that unit tangent sphere bundles with standard contact metric
structures are (k, μ)-spaces if and only if the base manifold is of constant curvature
b with k = b(2 − b) and μ = −2b. Thus, we have

Corollary 2 The standard contact metric structure of T1M(b) of a space of constant
curvature b is pseudo-Einstein. Its pseudo-Hermitian scalar curvature r̂ = 4n2(1 +
b).
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The class of contact (k, μ)-spaces, whose associated CR structures are integrable as
stated at the end of Sect. 2, contains non-unimodular Lie groups with left-invariant
contact metric structure other than unit tangent bundles of a space of constant cur-
vature (see [4]).

4 Pseudo-Hermitian CR Space Forms

In this section, we give

Definition 3 ([7]) Let (M; η, J ) be a strictly pseudo-convex almost CR manifold.
Then M is said to be of constant holomorphic sectional curvature c (with respect to
the generalized Tanaka-Webster connection) if M satisfies

L(R̂(X, ϕX)ϕX, X) = c

for any unit vector field X orthogonal to ξ . In particular, for the CR integrable case
we call M a pseudo-Hermitian (strictly pseudo-convex) CR space form.

Then for a strictly pseudo-convex almost CR manifold M , from (13) and (14) we get

g(R̂(X, ϕX)ϕX, X) = g(R(X, ϕX)ϕX, X) + 3g(X, X)2 − g(hX, X)2 − g(ϕhX, X)2

(16)
for any X orthogonal to ξ . From this, we easily see that s Sasakian space form
M2n+1(c0) of constant ϕ-holomorphic sectional curvature c0 (with respect to the
Levi-Civita connection) is a strictly pseudo-convex CR space form of constant
holomorphic sectional curvature (with respect to the Tanaka-Webster connection)
c = c0 + 3. Simply connected and complete Sasakian space forms are the unit
sphere S2n+1 with the natural Sasakian structure with c0 = 1 (c = 4), the Heisenberg
group H 2n+1 with Sasakian ϕ-holomorphic sectional curvature c0 = −3 (c = 0), or
Bn × R with Sasakian ϕ-holomorphic sectional curvature c0 = −7 (c = −4), where
Bn is a simply connected bounded domain inCn with constant holomorphic sectional
curvature −4.

For a class of the contact (k, μ)-spaces, we proved the following results.

Theorem 2 ([7]) Let M be a contact (k, μ)-space. Then M is of constant holo-
morphic sectional curvature c for Tanaka-Webster connection if and only if (1) M
is Sasakian space of constant ϕ-holomorphic sectional curvature c0 = c − 3, (2)
μ = 2 and c = 0, or (3) dim M=3 and μ = 2 − c.

Corollary 3 ([7]) The standard strictly pseudo-convex CR structure on a unit tan-
gent sphere bundle T1M(b) of (n + 1)-dimensional space of constant curvature b
has constant holomorphic sectional curvature c if and only if b = −1 and c = 0, or
n = 1 and b = (c − 2)/2.
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Remark 3 (1) The standard contact metric structure of the unit tangent sphere bundle
T1Sn+1(1) is Sasakian [20], but it has not constant holomorphic sectional curvature
for both Levi-Civita and Tanaka-Webster connection.

(2) The unit tangent sphere bundle T1Hn+1(−1) of a hyperbolic space Hn+1(−1)
is a non-Sasakian example of constant holomorphic sectional curvature for Tanaka-
Webster connection but not for Levi-Civita connection.

In [7] we determined the Riemannian curvature tensor explicitly for a strictly
pseudo-convex CR space of constant holomorphic sectional curvature c. Then we
have

g(R̂(X,Y )Z ,W ) = g(H(X,Y )Z ,W ) + c

4

{
g(Y, Z)g(X,W ) − g(X, Z)g(Y,W )

+ g(ϕY, Z)g(ϕX,W ) − g(ϕX, Z)g(ϕY,W ) − 2g(ϕX,Y )g(ϕZ ,W )
}

(17)
for all vector fields X,Y, Z ,W ⊥ ξ , where

g(H(X,Y )Z ,W ) = g(Y, Z)g(hX,W ) − g(X, Z)g(hY,W )

− g(Y,W )g(hX, Z) + g(X,W )g(hY, Z)

+ g(ϕY, Z)g(ϕhX,W ) − g(ϕX, Z)g(ϕhY,W )

− g(ϕY,W )g(ϕhX, Z) + g(ϕX,W )g(ϕhY, Z).

(18)

Then from (17) we get

ρ̂(X,Y ) = c(n + 1)/2 g(X,Y ). (19)

Proposition 4 ([9]) A strictly pseudo-convex CR space form of constant holomor-
phic sectional curvature c is pseudo-Einstein with constant pseudo-Hermitian scalar
curvature r̂ = n(n + 1)c.

5 The Chern-Moser-Tanaka Invariant

Now, we review the pseudo-conformal transformations of a strictly pseudo-convex
almost CR structure. Given a contact form η, we consider a 1-form η̄ = ση for
a positive smooth function σ . By assuming φ̄|D = φ|D ( J̄ = J ), the associated
Riemannian structure ḡ of η̄ is determined in a natural way. Namely, we have

ξ̄ = (1/σ)(ξ + ζ ), ζ = (1/2σ)φ(grad σ), φ̄ = φ + (1/2σ)η ⊗ (grad σ − ξσ · ξ),

ḡ=σg − σ(η ⊗ ν + ν ⊗ η) + σ(σ − 1 + ‖ζ‖2)η ⊗ η,

where ν is dual to ζ with respect to g. We call the transformation (η, J ) →
(η̄, J̄ ) a pseudo-conformal transformation (or gauge transformation) of the strictly
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pseudo-convex almost CR structure. We remark in particular that when σ is a con-
stant, then a gauge transformation reduces to a pseudo-homothetic transformation.

Let ω be a nowhere vanishing (2n + 1)-form on M and fix it. Let dM(g) =
((−1)n/2nn!)η ∧ (dη)n denote the volume element of (M, η, g). We define β by
dM(g) = ±eβω and θ ∈ Γ (D∗) by θ(X) = Xβ for X ∈ Γ (D). For a strictly
pseudo-convex almost CR manifold, the generalized Chern-Moser-Tanaka curva-
ture tensor C ∈ Γ (D ⊗ D∗3) is defined by S. Tanno in [18] (see also, [8]).

(2n + 4)g(C(X, Y )Z ,W )

= (2n + 4)g(R̂(X, Y )Z ,W )

− ρ̂(Y, Z)g(X,W ) + ρ̂(X, Z)g(Y,W ) − g(Y, Z)ρ̂(X,W ) + g(X, Z)ρ̂(Y,W )

+ ρ̂(Y, ϕZ)g(ϕX,W ) − ρ̂(X, ϕZ)g(ϕY,W ) − [ρ̂(X, ϕY ) − ρ̂(ϕX, Y )]g(ϕZ ,W )

+ ρ̂(X, ϕW )g(ϕY, Z) − ρ̂(Y, ϕW )g(ϕX, Z) − [ρ̂(Z , ϕW ) − ρ̂(ϕZ ,W )]g(ϕX, Y )

+ [r̂/(2n + 2)][g(Y, Z)g(X,W ) − g(X, Z)g(Y,W )

+ g(ϕY, Z)g(ϕX,W ) − g(ϕX, Z)g(ϕY,W ) − 2g(ϕX, Y )g(ϕZ ,W )]
− (2n + 4)[g(hY, Z)g(X,W ) − g(hX, Z)g(Y,W ) + g(Y, Z)g(hX,W )

− g(X, Z)g(hY,W ) + g(ϕhY, Z)g(ϕX,W ) − g(ϕhX, Z)g(ϕY,W )

+ g(ϕhX,W )g(ϕY, Z) − g(ϕhY,W )g(ϕX, Z)]
− (n + 2)/(n + 1)g(U (X, Y, Z; θ),W )).

(20)
Here U ∈ Γ (D2 ⊗ D∗3) and U (X,Y, Z; θ) = (θ jU

ji
lhk X

hY k Zl) in terms of an
adapted frame {eα} = {e j , e0 = ξ ; 1 ≤ j ≤ 2n}. For a full understanding, we may
describe it by using the components of U in terms of {e j , e0} (cf. [18]). That is,

U ji
lhk = 2

[
1/(n + 2){−δih(Ω

j
km + Ω

j
mk)φ

m
l − φi

h(Ω
j
lk + Ω

j
kl) + ghl(Ω

j
km + Ω

j
mk)φ

mi

− φhl(Ω
j
km + Ω

j
mk)g

mi } + Ω
j
lkφ

i
h + φhlΩ

j
mkg

im + Ω
j
hkφ

i
l

+ (1/2)(Ω j
ml − Ω

j
lm)gmiφhk + φ

j
l Ω

i
hk + φ

j
hΩ

i
lk − (1/2)φi jΩm

kl ghm
]

hk
,

where [· · · ]hk denotes the skew-symmetric part of [· · · ] with respect to h, k.

Remark 4 (1) If n = 1 (dimM=3), thenwe always haveC = 0 (see Remark in [18]).
(2) When (M; η, g) is Sasakian, then (h = 0 and) C reduces to the C-Bochner

curvature tensor, which is the corresponding (through the Boothby-Wang fibration)
to the Bochner curvature tensor in a Kähler manifold [12].

Using (17) and (19), from the Eq. (9) we find

Proposition 5 On a pseudo-Hermitian CR space form, the Chern-Moser-Tanaka
invariant C vanishes.

Moreover we have

Theorem 3 Let (M2n+1; η, J ) (n > 1) be a strictly pseudo-convex almost CR man-
ifold with vanishing C. Then M is pseudo-Einstein if and only if M is of pointwise
constant holomorphic sectional curvature for the Tanaka-Webster connection.



The Chern-Moser-Tanaka Invariant on Pseudo-Hermitian Almost CR Manifolds 293

The argument and computation of present paper gives a simpler proof of
[9, Theorem 22].

Remark 5 The unit tangent sphere bundle T1Hn+1(−1) of a hyperbolic space
H

n+1(−1) is a non-Sasakian example which supports Theorem 3 well. It was proved
that the Chern-Moser-Tanaka curvature tensor C on T1Hn+1(−1) vanishes [19] and
within the class of (k, μ)-spaces, it is the only such an example [8].
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